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ABSTRACT

Existing Graph Transformer models primarily focus on leveraging atomic and
chemical bond properties along with basic geometric structures to learn repre-
sentations of fundamental elements in molecular graphs, such as nodes and edges.
However, higher-order structures like bond angles and torsion angles, which sig-
nificantly influence key molecular properties, have not received sufficient atten-
tion. This oversight leads to inadequate geometric conformation accuracy and
difficulties in precise local chirality determination, thereby limiting model per-
formance in molecular property prediction tasks. To address this issue, we pro-
pose the Angle Graph Transformer (AGT). AGT directly models directed bond
angles and torsion angles, introducing higher-order structural representations to
molecular graph learning for the first time. This approach enables AGT to de-
termine local chirality within molecular representations and directly predict tor-
sion angles. We introduce a novel Directed Cycle Angle Loss, allowing AGT
to predict bond angles and torsion angles from low-precision molecular confor-
mations. These properties, along with interatomic distances, are then applied to
downstream molecular property prediction tasks using a pre-trained AGT with
Hierarchical Virtual Nodes. Our model achieves new state-of-the-art (SOTA) re-
sults on the PCQM4Mv2 and OC20 IS2RE datasets. Through transfer learning,
AGT also demonstrates competitive performance on molecular property predic-
tion benchmarks including QM9, MOLPCBA, LIT-PCBA, and MoleculeNet. Fur-
ther ablation studies reveal that the conformations generated by AGT are closest to
conformations generated by Density Functional Theory (DFT) among the existing
methods, due to the constraints imposed by the bond angles and torsion angles.

1 INTRODUCTION

Transformer (Vaswani, 2017) models have expanded from natural language processing to various
domains (Dosovitskiy, 2020; Child et al., 2019). Due to their ability to capture long-range de-
pendencies between nodes, Transformers have been widely applied to graph data. Graph Trans-
formers (GTs) (Ying et al., 2021; Hussain et al., 2022; Feng et al., 2022; Zhou et al., 2023) have
demonstrated potential surpassing message-passing neural networks on diverse graph datasets, in-
cluding superpixels, citation networks, and molecular graphs. Following the trend of model scaling
in various domains (Brown et al., 2020; Chowdhery et al., 2022; Borgeaud et al., 2022), increas-
ing model capacity through well-designed architectures has shown improved information capture
and stronger generalization capabilities in downstream tasks. Building upon this foundation, the
Alphafold (Jumper et al., 2021) series of works emerged, achieving remarkable results in protein
structure prediction and propelling life science research forward in a leap-like manner.

Most Graph Transformers primarily use nodes as tokens, employing global attention to facilitate
information exchange across the entire graph. In the domain of molecular graph data, 3D struc-
tural information of molecules is often closely related to molecular properties and is thus typically
encoded in the model and trained as a key attribute (Zhou et al., 2023; Stärk et al., 2022). The
EGT (Hussain et al., 2022) introduces edge embeddings as tokens, enabling new pairwise infor-
mation to be updated through dedicated channels in consecutive layers. Recently, researchers have
noted the performance improvements achieved by the triangle inequality constrained interatomic
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Figure 1: The ability to identify local chirality. The first row depicts DFT conformations. The second
and third rows show the corresponding molecular conformations from TGT distance predictor and
AGT conformations predictor. AGT can accurately generate molecules with local chirality identical
to the target conformation, whereas TGT conformations, relying solely on distance matrices, exhibit
deviations. Red arrows indicate atoms representing the centers of local chirality in the molecules.

distance prediction method in AlphaFold (Jumper et al., 2021). Consequently, they proposed Uni-
Mol+ (Lu et al., 2023) and TGT (Hussain et al., 2024), both utilizing axial attention to satisfy the
communication pattern where three pairwise relationships in a triangle are interconnected. These
method overcomes the information exchange bottleneck, allowing edge embeddings to better adhere
to geometric constraints when predicting distances.

