
Under review as a conference paper at ICLR 2023

CONVERGENCE RATE OF PRIMAL-DUAL APPROACH
TO CONSTRAINED REINFORCEMENT LEARNING WITH
SOFTMAX POLICY

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we consider primal-dual approach to solve constrained reinforcement
learning (RL) problems, where we formulate constrained reinforcement learning
under constrained Markov decision process (CMDP). We propose the primal-dual
policy gradient (PD-PG) algorithm with softmax policy. Although the constrained
RL involves a non-concave maximization problem over the policy parameter space,
we show that for both exact policy gradient and model-free learning, the proposed
PD-PG needs iteration complexity of O

(
ε−2
)

to achieve its optimal policy for
both constraint and reward performance. Such an iteration complexity outperforms
or matches most constrained RL algorithms. For the learning with exact policy
gradient, the main challenge is to show the positivity of deterministic optimal policy
(at the optimal action) is independent on both state space and iteration times. For
the model-free learning, since we consider the discounted infinite-horizon setting,
and the simulator can not rollout with an infinite-horizon sequence; thus one of
the main challenges lies in how to design unbiased value function estimators with
finite-horizon trajectories. We consider the unbiased estimators with finite-horizon
trajectories that involve geometric distribution horizons, which is the key technique
for us to obtain the theoretical results for model-free learning.

1 INTRODUCTION

Reinforcement learning (RL) has achieved significant success in many fields (e.g., (Silver et al., 2017;
Vinyals et al., 2019; OpenAI, 2019)). However, most RL algorithms improve the performance under
the assumption that an agent is free to explore any behaviors (that may be detrimental). For example,
a robot agent should avoid playing actions that irrevocably harm its hardware (Deisenroth et al.,
2013).Thus, it is important to consider safe exploration that is known as constrained RL (or safe RL),
which is usually formulated as constrained Markov decision processes (CMDP) (Altman, 1999).

The primal-dual approach (Altman, 1999; Bertsekas, 2014) is a fundamental way to solve CMDP
problems. Recently, the primal-dual method has also been extended to policy gradient (e.g.,(Tessler
et al., 2019; Petsagkourakis et al., 2020; Xu et al., 2021)). However, most previous work only focus
on natural policy gradient (NPG) (Kakade, 2002) to solve constrained RL (e.g., (Ding et al., 2020; Xu
et al., 2021; Zeng et al., 2021)), little is known about the vanilla policy gradient (Sutton et al., 2000)
with primal-dual approach to constrained RL, which involves the following foundational theoretical
issues: (i) how to employ the primal-dual vanilla policy gradient method to constrained RL with exact
information and model-free learning? (ii) how fast does primal-dual vanilla policy gradient converge
to the optimal policy? (iii) what is the sample complexity of the primal-dual policy gradient? These
questions are the focus of this paper, and we mainly consider softmax policy for the discounted
infinite-horizon CMDP with finite action space and state space.

1.1 MAIN CONTRIBUTIONS

Constrained RL with Exact Policy Gradient. In Section 3, we propose a primal-dual policy
gradient (PD-PG) algorithm, which improves reward performance via gradient ascent on the primal
policy parameter space and plays safe explorations via projecting gradient descent on the dual space.
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Theorem 2 shows that PD-PG with exact policy gradient needs the iteration complexity of

O

(∥∥∥∥dρ0π?ρ0

∥∥∥∥2

∞

|S| log |A|
c?(1− γ)4ε2

)
(1)

to obtain the O(ε)-optimality, where c? is the infimum of the probability of the optimal action from
softmax policy, c? is a positive scalar independent on the time-step t and independent on the state
space S. One of the main challenges to obtain the complexity (1) is to show that c? is bounded
away from 0, see Proposition 2. From Table 1, we know the proposed PD-PG is with the iteration
complexity of Õ(ε−2), which is comparable to extensive constrained RL algorithms.

Model-Free Constrained RL. In Section 4, we propose a sample-based PD-PG that only uses
empirical data to learn a safe policy. The sample-based PD-PG needs a complexity of

O

∥∥∥∥dρ0π?ρ0

∥∥∥∥2

∞

|S|
(
|S||A|+m

)
log |A|

c?(1− γ)4ε2

 (2)

to obtain the O(ε)-optimality, where m is the number of constraints. The iteration complexity (2)
outperforms or matches extensive existing state-of-the-art constrained RL algorithms, see Table
1. Since this work considers discounted infinite-horizon CMDP, and the simulator can not rollout
with an infinite-horizon sequence; thus the main challenge lies in designing unbiased value function
estimators with finite-horizon trajectories. In Section 4.2, according to Paternain (2018, Chapter 6),
we introduce unbiased estimators with finite-horizon trajectories that involve geometric distribution
horizons, which plays a critical role for us to obtain the iteration complexity of sample-based PD-PG.
Finally, in Section 4.6, we also illustrate an iteration complexity trade-off between PD-PG and NPD-
PG (Ding et al., 2020), where we analyze it from the trade-off between the distribution mismatch
coefficient

∥∥∥dρ0π?ρ0 ∥∥∥∞ (contained in the proposed PD-PG) and the Moore-Penrose pseudo inverse Fisher

information matrix F†(θ) (contained in NPD-PG (Ding et al., 2020)).

1.2 RELATED WORK

Constrained RL with Exact Policy Gradient. The proposed PD-PG (Algorithm 1) is Lagrangian-
based CMDP algorithm (Borkar, 2005; Bhatnagar & Lakshmanan, 2012; Liang et al., 2018; Tessler
et al., 2019; Yu et al., 2019; Chow et al., 2017; Koppel et al., 2019; Miryoosefi et al., 2019; Paternain
et al., 2019a;b). However, those work only focus on the asymptotic convergence results. Primal-dual
method is extended with policy gradient (e.g.,(Borkar, 2005; Bhatnagar & Lakshmanan, 2012; Tessler
et al., 2019; Petsagkourakis et al., 2020; Wachi et al., 2021)), but those work focus on natural policy
gradient (NPG) with Fisher information (Kakade, 2002) or regularized policy iteration to solve
constrained RL problems (e.g., (Bharadhwaj et al., 2021)). It is still known litter about vanilla policy
gradient (Williams, 1992; Sutton et al., 2000) with primal-dual approach (i.e., the proposed PD-PG)
to constrained RL. This work studies the finite-sample performance of the vanilla PD-PG. From
Table 1 we know expect UCBVI-γ (He et al., 2021) outperforms PD-PG by a factor 1

1−γ , PD-PG is
comparable to extensive existing state-of-the-art CMDP algorithms.

Model-Free Constrained RL. Model-free constrained RL algorithms, including CPO (Achiam et al.,
2017), IPO (Liu et al., 2020), Lyapunov-Based Safe RL (Chow et al., 2018), SAILR (Wagener et al.,
2021), SPRL (Sohn et al., 2021), SNO-MDP (Wachi & Sui, 2020), A-CRL (Calvo-Fullana et al.,
2021) and DCRL (Qin et al., 2021) all lack convergence rate analysis.

Recently, Ding et al. (2020) propose the natural policy gradient primal-dual (NPD-PG) method for
solving discounted infinite-horizon CMDP. Even though the underlying maximization involves a non-
concave objective function and a nonconvex constraint setting under the softmax policy parametriza-
tion, Ding et al. (2020) show NPD-PG converges at sublinear rates regarding both the optimality gap
and the constraint violation, which shares a similar iteration complexity as the proposed PD-PG. Later,
Zeng et al. (2021) extend the critical idea of NPD-PG, propose an online version of NPD-PG, and
show their algorithm needs the sample complexity of O(ε−6). Xu et al. (2021) propose a primal-type
algorithmic framework to solve SRL problems, and Xu et al. (2021) show it needs O(ε−4) sample
complexity to obtain O(ε)-optimality 7. Finally, from Table 1 we know PD-PG achieves the best
sample complexity among the policy-based safe RL algorithms.
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Exact Information Algorithm Iteration Complexity Model-Free Learning Algorithm Iteration Complexity

Value-Based OptPrimalDual-CMDP
(Efroni et al., 2020) O

(
|S|2|A|

(1− γ)3ε2

)
Value-Based ConRL

(Brantley et al., 2020, Remark 3.5) O
(
|S|2|A|

(1− γ)5ε2

)
Value-Based OptDual-CMDP

(Efroni et al., 2020) O
(
|S|2|A|

(1− γ)3ε2

)
Value-Based CSPDA 4

(Bai et al., 2021) O
(
|S|2|A|2

(1− γ)7ε4

)
Value-Based UC-CFH 1

(Kalagarla et al., 2021, Theorem 1) O
(
|S|3|A|

(1− γ)3ε2

)
Value-Based Triple-Q 5

(Wei et al., 2021) O
(
|S|2.5|A|2.5

(1− γ)18.5ε5

)
Value-Based OptPess-PrimalDual

(Liu et al., 2021) Õ
(
|S|3|A|

(1− γ)4ε2

)
Value-Based Reward-Free CRL 6

(Miryoosefi & Jin, 2021, Theorem 7) O
(
|S||A|

(1− γ)4ε2

)
Value-Based OPDOP

(Ding et al., 2021, Theorem 1) Õ
(
|S|2|A|

(1− γ)4ε2

)
Policy-Based CRPO 7

(Xu et al., 2021, Theorem 1) O
(
|S||A|

(1− γ)7ε4

)
Value-Based UCBVI-γ 2

(He et al., 2021, Theorem 4.3) O
(
|S||A|

(1− γ)3ε2

)
Policy-Based On-Line NPD-PG 8

(Zeng et al., 2021, Theorem 1) Õ
(
|S|6|A|6

(1− γ)12ε6

)
Policy-Based NPD-PG3

(Ding et al., 2020, Theorem 1) O
(

1

(1− γ)4ε2

)
Policy-Based NPD-PG 3

(Ding et al., 2020, Theorem 4) Õ
(
|S|2|A|2

(1− γ)4ε2

)
Policy-Based PD-PG (This Work, Algorithm 1) Õ

(
|S|

(1− γ)4ε2

)
Policy-Based PD-PG (This Work, Algorithm 3) Õ

(
|S|2|A|

(1− γ)4ε2

)

Table 1: Typical exact gradient and model-free state-of-the-art algorithms for constrained RL.

2 PRELIMINARIES

Constrained Reinforcement Learning. Constrained RL is often formulated as a constrained Markov
decision process (CMDP), which is the standard Markov decision process (MDP)M augmented
with an additional constraint set C. A MDP is a tupleM = (S,A,P, r, ρ0, γ). Here S is state space,
A is action space. P(s

′ |s, a) is probability of state transition from s to s
′

after playing a. r(s′|s, a)

denotes the reward that the agent observes when state transition from s to s
′

after it plays a, and
it is bounded as |r(·)| ≤ 1. ρ0(·) : S → [0, 1] is the initial state distribution and γ ∈ (0, 1). The
policy π(a|s) denotes the probability of playing a in state s, and ΠS denotes the set of all stationary
policies. Pπ(s

′ |s) denotes one-step state transformation probability from s to s
′

by executing π.
Let T = {st, at, rt+1}t≥0 ∼ π be a trajectory generated by π, where s0 ∼ ρ0(·), at ∼ π(·|st),
st+1 ∼ P(·|st, at), and rt+1 = r(st+1|st, at). Let ds0π (s) = (1 − γ)

∑∞
t=0 γ

tPπ(st = s|s0)
be the state distribution of the Markov chain (starting at s0) induced by policy π, and dρ0π (s) =
Es0∼ρ0(·)[d

s0
π (s)]. Let Vπ(s) = Eπ[

∑∞
t=0 γ

trt+1|s0 = s] be the state value function. The state-
action value function is Qπ(s, a) = Eπ[

∑∞
t=0 γ

trt+1|s0 = s, a0 = a], and advantage function is
Aπ(s, a) = Qπ(s, a)− Vπ(s). Finally, we define the objective function J(π) = Es∼ρ0(·)[Vπ(s)].

CMDP extends MDP with an additional constraint set C = {(ci, bi)}mi=1, where ci : S × A → R
is cost function, each bi is cost limit, and |ci(·)| ≤ 1. We define value functions V ciπ , action-value
functions Qciπ , and advantage functions Aciπ for costs in analogy to Vπ, Qπ , and Aπ , with ci replacing
r respectively, i ∈ {1, 2 · · · ,m}, e.g., V ciπ (s) = Eπ [

∑∞
t=0 γ

tci(st, at)|s0 = s]. Furthermore, we
define the expected cost Ci(π) = Es∼ρ0(·)[V

ci
π (s)]. The feasible policy set ΠC is defined as follows,

ΠC = ∩mi=1 {π ∈ ΠS and Ci(π) ≤ bi} . The goal of safe RL is to search a policy π satisfies

max
π∈ΠS

J(π), such that c(π) � b, (3)

where the vector c(π) = (C1(π), C2(π), · · · , Cm(π))
>
, and b = (b1, b2, · · · , bm)

>
. If the con-

strained policy optimization problem (3) exists a solution, we denote it as:

π? = arg max
π∈ΠC

J(π). (4)

1According to Bai et al. (2021), (Kalagarla et al., 2021, Theorem 1) involves a constant C bounded by |S|.
2UCBVI-γ matches the lower bound Ω̃

(
|S||A|

(1−γ)3ε2

)
for MDP (Lattimore & Hutter, 2012; Azar et al., 2013).

3Theorem 1 of Ding et al. (2020) shows a convergence rate independent on S and A. Notice that in Theorem
4 of Ding et al. (2020), |S|2|A|2 samples are necessary for the two outer loops.

4Bai et al. (2021) claim CSPDA needs O( |S||A|
(1−γ)4ε2 ), but the inner loop of their Algorithm 1 needs an

additional generative model that needs 1
(1−γ)3

|S||A| log(|S||A|)
ε2

samples (Agarwal et al., 2020a, Chapter 2).
5We show this iteration complexity according to a recent work (Bai et al., 2021). Since Wei et al. (2021)

study the finite-horizon CMDP, we believe their Triple-Q plays at least O( |S|
2|A|2
ε5

).
6The worst-case of constraint violation shown in (Miryoosefi & Jin, 2021) reaches O

(
|S|2|A|

(1−γ)4ε2

)
if the

number of constraint function is large than |S|.
7Notice that the inner loop with Kin = O( T

(1−γ)|S||A| ) iteration is needed (Xu et al., 2021, Theorem 3).
8We show the iteration complexity after some simple algebra according to (Zeng et al., 2021, Lemma 8-9).
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Strong Duality. Let λ ∈ Rm, and λ � 0, the Lagrange multiplier function L(π,λ) is defined as:

L(π,λ) = J(π) + λ> (b− c(π)) . (5)

Its associated dual function is defined as: LD(λ) = maxπ∈ΠS
L(π,λ), its optimal dual parameter is:

λ? = arg min
λ�0
LD(λ), i.e., LD(λ?) = min

λ�0
max
π∈ΠS

L(π,λ). (6)

Assumption 1 (Slater Condition). There exists a vector ξ ≺ 0, and a policy π̄ ∈ ΠS such that

c(π̄)− b � ξ. (7)

The Slater condition (Slater, 1950) is mild in practice (otherwise, we can simply increase the constraint
vector b by a tiny amount), and Slater condition is a standard assumption for CMDP appears in the
previous work (Chow et al., 2018; Paternain et al., 2019a;b; Le et al., 2019; Ding et al., 2020; Ying
et al., 2021). Slater’s condition and convexity of policy class ΠS ensure that strong duality holds. We
formulate the problem (3) as the following strong duality version.
Theorem 1 (Strong Duality (Altman, 1999)). Let the stationary policy space ΠS be a convex set.
Under Assumption 1, the CMDP problem (3) shares the same optimal solution as the following
min-max and max-min problems

J(π?) = min
λ�0

max
π∈ΠS

L(π,λ) = max
π∈ΠS

min
λ�0
L(π,λ). (8)

Policy Gradient with Softmax Policy. In this paper, we mainly consider softmax policy:

πθ(a|s) =
exp{θs,a}∑
ã∈A exp{θs,ã}

, ∀ (s, a) ∈ S ×A, (9)

where θ ∈ R|S|×|A|, and each θ[s, a] := θs,a. Finally, we define two additional notations:

acπθ
(s, a) =

(
Ac1πθ

(s, a), Ac2πθ
(s, a), · · · , Acmπθ

(s, a)
)>
, Aπθ

(s, a,λ) = Aπθ
(s, a)− λ>acπθ

(s, a).

Proposition 1. Let πθ be softmax policy (9), the gradient of J(πθ) and Ci(πθ) with respect to θ is:

∂J(πθ)

∂θs,a
=

1

1− γ
dρ0πθ

(s)πθ(a|s)Aπθ
(s, a),

∂Ci(πθ)

∂θs,a
=

1

1− γ
dρ0πθ

(s)πθ(a|s)Aciπθ
(s, a). (10)

Then the gradients of L(πθ,λ) with respect to θ,λ are:

∂L(πθ,λ)

∂θs,a
=

1

1− γ
dρ0πθ

(s)πθ(a|s)Aπθ
(s, a,λ),

∂L(πθ,λ)

∂λ
= b− c(πθ). (11)

3 PRIMAL-DUAL POLICY GRADIENT METHOD

According to strong duality shown in Theorem 1, to solve the constrained RL problem (3), we only
need to solve the equivalent unconstrained problem (8). We define primal-dual approach as follows,

λt+1 ← {λt − η∇λL(πθt ,λt)}+ , θt+1 ← θt + η∇θL(πθt ,λt), (12)

where the elements of ∇θL(πθt ,λt) and ∇λL(πθt ,λt) are shown in Proposition 1, {·}+ denotes
the positive part operator, i.e., if x ≤ 0, {x}+ = 0, else {x}+ = x, and η > 0 is step-size. The
complete primal-dual approach has been shown in Algorithm 1, where we introduce a notation
G(θ,λ) ∈ R|S|×|A| that is the matrix version of ∂L(πθ,λ)

∂θs,a
, i.e., each G(θ,λ)[s, a] is defined as:

G(θ,λ)[s, a] =
1

1− γ
dρ0πθ

(s)πθ(a|s)Aπθ
(s, a,λ).

Before we show the convergence rate of Algorithm 1, we assume that the initial state distribution
ρ0(·) used in the gradient updates is bounded away from zero.
Assumption 2 (Sufficient Exploration). The initial state distribution ρ0(·) satisfies

ρmin := min
s∈S
{ρ0(s)} > 0. (13)
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Algorithm 1 Primal-Dual Policy Gradient (PD-PG)

Initialization: step-size η, θ0 = 0, λ0 = 0, policy gradient G(θ,λ);
for t = 0, 1, · · · , T − 1 do

G(θt,λt)[s, a] = 1
1−γ d

ρ0
πθt

(s)πθt(a|s)Aπθt
(s, a,λt);

λt+1 ← {λt − η(b− c(πθt))}+ ;
θt+1 ← θt + ηG(θt,λt);

end for

Assumption 2 has been adapted by Agarwal et al. (2020b); Mei et al. (2020); Ying et al. (2021),
which requires the initial distribution ρ0(·) lies in the interior of the probability simplex ∆o(S) :=
{ps|ps > 0,

∑
s∈S ps = 1}. The condition (13) ensures “sufficient exploration”, which means that

for any policy π ∈ ΠS, the distribution dρ0π (s) keeps positive over the state space S. Additionally,
Assumption 2 is necessary for global optimality of policy gradient methods. Concretely, Mei et al.
(2020) have shown that there exists an MDP with the condition mins∈S ρ0(s) = 0, and there exists a
parameter θ? such that this θ? is a stationary policy of J(πθ), but πθ? is not an optimal policy.

To short the expression, we define some additional notations. Recall ξ := (ξ1, ξ2, · · · , ξm)> ≺ 0
defined in Assumption 1, i.e., ξi < 0, i = 1, 2, · · · ,m, let ι := min1≤i≤m{−ξi}, % := 1+ 2m

(1−γ)2ι2 .

The distribution mismatch coefficient is defined as:
∥∥∥dρ0π?ρ0 ∥∥∥∞ := maxs∈S

{
dρ0π? (s)

ρ0(s)

}
. Finally, let

πt(a|s) := πθt(a|s), and πt := πθt . (14)

From stating this and the remaining results, we fix a deterministic optimal policy π?(·|s), denote it as
a?(s), i.e., π?(a?(s)|s) = 1; if a 6= a?(s), π?(a|s) = 0.
Proposition 2. Under Assumption 2, updating πt according to Algorithm 1, we obtain

c? =: inf
s∈S,t≥1

{πt(a?(s)|s)} > 0. (15)

We provide the proof in Appendix D.1 (see Lemma 15). According to (15), c? is a positive scalar
independent on the time-step t and independent on the state space S.
Theorem 2. Under Assumption 1-2, πθ is the softmax policy defined in (9). Let time-step T satisfy

T ≥ max

{
1

(1− γ)2
,

1

((1− γ)2 + 2m/ι2)
2

}
· D2

2

|S| log |A|ρ2
minD1

, (16)

where D1 and D2 are positive scalars will be special later. The sequence {λt,θt}T−1
t=0 is generated

by Algorithm 1. Let η =

√∥∥∥dρ0π?ρ0 ∥∥∥∞ |S| log |A|
C(1−γ)T , β =

√∥∥∥dρ0π?ρ0 ∥∥∥∞ 4|S| log |A|
(1−γ)3ι2c?