Although this triangular inequality constraint can optimize the geometric spatial structure of pre-
dicted conformations, two significant issues remain unresolved. Firstly, as described in AlphaFold
3 (Abramson et al., 2024), merely predicting interatomic distances is insufficient to determine the
local chirality of geometric conformations. Local chirality refers to the inability of a specific part
or group within a molecule to superimpose on its mirror image through central symmetry rotation.
Local chirality is crucial for the functionality of many biomolecules, such as the active sites of
enzymes. However, Molecules with different local chirality may yield similar distance matrices,
especially in small molecule conformations, and may even produce identical distance matrices. This
limitation makes it impossible to determine the local chirality of generated conformations, increas-
ing the ambiguity in molecular representation. Secondly, conformations generated solely based on
distance matrices tend to exhibit instability in predicting torsion angles. Existing GT architectures
do not treat the torsion angle as a unified higher-order graph substructure, resulting in each torsion
angle being constructed from three separate pairwise embeddings. Consequently, small errors in
each distance prediction can accumulate multiplicatively in the torsion angle, leading to significant
deviations in the generated conformation’s torsion angles. This can cause changes in the overall
molecular conformation, affecting the prediction of molecular function.

To address these two major challenges, we propose the Angle Graph Transformer (AGT), a model
that directly models higher-order graph substructure representations such as bond angles and torsion
angles. AGT treats bond angles and torsion angles as individual tokens in the self-attention mech-
anism for direct communication, rather than aggregating node and edge representations involved in
angles as the final angle representation. This approach of directly interacting at higher-order sub-
structures enables effective global information utilization for predicting torsion angles, overcoming
the bottleneck of local information exchange in graph structures and better learning geometric con-
straints of molecular conformations. To address the inability of existing models to distinguish local
molecular chirality, AGT predicts all angles in the range of (0,2π), giving the predicted angles di-
rectionality in three-dimensional space. This angular information allows the model to distinguish
arbitrary local chirality information in molecules. Additionally, we introduce a hierarchical virtual
node aggregation architecture, enabling AGT to directly aggregate information from graph substruc-
tures of different orders for prediction.

Based on these contributions, our proposed AGT model surpasses the TGT model on quantum chem-
istry datasets including PCQM4Mv2, OC20 IS2RE, and QM9, achieving new state-of-the-art re-
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sults. We also demonstrate effectiveness of AGT in transfer learning, achieving new SOTA results
on molecular property prediction datasets MOLPCBA, MOLHIV, and the drug discovery dataset
LIT-PCBA benchmark. This indicates that the geometric features extracted by our trained confor-
mations predictor can be applied to new downstream molecular graph tasks. Results from ablation
studies indicate that AGT-generated conformations have discriminative ability in local chirality and
are more accurate.

2 RELATED WORK

2.1 ANGLE PREDICTION IN MOLECULAR CONFORMATION OPTIMIZATION

The incorporation of angular constraints, including bond angles and torsion angles, in molecular
conformations has been progressively applied in recent works. GEOMOL (Ganea et al., 2021) was
among the earlier methods to introduce torsion angle constraints in three-dimensional conformation
generation. TorsionNet (Rai et al., 2022) employed deep neural networks to predict torsional energy
distributions of small molecules with quantum mechanical-level accuracy. Subsequently, Torsional
diffusion (Jing et al., 2022) proposed a diffusion model framework operating in the torsion angle
space. DiffPack (Zhang et al., 2024) learned the joint distribution of side-chain torsion angles by
diffusing and denoising in the protein side-chain torsion angle space, while Tora3D (Zhang et al.,
2023) predicted a set of torsion angles for rotatable bonds using an interpretable autoregressive
method and reconstructed 3D conformations using energy guidance. AUTODIFF (Li et al., 2024a)
designed a molecular assembly strategy called conformational motifs to mitigate issues with skewed
bond or torsion angles. Our method draws inspiration from the aforementioned works, incorporating
angular constraints as a crucial component in rationalizing conformation generation. Notably, while
existing works have utilized angular information, they have not addressed the ability to discriminate
local chirality. AGT is the first to achieve this using angular information.