, where C is a positive

scalar will be special later. Then for all i ∈ {1, 2, · · · ,m}, πt := πθt satisfies

min
t<T
{J(π?)− J(πt)} ≤ 4

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|
c?(1− γ)4T

, (17)

min
t<T
{Ci(πt)− bi}+ ≤

4%

β − ‖λ?‖∞

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|
c?(1− γ)4T

. (18)

Remark 1. Lemma 3 (see Appendix B.3) has shown the boundedness of λ? as follows: ‖λ?‖∞ ≤
2

(1−γ)ι . Furthermore, according to the discussions in Remark 3 (see Appendix D.2), the inequality
β > 2

(1−γ)ι always holds. Thus β > ‖λ?‖∞, which implies the bounds (17) and (18) are well-defined.

Remark 2. Theorem 2 implies Algorithm 1 needs the iteration complexity of

O

(∥∥∥∥dρ0π?ρ0

∥∥∥∥2

∞

|S| log |A|
c?(1− γ)4ε2

)
(19)

to obtain O(ε)-optimality. The iteration complexity of (19) is a function with respect to the toleration
ε, which matches the best known policy gradient methods from (Ding et al., 2020) for CMDP, where
both NPD-PG (Ding et al., 2020) and the proposed PD-PG share a complexity of O(ε−2).

5



Under review as a conference paper at ICLR 2023

4 PRIMAL-DUAL METHOD TO SOLVE MODEL-FREE CONSTRAINED RL

The main difficulty to implementing a model-free algorithm lies in designing an efficient policy
gradient estimator for the discounted infinite-horizon MDP, which is intractable for sampling-based
policy optimization since it requires a trajectory with an infinite horizon, which is impossible for
practical simulation. In Section 4.2-4.3, we present an unbiased value function and policy gradient
estimators with finite horizon trajectory, which is the benchmark for us to propose sample-based
algorithms. The proposed algorithm and convergence analysis lie in Section 4.4-4.5.

4.1 DILEMMA IN MONTE-CARLO ROLLOUT

Recall Proposition 1, to obtain unbiased estimators of ∂J(πθ)
∂θs,a

and ∂Ci(πθ)
∂θs,a

, it is necessary to satisfy
the following two conditions:

• (C1): draw the state-action pair (s, a) according to: (s, a) ∼
(
dρ0πθ

(·), πθ(·|s)
)

;

• (C2): obtain the unbiassed estimator of the advantage functions Aπθ
(s, a) and Aciπθ

(s, a).

However, we can not obtain exact ds0πθ
(s) = Es0∼ρ0(·)[(1− γ)

∑∞
t=0 γ

tPπθ
(st = s|s0)] for model-

free RL, since the transformation probability Pπθ
(st = s|s0) is unknown. Additionally, Monte-Carlo

rollout is a theoretically possible but intractable sampling-based approach to obtain an unbiased
estimator of Aπθ

(s, a), which requires us to run infinite-horizon trajectories to estimate the value
functions. For example, let {(st, at, r(st, at))}∞t≥0 ∼ πθ start from (s0, a0) = (s, a),

Q̂(s, a) =

∞∑
t=0

γtr(st, at) (20)

is an unbiased estimators of Qπθ
(s, a). Despite the unbiasedness of Q̂(s, a), Monte-Carlo rollout

(20) requires infinite number of horizons, which is impossible in practice.

4.2 UNBIASED VALUE FUNCTION ESTIMATOR WITH FINITE HORIZON TRAJECTORY

Both of the conditions (C1) and (C2) can be implemented via a geometric random variable horizon
during the simulated process (Paternain, 2018, Chapter 6). Now, we present the insights behind this
process, which requires us to master geometric distribution Geo(·), see Appendix E.1.

Recall the Monte-Carlo rollout (20), if γ ≈ 0, then infinite series Q̂(s, a) (20) prioritizes the present
reward information. In that sense, when γ is very small, we do not need to require the agent to evolve
to collect the future reward for a long time. On the contrary, if γ ≈ 1, we need to require the agent to
look far away into the future reward information. The geometric distribution provides us a way to
formulate this idea (Paternain, 2018). Concretely, let τ ∼ Geo(1− γ), and rollout a finite horizon
trajectory asDτ = {st, at, r(st, at)}t=0:τ ∼ π, where the initial state-action (s0, a0) = (s, a). Then,
we define an estimator of Qπ(s, a) according to the sum of reward along the trajectory Dτ :

Q̂π(s, a) =

τ∑
t=0

r(st, at). (21)

This Q̂π(s, a) unbiasedly estimates Qπ(s, a) for each (s, a). Such a programming (21) can be
extended to cost function if we use ci(·) to replace r(·) respectively, and can be extended to Vπ(s)
and V ciπ (s) if Dτ starts from s.

Due to the limitation of space, we have provided the details of implementation to estimate Qπ and
Vπ in Algorithm 4 (denoted as EstQ(π, g, s, a)) and Algorithm 5 (denoted as EstV(π, g, s, a)),
see Appendix E.2, where we denote it as EstQ(π, g, s, a), where g = r(·) or g = c(·). The next
Proposition 3-4 show that Algorithm 4 and Algorithm 5 output unbiased estimators for value functions.
We have provided the proof in Appendix E.3.
Proposition 3 (Unbiasedness of Algorithm 4). Let Q̂π(s, a) = EstQ(π, r, s, a), Q̂ciπ (s, a) =

EstQ(π, ci, s, a), then the following holds: E[Q̂π(s, a)] = Qπ(s, a),E[Q̂ciπ (s, a)] = Qciπ (s, a).

Proposition 4 (Unbiasedness of Algorithm 5). Let V̂π(s) = EstV(π, r, s), V̂ ciπ (s) =

EstV(π, ci, s), then the following holds: E[V̂π(s)] = Vπ(s), E[V̂ ciπ (s, a)] = V ciπ (s).

6
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Algorithm 2 PG(π, g, s, a): Estimate Policy Gradient

1: Input: Policy πθ; Reward function or Cost function g(·, ·); State-action pair (s, a);
2: First Rollout: Q̂(s, a) = EstQ(πθ, g, s, a), let τ ∼ Geo(1− γ) denote the terminal time;
3: Second Rollout: Q̂(sτ , aτ ) = EstQ(πθ, g, sτ , aτ ), let τ

′ ∼ Geo(1 − γ) denote the terminal
time; collect the trajectory {(s′j , a

′

j , g(s
′

j , a
′

j)}j=0:τ ′ , where the initial (s
′

0, a
′

0) = (sτ , aτ );

4: Output: Ĝ(s, a) =
1

1− γ
Q̂(sτ , aτ )

∂ log πθ(aτ |sτ )

∂θs,a
.

4.3 UNBIASED POLICY GRADIENT ESTIMATOR

Now, we introduce an unbiased policy gradient estimator, which involves two rollouts.

First Rollout: we play a rollout with respect to πθ according to Algorithm 4,

Q̂πθ
(s, a) = EstQ(πθ, r, s, a), (22)

we use τ ∼ Geo(1− γ) to denote the finite terminal time of the horizon of the rollout (22).

Second Rollout: we play a rollout for the last state-action pair (sτ , aτ ) according to Algorithm 4,

Q̂πθ
(sτ , aτ ) = EstQ(πθ, r, sτ , aτ ). (23)

Let τ
′ ∼ Geo(1 − γ) be the terminal time of the rollout (23), and we denote it as D′ ={

s
′

j , a
′

j , r(s
′

j , a
′

j)
}
j=0:τ ′

, where the initial state-action pair (s
′

0, a
′

0) = (sτ , aτ ).

Output: let Ĝπθ
(s, a) be an estimator defined as follows,

Ĝπθ
(s, a) =

1

1− γ
Q̂πθ

(sτ , aτ )
∂ log πθ(aτ |sτ )

∂θs,a
. (24)

Since return objective J(πθ) and cost function Ci(πθ) share a similar structure, all the estimators
(22)-(24) can be extended to Ci(πθ) if we use ci to replace r respectively. We have provided such
policy gradient estimator with finite horizon trajectory in Algorithm 2, and denote it as PG(π, g, s, a).

Theorem 3. Let πθ be the softmax policy (9), and Ĝπθ
(s, a) = PG(πθ, r, s, a), Ĝciπθ

(s, a) =

PG(πθ, ci, s, a), Then Ĝπθ
(s, a) and Ĝciπθ

(s, a) satisfy

E[Ĝπθ
(s, a)] =

∂J(πθ)

∂θs,a
, E[Ĝ2

πθ
(s, a)] ≤ 4

(1− γ)3
;

E[Ĝciπθ
(s, a)] =

∂Ci(πθ)

∂θs,a
, E[(Ĝciπθ

(s, a))2] ≤ 4

(1− γ)3
.

Theorem 3 has guaranteed the unbiasedness and boundedness of the estimator PG(π, g, s, a), which
is the benchmark for us to show theoretical results. We provide its proof in Appendix E.4.

4.4 MODEL-FREE ALGORITHM DERIVATION

We have shown model-free PD-PG in Algorithm 3. To show a stochastic primal-dual implementation,
the iteration (12) implies that we need to estimate ∂L(πθ,λ)

∂λ and ∂L(πθ,λ)
∂θ .

Estimator for ∂L(πθ,λ)
∂λ . We obtain the estimators of the cost value function: V̂ ciπθ

(s) =

EstV(πθ, ci, s). Furthermore, let Ĉi(πθ) =
∑
s∈S ρ0(s)V̂ ciπθ

(s), and

ĉ(πθ) =(Ĉ1(πθ), Ĉ2(πθ), · · · , Ĉm(πθ))>, (25)

then according to Proposition 4, b− ĉ(πθ) is an unbiased estimator of ∂L(πθ,λ)
∂λ , i.e., for any given

policy parameter θ, the following holds

E[b− ĉ(πθ)] =
∂L(πθ,λ)

∂λ
.

7
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Algorithm 3 Primal-Dual Approach to Model-Free Safe RL

1: Initialization: step-size η, θ0 = 0, and Lagrange multiplier λ0 = 0;
2: for t = 0, 1, 2, · · · , T − 1 do
3: # Estimate ∂L(πθt ,λt)

∂λt
. Obtain cost value estimator ĉ(πθt) according to (25); Let

4:
∇̂λtL(πθt ,λt) = b− ĉ(πθt);

5: # Estimate ∂L(πθt ,λt)

∂θt
. Let Ĝ(πθt ,λt)[s, a] = Ĝπθt

(s, a)− λ>t gcπθt
(s, a); calculate

∇̂θtL(πθt ,λt) = Ĝ(πθt ,λt);

6: #Primal-Dual Update for Parameters.

λt+1 = {λt − η∇̂λtL(πθt ,λt)}+;θt+1 = θt + η∇̂θtL(πθt ,λt);

7: end for

Estimator for ∂L(πθ,λ)
∂θ . According to Algorithm 2, we obtain the policy gradient estimators with

respect to ∂J(πθ)
∂θs,a

and ∂Ci(πθ)
∂θs,a

as follows,

Ĝπθ
(s, a) = PG(πθ, r, s, a), Ĝciπθ

(s, a) = PG(πθ, ci, s, a). (26)

Let gcπθ
(s, a) = (Ĝc1πθ

(s, a), Ĝc2πθ
(s, a), · · · , Ĝcmπθ

(s, a))> collect all the policy gradient estimators
of cost value function. Let the matrix Ĝ(πθ,λ) ∈ R|S|×|A|, and each element Ĝ(πθ,λ)[s, a] is:

Ĝ(πθ,λ)[s, a] = Ĝπθ
(s, a)− λ>gcπθ

(s, a). (27)

Then according to Theorem 3, Ĝ(πθ,λ) is an unbiased estimator of ∂L(πθ,λ)
∂θ .

Stochastic Primal-Dual Iteration. We rewrite the iteration (12) as the following stochastic version,

λt ←
{
λt−1 − η(b− ĉ(πθt−1

)
}

+
,θt ← θt−1 + ηĜ(πθt−1

,λt−1), (28)

where we calculate ĉ(πθt−1
) and Ĝ(πθt−1

,λt−1) according to estimator (25) and estimator (27).

4.5 CONVERGENCE RATE

For each time t, we notice the estimator ĉ(πt) in the inner loop (see Line 3 of Algorithm 3) involvesm
trajectories, and estimator Ĝ(πθt ,λt) (see Line 5 of Algorithm 3) involves (2|S||A|+m) trajectories.
We use Dt to collect all those (2|S||A|+ 2m) trajectories,

Dt = {Tt,i}2|S||A|+2m
i=1 . (29)

According to rollout rule in Algorithm 4, Algorithm 5, and Algorithm 2, those (2|S||A| + 2m)
trajectories among Dt are independent with each other.
Theorem 4. Under Assumption 1-2, πθ is the softmax policy (9). The time-step T shares a fixed low
bound similar to (16). The initial λ0 = 0, θ0 = 0, the parameter sequence {λt,θt}T−1

t=0 is generated

according to Algorithm 3. Let η, β satisfy η =

√∥∥∥dρ0π?ρ0 ∥∥∥∞ |S| log |A|
C′ (1−γ)T

, β =

√∥∥∥dρ0π?ρ0 ∥∥∥∞ 4|S| log |A|
(1−γ)3ι2c?

,

where C
′

is a positive scalar will be special later. Then for all i ∈ {1, 2, · · · ,m}, πt := πθt satisfies

E
[
min
t<T
{J(π?)− J(πt)}

]
≤ 4

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|
c?(1− γ)4T

,

E
[
min
t<T
{Ci(πt)− bi}+

]
≤ 4

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

%

β − ‖λ?‖∞

√
|S| log |A|
c?(1− γ)4T

,

where the notation E[·] is short for ED0:DT−1
[·] that denotes the expectation with respect to the

randomness over the trajectories {Dt}T−1
t=0 .
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The details of the proof is in Appendix F.2, and the unbiased policy gradient estimator and the
independent samples among Dt play a critical role for us to obtain the Theorem 4. According to
(29), we need (2|S||A|+ 2m) trajectories to rollout the policy gradient estimator, Theorem 4 implies
Algorithm 3 needs a total iteration complexity of

O

∥∥∥∥dρ0π?ρ0

∥∥∥∥2

∞

|S|
(
|S||A|+m

)
log |A|

c?(1− γ)4ε2

 (30)

to obtain O(ε)-optimality. The iteration complexity shown in (30) matches the best known algorithm
NPD-PG Ding et al. (2020). NPD-PG (Ding et al., 2020) and the proposed PD-PG share a complexity
of O(ε−2), which is better than CRPO (Xu et al., 2021) that is with O(ε−4) and on-line NPD-PG
(Zeng et al., 2021) that is with O(ε−6).

4.6 COMMENT ON (DING ET AL., 2020): A TRADE-OFF BETWEEN PD-PG AND NPD-PG

The initial θ0 = 0 implies the distribution of initial policy is uniform, which implies π0(a(s)|s) =
|A|−1. Then c? is upper bounded as follows, c? = infs∈S,t≥1 {πt(a?(s)|s)} ≤ |A|−1, which implies
the iteration complexity of the proposed PD-PG (30) is lower bounded as follows,

Õ

(∥∥∥∥dρ0π?ρ0

∥∥∥∥2

∞

|S|2|A|2

(1− γ)4ε2

)
(31)

to obtain O(ε)-optimality, where we omit the constant m (that is the number of constraints), and Õ(·)
to hide polylogarithmic factors in the input parameters. According to (Ding et al., 2020, Theorem 4),
the complexity of NPD-PG is upper bounded by

Õ
(
|S|2|A|2

(1− γ)4ε2

)
. (32)

Although the proposed PD-PG shares the same state-action independent iteration complexity of
O(ε−2) with NPD-PG, the state-action dependent iteration complexity (31) and (32) implies PD-PG
is difficult than NPD-PG (Ding et al., 2020) due to the following two aspects. Firstly, the lower
bound (31) w.r.t PD-PG and the upper bound (32) w.r.t NPD-PG implies NPD-PG plays never worse
than PD-PG. Additionally, the bound w.r.t PD-PG (31) involves the distribution mismatch coefficient∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

, which heavily depends on the initial distribution ρ0(·). Concretely, if ρ0(·) is near 0 at

some state, then distribution mismatch coefficient can be very large, which is indeed detrimental for
PD-PG to search a safe policy. In this sense, it also demonstrates the necessity of Assumption 2.

However, although the upper bound (32) w.r.t NPD-PG does not contain the distribution mismatch
coefficient, the NPD-PG (Ding et al., 2020) requires additional computation w.r.t the Moore-Penrose
pseudo inverse F†(θ), where F(θ) is the Fisher information matrix:

F(θ) = Es∼dρ0πθ (·),a∼πθ(·|s)
[
∇ log πθ(a|s)(∇ log πθ(a|s))>

]
.

Thus, there exists a hidden trade-off between PD-PG and NPD-PG. Finally, we should emphasize
that trade-off is hidden due to the notation Õ(·) covers some information w.r.t MDP or policy space.

5 CONCLUSION

This work proposes PD-PG algorithm to solve constrained reinforcement learning problem, which
is a Lagrangian-based algorithm with policy gradient. Although the maximization objective is non-
concave and the minimization is non-convex over the parameter space, we show that for both exact
policy gradient and model-free learning, PD-PG converges to the optimal solution at a sublinear rate
for both reward objective and safety constraint. Since we consider discounted infinite-horizon CMDP,
we consider unbiased estimators with finite-horizon trajectories, which plays a critical role for us to
obtain the iteration complexity of sample-based PD-PG. Additionally, we investigate that PD-PG
needs a complexity of O

(
ε−2
)

to obtain a O(ε)-optimality, which is comparable to state-of the-art
algorithms available in the literature in constrained RL.
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A NOTATIONS

For any positive integer m, [m] := {1, 2, · · · ,m}. We use a bold capital letter to denote matrix, e.g.,
A = (ai,j) ∈ Rm×n, and its (i, j)-th element denoted as A[i, j] := ai,j , where i ∈ [m], j ∈ [n]. A
bold lowercase letter denotes a vector, e.g., a = (a1, a2, · · · , an) ∈ Rn, and a[i] := ai.

A.1 VECTOR AND MATRIX

1m : 1m ∈ Rm, and each element of vector 1m is 1, i.e., 1m = (1, 1, · · · , 1)>.
0m : 0m ∈ Rm, and each element of vector 0m is 1, i.e., 0m = (0, 0, · · · , 0)>.

a � b : It denotes component-wise order, i.e., a[j] ≤ b[j], j ∈ [m].
a ≺ b : It denotes component-wise order, i.e., a[j] < b[j], j ∈ [m].

A.2 MARKOV DECISION PROCESS

S : The set of states.
∆o(S) : The interior of the probability simplex over the state space S,

∆o(S) :=

{
ps

∣∣∣∣ps > 0,
∑
s∈S

ps = 1

}
.

A : The set of actions.
P(s

′ |s, a) : The probability of state transition from s to s
′

under playing the action a.
r(·) : The reward function r(·) : S × S ×A → R, and it is bounded by |r(·)| ≤ 1.
ρ0 : ρ0(·) : S → [0, 1] is the initial state distribution.
γ : The discount factor, and γ ∈ (0, 1).

A.3 STATE DISTRIBUTION

Pπ(s
′ |s0) : The probability of single step state transformation probability from s to s

′
by

executing π.
Pπ(st|s0) : The probability of visiting the state st after t time steps from the initial state s0

by executing πθ.
Pπ : The state transition probability matrix, and its (s, s

′
)-th component is

Pπ[s, s′] =
∑
a∈A

π(a|s)P(s′|s, a) := Pπ(s
′
|s).

dπθs0 (s), dπθρ0 (s) : The discounted stationary state distribution of the Markov chain (starting at s0)
induced by π,

dπθs0 (s) =

∞∑
t=0

γtPπ(st = s|s0), dπθρ0 (s) = Es0∼ρ0(·)[d
π
s0(s)].∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

: The distribution mismatch coefficient, i.e.,∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

:= max
s∈S

{
dρ0π?(s)

ρ0(s)

}
.

Due to the Assumption 2, the term
dρ0π?(s)

ρ0(s)
is well-defined.
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A.4 STATE, STATE-ACTION AND COST VALUE FUNCTION

Vπ(s) : State value function Vπ(s) = Eπ[
∑∞
t=0 γ

trt+1|s0 = s].
Qπ(s, a) : State-action value function Qπ(s, a) = Eπ[

∑∞
t=0 γ

trt+1|s0 = s, a0 = a].
Aπ(s, a) : Advantage function Aπ(s, a) = Qπ(s, a)− Vπ(s).

J(π) : The objective function.
C : The constraint set C = {(ci, bi)}mi=1, where bi are limited values, and cost

function ci: ci : S ×A → R, and it is bounded by |ci(·)| ≤ 1.
b : The vector stores all the limited values: b = (b1, b2, · · · , bm)>.

V ciπ (s) : State cost value function V ciπ (s) = Eπ [
∑∞
t=0 γ

tci(st, at)|s0 = s].
Qciπ (s, a) : State-action cost function Qciπ (s) = Eπ [

∑∞
t=0 γ

tci(st, at)|s0 = s, a0 = a].
Aciπ (s, a) : Advantage function Aciπ (s, a) = Qciπ (s, a)− V ciπ (s).
Ci(π) : The expected cost value function Ci(π) = Es∼ρ0(·)[V

ci
π (s)].

c(π) : The vector stores all the expected cost values:

c(π) = (C1(π), C2(π), · · · , Cm(π))>

.
ΠC : The feasible policy set ΠC is defined as follows,

ΠC =

m⋂
i=1

{π ∈ ΠS and Ci(π) ≤ bi} .

A.5 PARAMETER

λ : Lagrange multiplier parameter, λ ∈ Rm.
λ? : Optimal dual parameter λ? = arg minλ�0 maxπ∈ΠS

(
J(π) + λ>(b− c(π))

)
.

A.6 CONSTANT

ρmin : Sufficient exploration condition ρmin = mins∈S{ρ0(s)}.
m : The dimension of the vector b, i.e, the number of the constrained conditions

(3).
ξ : A component-wise negitive vector defined in Assumption 1: ξ :=

(ξ1, ξ2, · · · , ξm)> ≺ 0, and each ξi < 0, i = 1, 2, · · · ,m.
ι : A positive constant ι := min1≤i≤m{−ξi}.
% : A positive constant % := 1 +

2m

(1− γ)2ι2
.

D1, D2 : Two positive constants that are defined in Eq.(173).
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B PRELIMINARIES AND AUXILIARY LEMMA

B.1 STATE DISTRIBUTION

We use Pπ ∈ R|S|×|S| to denote the state transition matrix by executing π, and their components are:

Pπ[s, s′] =
∑
a∈A

π(a|s)P(s′|s, a) := Pπ(s
′
|s), s, s

′
∈ S,

which denotes one-step state transformation probability from s to s
′
.

We use Pπ(st = s|s0) to denote the probability of visiting s after t time steps from the initial state s0

by executing π. Particularly, we notice if t = 0, st 6= s0, then Pπ(st = s|s0) = 0, i.e.,

Pπ(st = s|s0) = 0, t = 0 and s 6= s0. (33)

Then for any initial state s0 ∼ ρ(·), the following holds,

Pπ(st = s|s0) =
∑
s′∈S

Pπ(st = s|st−1 = s
′
)Pπ(st−1 = s

′
|s0). (34)

In this paper, we also use P(t)
π to denote Pπ(st = s

′ |s), i.e.,

P(t)
π (s

′
|s) = Pπ(st = s

′
|s0 = s).

Recall ds0π (s) denotes the normalized discounted distribution of the future state s encountered starting
at s0 by executing π,

ds0π (s) = (1− γ)

∞∑
t=0

γtPπ(st = s|s0). (35)

Furthermore, since s0 ∼ ρ0(·), we define

dρ0π (s) = Es0∼ρ0(·)[d
s0
π (s)] =

∫
s0∈S

ρ0(s0)ds0π (s)ds0

as the discounted state visitation distribution over the initial distribution ρ0(·)

B.2 PERFORMANCE DIFFERENCE LEMMA

Lemma 1 (Performance Difference (Kakade & Langford, 2002)). For any policies π and π
′
, s0 ∼

ρ0(·), and for each i = 1, 2, · · · ,m, the following performance (or cost) difference holds

J(π)− J(π
′
) =

1

1− γ
Es∼dρ0π (·),a∼π(·|s) [Aπ′ (s, a)] , (36)

Ci(π)− Ci(π
′
) =

1

1− γ
Es∼dρ0π (·),a∼π(·|s)

[
Aci
π′

(s, a)
]
. (37)

B.3 BASIC FACTS

In this section, we present some basic facts will be use later, those results are adaptive to Ding et al.
(2020), and we extend them to the versions of vectors.

Recall LD(λ) = maxπ∈ΠS
L(π,λ), for a give scalar c ∈ R, we define a notation

Γ(c) := {λ � 0 : LD(λ) ≤ c}.
We notice the following inequality alway holds

max
π∈ΠS

min
λ�0
L(π,λ) ≤ min

λ�0
max
π∈ΠS

L(π,λ) = min
λ�0
LD(λ), (38)

if c < maxπ∈ΠS
minλ�0 L(π,λ)

(8)
= J(π?), then Γ(c) = ∅. We assume c ≥ J(π?) throughout this

paper.
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Lemma 2. Recall the optimal dual variable λ? = arg minλ�0 LD(λ), let c = J(π?), the following
holds

λ? ∈ Γ (c) . (39)

Proof. If we choose c = J(π?), and let λ̃ ∈ Γ(c), then by the definition of Γ(c), we achieve

LD(λ̃) = max
π∈ΠS

L(π, λ̃) ≤ J(π?)
(8)
= max

π∈ΠS

min
λ�0
L(π,λ). (40)

Let’s maximize the left-hand of Eq.(40) overset the space
{
λ̃ � 0

}
, combining the result (38), then

the vector λ̃ satisfies

max
π∈ΠS

min
λ̃�0
L(π,λ) = min

λ̃�0
max
π∈ΠS

L(π,λ), (41)

which implies λ̃ = λ?, further it implies

λ? ∈ Γ (J(π?)) . (42)

With the result of Lemma 2, we denote the set of all optimal dual variables as Γ?, i.e.,

Γ? :=

{
λ : arg min

λ�0
LD(λ)

}
= Γ (J(π?)) .

Lemma 3. Consider the policy π̄ satisfies Assumption 1, let λ ∈ Γ(c), then the following holds

c− J(π̄) ≥ −λ>ξ.

Furthermore, the optimal dual variable λ? is bounded as follows,

‖λ?‖∞ ≤
1

ι
(J(π?)− J(π̄)) ≤ 2

(1− γ)ι
.

Proof. Let λ ∈ Γ(c), and recall Assumption 1 and LD(λ) = maxπ∈ΠS
L(π,λ), then

c ≥ LD(λ) ≥ J(π̄) + λ> (b− c(π̄))
(7)

≥ J(π̄)− λ>ξ,

which implies

c− J(π̄) ≥ −λ>ξ. (43)

Furthermore, according to Lemma 2, if c = J(π?), then for each λ? ∈ Γ (J(π?)), Eq.(43) implies

J(π?)− J(π̄) ≥ −λ>? ξ = λ>? (−ξ). (44)

Recall Assumption 1, we know ξ ≺ 0, i.e., ξ := (ξ1, ξ2, · · · , ξm)> ≺ 0, which implies each ξi < 0,
i = 1, 2, · · · ,m. Let

ι := min
1≤i≤m

{−ξi},

then ι is a positive scalar, and −ξ � ι1m. Let λ? = (λ∗1, λ
∗
2, · · · , λ∗m)>, since λ? � 0, then each

λ∗i ≥ 0. Furthermore, ‖λ?‖∞ = max{λ∗1, λ∗2, · · · , λ∗m}, according to Eq.(44), we achieve

J(π?)− J(π̄) ≥ ιλ>? 1m = ι

m∑
i=1

λ∗i ≥ ι‖λ?‖∞, (45)

which implies

‖λ?‖∞ ≤
1

ι
(J(π?)− J(π̄)) ≤ 2

(1− γ)ι
. (46)
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Lemma 4. Let ϕ > ‖λ?‖∞, and for any policy π̃ such that

J(π?)− J(π̃) + ϕ1>m{c(π̃)− b}+ ≤ δ, (47)

then

1>m{c(π̃)− b}+ <
δ

ϕ− ‖λ?‖∞
. (48)

Proof. Let
v(ω) = max

π∈ΠS

{J(π), and b− c(π) � ω},

according to Paternain et al. (2019b); Ding et al. (2020), v(ω) is concave. We notice J(π?) = v(0).

Recall λ? = arg minλ�0 LD(λ), then according to Theorem 1, we achieve

L(π,λ?) ≤ max
π∈ΠS

L(π,λ?) = LD(λ?) = J(π?) = v(0), ∀π ∈ ΠS. (49)

Then, for each π such that
π ∈ {π ∈ ΠS : b− c(π) � ω},

the following holds

v(0)− λ>? ω
(49)

≥ L(π,λ?)− λ>? ω = J(π) + λ>? (b− c(π))− λ>? ω ≥ J(π), (50)

where the last Eq.(50) holds: since b− c(π) � ω, then λ>? (b− c(π))− λ>? ω ≥ 0.

Let’s maximize the right-hand of Eq.(50) with respect to π over the space {π ∈ ΠS : b− c(π) � ω},
then we achieve

v(0)− λ>? ω ≥ v(ω). (51)

Furthermore, if we choose

ω̃ := −{c(π̃)− b}+, (52)

then

J(π̃) ≤ J(π?) = v(0) ≤ v(ω̃), (53)

where the last inequality holds since

{π : b− c(π) � 0} ⊂ {π : b− c(π) � ω̃}.

Finally, considering the results from (51) to (53), we have

J(π̃)− J(π?)
(53)

≤ v(ω̃)− J(π?) = v(ω̃)− v(0)
(51)

≤ −λ>? ω̃. (54)

Consider the condition (47),

δ
(47)

≥ J(π?)− J(π̃) + ϕ1>m{c(π̃)− b}+
(54)

≥ λ>? ω̃ + ϕ1>m{c(π̃)− b}+
(52)

≥ (ϕ1m − λ?)>{c(π̃)− b}+ > (ϕ− ‖λ?‖∞)1>m{c(π̃)− b}+, (55)

where the last inequality holds: since ϕ > ‖λ?‖∞, then the following equation always holds

ϕ1m − λ? � (ϕ− ‖λ?‖∞)1m.

Eq.(55) implies

1>m{c(π̃)− b}+ <
δ

ϕ− ‖λ?‖∞
. (56)
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C POLICY GRADIENT W.R.T. OBJECTIVE AND COST VALUE FUNCTION

Although some similar results with respect to Proposition 1 have appeared in Agarwal et al. (2020b);
Mei et al. (2020); Lan (2021), we also need to provide the details since we will use some key details

later. Before we show Proposition 1, we need to calculate
∂πθ(a

′ |s′)
∂θs,a

, which plays a critical role to

proof Proposition 1.

Lemma 5. Let πθ be the softmax policy defined in (9), then

∂πθ(a
′ |s′)

∂θs,a
=

∂

∂θs,a

(
exp{θs′ ,a′}∑
ã∈A exp{θs′ ,ã}

)

=

∂

∂θs,a
exp{θs′ ,a′}(

∑
ã∈A exp{θs′ ,ã})− exp{θs′ ,a′}

∂

∂θs,a
(
∑
ã∈A exp{θs′ ,ã})

(
∑
ã∈A exp{θs′ ,ã})2

=



exp{θs,a}(
∑
ã∈A exp{θs,ã})− (exp{θs,a})2

(
∑
ã∈A exp{θs,ã})2

, if s
′

= s and a
′

= a;

−
exp{θs,a′} exp{θs,a}
(
∑
ã∈A exp{θs,ã})2

, if s
′

= s and a
′ 6= a;

0, if s
′ 6= s or a

′ 6= a;

=



πθ(a|s)− (πθ(a|s))2, if s
′

= s and a
′

= a;

−πθ(a
′ |s)πθ(a|s) if s

′
= s and a

′ 6= a;

0. if s
′ 6= s or a

′ 6= a.

(57)

Proposition 1. Under the softmax policy parameterization (9), the gradient of the objective J(πθ)
and cost Ci(πθ) with respect to θ is

∂J(πθ)

∂θs,a
=

1

1− γ
dρ0πθ

(s)πθ(a|s)Aπθ
(s, a),

∂Ci(πθ)

∂θs,a
=

1

1− γ
dρ0πθ

(s)πθ(a|s)Aciπθ
(s, a).

Furthermore, let

acπθ
(s, a) =

(
Ac1πθ

(s, a), Ac2πθ
(s, a), · · · , Acmπθ

(s, a)
)>
,

Aπθ
(s, a,λ) = Aπθ

(s, a)− λ>acπθ
(s, a),

then the gradients of L(πθ,λ) with respect to θ,λ are:

∂L(πθ,λ)

∂θs,a
=

1

1− γ
dρ0πθ

(s)πθ(a|s)Aπθ
(s, a,λ),

∂L(πθ,λ)

∂λ
= b− c(πθ). (58)

Proof. Since J(πθ) = Es∼dρ0πθ (·)[Vπθ
(s)], to derive the gradient

∂J(πθ)

∂θs,a
, we only need to show

∂Vπθ
(s0)

∂θs,a
. According to the relationship between Vπθ

(s) and Qπθ
(s, a):

Vπθ
(s0) =

∑
a′∈A

πθ(a
′
|s0)Qπθ

(s0, a
′
),
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then we have
∂Vπθ

(s0)

∂θs,a
=
∑
a′∈A

(
∂πθ(a

′ |s0)

∂θs,a
Qπθ

(s0, a
′
) + πθ(a

′
|s0)

∂Qπθ
(s0, a

′
)

∂θs,a

)
. (59)

Due to the equation

Qπθ
(s, a) =

∑
s′∈S

P(s
′
|s, a)r(s

′
|s, a) + γ

∑
s′∈S

P(s
′
|s, a)Vπθ

(s
′
),

we achieve the gradient of Qπθ
with respect to θ as follows,

∂Qπθ
(s0, a

′
)

∂θs,a
= γ

∑
s′∈S

P(s
′
|s0, a

′
)
∂Vπθ

(s
′
)

∂θs,a
. (60)

Taking Eq.(60) to Eq.(59), we have

∂Vπθ
(s0)

∂θs,a
=
∑
a′∈A

∂πθ(a
′ |s0)

∂θs,a
Qπθ

(s0, a
′
) + γπθ(a

′
|s0)

∑
s′∈S

P(s
′
|s0, a

′
)
∂Vπθ

(s
′
)

∂θs,a


=
∑
a′∈A

∂πθ(a
′ |s0)

∂θs,a
Qπθ

(s0, a
′
) + γ

∑
s′∈S

∑
a′∈A

πθ(a
′
|s0)P(s

′
|s0, a

′
)


︸ ︷︷ ︸

=Pπθ (s1=s′ |s0)

∂Vπθ
(s
′
)

∂θs,a

=
∑
a′∈A

∂πθ(a
′ |s0)

∂θs,a
Qπθ

(s0, a
′
) + γ

∑
s′∈S

Pπθ
(s1 = s

′
|s0)

∂Vπθ
(s
′
)

∂θs,a
, (61)

which implies for each t ∈ N+, the following equation holds:

∂Vπθ
(s
′
)

∂θs,a
=
∑
a′∈A

∂πθ(a
′ |s′)

∂θs,a
Qπθ

(s
′
, a
′
) + γ

∑
s′′∈S

Pπθ
(st+1 = s

′′
|st = s

′
)
∂Vπθ

(s
′′
)

∂θs,a
. (62)

Considering Eq.(62) with the case t = 1, we write Eq.(61) as follows,

∂Vπθ
(s0)

∂θs,a
=
∑
a′∈A

∂πθ(a
′ |s0)

∂θs,a
Qπθ

(s0, a
′
)

+ γ
∑
s′∈S

Pπθ
(s1 = s

′
|s0)

∑
a′∈A

∂πθ(a
′ |s′)

∂θs,a
Qπθ

(s
′
, a
′
) + γ

∑
s′′∈S

Pπθ
(s2 = s

′′
|s1 = s

′
)
∂Vπθ

(s
′′
)

∂θs,a

 .

(63)
According to Eq.(34), the following equation holds∑

s′∈S

Pπθ
(s1 = s

′
|s0)Pπθ

(s2 = s
′′
|s1 = s

′
) = Pπθ

(s2 = s
′′
|s0),

and taking it to Eq.(63), we achieve the gradient
∂Vπθ

(s0)

∂θs,a
as follows,

∂Vπθ
(s0)

∂θs,a
=
∑
a′∈A

∂πθ(a
′ |s0)

∂θs,a
Qπθ

(s0, a
′
) + γ

∑
s′∈S

Pπθ
(s1 = s

′
|s0)

∑
a′∈A

∂πθ(a
′ |s′)

∂θs,a
Qπθ

(s
′
, a
′
)

+ γ2
∑
s′′∈S

∑
s′∈S

Pπθ
(s1 = s

′
|s0)Pπθ

(s2 = s
′′
|s1 = s

′
)
∂Vπθ

(s
′′
)

∂θs,a

=
∑
a′∈A

∂πθ(a
′ |s0)

∂θs,a
Qπθ

(s0, a
′
) + γ

∑
a′∈A

∑
s′∈S

Pπθ
(s1 = s

′
|s0)

∂πθ(a
′ |s′)

∂θs,a
Qπθ

(s
′
, a
′
)

+ γ2
∑
s′′∈S

Pπθ
(s2 = s

′′
|s0)

∂Vπθ
(s
′′
)

∂θs,a
. (64)
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Furthermore, according to (64), we analyze
∂Vπθ

(s0)

∂θs,a
as follows,

∂Vπθ
(s0)

∂θs,a
=
∑
a′∈A

∂πθ(a
′ |s0)

∂θs,a
Qπθ

(s0, a
′
) + γ

∑
a′∈A

∑
s′∈S

Pπθ
(s1 = s

′
|s0)

∂πθ(a
′ |s′)

∂θs,a
Qπθ

(s
′
, a
′
)

+ γ2
∑
s′′∈S

Pπθ
(s2 = s

′′
|s0)

∑
a′∈A

∂πθ(a
′ |s′′)

∂θs,a
Qπθ

(s
′′
, a
′
) + γ

∑
s′′′∈S

Pπθ
(s3 = s

′′′
|s2 = s

′′
)
∂Vπθ

(s
′′′

)

∂θs,a


=
∑
a′∈A

∂πθ(a
′ |s0)

∂θs,a
Qπθ

(s0, a
′
) +

∑
a′∈A

∑
s′∈S

(
γPπθ

(s1 = s
′
|s0) + γ2Pπθ

(s2 = s
′
|s0)

)∂πθ(a
′ |s′)

∂θs,a
Qπθ

(s
′
, a
′
)

+ γ3
∑
s′∈S

Pπθ
(s3 = s

′
|s0)

∂

∂θs,a
Vπθ

(s
′
)

= · · · · · ·

=
∑
a′∈A

∑
s′∈S

∞∑
t=0

γtPπθ
(st = s

′
|s0)

∂πθ(a
′ |s′)

∂θs,a
Qπθ

(s
′
, a
′
) (65)

=
1

1− γ
∑
a′∈A

∑
s′∈S

ds0πθ
(s
′
)
∂πθ(a

′ |s′)
∂θs,a

Qπθ
(s
′
, a
′
) =

1

1− γ
∑
a′∈A

ds0πθ
(s)

∂πθ(a
′ |s)

∂θs,a
Qπθ

(s, a
′
)

(66)

=
1

1− γ
ds0πθ

(s)πθ(a|s)

Qπθ
(s, a)−

∑
a′∈A

πθ(a
′
|s)Qπθ

(s, a
′
)

 (67)

=
1

1− γ
ds0πθ

(s)πθ(a|s) (Qπθ
(s, a)− Vπθ

(s)) =
1

1− γ
ds0πθ

(s)πθ(a|s)Aπθ
(s, a), (68)

where Eq.(66) holds since if s
′ 6= s, then

∂πθ(a
′ |s′)

∂θs,a
= 0;

Eq.(67) holds due to Eq.(57).

Finally, since J(πθ) = Es0∼dρ0πθ (·)[Vπθ
(s0)], then

∂J(πθ)

∂θs,a
= Es0∼ρ0(·)

[
1

1− γ
ds0πθ

(s)πθ(a|s)Aπθ
(s, a)

]
=

1

1− γ
dρ0πθ

(s)πθ(a|s)Aπθ
(s, a).