2.2 PREDICTIVE MOLECULAR STRUCTURAL PRE-TRAINING

AlphaFold (Jumper et al., 2021) employs a Transformer architecture for predictive structural pre-
training on vast protein datasets. In the analogous field of small molecule structural pre-training,
models based on Graph Transformers (GTs) are at the forefront of research. Previous works such
as GraphTrans (Wu et al., 2021), GSA (Rashedi et al., 2009), GROVER (Rong et al., 2020), and
GPS (Rampášek et al., 2022) utilized hybrid approaches combining Transformers and Graph Neural
Networks (GNNs) to enhance model expressiveness. In contrast, pure GTs instead directly inputting
nodes or substructures as tokens into the Transformer for training. The two most representative ar-
chitectures in this category are exemplified by Graphormer (Ying et al., 2021; Shi et al., 2022) and
EGT (Hussain et al., 2022). Graphormer-type models primarily use atoms as tokens, implicitly
encoding chemical bond and spatial structure information as additional atom embeddings through
positional encoding and attention bias. Notable works in this category include Unimol (Zhou et al.,
2023), GEM-2 (Liu et al., 2022a), and Transformer-M (Luo et al., 2022). The other category, rep-
resented by the EGT backbone model, is characterized by direct modeling of edges. These models
treat edge embeddings as Transformer tokens and employ global attention for information exchange
between node and edge tokens. All three aforementioned approaches have seen the emergence of
works applying triangular inequality attention, such as GPS++ (Masters et al., 2022), Unimol+ (Lu
et al., 2023), and TGT (Hussain et al., 2024). This distance constraint can be equivalently regarded
as the interaction of specific axial edge markers in attention. While these methods have achieved ex-
cellent performance, they remain limited to edges, the simplest second-order substructure in graphs
(composed of two nodes and the connection between them). Naturally, we consider constructing to-
kens on higher-order substructures (such as third-order bond angles and fourth-order torsion angles)
and using attention mechanisms for communication.

3 METHOD

AGT initially obtains low-precision 3D conformations using cost-effective methods, i.e., RDKit.
Subsequently, it employs a conformer predictor to learn target conformations from these low-
precision structures such as high-precision equilibrium conformations optimized through DFT. Fi-
nally, the learned conformations are input into the task predictor to forecast molecular properties.
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(a) AGT Interaction Module (b) AGT Network Architecture

Figure 2: (a) AGT Interaction Module. Index Match denotes the selection of corresponding edge
embeddings based on the indices of nodes where angle substructures are located. Expand refers to
the dimension augmentation to accommodate torsion angle indices. (b) AGT Network Architecture.
Angle Attention take angle substructures as tokens and uses multi-head self-attention mechanism to
update the representation.

The overall training process closely resembles that of TGT. While TGT models direct communi-
cation between two pairwise elements through triangular inequality attention mechanisms, it lacks
modeling of higher-order substructures and cannot accurately discriminate local chirality and angles
in the geometric conformation space. AGT addresses these limitations of TGT’s edge-only mod-
eling by introducing modeling of higher-order substructures, specifically bond angles and torsion
angles. This enhancement enables AGT to achieve greater expressive power.

3.1 AGT ARCHITECTURE

The AGT model can be denoted as (y, D̂, B̂, T̂ ) = f(X,E,D,B,T ;θ). The AGT model utilizes
atomic features (X ∈ Rn×dx , where n is the number of atoms and dx is the atom feature dimension),
edge features (E ∈ Rn×n×de , where de is the edge feature dimension), and 3D conformational
information including the complete distance matrix (D ∈ Rn×n), all bond angles (B ∈ Rnb , nb

is the number of bond angles), and torsion angles (T ∈ Rnt , nt is the number of torsion angles)
within the molecule to predict molecular properties y and update 3D conformational information
using learnable parameters θ. The model has L blocks, with h(l), e(l), b(l) and t(l) representing the
l-th block’s outputs.