Similarly,
∂Ci(πθ)

∂θs,a
=

1

1− γ
dρ0πθ

(s)πθ(a|s)Aciπθ
(s, a).

This concludes the proof of Proposition 1.

Let
acπθ

(s, a) =
(
Ac1πθ

(s, a), Ac2πθ
(s, a), · · · , Acmπθ

(s, a)
)>
,

then
∂c(πθ)

∂θs,a
=

(
∂C1(πθ)

∂θs,a
,
∂C2(πθ)

∂θs,a
, · · · , ∂Cm(πθ)

∂θs,a

)>
=

1

1− γ
dρ0πθ

(s)πθ(a|s)
(
Ac1πθ

(s, a), Ac2πθ
(s, a), · · · , Acmπθ

(s, a)
)>

=
1

1− γ
dρ0πθ

(s)πθ(a|s)acπθ
(s, a).

With the result in Proposition 1, it is easy to calculate the gradient of L(πθ,λ) (5) with respect to
θ,λ, formally, we present it in the following Proposition 5.
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Proposition 5. Consider the Lagrange multiplier function L(πθ,λ) (5), its gradient with respect to
θ,λ is:

∂

∂θs,a
L(πθ,λ) =

1

1− γ
dρ0πθ

(s)πθ(a|s)
(
Aπθ

(s, a)− λ>acπθ
(s, a)

)
, (69)

∂

∂λ
L(πθ,λ) = b− c(πθ). (70)

We consider the following update rule with respect to λ and θ:

λt ←
{
λt−1 − η

∂

∂λ
L(πθt−1

,λt−1)

}
+

; (71)

θt ← θt−1 + η
∂

∂θ
L(πθt−1 ,λt−1), (72)

where each (s, a)-component update rule of θt is defined as follows,

θt[s, a] := θ(t)
s,a ← θ(t−1)

s,a + η
∂

∂θs,a
L(πθt−1

,λt−1) (73)

= θ(t−1)
s,a +

η

1− γ
dρ0πt−1

(s)πθt−1
(a|s)

(
Aπt−1

(s, a)− λ>t−1a
c
πt−1

(s, a)
)
, (74)

where θ(t)
s,a = θt[s, a].

To short the expression, we use the following notations:

πt(a|s) := πθt(a|s) =
exp

{
θ

(t)
s,a

}
∑
ã∈A exp

{
θ

(t)
s,ã

} , and πt := πθt . (75)
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D PROOF OF THEOREM 2

In this section, we provide the necessary proof details of Theorem 2. It is very technical to achieve
the result of Theorem 2, we outline some necessary intermediate results in Section D.1 where we
provide some basic lemmas in Section D.1, and the proof of Theorem 2 is shown in Section D.2.

D.1 AUXILIARY LEMMAS

Lemma 6. The sequence {λt,θt}t≥0 is generated by (71)-(72)/(74), and the softmax policy πt :=
πθt is defined as (75), then update rule with respect to πt equals to

πt(a|s) = πt−1(a|s)
exp

{
η

1− γ
dρ0πt−1

(s)πt−1(a|s)A(t−1)(s, a)

}
Zt−1(s)

, (76)

where A(t−1)(s, a) = Aπt−1
(s, a)− λ>t−1a

c
πt−1

(s, a), and

Zt−1(s) =
∑
ã∈A

(
πt−1(ã|s) exp

{
η

1− γ
dρ0πt−1

(s)πt−1(ã|s)
(
Aπt−1

(s, ã)− λ>t−1a
c
πt−1

(s, ã)
)})

.

Proof. According to the update rules (74), we calculate policy πt(a|s) (75) as follows,

πt(a|s) = πθt(a|s) =
exp

{
θ

(t)
s,a

}
∑
ã∈A exp

{
θ

(t)
s,ã

}
(74)
=

exp

{
θ

(t−1)
s,a +

η

1− γ
dρ0πt−1

(s)πt−1(a|s)
(
Aπt−1

(s, a)− λ>t−1a
c
πt−1

(s, a)
)}

∑
ã∈A exp

{
θ

(t−1)
s,a +

η

1− γ
dρ0πt−1(s)πt−1(a|s)

(
Aπt−1

(s, a)− λ>t−1a
c
πt−1

(s, a)
)}

=

exp
{
θ

(t−1)
s,a

}
exp

{
η

1− γ
dρ0πt−1

(s)πt−1(a|s)
(
Aπt−1

(s, a)− λ>t−1a
c
πt−1

(s, a)
)}

∑
ã∈A

(
exp

{
θ

(t−1)
s,ã

}
exp

{
η

1− γ
dρ0πt−1(s)πt−1(ã|s)

(
Aπt−1

(s, ã)− λ>t−1a
c
πt−1

(s, ã)
)})

=πt−1(a|s)

∑
ã∈A exp

{
θ

(t−1)
s,ã

}
exp

{
η

1− γ
dρ0πt−1

(s)πt−1(a|s)
(
Aπt−1

(s, a)− λ>t−1a
c
πt−1

(s, a)
)}

∑
ã∈A

(
exp

{
θ

(t−1)
s,ã

}
exp

{
η

1− γ
dρ0πt−1(s)πt−1(ã|s)

(
Aπt−1

(s, ã)− λ>t−1a
c
πt−1

(s, ã)
)})

(77)

=πt−1(a|s)
exp

{
η

1− γ
dρ0πt−1

(s)πt−1(a|s)
(
Aπt−1(s, a)− λ>t−1a

c
πt−1

(s, a)
)}

∑
ã∈A

 exp
{
θ

(t−1)
s,ã

}
∑
ã∈A exp

{
θ

(t−1)
s,ã

} exp

{
η

1− γ
dρ0πt−1(s)πt−1(ã|s)

(
Aπt−1

(s, ã)− λ>t−1a
c
πt−1

(s, ã)
)}

=πt−1(a|s)
exp

{
η

1− γ
dρ0πt−1

(s)πt−1(a|s)
(
Aπt−1

(s, a)− λ>t−1a
c
πt−1

(s, a)
)}

∑
ã∈A

(
πt−1(ã|s) exp

{
η

1− γ
dρ0πt−1(s)πt−1(ã|s)

(
Aπt−1

(s, ã)− λ>t−1a
c
πt−1

(s, ã)
)}) ,

(78)

where Eq.(77) holds since we use the following definition

πt−1(a|s) =
exp

{
θ

(t−1)
s,a

}
∑
ã∈A exp

{
θ

(t−1)
s,ã

} .
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To short the expression, we introduce two notations:

Zt−1(s) =
∑
ã∈A

(
πt−1(ã|s) exp

{
η

1− γ
dρ0πt−1

(s)πt−1(ã|s)
(
Aπt−1(s, ã)− λ>t−1a

c
πt−1

(s, ã)
)})

,

(79)

A(t−1)(s, a) = Aπt−1(s, a)− λ>t−1a
c
πt−1

(s, a), (80)

we rewrite (78) as follows

πt(a|s) = πt−1(a|s)
exp

{
η

1− γ
dρ0πt−1

(s)πt−1(a|s)A(t−1)(s, a)

}
Zt−1(s)

. (81)

This concludes the proof of Lemma 6.

Before we further discussions, we need to define some a notations: Ht(s) and a distance D[·‖·]
between function p(·) and function q(·) over the action space A,

Ht(s) =
∑
a∈A

πt+1(a|s)
πt(a|s)

log
πt+1(a|s)
πt(a|s)

, D[p(·)‖q(·)] =
∑
a∈A

p(a) log
p(a)

q(a)
.

Note that if p(·), q(·) is reduced to probability distributions, then D(·‖·) is reduced to Kullback-Leibler
divergence between the two distributions p(·), q(·):

D[p(·)‖q(·)] = Ex∼p(·)
[
log

p(x)

q(x)

]
:= KL[p(·)‖q(·)].

Lemma 7. The sequence {λt,θt}t≥0 is generated by (71)-(72)/(74), and the softmax policy πt :=
πθt is defined as (75), the πt and λt satisfy the following equation

c(π) = (C1(π), C2(π), · · · , Cm(π))
>
,

acπ(s, a) = (Ac1π (s, a), Ac2π (s, a), · · · , Acmπ (s, a))
>
.

Furthermore, applying Lemma 1 again, we rewrite (85) as follows

J(π?)− J(πt) =
1

η

∑
s∈S

dρ0π?(s)

dρ0πt(s)

(∑
a∈A

π?(a|s)
πt(a|s)

log
πt+1(a|s)
πt(a|s)

)

+
1

η

∑
s∈S

∑
a∈A

dρ0π?(s)π?(a|s)
dρ0πt(s)πt(a|s)

logZt(s) + λ>t (c(π?)− c(πt)), (82)

where π? is the optimal policy of primal problem (4), i.e., π? = arg maxπ∈ΠC J(π).

Proof. According to Lemma 1, we calculate the performance difference between J(π?) and J(πt) as
follows,

J(π?)− J(πt) =
1

1− γ
Es∼dρ0π? (·),a∼π?(·|s) [Aπt(s, a)] =

1

1− γ
∑
s∈S

∑
a∈A

dρ0π?(s)π?(a|s)Aπt(s, a).

(83)

Recall Eq.(80) and Eq.(81), we write it as follows,

log

(
πt+1(a|s)
πt(a|s)

Zt(s)

)
=

η

1− γ
dρ0πt(s)πt(a|s)

(
Aπt(s, a)− λ>t acπt(s, a)

)
.

Then, we rewrite the term Aπt(s, a) as follows,

Aπt(s, a) =
1− γ
η
· 1

dρ0πt(s)πt(a|s)
· log

(
πt+1(a|s)
πt(a|s)

Zt(s)

)
+ λ>t acπt(s, a). (84)
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Taking the results (84) into (83), we rewrite the performance difference between J(π?) and J(πt) as
follows,

J(π?)− J(πt) =
1

η

∑
s∈S

dρ0π?(s)

dρ0πt(s)

∑
a∈A

π?(a|s)
πt(a|s)

· log

(
πt+1(a|s)
πt(a|s)

Zt(s)

)
+

1

1− γ
∑
s∈S

∑
a∈A

dρ0π?(s)π?(a|s)λ>t acπt(s, a)

=
1

η

∑
s∈S

dρ0π?(s)

dρ0πt(s)

(∑
a∈A

π?(a|s)
πt(a|s)

log
πt+1(a|s)
πt(a|s)

)

+
1

η

∑
s∈S

∑
a∈A

dρ0π?(s)π?(a|s)
dρ0πt(s)πt(a|s)

logZt(s) +
1

1− γ
∑
s∈S

∑
a∈A

dρ0π?(s)π?(a|s)λ>t acπt(s, a). (85)

Recall the vectors c(π),acπ(s, a) defined in previous sections, where

c(π) = (C1(π), C2(π), · · · , Cm(π))
>
,

acπ(s, a) = (Ac1π (s, a), Ac2π (s, a), · · · , Acmπ (s, a))
>
.

Furthermore, let us apply Lemma 1 again, we obtain

c(π?)− c(πt) =
1

1− γ
∑
s∈S

∑
a∈A

dρ0π?(s)π?(a|s)acπt(s, a),

which implies,

J(π?)− J(πt) =
1

η

∑
s∈S

dρ0π?(s)

dρ0πt(s)

(∑
a∈A

π?(a|s)
πt(a|s)

log
πt+1(a|s)
πt(a|s)

)

+
1

η

∑
s∈S

∑
a∈A

dρ0π?(s)π?(a|s)
dρ0πt(s)πt(a|s)

logZt(s) + λ>t (c(π?)− c(πt)).

This concludes the proof of the result (82).

Similarly, we obtain the performance difference between J(πt+1) and J(πt).

Lemma 8. The performance difference between J(πt+1) and J(πt) satisfies the following equation

J(πt+1)− J(πt)− λ>t (c(πt+1)− c(πt)) (86)

=
1

η

∑
s∈S

dρ0πt+1
(s)

dρ0πt(s)
Ht(s) +

1

η

∑
s∈S

∑
a∈A

dρ0πt+1
(s)πt+1(a|s)

dρ0πt(s)πt(a|s)
logZt(s).

Proof. According to Lemma 1, we calculate the performance difference between J(πt+1) and J(πt)
as follows,

J(πt+1)− J(πt) =
1

1− γ
Es∼dρ0πt+1

(·),a∼πt+1(·|s) [Aπt(s, a)] (87)

=
1

1− γ
∑
s∈S

∑
a∈A

dρ0πt+1
(s)πt+1(a|s)Aπt(s, a). (88)

Recall Eq.(80) and Eq.(81), we have

Aπt(s, a) =
1− γ
η
· 1

dρ0πt(s)πt(a|s)
· log

(
πt+1(a|s)
πt(a|s)

Zt(s)

)
+ λ>t acπt(s, a). (89)

25



Under review as a conference paper at ICLR 2023

Taking (89) to (88), we have

J(πt+1)− J(πt) =
1

η

∑
s∈S

dρ0πt+1
(s)

dρ0πt(s)

∑
a∈A

(
πt+1(a|s)
πt(a|s)

· log
πt+1(a|s)
πt(a|s)

+
πt+1(a|s)
πt(a|s)

· logZt(s)

)
+

1

1− γ
∑
s∈S

∑
a∈A

dρ0πt+1
(s)πt+1(a|s)λ>t acπt(s, a)

= −1

η

∑
s∈S

dρ0πt+1
(s)

dρ0πt(s)
Ht(s) +

1

η

∑
s∈S

∑
a∈A

dρ0πt+1
(s)πt+1(a|s)

dρ0πt(s)πt(a|s)
logZt(s) + λ>t (c(πt+1)− c(πt)).

This concludes the proof of the result (86).

Lemma 9. The sequence {λt,θt}t≥0 is generated by (71)-(72)/(74), and the softmax policy πt :=
πθt is defined as (75), then the performance difference between J(πt+1) and J(πt) satisfies

J(πt+1)− J(πt)− λ>t (c(πt+1)− c(πt)) ≥
1

η

∑
s∈S

∑
a∈A

dρ0πt+1
(s)πt+1(a|s)

dρ0πt(s)πt(a|s)
logZt(s), (90)

and logZt(s) ≥ 0.

Proof. Recall

Ht(s) =
∑
a∈A

πt+1(a|s)
πt(a|s)

log
πt+1(a|s)
πt(a|s)

,

since πt(a|s) ≤ 1, then

Ht(s) =
∑
a∈A

πt+1(a|s)
πt(a|s)

log
πt+1(a|s)
πt(a|s)

≥
∑
a∈A

πt+1(a|s) log
πt+1(a|s)
πt(a|s)

= KL [πt+1(·|s)‖πt(·|s)] ≥ 0. (91)

According to Eq.(86), and due to positivity of the terms dρ0πt(s) and dρ0πt+1
(s), we have

J(πt+1)− J(πt)− λ>t (c(πt+1)− c(πt)) ≥
1

η

∑
s∈S

∑
a∈A

dρ0πt+1
(s)πt+1(a|s)

dρ0πt(s)πt(a|s)
logZt(s).

Now, we need to show logZt(s) ≥ 0. In fact, the following holds

logZt(s) = log

(∑
ã∈A

πt(ã|s) exp

{
η

1− γ
dρ0πt(s)πt(ã|s)

(
Aπt(s, ã)− λ>t acπt(s, ã)

)})

≥
∑
ã∈A

πt(ã|s) log

(
exp

{
η

1− γ
dρ0πt(s)πt(ã|s)

(
Aπt(s, ã)− λ>t acπt(s, ã)

)})
(92)

=
η

1− γ
∑
ã∈A

πt(ã|s)dρ0πt(s)πt(ã|s)
(
Aπt(s, ã)− λ>t acπt(s, ã)

)
≥ min

a∈A
{πt(a|s)} ·

η

1− γ
∑
ã∈A

dρ0πt(s)πt(ã|s)
(
Aπt(s, ã)− λ>t acπt(s, ã)

)
≥ min

a∈A
{πt(a|s)} ·

η

1− γ
dρ0πt(s)

(∑
ã∈A

πt(ã|s)Aπt(s, ã)−
∑
ã∈A

πt(ã|s)λ>t acπt(s, ã)

)
= 0, (93)
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where Eq.(92) holds due to the Jensen’s inequality, and the last equation (93) holds since:∑
ã∈A

πt(ã|s)Aπt(s, ã) = 0,∑
ã∈A

πt(ã|s)Aciπt(s, ã) = 0, i = 1, 2, · · · ,m, (94)

∑
ã∈A

πt(ã|s)acπt(s, ã) =


∑
ã∈A

πt(ã|s)Ac1πt(s, ã)︸ ︷︷ ︸
(94)
= 0

,
∑
ã∈A

πt(ã|s)Ac2πt(s, ã)︸ ︷︷ ︸
=0

, · · · ,
∑
ã∈A

πt(ã|s)Acmπt (s, ã)︸ ︷︷ ︸
=0


>

=0>m,

the notation 0>m ∈ Rm×1 denotes a vector with the elements are all zero.

Lemma 10. The term
∑
s∈S logZt(s) is bounded as follows,∑

s∈S
logZt(s) ≤

η

(1− γ)ρmin

(
J(πt+1)− J(πt)− λ>t (c(πt+1)− c(πt))

)
.

Proof. Since dρ0πt(s) ≤ 1, πt(a|s) ≤ 1 always holds, recall Eq.(90) in Lemma 9, we achieve the
following inequality:

J(πt+1)− J(πt)− λ>t (c(πt+1)− c(πt)) ≥
1

η

∑
s∈S

∑
a∈A

dρ0πt+1
(s)πt+1(a|s) logZt(s). (95)

According to Eq.(143), we rewrite Eq.(95) as follows

J(πt+1)− J(πt)− λ>t (c(πt+1)− c(πt))

≥1− γ
η

∑
s∈S

∑
a∈A

ρ0(s)πt+1(a|s) logZt(s) (96)

=
1− γ
η

∑
s∈S

ρ0(s) logZt(s)
∑
a∈A

πt+1(a|s) =
1− γ
η

∑
s∈S

ρ0(s) logZt(s). (97)

Then, under Assumption 2, for each s ∈ S, ρmin ≤ ρ0(s), result (97) implies
η

(1− γ)ρmin

(
J(πt+1)− J(πt)− λ>t (c(πt+1)− c(πt))

)
≥
∑
s∈S

logZt(s). (98)

Lemma 11. Let πθ and πθ′ be softmax policy, then the following holds∣∣∣∣Vπθ
′ (s)− Vπθ

(s)−
〈
∂Vπθ

(s)

∂θ
,θ
′
− θ

〉∣∣∣∣ ≤ 4

(1− γ)3
‖θ
′
− θ‖22.

Proof. See (Mei et al., 2020, Lemma 7).

Let β =
4

(1− γ)3
, and if θ

′
= θ +

1

β

∂Vπθ
(s)

∂θ
, then we obtain

Vπθ
(s)− Vπ

θ
′ (s) ≤ −

1

2β

∥∥∥∥∂Vπθ
(s)

∂θ

∥∥∥∥2

2

. (99)

Let qcπ(s, a) ∈ Rm is defined as follows,

qcπ(s, a) = (Qc2π (s, a), Qc2π (s, a), · · · , Qcmπ (s, a)), vcπ(s) = (V c2π (s, a), V c2π (s), · · · , V cmπ (s))
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Qπθ
(s, a,λ) = Qπθ

(s, a)− λ>qcπθ
(s), Vπθ

(s,λ) = Vπθ
(s)− λ>vcπθ

(s).

Furthermore, we define

∆r
?(s) = max

π∈ΠC
{Qπ(s, a)} − max

π∈ΠC,a6=a?(s)
{Qπ(s, a)} (100)

= Q?(s, a?(s))− max
π∈ΠC,a 6=a?(s)

{Qπ(s, a)} > 0. (101)

Similarly, we define

∆ci
? (s) = min

π∈ΠC
{Qciπ (s, a)} − min

π∈ΠC,a6=a?(s)
{Qciπ (s, a)} (102)

= Qci? (s, a?(s))− min
π∈ΠC,a 6=a?(s)

{Qciπ (s, a)} > 0. (103)

We define ∆?(s) as follows

∆?(s) = ∆r
?(s) + λ>(∆c1

? (s),∆c2
? (s), · · · ,∆cm

? (s))>. (104)

Recall the notation θs,a = θ[s, a], for all (s, a) ∈ S ×A, and we define

Θ1(s) =

{
θ :

∂L(πθ,λ)

∂θ[s, a?(s)]
≥ ∂L(πθ,λ)

∂θ[s, a]
, ∀ a 6= a?

}
, (105)

Θ2(s) =

θ :
Qπθ

(s, a?(s)) ≥ Q?(s, a?(s))−
1

2
∆r
?

−Qciπθ
(s, a?(s)) ≥ −Qci? (s, a?(s))−

1

2
∆ci
? , i = 1, 2, · · · ,m

 , (106)

Θ3(s) =

m⋂
i=1

θt :
Vπθt

(s) ≥ Qπθt
(s, a?(s))−

1

2
∆r
?

−V ciπθt
(s) ≥ −Qciπθt

(s, a?(s))−
1

2
∆ci
?

∣∣∣∣∣for t ≥ 0 is large enough

 , (107)

Θc(s) =

{
θ : πθ(a?(s)|s) ≥

c(s)

c(s) + 1
, c(s) + 1 =

|A|
(1− γ)∆?(s)

}
. (108)

Lemma 12. Let θt ∈ Θ1(s) ∩Θ2(s) ∩Θ3(s), then

θt+1 ∈ Θ1(s) ∩Θ2(s) ∩Θ3(s).

Proof. θt+1 ∈ Θ2(s)

Since θt ∈ Θ3(s), we obtain the following equation

Qπt(s, a?(s),λ) ≥ Q?(s, a?(s),λ)− 1

2
∆?(s),

where πt is short for πθt , and Q?(s, a,λ) = maxπ∈ΠC Qπ(s, a,λ).

Furthermore, we obtain

Qπt+1(s, a?(s),λ)−Qπt(s, a?(s),λ) = γ
∑
s′∈S

P(s
′
|s, a?(s))

(
Vπt+1(s

′
,λ)− Vπt(s

′
,λ)
)
.

(109)

According to Lemma 11, Eq.(99), we know

Qπt+1(s, a?(s),λ)−Qπt(s, a?(s),λ) ≥ 0 ≥ −1

2
∆?(s), (110)

which implies θt+1 ∈ Θ2(s).

θt+1 ∈ Θ3(s)
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For any a 6= a?(s), we know

Qπt(s, a?(s),λ)−Qπt(s, a,λ) (111)
=Qπt(s, a?(s),λ)−Q?(s, a?(s),λ) +Q?(s, a?(s),λ)−Qπt(s, a,λ) (112)

≥− 1

2
∆?(s) +Q?(s, a?(s),λ)−Q?(s, a) +Q?(s, a)−Qπt(s, a,λ) (113)

≥− 1

2
∆?(s) +Q?(s, a?(s),λ)− max

a 6=a?(s)
Q?(s, a) +Q?(s, a)−Qπt(s, a,λ)

(114)
(100),(102),(104)

= − 1

2
∆?(s) + ∆?(s) + γ

∑
s′∈S

P(s
′
|s, a?(s))

(
Vπt+1

(s
′
,λ)− Vπt(s

′
,λ)
)

(115)

≥1

2
∆?(s). (116)

Similarly, we obtain

Qπt+1
(s, a?(s),λ)−Qπt+1

(s, a,λ) ≥ 1

2
∆?(s), (117)

which implies θt+1 ∈ Θ3(s).

θt+1 ∈ Θ1(s)

According to Proposition 1,

∂L(πθ,λ)

∂θs,a
=

1

1− γ
dρ0πθ

(s)πθ(a|s)Aπθ
(s, a,λ),

if θt ∈ Θ1(s), i.e.,
∂L(πθt ,λt)

∂θt[s, a?(s)]
≥ ∂L(πθt ,λt)

∂θt[s, a]
, we obtain: for a 6= a?

πt(a?(s)|s)Aπt(s, a?(s),λ) ≥ πt(a|s)Aπt(s, a,λ),

where πt is short for πθt .

Case (i): πt(a?(s)|s) ≥ πt(a|s).

If πt(a?(s)|s) ≥ πt(a|s), according to softmax parameterization (9), we obtain

θt[s, a?(s)] ≥ θt[s, a] (118)

Recall the update rule of Algorithm 1, we know

θt+1[s, a?(s)] = θt[s, a?(s)] + η
∂L(πθt ,λt)

∂θt[s, a?(s)]

(105),(118)

≥ θt[s, a] + η
∂L(πθt ,λt)

∂θt[s, a]
= θt+1[s, a],

which implies

πt+1(a?(s)|s) =
exp{θt[s, a?(s)]}∑
a∈A exp{θt[s, a]}

≥ exp{θt[s, a]}∑
a∈A exp{θt[s, a]}

= πt+1(a|s). (119)

Recall (117), we obtain

Aπt+1
(s, a?(s),λ) ≥ Aπt+1

(s, a,λ). (120)

Eq.(119)-Eq.(120) implies

∂L(πθt+1
,λt+1)

∂θt+1[s, a?(s)]
≥
∂L(πθt+1

,λt+1)

∂θt+1[s, a]
,

which implies θt+1 ∈ Θ1(s).

Case (ii): πt(a?(s)|s) < πt(a|s).

According to
πt(a?(s)|s)Aπt(s, a?(s),λ) ≥ πt(a|s)Aπt(s, a,λ),
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we obtain

πt(a?(s)|s) (Qπt(s, a?(s),λ)− Vπt(s,λ)) ≥ πt(a|s) (Qπt(s, a,λ)− Vπt(s,λ)) (121)
= πt(a|s) (Qπt(s, a?(s),λ)− Vπt(s,λ) +Qπt(s, a,λ)−Qπt(s, a?(s),λ)) , (122)

i.e., (
1− πt(a?(s)|s)

πt(a|s)

)
(Qπt(s, a?(s),λ)− Vπt(s,λ)) (123)

= (1− exp {θt[s, a?(s)]− θt[s, a]}) (Qπt(s, a?(s),λ)− Vπt(s,λ)) (124)
≤Qπt(s, a?(s),λ)−Qπt(s, a,λ). (125)

Recall the update rule of Algorithm 1, we know

θt+1[s, a?(s)] = θt[s, a?(s)] + η
∂L(πθt ,λt)

∂θt[s, a?(s)]
,θt+1[s, a] = θt[s, a] + η

∂L(πθt ,λt)

∂θt[s, a]
. (126)

Since θt ∈ Θ1(s), i.e.,
∂L(πθt ,λt)

∂θt[s, a?(s)]
≥ ∂L(πθt ,λt)

∂θt[s, a]
, Eq.(126) implies

θt+1[s, a?(s)]− θt+1[s, a] ≥ θt[s, a?(s)]− θt[s, a]. (127)

Since we consider πt(a?(s)|s) < πt(a|s), then

1− exp{θt[s, a?(s)]− θt[s, a]} = 1− πt(a?(s)|s)
πt(a|s)

> 0,

which implies

(1− exp{θt+1[s, a?(s)]− θt+1[s, a]})
(
Qπt+1

(s, a?(s),λ)− Vπt+1
(s,λ)

)
≤Qπt+1

(s, a?(s),λ)−Qπt+1
(s, a,λ).

Rearranging it, we obtain

πt+1(a?(s)|s)Aπt+1(s, a?(s),λ) ≥ πt+1(a|s)Aπt+1(s, a,λ),

which is
∂L(πθt+1

,λt+1)

∂θt+1[s, a?(s)]
≥
∂L(πθt+1

,λt+1)

∂θt+1[s, a]
,

which implies θt+1 ∈ Θ1(s).

Lemma 13. Let θt ∈ Θ1(s) ∩Θ2(s) ∩Θ3(s), then πt+1(a?(s)|s) ≥ πt(a?(s)|s).

Proof. Recall
∂L(πθt ,λt)

∂θt[s, a?(s)]
≥ ∂L(πθt ,λt)

∂θt[s, a]
, we obtain

πt+1(a?(s)|s) =
exp {θt+1[s, a?(s)]}∑
a∈A exp {θt+1[s, a]}

=

exp

{
θt[s, a?(s)] + η

∂L(πθt ,λt)

∂θt[s, a?(s)]

}
∑
a∈A exp

{
θt(s, a) + η

∂L(πθt ,λt)

∂θt[s, a]

} (128)

≥
exp

{
θt[s, a?(s)] + η

∂L(πθt ,λt)

∂θt[s, a?(s)]

}
∑
a∈A exp

{
θt(s, a) + η

∂L(πθt ,λt)

∂θt[s, a?(s)]

} (129)

=
exp {θt(s, a?(s))}∑
a∈A exp {θt(s, a)}

= πt(a?(s)|s). (130)

Lemma 14. Θc(s) ∩Θ2(s) ∩Θ3(s) ⊂ Θ1(s) ∩Θ2(s) ∩Θ3(s)
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Proof. Let θ ∈ Θc(s) ∩Θ2(s) ∩Θ3(s), we consider the two following cases:

Case (i):πθ(a?(s)|s) ≥ maxa6=a?(s) πθ(a|s).

∂L(πθt ,λt)

∂θt[s, a?(s)]
=

1

1− γ
dρ0πθ

(s)πθ(a?(s)|s)Aπθ
(s, a?(s),λ) (131)

(106),(107)
>

1

1− γ
dρ0πθ

(s)πθ(a|s)Aπθ
(s, a,λ) =

∂L(πθt ,λt)

∂θt[s, a]
, (132)

where the last equation holds since the same analysis from (111)-(116), we have

Qπt(s, a?(s),λ)−Qπt(s, a,λ) ≥ 1

2
∆?(s).

Case (ii):πθ(a?(s)|s) ≥ maxa<a?(s) πθ(a|s), which is impossible, since if this case hold, we obtain

πθ(a?(s)|s) + πθ(a|s) > 2c(s)

c(s) + 1
> 1.

Lemma 15. Under Assumption 2, updating πt according to Algorithm 1, we obtain

c? =: inf
s∈S,t≥1

{πt(a?(s)|s)} > 0.

Proof. According to (Agarwal et al., 2021, Lemma E.2-Lemma12), we know πt(a?(s)|s) → 1,
which implies there exists T1(s) ≥ 1, such that

πθT1(s)
(a?(s)|s) ≥

c(s)

c(s) + 1
.

Furthermore, since Qπθt
(s, a?(s))→ Q?(s, a?(s)), as t→∞, then there exists T2(s) ≥ 1, s.t

QπθT2(s)
(s, a?(s)) ≥ Q?(s, a?(s))−

1

2
∆?(s).

Finally, sinceQπθt
(s, a?(s))→ V?(s), and Vπθt

(s)→ V?(s), as t→∞, then there exists T3(s) ≥ 1,
such that ∀t ≥ T3(s),

Qπθt
(s, a?(s))− Vπθt

(s) ≤ 1

2
∆?(s).

Define T0(s) = max{T1(s), T2(s), T3(s)}, then we obtain

θT0(s) ∈ Θc(s) ∩Θ2(s) ∩Θ3(s),θT0(s) ∈ Θ1(s) ∩Θ2(s) ∩Θ3(s).

According to Lemma 12-14„ i.e., if θt ∈ Θ1(s)∩Θ2(s)∩Θ3(s), then θt+1 ∈ Θ1(s)∩Θ2(s)∩Θ3(s),
and the policy πθt(a?(s)|s) is increasing in the space Θ1(s) ∩Θ2(s) ∩Θ3(s), we have

inf
t≥0

πθt(a?(s)|s) = min
1≤t≤T0(s)

πθt(a?(s)|s).

T0(s) only depends on initialization and c(s), which only depends on the CMDP and state s.

Finally, we have

inf
s∈S,t≥1

{πt(a?(s)|s)} = min
s∈S

min
1≤t≤T0(s)

πθt(a?(s)|s) > 0.

Lemma 16. For any fixed T > 0, let θ0 = 0, λ0 = 0. The sequence {λt,θt}t≥0 is generated by

(71)-(72)/(74), and the softmax policy πt := πθt is defined as (75). Let χ = 1
(1−γ)c?

∥∥∥dρ0π?ρ0 ∥∥∥∞ , C1 =

m
(1−γ)2

(
1 + 1

1−γ

)
. Then

J(π?)−
1

T

T−1∑
t=0

J(πt)−
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt)) ≤
1

T

(
χ|S| log |A|

η
+

2χ

ρmin(1− γ)2

)
+ 2ηχC1.

(133)
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Proof. According to Lemma 7, we obtain

J(π?)− J(πt) =
1

η

∑
s∈S

dρ0π?(s)

dρ0πt(s)

(∑
a∈A

π?(a|s)
πt(a|s)

log
πt+1(a|s)
πt(a|s)

)

+
1

η

∑
s∈S

∑
a∈A

dρ0π?(s)π?(a|s)
dρ0πt(s)πt(a|s)

logZt(s) + λ>t (c(π?)− c(πt)), (134)

and summing (134) as t ranges from 0 to T − 1, we have

J(π?)−
1

T

T−1∑
t=0

J(πt) =
1

ηT

T−1∑
t=0

∑
s∈S

dρ0π?(s)

dρ0πt(s)

(∑
a∈A

π?(a|s)
πt(a|s)

log
πt+1(a|s)
πt(a|s)

)

+
1

ηT

T−1∑
t=0

∑
s∈S

∑
a∈A

dρ0π?(s)π?(a|s)
dρ0πt(s)πt(a|s)

logZt(s) +
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt))

≤ 1

η(1− γ)T

T−1∑
t=0

∑
s∈S

dρ0π?(s)

ρ0(s)

(∑
a∈A

π?(a|s)
πt(a|s)

log
πt+1(a|s)
πt(a|s)

)

+
1

η(1− γ)T

T−1∑
t=0

∑
s∈S

∑
a∈A

dρ0π?(s)π?(a|s)
ρ0(s)πt(a|s)

logZt(s) +
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt)) (135)

≤ 1

η(1− γ)T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

T−1∑
t=0

∑
s∈S

∑
a∈A

π?(a|s)
πt(a|s)

log
πt+1(a|s)
πt(a|s)

(136)

+
1

η(1− γ)T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

T−1∑
t=0

∑
s∈S

∑
a∈A

π?(a|s)
πt(a|s)

logZt(s) +
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt)) (137)

≤ 1

η(1− γ)c?T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

T−1∑
t=0

∑
s∈S

∑
a∈A

π?(a|s) log
πt+1(a|s)
πt(a|s)

(138)

+
1

η(1− γ)c?T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

T−1∑
t=0

∑
s∈S

logZt(s) +
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt)) (139)

=
1

η(1− γ)c?T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

T−1∑
t=0

∑
s∈S

(
KL [π?(·|s)‖πt(·|s)]−KL [π?(·|s)‖πt+1(·|s)]

)
(140)

+
1

η(1− γ)c?T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

T−1∑
t=0

∑
s∈S

logZt(s) +
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt))

=
1

η(1− γ)c?T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

∑
s∈S

(
KL [π?(·|s)‖π0(·|s)]−KL [π?(·|s)‖πT (·|s)]

)

+
1

η(1− γ)c?T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

T−1∑
t=0

∑
s∈S

logZt(s) +
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt))

≤ 1

η(1− γ)c?T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

∑
s∈S

KL [π?(·|s)‖π0(·|s)] +
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt)) (141)

+
1

η(1− γ)c?T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

T−1∑
t=0

∑
s∈S

logZt(s), (142)
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where Eq.(135) holds since: for any Markov stationary policy π,

dρ0π (s) = Es0∼ρ0(·)[d
s0
π (s)] = Es0∼ρ0(·)

[
(1− γ)

∞∑
t=0

γtPπ(st = s|s0)

]
≥ Es0∼ρ0(·) [(1− γ)Pπ(s0 = s|s0)]

= (1− γ)ρ0(s); (143)

Eq.(137) holds since we use
∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

to denote the distribution mismatch coefficient, i.e.,

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

:= max
s∈S

{
dρ0π?(s)

ρ0(s)

}
,

Due to the Assumption 2, the term
dρ0π?(s)

ρ0(s)
is well-defined;

Eq.(138) holds since π? is a deterministic optimal policy, and we denote it as π?(a?(s)|s) =
1, otherwise, i.e.,if a 6= a?(s), π?(a|s) = 0. Recall Proposition 2, we know c? =
infs∈S,t≥1 {πt(a?(s)|s)} > 0

∑
a∈A

π?(a|s)
πt(a|s)

log
πt+1(a|s)
πt(a|s)

=
π?(a?(s)|s)
πt(a?(s)|s)

log
πt+1(a?(s)|s)
πt(a?(s)|s)

(144)

≤ π?(a?(s)|s)
c?

log
πt+1(a?(s)|s)
πt(a?(s)|s)

(145)

=
1

c?

∑
a∈A

π?(a|s) log
πt+1(a|s)
πt(a|s)

; (146)

Similarly, Eq.(139) hold since

∑
a∈A

π?(a|s)
πt(a|s)

=
π?(a?(s)|s)
πt(a?(s)|s)

≤ 1

c?
;

Eq(139) holds since:

∑
a∈A

π?(a|s) log
πt+1(a|s)
πt(a|s)

= KL [π?(·|s)‖πt(·|s)]−KL [π?(·|s)‖πt+1(·|s)] ;

Eq.(141) holds since we omit the term KL [π?(·|s)‖πT (·|s)].
Taking Eq.(98) into Eq.(142), we achieve

J(π?)−
1

T

T−1∑
t=0

J(πt) ≤
1

η(1− γ)c?T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

∑
s∈S

KL [π?(·|s)‖π0(·|s)] +
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt))

+
1

ρmin(1− γ)c?2T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

T−1∑
t=0

(
J(πt+1)− J(πt)− λ>t (c(πt+1)− c(πt))

)
=

1

η(1− γ)c?T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

∑
s∈S

KL [π?(·|s)‖π0(·|s)] +
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt))

+
1

ρmin(1− γ)c?2T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

(
J(πT )− J(π0) +

T−1∑
t=0

λ>t (c(πt)− c(πt+1)))

)
.

(147)
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Now, we need to bound the term
1

T

∑T−1
t=0 λ

>
t (c(πt)− c(πt+1)) in Eq.(147), our proof is adaptive

to (Ding et al., 2020).

1

T

∣∣∣∣∣
T−1∑
t=0

λ>t (c(πt − c(πt+1)))

∣∣∣∣∣
=

1

T

∣∣∣∣∣
T−1∑
t=0

λ>t (c(πt+1)− c(πt))

∣∣∣∣∣
=

1

T

∣∣∣∣∣
T−1∑
t=0

(
λ>t+1c(πt+1

)
− λ>t c(πt)) +

1

T

T−1∑
t=0

(
λ>t − λ>t+1

)
c(πt+1)

∣∣∣∣∣
=

1

T

∣∣∣∣∣(λ>T c(πT )−XXXXλ>0 c(π0)
)

+
1

T

T−1∑
t=0

(
λ>t − λ>t+1

)
c(πt+1)

∣∣∣∣∣ (148)

≤ 1

T

∥∥λ>T ∥∥2
‖c(πT )‖2 +

1

T

T−1∑
t=0

∥∥λ>t − λ>t+1

∥∥
2
‖c(πt+1)‖2, (149)

where Eq.(148) holds since the initial value λ0 = 0, and Eq.(149) due to Cauchy-Schwarz inequality.

Recall the update rule (71) with respect to λ:

λt+1 ←
{
λt − η

∂

∂λ
L(πt,λt)

}
+

= {λt − η(b− c(πt))}+ ,

which implies

‖λt+1 − λt‖2 ≤ η‖b− c(πt)‖2 ≤ η (‖b‖2 + ‖c(πt)‖2) . (150)

Now, we need to bound

‖c(πt)‖2 =

√√√√ m∑
i=1

|Ci(πt)|2 =

√√√√∣∣∣∣∣
m∑
i=1

Es0∼ρ0(·)[V
ci
πt (s0)]

∣∣∣∣∣
2

=

√√√√ m∑
i=1

∣∣∣∣∣Es0∼ρ0(·),st∼P(t)
πt (·|s0),at∼πt(·|st)

[ ∞∑
t=0

γtci(st, at)

∣∣∣∣s0

]∣∣∣∣∣
2

≤
√
m

1

1− γ
, (151)

where last equation holds since the cost function ci(·) is bounded by 1.