The Initialization of Substructure Atom representations are composed of the atom’s inherent prop-
erties, while edge representations are formed by the chemical bond properties, the types of atoms at
both ends, and the bond length. We opted against modeling substructures using arbitrary combina-
tions of three and four nodes for two reasons. Firstly, unconstrained interactions among triplets and
quadruplets would escalate the computational complexity to O(N5), which is prohibitive for any
graph. Secondly, randomly modeled substructures often lack physical significance. Therefore, we
adopted an approach that considers only substructures with actual significance in AGT. We identi-
fied nodes of triplets and quadruplets connected by consecutive chemical bonds, which correspond
to bond angles and torsion angles as higher-order substructures. This approach ensures that sub-
structure features are closely tied to chemical bonds, significantly influencing molecular properties.
Simultaneously, the number of higher-order substructures obtained is substantially smaller than the
total number of triplets and quadruplets in the complete graph. Consequently, the additional com-
putational complexity introduced in the model generally does not exceed O(N2).

AGT Interaction Module We have redesigned the information interaction mechanism between sub-
structures of different orders, resulting in structural representations that satisfy angular constraints.
First, we compute the axial attention for each of the two edges independently. Subsequently, the
bond angle embedding is obtained by using the indices of the two edges forming the angle to locate
the corresponding positions and summing the embeddings. Similarly, for dihedral angle updates,
we use the indices of three consecutive edges that form the torsion angle to locate and sum the
corresponding torsion angle embeddings. This approach allows for a hierarchical update of repre-
sentations of different structural levels in the graph, progressing from atoms to chemical bonds, then
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to bond angles, and finally to torsion angles. This hierarchical method enables better integration of
substructure features that carry chemical significance. The updates of atom and edge representations
in the AGT Module are as follows:

e(l) =
h(l−1)W

(l,h)
Q

(
h(l−1)W

(l,h)
K

)T

√
dh

+ e(l−1)W
(l,e)
E . (1)

h(l) = softmax
(
e(l)

)
σ(e(l−1)W

(l,e)
G )h(l−1)W

(l,h)
V . (2)

where dh is the head dimension, W (l,h)
Q ,W

(l,h)
K ,W

(l,h)
V ∈ Rda×dh ,W

(l,e)
E ,W

(l,e)
G ∈ Rdp×dh .

The representation of bond angles and torsion angles is achieved by adding the corresponding edge
representations to their respective indices:

b
(l)
ijk =

∑
(ab) ∈ {(ij), (jk), (ki)}e(l)ab + b

(l−1)
ijkl W

(l,b)
B . (3)

t
(l)
ijkl =

∑
(ab) ∈ {(ij), (jk), (kl), (ik), (jl), (il)}e(l)ab + t

(l−1)
ijkl W

(l,b)
T . (4)

where W
(l,h)
B ∈ Rdb×dh ,W

(l,h)
T ∈ Rdt×dh . Both bond angles and torsion angles utilize the edge

representations from the current layer for aggregation, allowing for an efficient use of atomic and
edge representations from the previous layer. The method of edge representation aggregation can
lead to varying effects, the results of which are presented in the ablation studies. Following the
AGT Module, different order substructures are updated using distinct mechanisms. Similar to TGT,
atomic representations are updated using an FFN layer, while edge representations are updated
through triplet interaction. For bond angles and torsion angles, we employ self-attention layers
to update them independently. This approach aims to facilitate direct information exchange among
higher-order substructures across the entire molecular graph without relying on atomic or edge rep-
resentations. These updates can be formulated as follows:

h(l) = h(l−1) + FFN
(
h(l)

)
;

e(l) = e(l−1) + FFN
(
TripletInteraction

(
e(l)

))
;

b(l) = b(l−1) + FFN(softmax(
W

(l,b)
Q b(l)

(
W

(l,b)
K b(l)

)T

√
db

)W
(l,b)
V b(l));

t(l) = t(l−1) + FFN(softmax(
W

(l,t)
Q t(l)

(
W

(l,t)
K t(l)

)T

√
dt

)W
(l,t)
V t(l)).

(5)

Directed Cycle Angle Loss (DCA loss) AGT extends molecular geometry prediction from full dis-
tance matrices to include both bond angles and torsion angles, relying on these angles to determine
local molecular chirality. By definition, when local molecular chirality changes, at least one tor-
sion angle or bond angle σ will change to 2π − σ, given a fixed direction (e.g., counterclockwise).
Methods that only predict interatomic distances face significant challenges in determining bond and
torsion angles unambiguously. First, both σ and 2π − σ can satisfy the same distance matrix in
3D space. Moreover, when local chiral structures are at molecular terminals and other asymmetric
structures are distant from the local chiral structures, the differences in distance matrices induced
by chirality become extremely subtle, making chirality prediction solely through distance matri-
ces highly sensitive to noise. Previous works on predicting angles often neglected the direction of
angles, simply constraining angles to the range of 0 to π. This limitation results in learned represen-
tations that fail to fully capture chiral variations. Another challenge lies in the cyclic nature of angle
prediction, which differs from distance prediction. To address these, AGT employs a directed circu-
lar binning loss to compute angle loss, more accurately reflecting the proximity between predicted
and true values. The specific loss can be expressed as:

LDCA = min
(
−

N∑
i=1

qi log(pi),−
N∑
i=1

qi log(p(i+1) mod N )
)

. (6)

Where qi is ground truth angle distribution, pi is the predicted angle distribution and N is the number
of bins. We extends the angle range to (0, 2π) and designates the counterclockwise direction as
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Figure 3: The three stages of AGT training.

primary, enabling representation of all local chirality change scenarios. When the prediction is
close to 2π while the true value is near 0 (or vice versa), the shifted distribution will yield a small
loss, correctly reflecting the proximity of these two angles. This improvement ensures that the loss
function behaves more reasonably when dealing with angles near the boundaries, avoiding excessive
penalization of angle values that are actually very close. It also naturally handles cases that cross
the 0/2π boundary.

Hierarchical Virtual Node Recent studies (Li et al., 2024b; Xing et al., 2024) have demon-
strated that employing virtual nodes in graph data helps mitigate information bottlenecks and over-
globalizating issues. Previous research on molecular property prediction was either an aggregated
representation of all atoms or the use of atomic level virtual nodes as the final output. However,
merging atomic representations often leads to information compression, potentially resulting in the
loss of critical structural details and overlooking the contributions of specific structural elements
to molecular properties. Using atomic level virtual nodes solely may inadequately represent the
complex interactions between atoms in three-dimensional space. To address these limitations and
directly capture the impact of substructures, we propose an extended virtual node method in AGT
called hierarchical virtual nodes. For each type of substructure, AGT constructs a virtual node to
interact with the same type of substructure tokens. Atomic virtual nodes and atom tokens both are
trained by the FFN layer; edge virtual nodes participate in normal edge tokens interaction; bond
angle virtual nodes undergo self-attention layers with bond angle tokens, and torsion angle virtual
nodes follow the same mechanism. Subsequently, for property prediction tasks, we construct a
molecule-level virtual node connected to the four substructure virtual nodes, serving as the final
output for prediction. We employ hierarchical virtual nodes only during the pre-training phase.

3.2 MODEL TRAINING

training procedure of AGT includes three stages for molecular property prediction task. First, in the
conformation prediction stage, a conformation predictor is trained to predict the accurate molecular
conformations based on low-precision 3D molecular structures. Second, during the pre-training
stage, a task predictor is employed to predicts molecular properties from the pre-training dataset.
This predictor also receives noisy conformational structures as input and denoise conformational
structures. Finally, in the fine-tuning stage, the frozen, pre-trained conformation predictor and task
predictor are fine-tuned on downstream datasets.