Recall b = (b1, b2, · · · , bm)
>, let

bmax := max{b1, b2, · · · , bm},
then, according to (150), we achieve

‖λt+1 − λt‖2 ≤ η‖b− c(πt)‖2 ≤ η
√
m

(
bmax +

1

1− γ

)
. (152)

Furthermore,

‖λT ‖2 =

∥∥∥∥∥
T−1∑
t=0

(λt+1 − λt) + λ0

∥∥∥∥∥
2

≤ η
√
m

(
bmax +

1

1− γ

)
T. (153)

Taking Eq.(151), Eq.(152) and Eq.(153) to Eq.(149), we have

1

T

T−1∑
t=0

λ>t (c(πt)− c(πt+1)) ≤ 2ηm
1

1− γ

(
bmax +

1

1− γ

)
. (154)
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Finally, recall the result (147), and taking (154) to it, we obtain the following equation,

J(π?)−
1

T

T−1∑
t=0

J(πt) ≤
1

η(1− γ)c?T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

∑
s∈S

KL [π?(·|s)‖π0(·|s)] +
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt))

+
1

ρmin(1− γ)c?2

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

(
1

T
(J(πT )− J(π0))− 1

T

T−1∑
t=0

λ>t (c(πt+1)− c(πt))

)

=
1

η(1− γ)c?T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

∑
s∈S

KL [π?(·|s)‖π0(·|s)] +
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt))

+
1

ρmin(1− γ)c?2

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

(
1

T
(J(πT )− J(π0)) +

1

T

T−1∑
t=0

λ>t (c(πt)− c(πt+1))

)

≤ 1

η(1− γ)c?T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞
|S| log |A|+ 1

T

T−1∑
t=0

λ>t (c(π?)− c(πt)) (155)

+
1

ρmin(1− γ)c?2

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

(
2

T
· 1

1− γ
+ 2ηm

1

1− γ

(
bmax +

1

1− γ

))
, (156)

where Eq.(155) holds since: according to the initial value λ0 = 0, then the initial policy π0 is reduced

to uniform distribution, and the probability of each action a is π0(a|s) =
1

|A|
,

KL [π?(·|s)‖π0(·|s)] =
∑
a∈A

π?(·|s) log
π?(a|s)
π0(a|s)

=
∑
a∈A

π?(·|s) log (|A|π?(a|s)) ≤ log |A|,

which implies ∑
s∈S

KL [π?(·|s)‖π0(·|s)] ≤ |S| log |A|;

Eq.(156) holds since: for any policy π, the objective J(π) satisfies

J(π) ≤ 1

1− γ
,

and the result (154) shows the boundedness of

1

T

T−1∑
t=0

λ>t (c(πt)− c(πt+1)) ≤ 2ηm
1

1− γ

(
bmax +

1

1− γ

)
.

Finally, let

χ =
1

(1− γ)c?

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞
, C1 =

m

(1− γ)2

(
bmax +

1

1− γ

)
, (157)

then we rewrite Eq.(156) as follows

J(π?)−
1

T

T−1∑
t=0

J(πt)−
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt)) ≤
(
χ|S| log |A|

η
+

2χ

ρmin(1− γ)2

)
· 1

T
+ 2ηχC1,

(158)

This concludes the proof of (133).

D.2 DETAILS FOR PROOF OF THEOREM 2

Theorem 2 Under Assumption 1-2, πθ is the softmax policy defined in (9). The time-step T satisfies

T ≥ max

{
F

(1− γ)2
,

F

((1− γ)2 + 2m/ι2)
2

}
,
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where F :=
D2

2

|S| log |A|ρ2minD1
, D1 andD2 are positive scalars will be special later. The initial λ0 = 0,

θ0 = 0, the parameter sequence {λt,θt}T−1
t=0 is generated according to Algorithm 1. Let η, β satisfy

η =

√∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

|S| log |A|
C(1− γ)T

, β =

√∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

4|S| log |A|
(1− γ)3ι2c?

,

where C is a positive scalar will be special later. Then for all i ∈ {1, 2, · · · ,m}, πt := πθt satisfies

min
t<T
{J(π?)− J(πt)} ≤ 4

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|
c?(1− γ)4T

, (159)

min
t<T
{Ci(πt)− bi}+ ≤

4%
∥∥∥dρ0π?ρ0 ∥∥∥∞

β − ‖λ?‖∞

√
|S| log |A|
c?(1− γ)4T

. (160)

In this section, we show the details for the proof of Theorem 2. The proof contains two key steps:
bounding the optimality gap and bounding the constraint violation. Finally, we summary the hyper-
parameter setting for us to obtain the results presented in Theorem 2.

Bounding the Optimality Gap.

Recall the dual update (71)-(72), we have

‖λT ‖22 =

T−1∑
t=0

(
‖λt+1‖22 − ‖λt‖22

)
(71)
=

T−1∑
t=0

∥∥∥∥∥
{
λt − η

∂

∂λ
L(πt,λt)

}
+

∥∥∥∥∥
2

2

− ‖λt‖22


(70)
=

T−1∑
t=0

(∥∥{λt − η (b− c(πt))}+
∥∥2

2
− ‖λt‖22

)
≤
T−1∑
t=0

(
‖λt − η (b− c(πt))‖22 − ‖λt‖

2
2

)
=

T−1∑
t=0

(
η2 ‖b− c(πt)‖22 + 2ηλ>t (c(πt)− b)

)
≤
T−1∑
t=0

(
η2m

(
bmax +

1

1− γ

)2

+ 2ηλ>t (c(πt)− c(π?))

)
(161)

=η2m

(
bmax +

1

1− γ

)2

T + 2η

T−1∑
t=0

(
λ>t (c(πt)− c(π?))

)
, (162)

where Eq.(161) holds since: c(π?) � b, then λ>t (c(π?)− b) ≤ 0, and

λ>t (c(πt)− b) = λ>t (c(πt)− c(π?) + c(π?)− b) ≤ λ>t (c(πt)− c(π?)) ; (163)

Eq.(152) implies

‖b− c(πt)‖2 ≤
√
m

(
bmax +

1

1− γ

)
. (164)

Combining the results (163) and (164), we obtain Eq.(161).

Since ‖λT ‖22 ≥ 0, Eq.(162) implies the following boundedness w.r.t. λ>t (c(π?))− c(πt):

1

2
ηm

(
bmax +

1

1− γ

)2

≥ 1

T

T−1∑
t=0

(
λ>t (c(π?))− c(πt)

)
. (165)
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Recall Lemma 16, we have

J(π?)−
1

T

T−1∑
t=0

J(πt) ≤
1

T

(
χ|S| log |A|

η
+

2χ

ρmin(1− γ)2

)
+ 2χηC1 +

1

T

T−1∑
t=0

λ>t (c(π?)− c(πt))

(165)

≤ 1

T

(
χ|S| log |A|

η
+

2χ

ρmin(1− γ)2

)
+ 2χηC1 +

1

2
ηm

(
bmax +

1

1− γ

)2

=
1

T

(
χ|S| log |A|

η
+

2χ

ρmin(1− γ)2

)
+ η

(
2χC1 +

1

2
m

(
bmax +

1

1− γ

)2
)
,

(166)

which implies

min
t<T
{J(π?)− J(πt)} ≤

1

T

(
χ|S| log |A|

η
+

2χ

ρmin(1− γ)2

)
+ η

(
2χC1 +

1

2
m

(
bmax +

1

1− γ

)2
)
.

(167)

Furthermore, let

η =

√√√√ 1

T

χ|S| log |A|

2χC1 + 1
2m
(
bmax + 1

1−γ

)2 =

√∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

|S| log |A|
(1− γ)C

1

T
, (168)

where the positive scalar C is defined as follows,

C = c?

(
2χC1 +

1

2
m

(
bmax +

1

1− γ

)2
)
< +∞. (169)

Then we achieve the optimal gap as follows

min
t<T
{J(π?)− J(πt)} ≤

√√√√χ|S| log |A|
T

(
2χC1 +

1

2
m

(
bmax +

1

1− γ

)2
)

+
2χ

ρmin(1− γ)2T

(170)

=

√
χ|S| log |A|

T
(M1 + 1)2χC1 +

2χ

ρmin(1− γ)2T
, (171)

where the constant M1 is special as follows: 2χC1M1 =
1

2
m
(
bmax + 1

1−γ

)2

, i.e.,

M1 = (1− γ)c?
3

∥∥∥∥dρ0π?ρ0

∥∥∥∥−1

∞

(
bmax + 1

1−γ

1

)
.

Recall χ and C1 defined in Eq.(157),

χ =
1

(1− γ)c?

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞
, C1 =

m

(1− γ)2

(
bmax +

1

1− γ

)
,

taking them into Eq.(171), we rewrite Eq.(171) as follows

min
t<T
{J(π?)− J(πt)} ≤

1

(1− γ)2

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|

T
· (M1 + 1)2m

(c?)2
·
(
bmax +

1

1− γ

)
+

2

c?

1

ρmin(1− γ)3T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

=
1

(1− γ)2

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|D1

T
+

D2

ρmin(1− γ)3T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞
, (172)
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where D1 and D2 are two positive constants defined as follows

D1 :=
(M1 + 1)2m

(c?)2

(
bmax +

1

1− γ

)
< +∞, D2 :=

2

c?
< +∞. (173)

Finally, let 1

T ≥ D2
2

(1− γ)2|S| log |A|ρ2
minD1

, (174)

which implies

min
t<T
{J(π?)− J(πt)} ≤

2

(1− γ)2

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|D1

T
. (175)

Bounding the Constraint Violation.

We consider the parameter ‖λ̃‖2 ∈ [0, β], where the positive scalar β will be special later. According
to the update rule (71) w.r.t. parameter λ, we obtain the following the equation,∥∥∥λt+1 − λ̃

∥∥∥2

2
=
∥∥∥{λt − η(b− c(πt))}+ − λ̃

∥∥∥2

2

≤
∥∥∥λt − η(b− c(πt))− λ̃

∥∥∥2

2

=
∥∥∥λt − λ̃∥∥∥2

2
− 2η(λt − λ̃)>(b− c(πt)) + η2 ‖b− c(πt)‖22

(152)

≤
∥∥∥λt − λ̃∥∥∥2

2
− 2η(λt − λ̃)>(b− c(πt)) + η2m

(
bmax +

1

1− γ

)2

,

which is equal to∥∥∥λt+1 − λ̃
∥∥∥2

2
−
∥∥∥λt − λ̃∥∥∥2

2
≤ −2η(λt − λ̃)>(b− c(πt)) + η2m

(
bmax +

1

1− γ

)2

. (176)

Summing Eq.(176) from t = 0 to T − 1, we achieve the following equation

0 ≤
∥∥∥λT − λ̃∥∥∥2

2
≤
∥∥∥λ0 − λ̃

∥∥∥2

2
− 2η

T−1∑
t=0

(λt − λ̃)>(b− c(πt)) + Tη2m

(
bmax +

1

1− γ

)2

,

which implies

1

T

T−1∑
t=0

(λt − λ̃)>(b− c(πt)) ≤
1

2ηT

∥∥∥λ0 − λ̃
∥∥∥2

2
+
η

2
m

(
bmax +

1

1− γ

)2

. (177)

Due to c(π?) � b, and λt � 0, then the following equation holds,

− 1

T

T−1∑
t=0

λ>t (c(π?)− c(πt)) = − 1

T

T−1∑
t=0

λ>t (c(π?)− b + b− c(πt)) ≥ −
1

T

T−1∑
t=0

λ>t (b− c(πt)).

(178)

Recall Lemma 16,

J(π?)−
1

T

T−1∑
t=0

J(πt)−
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt)) ≤
1

T

(
χ|S| log |A|

η
+

2χ

ρmin(1− γ)2

)
+ 2ηχC1,

1where we obtain the term T (174) by solving the inequality:

1

(1− γ)2

∥∥∥∥dρ0π?ρ0
∥∥∥∥
∞

√
|S| log |A|D1

T
≥ D2

ρmin(1− γ)3T

∥∥∥∥dρ0π?ρ0
∥∥∥∥
∞
.
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and taking Eq.(178) into above equation, we achieve

J(π?)−
1

T

T−1∑
t=0

J(πt)−
1

T

T−1∑
t=0

λ>t (b− c(πt)) ≤
1

T

(
χ|S| log |A|

η
+

2χ

ρmin(1− γ)2

)
+ 2ηχC1.

(179)

We rewrite Eq.(179) as follows,

J(π?)−
1

T

T−1∑
t=0

J(πt)−
1

T

T−1∑
t=0

λ>t (b− c(πt))

=J(π?)−
1

T

T−1∑
t=0

J(πt)−
1

T

T−1∑
t=0

(λt − λ̃)>(b− c(πt))−
1

T

T−1∑
t=0

λ̃>(b− c(πt))

≤ 1

T

(
χ|S| log |A|

η
+

2χ

ρmin(1− γ)2

)
+ 2ηχC1. (180)

Let λ̃ = (λ̃1, λ̃2, · · · , λ̃m)>, taking the result (177) into Eq.(180), we have

J(π?)−
1

T

T−1∑
t=0

J(πt)−
1

T

T−1∑
t=0

λ̃>(b− c(πt)) = J(π?)−
1

T

T−1∑
t=0

J(πt) +
1

T

T−1∑
t=0

λ̃>(c(πt)− b)

(181)

=J(π?)−
1

T

T−1∑
t=0

J(πt) +

m∑
i=1

λ̃i

(
1

T

T−1∑
t=0

(Ci(πt)− bi)

)
(182)

≤ 1

T

(
χ|S| log |A|

η
+

2χ

ρmin(1− γ)2

)
+ 2ηχC1 +

1

2ηT
‖λ0 − λ‖22 +

η

2
m

(
bmax +

1

1− γ

)2

.

(183)

For any policy π, the objective function J(π) is a linear function in an occupancy measure induced by
such policy π. Since the set of occupancy measures is convex and compact, the average of occupancy
measures is another occupancy measure that yields a policy, which implies there exists a policy π̃t
such that

1

T

T−1∑
t=0

J(πt) = J(π̃t),
1

T

T−1∑
t=0

(Ci(πt)− bi) = Ci(π̃t)− bi. (184)

Furthermore, let

λ̃i =


β =

√
χ|S| log |A| 2

(1− γ)ι
, if

∑T−1
t=0 (Ci(πt)− bi) ≥ 0,

0, if
∑T−1
t=0 (Ci(πt)− bi) < 0,

(185)
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recall η defined in (168), i.e., η =

√√√√ 1

T

χ|S| log |A|

2χC1 + 1
2m
(
bmax + 1

1−γ

)2 , then we rewrite Eq.(182) as

follows,

J(π?)−
1

T

T−1∑
t=0

J(πt) +

m∑
i=1

λ̃i

(
1

T

T−1∑
t=0

(Ci(πt)− bi)

)
(184)
= J(π?)− J(π̃t) +

m∑
i=1

λ̃i (Ci(π̃t)− bi)

(185)
= J(π?)− J(π̃t) + β

m∑
i=1

{Ci(π̃t)− bi}+ (186)

=J(π?)− J(π̃t) + β1>m{c(π̃t)− b}+ I the vector version of Eq.(186)
(183)

≤ 1

T

(
χ|S| log |A|

η
+

2χ

ρmin(1− γ)2

)
+ 2ηχC1 +

1

2ηT

∥∥∥λ0 − λ̃
∥∥∥2

2
+
η

2
m

(
bmax +

1

1− γ

)2

(187)
(185)

≤ 1

T

(
χ|S| log |A|

η
+

2χ

ρmin(1− γ)2

)
+ 2ηχC1 +

m

2ηT
β2 +

η

2
m

(
bmax +

1

1− γ

)2

(188)

(168)
=

√√√√χ|S| log |A|
T

(
2χC1 +

1

2
m

(
bmax +

1

1− γ

)2
)

+
2χ

ρmin(1− γ)2T
+

m

2ηT
β2 (189)

(168)
=

(
1 +

2m

(1− γ)2ι2

)√√√√χ|S| log |A|
T

(
2χC1 +

1

2
m

(
bmax +

1

1− γ

)2
)

+
2χ

ρmin(1− γ)2T

(190)

(170),(172)
=

(
1

(1− γ)2
+

2m

(1− γ)4ι2

)∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|D1

T
+

D2

ρmin(1− γ)3T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞
,

(191)

where Eq.(188) holds since: by the definition of λ̃ in Eq.(185), and initial λ0 = 0, we have∥∥∥λ0 − λ̃
∥∥∥2

2
=
∥∥∥λ̃∥∥∥2

2
≤ mβ2;

Eq.(190) holds since we replace the term
m

2ηT
β2 as follows: recall β =

√
χ|S| log |A| 2

(1− γ)ι
defined in (185) we have

m

2ηT
β2 =

m

2
β2

√√√√2χC1 + 1
2m
(
bmax + 1

1−γ

)2

Tχ|S| log |A|

=
2m

(1− γ)2ι2

√√√√χ|S| log |A|
T

(
2χC1 +

1

2
m

(
bmax +

1

1− γ

)2
)
.

Finally, let

δ :=

(
1

(1− γ)2
+

2m

(1− γ)4ι2

)∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|D1

T
+

D2

ρmin(1− γ)3T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞
,

then the results (191) can be represented simply as follows,

J(π?)− J(π̃t) + β1>m{c(π̃t)− b}+ ≤ δ; (192)
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recall Lemma 3 that reveals the boundedness of λ?, the definition of β =√
χ|S| log |A| 2

(1− γ)ι
implies β > ‖λ?‖∞, then applying Lemma 4, we have

1>m{c(π̃t)− b}+ <
δ

β − ‖λ?‖∞
. (193)

Since 1>m{c(π̃)− b}+ =
∑m
i=1 {Ci(π̃t)− bi}+ and each {Ci(π̃t)− bi}+ ≥ 0, then we have

{c(π̃t)− b}+ �
δ

β − ‖λ?‖∞
1m. (194)

Eq.(194) implies for each i ∈ {1, 2, · · · ,m}: {Ci(π̃t)− bi}+ ≤
δ

β − ‖λ?‖∞
, i.e.,

{Ci(π̃t)− bi}+
(184)
=

{
1

T

T−1∑
t=0

(Ci(πt)− bi)

}
+

≤ δ

β − ‖λ?‖∞
, (195)

which implies the Best-Case Constraint Violation as follows: for each i ∈ {1, 2, · · · ,m}, we have
min
t<T
{Ci(πt)− bi}+ (196)

≤ 1

β − ‖λ?‖∞

((
1

(1− γ)2
+

2m

(1− γ)4ι2

)∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|D1

T
+

D2

ρmin(1− γ)3T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

)
.

Furthermore, let 2

T ≥ D2
2

((1− γ)2 + 2m/ι2)
2
ρ2

minD1|S| log |A|
, (197)

then we obtain

min
t<T
{Ci(πt)− bi}+ ≤

2

β − ‖λ?‖∞

(
1 +

2m

(1− γ)2ι2

)∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|D1

(1− γ)4T

=

2

(
1 +

2m

(1− γ)2ι2

)
β − ‖λ?‖∞

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|D1

(1− γ)4T
. (198)

Summarizing the Conclusion under Special Hyper-Parameter Setting.

Finally, recall the condition for the term T in (174), (197), we conclude if the time-step T satisfies

T ≥ max

{
1

(1− γ)2
,

1

((1− γ)2 + 2m/ι2)
2

}
· D2

2

|S| log |A|ρ2
minD1

,

the step-size η defined in (168) satisfies

η =

√∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

|S| log |A|
(1− γ)C

1

T
,

and the constant term β satisfies

β
(185)
=
√
χ|S| log |A| 2

(1− γ)ι
(199)

(157)
=

√
1

(1− γ)c?

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞
|S| log |A| 2

(1− γ)ι
(200)

:=

√∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

D|S| log |A|
(1− γ)3ι2

, (201)

2where we obtain the term T (197) by solving the inequality:(
1

(1− γ)2
+

2m

(1− γ)4ι2

)∥∥∥∥dρ0π?ρ0
∥∥∥∥
∞

√
|S| log |A|D1

T
≥ D2

ρmin(1− γ)3T

∥∥∥∥dρ0π?ρ0
∥∥∥∥
∞
.
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where we define the constant D as follows

D1 :=
4

c?
.

Then, according to (175) and (198), the following holds

min
t<T
{J(π?)− J(πt)} ≤ 2

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|D1

(1− γ)4T
,

min
t<T
{Ci(πt)− bi}+ ≤

2

β − ‖λ?‖∞

(
1 +

2m

(1− γ)2ι2

)∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|D1

(1− γ)4T
,

where each i ∈ {1, 2, · · · ,m}. This concludes the proof of Theorem 2.

Remark 3. Recall Eq.(143): dρ0π (s) ≥ (1− γ)ρ0(s), which implies
∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞
≥ (1− γ). Thus,

β ≥
√

1

c?
|S| log |A| 2

(1− γ)ι
>

2

(1− γ)ι
.

Lemma 3 shows that
‖λ?‖∞ ≤

2

(1− γ)ι
.

Thus β > ‖λ?‖∞.
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E PROOF OF THEOREM 3

E.1 GEOMETRIC DISTRIBUTION

Before we show the details of the proof, we introduce some basic notations about geometric distri-
bution Geo(γ), which is defined as the following discrete probability distributions: the probability
distribution of the number τ of failures before the first success, supported on the set {0, 1, 2, · · · },
i.e.,

P(τ = t) = (1− γ)tγ, γ ∈ (0, 1), t = 0, 1, 2, 3, · · · . (202)

To understand Geo(γ) (202) clearly, we list the distribution column of the distribution Geo(γ) in the
following Table 2.

Table 2: Distribution column of the distribution Geo(γ).

τ 0 1 2 3 4 · · · · · · t · · · · · ·
γ (1− γ)γ (1− γ)2γ (1− γ)3γ (1− γ)4γ · · · · · · (1− γ)tγ · · · · · ·

E.2 ROLLOUT WITH FINITE HORIZONS

Algorithm 4 EstQ(π, g, s, a): Estimate Q Value Function

1: Input: Policy π; Reward function or Cost function g(·, ·); State-action pair (s, a);
2: Initialization: Q̂(s, a) = 0, (s0, a0) = (s, a);
3: Draw an integer τ from a geometric distribution with parameter (1− γ): P(τ = t) = (1− γ)γt;
4: for t = 0, 1, 2, · · · , τ − 1 do
5: Collect reward (or cost) g(st, at) and add to estimate: Q̂(s, a)← Q̂(s, a) + g(st, at);
6: Simulate the next state and next action as follows: st+1 ∼ P(·|st, at); at+1 ∼ π(·|st+1);
7: end for
8: Collect last reward (or cost) g(sτ , aτ ), add to estimate: Q̂(s, a)← Q̂(s, a) + g(sτ , aτ ).

9: Output: Q̂(s, a).

Algorithm 5 EstV(π, g, s): Estimate V Value Function

1: Input: Policy π to be evaluated; Reward function or Cost function g(·, ·); State s;
2: Initialization: V̂ (s) = 0, s0 = s, a0 ∼ π(·|s0);
3: Draw an integer τ̃ from a geometric distribution with parameter (1− γ): P(τ̃ = t) = (1− γ)γt;
4: for t = 0, 1, 2, · · · , τ̃ − 1 do
5: Collect reward (or cost) g(st, at) and add to estimate: V̂ (s)← V̂ (s) + g(st, at);
6: Simulate the next state and next action as follows: st+1 ∼ P(·|st, at); at+1 ∼ π(·|st+1);
7: end for
8: Collect last reward (or cost) g(sτ̃ , aτ̃ ), add to estimate: V̂ (s)← V̂ (s) + g(sτ̃ , aτ̃ ).

9: Output: V̂ (s).

E.3 PROOF OF PROPOSITION 3

We need the following Lemma 17 to show Proposition 3.

Lemma 17 (Dominated Convergence Theorem). Let {Xn}n≥0 be a random variable sequence, and
Xn → X almost surely, as n → ∞. Furthermore, if |Xn| ≤ Y for all n, and E[Y ] ≤ ∞, then
E[Xn]→ E[X], as n→∞.

Proof. See (Durrett, 2019, Theorem 1.6.7).
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Proposition 3. The output of Algorithm 4 (also see Algorithm 4) is an unbiased estimator ofQπ(s, a)
or Qcπ(s, a), i.e., let

Q̂π(s, a) = EstQ(π, r, s, a), Q̂ciπ (s, a) = EstQ(π, ci, s, a), (203)

then the following holds

E[Q̂π(s, a)] = Qπ(s, a), E[Q̂ciπ (s, a)] = Qciπ (s, a). (204)

Proof. This proof is adaptive to Paternain (2018); Zhang et al. (2020). Without losing generality, we
only need to show the case of g(·, ·) = r(·, ·), i.e., E[Q̂π(s, a)] = Qπ(s, a).

According to the iteration from Algorithm 4, we obtain the estimator of Qπ(s, a) as follows,

Q̂π(s, a) =

τ∑
t=0

r(st, at), (s0, a0) = (s, a), τ ∼ Geo(1− γ). (205)

We consider the expectation of (205):

E[Q̂π(s, a)] = E

[
τ∑
t=0

r(st, at)
∣∣∣π, s0 = s, a0 = a

]
(206)

= E

[ ∞∑
t=0

I {t ≤ τ} r(st, at)
∣∣∣π, s0 = s, a0 = a

]
(207)

=

∞∑
t=0

E
[
I {t ≤ τ} r(st, at)

∣∣∣π, s0 = s, a0 = a
]
, (208)

where Eq.(207) holds since: we have substituted∞ for the τ via the indicator function I{·} such that
the summand for t > τ is vanished;

Eq.(208) holds since we use the dominated convergence theorem (see Lemma 17): let

Xn =

n∑
t=0

I {t ≤ τ} r(st, at),

then we obtain

|Xn| =

∣∣∣∣∣
n∑
t=0

I {t ≤ τ} r(st, at)

∣∣∣∣∣ ≤
n∑
t=0

I {t ≤ τ} := Yn, (209)

and recall τ ∼ Geo(1− γ), then we obtain

P(t ≤ τ) =

∞∑
τ=t

γτ (1− γ) = γt, (210)

E[Yn] = E

[
n∑
t=0

I {t ≤ τ}

]
=

n∑
t=0

P(t ≤ τ)
(210)
=

n∑
t=0

γt ≤ 1

1− γ
; (211)

according to the results (209) and (211), and applying Lemma 17, we obtain

E

[ ∞∑
t=0

I {t ≤ τ} r(st, at)
∣∣∣π, s0 = s, a0 = a

]
=

∞∑
t=0

E
[
I {t ≤ τ} r(st, at)

∣∣∣π, s0 = s, a0 = a
]
,

i.e., we have checked exchange condition for the sum and the expectation in the previous expression
from Eq.(207) to Eq.(208).
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Furthermore, we consider the result (208) as follows,

E[Q̂π(s, a)] =

∞∑
t=0

E
[
I {t ≤ τ} r(st, at)

∣∣∣π, s0 = s, a0 = a
]

=

∞∑
t=0

E

[
Eτ∼Geo(1−γ)

[
I {t ≤ τ} r(st, at)

]∣∣∣∣π, s0 = s, a0 = a

]
(212)

=

∞∑
t=0

E

[
Eτ∼Geo(1−γ)

[
I {t ≤ τ}

]
r(st, at)

∣∣∣∣π, s0 = s, a0 = a

]
(213)

=

∞∑
t=0

E

[
γtr(st, at)

∣∣∣∣π, s0 = s, a0 = a

]
(214)

= Qπ(s, a), (215)

where Eq(212) holds due to the double expectation formula: E[X] = EY [EX [X|Y ], which implies
that we find the expected value of X by conditioning it on another random variable Y ;

Eq.(213) holds since: the horizon τ is drawn independently of the MDP sequence {st, at, r(st, at)};
Eq.(214) holds since:τ ∼ Geo(1− γ), then we obtain

Eτ∼Geo(1−γ)

[
I {t ≤ τ}

]
= P(t ≤ τ) =

∞∑
τ=t

γτ (1− γ) = γt.

This concludes the result E[Q̂π(s, a)] = Qπ(s, a).

If we replace all the term r(st, at) to ci(st, at) from Eq.(205)-Eq.(215), we obtain E[Q̂ciπ (s, a)] =
Qciπ (s, a).

E.4 PROOF OF THEOREM 3

Since return objective J(πθ) and cost function Ci(πθ) share a similar structure, all the Eq.(22)-(24)
can be extended to Ci(πθ) if we use ci to replace r respectively. In this section, we only show the
case of the reward function J(πθ) in Theorem 3. Before we show the details, we present some
insights of those unbiased esitimators.

Rollout Algorithm

We rollout a policy evaluation with respect to πθ according to Algorithm 4,

Q̂πθ
(s, a) = EstQ(πθ, r, s, a), (216)

we use τ ∼ Geo(1− γ) to denote the terminal time of the horizon of the rollout (216).

Furthermore, let Ĝπθ
(s, a) be an estimator defined as follows,

Ĝπθ
(s, a) =

1

1− γ
Q̂πθ

(sτ , aτ )
∂ log πθ(aτ |sτ )

∂θs,a
, (217)

where we obtain Q̂πθ
(sτ , aτ ) according to Algorithm 4,

Q̂πθ
(sτ , aτ ) = EstQ(πθ, r, sτ , aτ ). (218)

Let τ
′ ∼ Geo(1 − γ) be the terminal time of the horizon of the rollout (218), and we denote the

rollout trajectory as follows,

D
′

=
{(
s
′

j , a
′

j , r(s
′

j , a
′

j)
)}τ ′

j=0
, where initial state-action pair (s

′

0, a
′

0) = (sτ , aτ ).

Then, we rewrite the value Q̂πθ
(sτ , aτ ) (218) as follows,

Q̂πθ
(sτ , aτ ) =

τ
′∑

j=0

r(s
′

j , a
′

j),
(
s
′

0, a
′

0

)
= (sτ , aτ ), τ

′
∼ Geo(1− γ). (219)
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Algorithm 6 EstPG(π, g, s, a): Estimate Policy Gradient

1: Input: A policy πθ with given parameter θ, (s, a) ∈ S ×A;
2: Policy Evaluation Rollout for (s, a)-Pair: Q̂πθ

(s, a) = EstQ(πθ, r, s, a), and τ ∼ Geo(1−γ)
denotes the terminal time of the horizon of such a policy evaluation rollout;

3: Policy Evaluation Rollout for (sτ , aτ )-Pair: Q̂πθ
(sτ , aτ ) = EstQ(πθ, r, sτ , aτ ), and τ

′ ∼
Geo(1− γ) denotes the terminal time of the horizon of such a policy evaluation rollout;

4: Collect the trajectoryD′ =
{

(s
′

j , a
′

j , r(s
′

j , a
′

j)
}
j=0:τ ′

, where initial state-action pair (s
′

0, a
′

0) =

(sτ , aτ );

5: Output: Ĝπθ
(s, a) defined as follows,

Ĝπθ
(s, a) =

1

1− γ
Q̂πθ

(sτ , aτ )
∂ log πθ(aτ |sτ )

∂θs,a
=

1

1− γ

τ
′∑

j=0

r(s
′

j , a
′

j)
∂

∂θs,a
log πθ(aτ |sτ ).

(221)

Taking Eq.(219) to (217), we obtain the expression of Ĝπθ
(s, a) (217) as follows,

Ĝπθ
(s, a) =

1

1− γ

τ
′∑

j=0

r(s
′

j , a
′

j)
∂

∂θs,a
log πθ(aτ |sτ ), where

(
s
′

0, a
′

0

)
= (sτ , aτ ), τ

′
∼ Geo(1− γ).

(220)

Remark 4. Since Algorithm 6 plays two rollouts that cause randomness of the estimator Ĝπθ
(s, a)

(220) with respect to τ and τ
′
, which implies Ĝπθ

(s, a) (220) is a random variable with respect to τ
and τ

′
.

Unbiased Analysis

We consider the expectation of Ĝπθ
(s, a) (217) as follows, for any given θ,

E
[
Ĝπθ

(s, a)
]

=Eτ,τ ′

 1

1− γ

τ
′∑

j=0

r(s
′

j , a
′

j)
∂ log πθ(aτ |sτ )

∂θs,a

 (222)

(220)
= Eτ


1

1− γ
Eτ ′

 τ
′∑

j=0

r(s
′

j , a
′

j)

 ∂ log πθ(aτ |sτ )

∂θs,a

∣∣∣∣∣ (s′0, a′0) = (sτ , aτ )


︸ ︷︷ ︸

:=E1

 ,
(223)

where Eτ,τ ′ [·] is short for the expectation over the randomness from the variables τ ∼ Geo(1 −
γ), τ

′ ∼ Geo(1−γ), similarly, Eτ [·] denotes the expectation over the randomness from the trajectory
τ ∼ Geo(1− γ).

As a similar analysis from (207) to (215), we consider the term E1 (223) as follows,

E1(223) = Eτ ′∼Geo(1−γ)

 τ
′∑

j=0

r(s
′

j , a
′

j)

 ∂ log πθ(aτ |sτ )

∂θs,a

∣∣∣∣∣ (s′0, a′0) = (sτ , aτ )


= Eτ ′∼Geo(1−γ)

 ∞∑
j=0

I{j ≤ τ
′
}r(s

′

j , a
′

j)

∣∣∣∣ (s′0, a′0) = (sτ , aτ )

 ∂ log πθ(aτ |sτ )

∂θs,a

= Qπθ
(sτ , aτ )

∂ log πθ(aτ |sτ )

∂θs,a
. (224)
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According to Eq.(223) and Eq.(224), we obtain

E
[
Ĝπθ

(s, a)
]

=
1

1− γ
Eτ
[
Qπθ

(sτ , aτ )
∂ log πθ(aτ |sτ )

∂θs,a

]
(225)

=
1

1− γ
Eτ,st,at

[ ∞∑
t=0

I{t = τ}Qπθ
(st, at)

∂ log πθ(at|st)
∂θs,a

]
, (226)

where Eτ,st,at [·] is short for the expectation over the randomness from the variables τ ∼ Geo(1− γ),
st ∼ P(t)

πθ (·|s0), and at ∼ πθ(·|st).

Recall the result (57), we obtain

∂πθ(at|st)
∂θs,a

=



πθ(a|s)− (πθ(a|s))2 if st = s and at = a

−πθ(at|s)πθ(a|s) if st = s and at 6= a

0 if st 6= s or at 6= a

(227)

=



πθ(at|st)− (πθ(at|st))2 if st = s and at = a

−πθ(at|st)πθ(a|s) if st = s and at 6= a

0 if st 6= s or at 6= a,

(228)

which implies

∂ log πθ(at|st)
∂θs,a

=



1− πθ(at|st) if st = s and at = a

−πθ(a|s) if st = s and at 6= a

0 if st 6= s or at 6= a.

(229)

According to the result (229), it is similar to (209)-(211), it is easy to check that Eq.(226) satisfies the
condition of dominated convergence theorem (see Lemma 17), thus we rewrite Eq.(226) as follows,

E
[
Ĝπθ

(s, a)
]

=

∞∑
t=0

1

1− γ
Eτ,st,at

[
I{t = τ}Qπθ

(st, at)
∂ log πθ(at|st)

∂θs,a

]
(230)

=

∞∑
t=0

1

1− γ
Eτ∼Geo(1−γ)

[
I{t = τ}

]
Est,at

[
Qπθ

(st, at)
∂ log πθ(at|st)

∂θs,a

]
(231)

=

∞∑
t=0

γtE
st∼P(t)

πθ
(·|s0),at∼πθ(·|st)

[
Qπθ

(st, at)
∂ log πθ(at|st)

∂θs,a

]
(232)

=

∞∑
t=0

γt

∑
s′∈S

Pπθ
(st = s

′
|s0)

∑
a′∈A

πθ(a
′
|s
′
)

(
Qπθ

(s
′
, a
′
)
∂ log πθ(a

′ |s′)
∂θs,a

)
(233)

=
∑
s′∈S

∑
a′∈A

∞∑
t=0

γtPπθ
(st = s

′
|s0)πθ(a

′
|s
′
)Qπθ

(s
′
, a
′
)
∂ log πθ(a

′ |s′)
∂θs,a

, (234)

where Eq.(232) holds since

Eτ∼Geo(1−γ)

[
I{t = τ}

]
= P(t = τ) = γt(1− γ);

where Eq.(234) holds since we use the dominated convergence theorem (see Lemma 17).

We should notice that the last Eq.(234) share the same expression in the previous in Eq.(65), and
following the same analysis from Eq.(65)-(68), we obtain the unbiasedness of Ĝπθ

(s, a).
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Boundedness Analysis

Recall the expectation of Ĝπθ
(s, a) (217) as follows, for any given θ,

E
[
(Ĝπθ

(s, a))2
]

=Eτ,τ ′


 1

1− γ

τ
′∑

j=0

r(s
′

j , a
′

j)
∂ log πθ(aτ |sτ )

∂θs,a

2
 (235)

≤ 4

(1− γ)2
Eτ ′


 τ

′∑
j=0

r(s
′

j , a
′

j)

2
 (236)

≤ 4

(1− γ)2
Eτ ′∼Geo(1−γ)

[(
τ
′
)2
]
≤ 4

(1− γ)3
, (237)

where Eq.(236) holds since: Eq.(229) implies the boundedness of
∣∣∣∣∂ log πθ(at|st)

∂θs,a

∣∣∣∣ ≤ 2;

Eq.(237) holds since: recall τ
′ ∼ Geo(1− γ) can be expressed as follows,

Table 3: Distribution column of the distribution τ
′ ∼ Geo(1− γ).

τ
′

0 1 2 3 4 · · · · · · t · · · · · ·
1− γ (1− γ)γ γ2(1− γ) γ3(1− γ) γ4(1− γ) · · · · · · γt(1− γ) · · · · · ·

which implies the distribution of (τ
′
)2 can be presented as follows,

Table 4: Distribution column of the distribution (τ
′
)2.

(τ
′
)2 0 1 4 9 16 · · · · · · t2 · · · · · ·

1− γ (1− γ)γ γ4(1− γ) γ9(1− γ) γ16(1− γ) · · · · · · γt
2

(1− γ) · · · · · ·

thus

Eτ ′∼Geo(1−γ)

[(
τ
′
)2
]
≤ Eτ ′∼Geo(1−γ)

[
τ
′
]

=
1

1− γ
. (238)
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F PROOF OF THEOREM 4

In this section, we provide the necessary proof details of Theorem 4. It is very technical to achieve
the result of Theorem 4, we outline some necessary intermediate results in Section F.1 where we
provide some basic lemmas, and the proof of Theorem 4 is shown in Section F.2.

Theorem 4 Under Assumption 1-2, πθ is the softmax policy defined in (9). The time-step T shares a
fixed low bound similar to (16). The initial λ0 = 0, θ0 = 0, the parameter sequence {λt,θt}T−1

t=0 is
generated according to Algorithm 3. Let η, β satisfy

η =

√∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

|S| log |A|
C ′(1− γ)T

, β =

√∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

4|S| log |A|
(1− γ)3ι2c?

,

where C
′

is a positive scalar will be special later. Then for all i ∈ {1, 2, · · · ,m}, πt := πθt satisfies

E
[
min
t<T
{J(π?)− J(πt)}

]
≤ 4

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|
c?(1− γ)4T

,

E
[
min
t<T
{Ci(πt)− bi}+

]
≤

4%
∥∥∥dρ0π?ρ0 ∥∥∥∞

β − ‖λ?‖∞

√
|S| log |A|
c?(1− γ)4T

,

where the notation E[·] is short for ED0:DT−1
[·] that denotes the expectation with respect to the

randomness over the trajectories {Dt}T−1
t=0 .

F.1 AUXILIARY LEMMA

Recall Algorithm 3, at current time t, we obtain cost value estimator ĉ(πθt) according to (25),

ĉ(πθt) =
(
Ĉ1(πθt), Ĉ2(πθt), · · · , Ĉm(πθt)

)>
, (239)

where each Ĉi(πθt) is a rollout estimator according to:

Ĉi(πθt) = Es∼ρ0(·)

[
V̂ ciπθt

(s)
]

=
∑
s∈S

ρ0(s)V̂ ciπθt
(s), (240)

V̂ ciπθt
(s) = EstV(πθt , ci, s). (241)

According to Proposition 4, after some simple algebra, we obtain the unbiasedness of ĉ(πθt):

E [ĉ(πθt)] = c(πθt). (242)

Now, we provide the boundedness of ĉ(πθt) as follows,

‖ĉ(πθt)(πθt)‖22
(239)

≤
m∑
i=1

∣∣∣Ĉi(πθt)∣∣∣2 , (243)

which implies we need to bound each |Ĉi(πθt)|, where i ∈ {1, 2, ·,m}.

Recall the definition of Ĉi(πθt) in (240), we expand it as follows,

Ĉi(πθt)
(240)
= Es∼ρ0(·)

[
V̂ ciπθt

(s)
]

=
∑
s∈S

ρ0(s)V̂ ciπθt
(s). (244)

According to the iteration from Algorithm 5, we rewrite V̂ ciπθt
(s) as follows,

V̂ ciπθt
(s) =

τ∑
t=0

r(st, at), s0 = s, τ ∼ Geo(1− γ). (245)
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Now, we bound the expectation of |Ĉi(πθt)|2 as follows,

E
[(
Ĉi(πθt)

)2
]

(245)
= Eτ∼Geo(1−γ)

(∑
s∈S

ρ0(s)

τ∑
t=0

r(st, at)

)2


≤Eτ∼Geo(1−γ)

(∑
s∈S

τ∑
t=0

r(st, at)

)2
 (246)

≤|S|Eτ∼Geo(1−γ)

[
τ2
] (238)

≤ |S|
1− γ

. (247)

Collect the results (242), (243) and (247), we achieve the next Lemma 18.