Conformer Prediction Stage We train the AGT conformation predictor to predict all pairwise in-
teratomic distances, bond angles, and torsion angles within a molecule. The conformation predictor
takes a low-precision 3D conformation as input (typically an RDKit conformation) and outputs all
pairwise interatomic distances, bond angles, and torsion angles. Angles are invariant to translation
and rotation, and their values have a fixed range. Inspired by TGT, we predict binned angles in-
stead of continuous values, as torsion angle structures are typically less stable than chemical bonds
and more susceptible to rapid changes due to molecular energy fluctuations. The AGT employs
cross-entropy loss for pairwise atomic distances and the Directed Cycle Angle Loss for angles.

Pre-training Stage In the pre-training phase, AGT train the AGT task predictor on noisy ground
truth 3D conformations. This approach ensures that the task predictor is robust to noise in both input

6
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Table 1: Results on PCQM4MV2 valid set.

Model # param. # layers MAE (meV)↓
MLP-Fingerprint (Hu et al., 2022) 16.1M - 173.5
GCN (Kipf & Welling, 2016) 2.0M - 137.9
GIN (Xu et al., 2018) 3.8M - 119.5
GINEv2 (Brossard et al., 2020) 13.2M - 116.7
GIN-VN (Xu et al., 2018; Gilmer et al., 2017) 6.7M - 108.3
DeeperGCN-VN (Li et al., 2020) 25.5M 12 102.1
TokenGT (Kim et al., 2022) 48.5M 12 91.0
EGT (Hussain et al., 2022) 89.3M 18 86.9
GRPE (Park et al.) 46.2M 18 86.7
Graphormer (Ying et al., 2021; Shi et al., 2022) 47.1M 12 86.4
GraphGPS (Liu et al.) 13.8M 16 85.2
GEM-2 (Liu et al., 2022a) 32.1M 12 79.3
GPS++ (Masters et al., 2022) 44.3M 16 78.1

Transformer-M (Luo et al., 2022) 69M 18 77.2
Uni-Mol+ (Lu et al., 2023) 77M 18 69.3
TGT (Hussain et al., 2024) 203M 24 67.1

AGT
68M 6 69.4
127M 12 69.1
241M 24 66.2

distances and angles, enabling it to adapt to approximate conformations output by the conformation
predictor, which still contain noise and errors. We maintain predictions for pairwise interatomic dis-
tances, bond angles, and torsion angles. This auxiliary task encourages different order substructure
representations to denoise the 3D structure, optimizing various order substructure representations
through self-supervised signals from the molecular structure itself. We combine distance prediction
loss and angle prediction loss as secondary objectives with the primary tasks from the pre-training
dataset in a multi-task learning framework to jointly train AGT’s task predictor. Furthermore, AGT
employs hierarchical substructure virtual nodes for joint prediction in molecular property prediction,
facilitating the association between substructures and molecular properties.

Fine-tune Stage In the fine-tuning phase, AGT employs a frozen, pre-trained conformation predic-
tor to generate DFT conformations from RDKit conformations, thereby obtaining high-precision 3D
structural features of molecules. During this process, the conformation predictor operates in stochas-
tic mode with active dropout (Hussain et al., 2024). Subsequently, the predicted bond angles, torsion
angles, and distances serve as input to the task predictor. The fine-tuning process combines the pri-
mary objective of the downstream dataset’s task with auxiliary optimization functions for distance
and angle. We utilize the model-generated atomic distance matrix, bond angles, and torsion angles
as input, requiring the model to predict the same substructures generated by the DFT conformation,
as well as the target objectives of the current dataset.

4 EXPERIMENTS

The experimental section aims to validate the effectiveness of our proposed model and methods in
addressing existing challenges. We first demonstrate the performance and scalability of AGT on
large-scale quantum chemistry datasets, PCQM4Mv2 (Hu et al., 2022) and OC20 (Chanussot et al.,
2021). We then evaluate the transfer learning capabilities of the AGT model in both the conformer
prediction and pre-training stages. We also conduct ablation studies on several key components of
AGT and analyze different approaches to AGT’s aggregated angle representation. Finally, quanti-
tative analysis and visualization of conformer accuracy demonstrate that our proposed AGT model,
compared to TGT, can distinguish chirality and more accurately predict bond angles and torsion an-
gles, generating conformers that more closely resemble high-precision DFT conformers. The model
is implemented using the PyTorch (Paszke et al., 2019) library. We perform mixed-precision train-
ing on 2 nodes, each equipped with 8 NVIDIA Tesla A100 GPUs (80GB RAM/GPU) and 16-core
2.6GHz Intel Xeon CPUs (320GB RAM per node).

4.1 LARGE-SCALE QUANTUM CHEMICAL PREDICTION

PCQM4Mv2 PCQM4Mv2, part of the OGB-LSC graph property prediction challenge, contains
over 3.7 million molecules. The dataset task is to predict the HOMO-LUMO gap. The performance
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Table 2: Performance on OC20 IS2RE validation set.

Model
Energy MAE (meV)↓ EwT (%)↑

ID OOD
Ads.

OOD
Cat.

OOD
Both

AVG. ID OOD
Ads.

OOD
Cat.

OOD
Both

AVG.

SchNet (Schütt et al., 2017) 646.5 707.4 647.5 662.6 666.0 2.96 2.22 3.03 2.38 2.65
DimeNet++ (Gasteiger et al., 2020) 563.6 712.7 561.2 649.2 621.7 4.25 2.48 4.40 2.56 3.42
GemNet-T (Gasteiger et al., 2021) 556.1 734.2 565.9 696.4 638.2 4.51 2.24 4.37 2.38 3.38
SphereNet (Liu et al., 2022b) 563.2 668.2 559.0 619.0 602.4 4.56 2.70 4.59 2.70 3.64
GNS (Godwin et al., b) 540.0 650.0 550.0 590.0 582.5 - - - - -
GNS+NN (Godwin et al., b) 470.0 510.0 480.0 460.0 480.0 - - - - -

Graphormer-3D (Shi et al., 2022) 432.9 585.0 444.1 529.9 498.0 - - - - -
EquiFormer (Liao & Smidt) 422.2 542.0 423.1 475.4 465.7 7.23 3.77 7.13 4.10 5.56
EquiFormer+NN (Liao & Smidt) 415.6 497.6 416.5 434.4 441.0 7.47 4.64 7.19 4.84 6.04
DRFormer (Wang et al., 2023) 418.7 486.3 432.1 433.2 442.5 8.39 5.42 8.12 5.44 6.84
Uni-Mol+ (Lu et al., 2023) 379.5 452.6 401.1 402.1 408.8 11.1 6.71 9.90 6.68 8.61
TGT (Hussain et al., 2024) 381.3 445.4 391.7 393.6 403.0 11.1 6.87 10.47 6.80 8.82

AGT 377.2 441.3 384.6 394.9 399.5 11.2 6.95 11.26 6.79 8.99

Table 3: Results (MAE(↓)) on the QM9 dataset.

Method µ α ϵH ϵL ∆ϵ ZPVE Cv

GraphMVP (Liu et al.) 0.031 0.070 28.5 26.3 46.9 1.63 0.033
GEM (Fang et al., 2022) 0.034 0.081 33.8 27.7 52.1 1.73 0.035
3D Infomax (Stärk et al., 2022) 0.034 0.075 29.8 25.7 48.8 1.67 0.033
3D-MGP (Jiao et al., 2023) 0.020 0.057 21.3 18.2 37.1 1.38 0.026

DimeNet++ (Gasteiger et al., 2020) 0.030 0.044 24.6 19.5 32.6 1.21 0.023
PaiNN (Schütt et al., 2021) 0.012 0.045 27.6 20.4 45.7 1.28 0.024
EGNN (Satorras et al., 2021) 0.029 0.071 29.0 25.0 48.0 1.55 0.031
SphereNet (Liu et al., 2022b) 0.025 0.053 22.8 18.9 31.1 1.12 0.024
EQGAT (Le et al., 2022) 0.011 0.053 20.0 16.0 32.0 2.00 0.024
ComENet (Wang et al., 2022) 0.025 0.045 23.1 19.8 32.4 1.20 0.024
LEFTNet (Du et al., 2024) 0.011 0.039 23 18 39 1.19 0.022
SaVeNet (Aykent & Xia, 2024) 0.0085 0.035 16.6 15.1 22.7 1.10 0.021