Lemma 18. Let πθt be the softmax policy defined in (9). For each parameter θt, let Ĉi(πθt), ĉ(πθt)
be the estimator of cost value function defined in (240) and (239):

Ĉi(πθt) = Es∼ρ0(·)

[
V̂ ciπθt

(s)
]

=
∑
s∈S

ρ0(s)V̂ ciπθt
(s), (248)

ĉ(πθt) =
(
Ĉ1(πθt), Ĉ2(πθt), · · · , Ĉm(πθt)

)>
, (249)

where V̂ ciπθt
(s) is defined in Eq.(241). Then ĉ(πθt) is an unbiased and bounded of cost value function,

i.e.,

E [ĉ(πθt)] = c(πθt), (250)

E
[(
Ĉi(πθt)

)2
]
≤ |S|

1− γ
, (251)

E
[
‖ĉ(πθt)‖22

]
≤ m|S|

1− γ
. (252)

Recall Algorithm 3, we obtain the unbiased estimator as follows,

∇̂λtL(πθt ,λt) = b− ĉ(πθt), (253)

E
[
∇̂λtL(πθt ,λt)

]
= E[b− ĉ(πθt)] =

∂L(πθt ,λt)

∂λt
. (254)

According to the estimators (26) and (26), we obtain the policy gradient estimators , i.e., for each
(s, a) ∈ S ×A,

Ĝπθt
(s, a) = PG(πθt , r, s, a), Ĝciπθt

(s, a) = PG(πθt , ci, s, a), i = 1, 2, · · · ,m.

Furthermore, let the vector gcπθt
(s, a) ∈ Rm collect all the policy gradient estimators of cost value

function, i.e.,

gcπθt
(s, a) =

(
Ĝc1πθt

(s, a), · · · , Ĝcmπθt
(s, a)

)>
.

Let Ĝ(πθt ,λt) ∈ R|S|×|A|, each (s, a)-element is defined as follows,

Ĝ(πθt ,λt)[s, a] = Ĝπθt
(s, a)− λ>t gcπθt

(s, a), (255)

then we obtain the policy gradient estimator of ∂L(πθt ,λt)

∂θt
:

∇̂θtL(πθt ,λt) = Ĝ(πθt ,λt), E
[
Ĝ(πθt ,λt)

]
=
∂L(πθt ,λt)

∂θt
. (256)

Collect the results (254), and (256), we achieve the next Lemma 19.

Lemma 19. Let πθt be the softmax policy defined in (9). For each parameter θt, let Ĉi(πθt), ĉ(πθt)
be the estimator of cost value function defined in (240) and (239). Then, the following holds Recall
Algorithm 3, we obtain the unbiased estimator as follows,

E[b− ĉ(πθt)] =
∂L(πθt ,λt)

∂λt
. (257)
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Let the policy gradient Ĝ(πθt ,λt) be defined in (255), then

E
[
Ĝ(πθt ,λt)

]
=
∂L(πθt ,λt)

∂θt
. (258)

F.2 PROOF OF THEOREM 4

In this section, we show the details for the proof of Theorem 4. The proof contains two key steps:
bounding the optimality gap and bounding the constraint violation. Finally, we summary the hyper-
parameter setting for us to obtain the results presented in Theorem 4.

We rewrite the iteration (12) as the following stochastic version,
λt+1 = {λt − η(b− ĉ(πθt)}+ , (259)

θt+1 = θt + ηĜ(πθt ,λt), (260)

where we calculate ĉ(πθt) and Ĝ(πθt ,λt) according to (253) and (256). To short the expression, as
before, we introduce the following notations:

πt(a|s) := πθt(a|s) =
exp

{
θ

(t)
s,a

}
∑
ã∈A exp

{
θ

(t)
s,ã

} , and πt := πθt .

For each time t, we notice the estimator ĉ(πt) in the inner loop (see Line 3) involves m trajectories,
and estimator Ĝ(πθt ,λt) (see Line 5) involves (2|S||A|+m) trajectories. We use Dt to collect all
those (2|S||A|+ 2m) trajectories,

Dt = {Tt,i}(2|S||A|+2m)
i=1 .

According to rollout rule in Algorithm 4, Algorithm 5, and Algorithm 2, those (2|S||A| + 2m)
trajectories among Dt are independent with each other.

Bounding the Optimality Gap.

Lemma 20. The average term − 1

T

∑T−1
t=0 λ

>
t (c(πt)− c(π?)) is bounded as follows,

−ED0:DT−1

[
1

T

T−1∑
t=0

λ>t (c(πt)− c(π?))

]
≤ η

2

(
b2max +

m|S|
1− γ

)
, (261)

where ED0:DT−1
[·] denotes the expectation with respect to the randomness over the trajectories

{Dt}T−1
t=0 .

Proof. According to the dual update (259), we have

‖λT ‖22 =

T−1∑
t=0

(
‖λt+1‖22 − ‖λt‖22

)
(259)
=

T−1∑
t=0

(∥∥{λt − η(b− ĉ(πt))}+
∥∥2

2
− ‖λt‖22

)
≤
T−1∑
t=0

(
‖λt − η(b− ĉ(πt))‖22 − ‖λt‖

2
2

)
=

T−1∑
t=0

(
η2 ‖b− ĉ(πt)‖22 + 2ηλ>t (ĉ(πt)− b)

)
=

T−1∑
t=0

(
η2 ‖b− ĉ(πt)‖22 + 2ηλ>t (ĉ(πt)− b)

)
≤
T−1∑
t=0

(
η2 ‖b− ĉ(πt)‖22 + 2ηλ>t (ĉ(πt)− c(πt)) + 2ηλ>t (c(πt)− c(π?))

)
, (262)
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where Eq.(262) holds since we express (ĉ(πt)− b) as follows,

(ĉ(πt)− b) =
(
ĉ(πt)− c(πt)

)
+
(
c(π?)− b

)
+
(
c(πt)− c(π?)

)
, (263)

and the fact λt � 0 and c(π?) � b, then λ>t (c(π?)− b) ≤ 0 implies

λ>t (ĉ(πt)− b) ≤ λ>t (ĉ(πt)− c(πt)) + λ>t (c(πt)− c(π?)). (264)

For each given θt−1, the estimator ĉ(πθt) is independent of λt, and λt is independent of (ĉ(πt)−
c(πt)). Thus according to (242), for each time t, the next equation holds

E
[
λ>t (ĉ(πt)− c(πt))

]
= 0, (265)

where t ∈ {0, 1, 2, · · · , T − 1}.

Furthermore, we consider the expectation of
∑T−1
t=0 λ

>
t (ĉ(πt)− c(πt)) over the trajectory {Dt}T−1

t=0
as follows,

ED0:DT−1

[
T−1∑
t=1

λ>t (ĉ(πt)− c(πt))

]

=ED0:aT−2(s)

T−2∑
t=0

λ>t (ĉ(πt)− c(πt)) + EDT−1

[
λ>T−1(ĉ(πT−1)− c(πT−1))

]︸ ︷︷ ︸
(265)

= 0

 (266)

=ED0:aT−2(s)

[
T−2∑
t=1

λ>t (ĉ(πt)− c(πt))

]
, (267)

where Eq.(266) holds since the term
∑T−2
t=0 λ

>
t (ĉ(πt) − c(πt)) is independent of the trajectories

DT−1, which implies

ED0:DT−1

[
T−1∑
t=1

λ>t (ĉ(πt)− c(πt))

]

=ED0:aT−2(s)

[
T−2∑
t=1

λ>t (ĉ(πt)− c(πt)) + EDT−1

[
λ>T−1(ĉ(πT−1)− c(πT−1))

]]
.

Let us expand recurrently according to the mathematical induction, we achieve

ED0:DT−1

[
T−1∑
t=1

λ>t (ĉ(πt)− c(πt))

]
= 0. (268)

Recall the result (262), which implies

T−1∑
t=0

(
η2 ‖b− ĉ(πt)‖22 + 2ηλ>t (ĉ(πt)− c(πt)) + 2ηλ>t (c(πt)− c(π?))

)
≥ 0. (269)

Recall the result (268), and we consider to take expectation of (269) over the trajectory {Dt}T−1
t=0 ,

then we achieve the next equation

ED0:DT−1

[
T−1∑
t=0

(
η2 ‖b− ĉ(πt)‖22 + 2ηλ>t (ĉ(πt)− c(πt)) + 2ηλ>t (c(πt)− c(π?))

)]
≥ 0,

(270)
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rewriting (270), we obtain the following equation,

−ED0:DT−1

[
1

T

T−1∑
t=0

λ>t (c(πt)− c(π?))

]

≤ED0:DT−1

[
η

2T

T−1∑
t=0

‖b− ĉ(πt)‖22

]
(271)

≤ED0:DT−1

[
η

2T

T−1∑
t=0

(∥∥b‖22 + ‖ĉ(πt)
∥∥2

2

)]

≤1

2
ηb2max +

η

2T
ED0:DT−1

[
T−1∑
t=0

‖ĉ(πt)‖22

]
(272)

≤1

2
ηb2max +

η

2

m|S|
1− γ

=
η

2

(
b2max +

m|S|
1− γ

)
, (273)

where last Eq.(273) holds since

ED0:DT−1

[
T−1∑
t=0

‖ĉ(πt)‖22

]
=ED0:aT−2(s)

[
T−2∑
t=0

‖ĉ(πt)‖22 + EDT−1
[‖ĉ(πT−1)‖22]

]
(274)

(252)

≤ ED0:aT−2(s)

[
T−2∑
t=0

‖ĉ(πt)‖22

]
+
m|S|
1− γ

(275)

· · ·

≤m|S|
1− γ

T, (276)

where Eq.(274) holds since the term
∑T−2
t=0 ‖ĉ(πt)‖22 is independent of DT−1;

Eq.(276) holds since we expand recurrently according to (275) by the mathematical induction; Taking
the result (276) into (272), we achieve the result (273).

Lemma 21. The optimal gap is bounded as follows,

ED0:DT−1

[
min
t<T
{J(π?)− J(πt)}

]
≤ 2

(1− γ)2

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|D′1

T
,

where the positive scalar D
′

1 will be special later.

Proof. Due to the unbiasedness of Q̂πθ
(s, a), V̂πθ

(s) according to Algorithm 4 and Algorithm 5,
we achieve a similar result as (133) in Lemma 16, but we need to consider the over the trajectory
{Dt}T−1

t=0 .

Concretely, we replace the terms with respect to expectation by the corresponding estimators, then
we have

ED0:DT−1

[
J(π?)−

1

T

T−1∑
t=0

J(πt)−
1

T

T−1∑
t=0

λ>t (c(π?)− c(πt))

]

≤ 1

T

(
χ|S| log |A|

η
+

2χ

ρmin(1− γ)2

)
+ 2ηχC1. (277)

Furthermore, taking Eq.(273) (we have also presented it in Lemma 20) in to Eq.(277), we obtain

ED0:DT−1

[
J(π?)−

1

T

T−1∑
t=0

J(πt)

]
≤χ|S| log |A|

ηT
+

2χ

ρmin(1− γ)2T
+
η

2

(
4χC1 + b2max +

m|S|
1− γ

)
.

(278)
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The above result (278) implies

ED0:DT−1

[
min
t<T
{J(π?)− J(πt)}

]
≤χ|S| log |A|

ηT
+

2χ

ρmin(1− γ)2T
+
η

2

(
4χC1 + b2max +

m|S|
1− γ

)
.

(279)

It is similar to the analysis of result (167), if the next condition (280) holds, then above Eq.(279)
obtains the optimal gap (that is shown in Eq.(283)) for the difference over {J(π?)− J(πt)}T−1

t=0 .

χ|S| log |A|
ηT

=
η

2

(
4χC1 + b2max +

m|S|
1− γ

)
, (280)

which implies

η =

√√√√ χ|S| log |A|(
2χC1 + 1

2b
2
max +

mC2
max

2(1−γ)2

)
T

=

√∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

|S| log |A|
(1− γ)C ′

1

T
, (281)

where the positive scalar C
′

is defined as follows,

C
′

= c?

(
2χC1 +

1

2
b2max +

m|S|
1− γ

)
< +∞. (282)

Taking the step-size (281) into (279), we obtain the optimal gap as follows,

ED0:DT−1

[
min
t<T
{J(π?)− J(πt)}

]
(283)

≤

√
χ|S| log |A|

T

(
2χC1 +

1

2
b2max +

m|S|
1− γ

)
+

2χ

ρmin(1− γ)2T
(284)

=
1

(1− γ)c?

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|

T
2C1

(
M
′
1 + 1

)
+

2χ

ρmin(1− γ)2T
(285)

(157)
=

1

(1− γ)c?

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
2|S| log |A|

T

m

(1− γ)2

(
bmax +

1

1− γ

)(
M
′
1 + 1

)
+

1

(1− γ)c?

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

2

ρmin(1− γ)2T
(286)

=
1

(1− γ)c?

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|

T
D
′
1 +

D
′

2

ρmin(1− γ)3T

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞
, (287)

where Eq.(285) holds since we choose the constant M
′

1 satisfies 2χC1M
′

1 =
1

2
b2max +

m|S|
1− γ

, i.e.,

M
′

1

(157)
= (1− γ)c?

3

∥∥∥∥dρ0π?ρ0

∥∥∥∥−1

∞

(
bmax +

1

1− γ

)−1(
b2max

4m
+

|S|
4(1− γ)2

)
; (288)

the constants D
′

1 and D
′

2 in (287) are defined as follows,

D
′

1 :=
2m

(1− γ)2

(
bmax +

1

1− γ

)(
M
′

1 + 1
)
< +∞, D

′

2 :=
2

c?
< +∞. (289)

Finally, it is similar to the same analysis of (175), we conclude that if

T ≥ (D
′

2)2

(1− γ)2|S| log |A|ρ2
minD

′
1

, (290)

which implies

ED0:DT−1

[
min
t<T
{J(π?)− J(πt)}

]
≤ 2

(1− γ)2

∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|D′1

T
. (291)
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Bounding the Constraint Violation.

Lemma 22. For any given ‖λ̃‖2 ∈ [0, β̃], where the positive scalar β̃ will be special later, the term
1

T

∑T−1
t=0 (λt − λ̃)>(b− c(πt)) is bounded as follows,

ED0:DT−1

[
1

T

T−1∑
t=0

(λt − λ̃)>(b− c(πt))

]
≤ 1

2ηT

∥∥∥λ̃∥∥∥2

2
+
η

2

(
b2max +

m|S|
1− γ

)
. (292)

Proof. We consider the parameter ‖λ̃‖2 ∈ [0, β̃], where the positive scalar β̃ will be special later.
According to the update rule (259), we have∥∥∥λt+1 − λ̃

∥∥∥2

2
=
∥∥∥{λt − η(b− ĉ(πt))}+ − λ̃

∥∥∥2

2

≤
∥∥∥λt − η(b− ĉ(πt))− λ̃

∥∥∥2

2

=
∥∥∥λt − λ̃∥∥∥2

2
− 2η(λt − λ̃)>(b− ĉ(πt)) + η2 ‖b− ĉ(πt)‖22

≤
∥∥∥λt − λ̃∥∥∥2

2
− 2η(λt − λ̃)>(b− ĉ(πt)) + η2

(
b2max +

m|S|
1− γ

)
, (293)

where the last Eq.(293) holds the next result (294) holds, which is contained in the previous Eq.(273),

‖b− ĉ(πt)‖22 ≤ ‖b‖
2
2 + ‖ĉ(πt)‖22 ≤ b

2
max +

m|S|
1− γ

. (294)

We rewrite Eq.(293) as follows,∥∥∥λt+1 − λ̃
∥∥∥2

2
−
∥∥∥λt − λ̃∥∥∥2

2
≤ −2η(λt − λ̃)>(b− ĉ(πt)) + η2

(
b2max +

m|S|
1− γ

)
. (295)

Summing Eq.(295) from t = 0 to T − 1, we achieve the following equation

0 ≤
∥∥∥λT − λ̃∥∥∥2

2
≤
∥∥∥λ0 − λ̃

∥∥∥2

2
− 2η

T−1∑
t=0

(λt − λ̃)>(b− ĉ(πt)) + Tη2

(
b2max +

m|S|
1− γ

)
,

which implies

1

T

T−1∑
t=0

(λt − λ̃)>(b− ĉ(πt)) ≤
1

2ηT

∥∥∥ZZλ0 − λ̃
∥∥∥2

2
+
η

2

(
b2max +

m|S|
1− γ

)
=

1

2ηT

∥∥∥λ̃∥∥∥2

2
+
η

2

(
b2max +

m|S|
2(1− γ)

)
. (296)

According to (242), taking expectation on Eq.(296), we obtain

ED0:DT−1

[
1

T

T−1∑
t=0

(λt − λ̃)>(b− c(πt))

]
≤ 1

2ηT

∥∥∥λ̃∥∥∥2

2
+
η

2

(
b2max +

m|S|
1− γ

)
, (297)

where we use the fact E[ct] = c(πt) (242), and λt is independent of ĉ(πt) for a given θt−1.

Lemma 23. The constraint violation is bounded as follows,

ED0:DT−1

[
min
t<T
{Ci(πt)− bi}+

]
≤ 2

β − ‖λ?‖∞

(
1 +

2m

(1− γ)2ι2

)∥∥∥∥dρ0π?ρ0

∥∥∥∥
∞

√
|S| log |A|D′1

(1− γ)4T

=

2

(
1 +

2m

(1− γ)2ι2

)
β̃ − ‖λ?‖∞

∥∥∥∥dρ0π?ρ0
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∞

√
|S| log |A|D′1

(1− γ)4T
.
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Taking (297) into (277), we obtain

ED0:DT−1

[
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1

T
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J(πt) +
1

T
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λ>t (b− c(π?))−
1

T
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λ̃>(b− c(πt))

]

≤ 1
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χ|S| log |A|

η
+

1

2η

∥∥∥λ̃∥∥∥2

2
+

2χ

ρmin(1− γ)2

)
+ η

(
2χC1 +

b2max

2
+

m|S|
2(1− γ)

)
. (298)

Due to c(π?) � b, and λt � 0, then we have

ED0:DT−1

[
J(π?)−

1

T

T−1∑
t=0

J(πt) +
1

T

T−1∑
t=0

λ>t (b− c(π?))−
1

T

T−1∑
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λ̃>(b− c(πt))

]

≥ED0:DT−1

[
J(π?)−

1

T

T−1∑
t=0

J(πt)−
1

T

T−1∑
t=0

λ̃>(b− c(πt))

]
. (299)

It is similar to the previous proof from Eq.(186) to Eq.(191), we need to show the boundedness of
the expectation ED0:DT−1

[
J(π?)− J(π̃t) +

∑m
i=1 λ̃i (Ci(π̃t)− bi)

]
defined in (301), which is a

fundamental result for us to show the boundedness of the constraint violation.

Recall c(πt) = (C1(πt), C2(πt), · · · , Cm(πt))
>, and λ̃ =

(
λ̃1, λ̃2, · · · , λ̃m

)>
, combining the

result (298) and (299), and taking consideration to the step-size η defined in (281), we have
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1
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1
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(
1

T
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(Ci(πt)− bi)

)]
(300)

=ED0:DT−1

[
J(π?)− J(π̃t) +

m∑
i=1

λ̃i (Ci(π̃t)− bi)

]
(301)

=ED0:DT−1

[
J(π?)− J(π̃t) + β̃1>m{c(π̃t)− b}+

]
(302)

(298)

≤ 1

T

(
χ|S| log |A|

η
+

1

2η
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2
+

2χ

ρmin(1− γ)2

)
+ η

(
2χC1 +

b2max

2
+

m|S|
2(1− γ)

)
(303)

(307)

≤ 1

T
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χ|S| log |A|

η
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m

2η
β̃2 +

2χ

ρmin(1− γ)2

)
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(
2χC1 +

b2max

2
+

m|S|
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)
(304)

(281)
=

√
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1

2
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(307),(287)
=
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′
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∞
,

(306)

where Eq.(301) holds due to the same reason as (184); Eq.(302) holds since we set the parameter λ̃i
as follows

λ̃i =


β̃ =

√
χ|S| log |A| 2

(1− γ)ι
, if

∑T−1
t=0 (Ci(πt)− bi) ≥ 0,

0, if
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t=0 (Ci(πt)− bi) < 0.

(307)

Furthermore, let
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1
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,
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then the results (306) implies,

ED0:DT−1

[
J(π?)− J(π̃t) + β1>m{c(π̃t)− b}+

]
≤ δ. (308)

Finally, it is similar to the proof of (196), we have
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 .

Furthermore, let

T ≥ (D
′

2)2

((1− γ)2 + 2m/ι2)
2
ρ2

minD
′
1|S| log |A|

, (310)

then we obtain
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Summarizing the Conclusion under Special Hyper-Parameter Setting.

Finally, recall the condition for the term T in (290), (310), we conclude if the time-step T satisfies
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1
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the step-size η defined in (281) satisfies√∥∥∥∥dρ0π?ρ0
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,

and the constant term β̃ satisfies
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√
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where we define the constant D
′

as follows

D
′

:=
4

c?
.

Then, according to (175) and (198), the following holds
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[
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where each i ∈ {1, 2, · · · ,m}. This concludes the proof of Theorem 4.
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