SE(3)-T (Fuchs et al., 2020) 0.051 0.142 35.0 33.0 53.0 - 0.052
TorchMD-Net (Thölke & De Fabritiis, 2022) 0.011 0.059 20.3 17.5 36.1 1.84 0.026
Equiformer (Liao & Smidt) 0.011 0.046 15.0 14.0 30.0 1.26 0.023
EquiformerV2 (Liao et al., 2024) 0.010 0.050 14 13 29 1.47 0.023
EquiformerV2+NN (Liao et al., 2024) 0.009 0.039 12.2 11.4 24.2 1.21 0.020
Transformer-M (Luo et al., 2022) 0.037 0.041 17.5 16.2 27.4 1.18 0.022
Geoformer (Wang et al., 2024a) 0.010 0.040 18.4 15.4 33.8 1.28 0.022
TGT (Hussain et al., 2024) 0.025 0.040 9.9 9.7 17.4 1.18 0.020

AGT 0.019 0.037 8.8 9.1 16.4 1.14 0.020

of the distance predictor is tuned on a random 5% subset of the training data, which we refer to as
validation-3d. Training the AGT model requires approximately 38 A100 GPU days, a 20% increase
compared to the 32 A100 GPU days for TGT training, but still less than the 40 A100 GPU days
required for UniMol+. Experimental results, expressed as Mean Absolute Error (MAE) in meV, are
presented in Table 1. We observe that the 24-layer AGT model achieves the best performance on
the PCQM4Mv2 dataset, surpassing the previous state-of-the-art TGT model by 0.9 meV. Notably,
local chirality primarily affects molecular spatial configuration rather than electronic structure, so the
prediction target (HOMO-LUMO gap) in PCQM4Mv2 has limited correlation with molecular local
chirality. The enhanced local chirality expression capability of the AGT model compared to the TGT
model provides minimal assistance in this task. Nevertheless, AGT still outperforms TGT on this
dataset through more accurate prediction of torsion angles. The 24-layer AGT currently ranks first
on the PCQM4Mv2 leaderboard, surpassing all baseline models, demonstrating the effectiveness of
our proposed model. The 12-layer AGT model also exhibits strong performance, second only to the
24-layer TGT and AGT. The gap between the 12-layer and 24-layer AGT suggests that effectively
encoding higher-order substructures on graphs requires deeper model architectures and larger model
capacities.

Open Catalyst 2020 IS2RE The Open Catalyst 2020 Challenge aims to predict the adsorption en-
ergy of molecules on catalyst surfaces. We conduct experiments on the IS2RE (Initial Structure to
Relaxed Energy) task. The IS2RE dataset provides initial DFT structures of crystals and adsorbates,
which interact to reach a relaxed structure when measuring relaxed energy of the system. Following
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Table 4: LIT-PCBA results.
Model Avg. Test

ROC-AUC↑ (%)
NaiveBayes (Webb et al., 2010) 73.0
SVM (Hearst et al., 1998) 73.4
RandomForest (Breiman, 2001) 62.0
XGBoost (Chen & Guestrin, 2016) 72.6

GCN (Kipf & Welling, 2016) 72.3
GAT (Velickovic et al., 2017) 75.2
FP-GNN (Cai et al., 2022) 75.9

EGT (Hussain et al., 2022) 78.9
GEM (Fang et al., 2022) 78.4
GEM-2 (Liu et al., 2022a) 81.5
EGT+RDKit (Hussain et al., 2024) 81.2
TGT (Hussain et al., 2024) 81.5

AGT 81.8

Table 5: Result on MOLPCBA and MOLHIV.
Model MOLPCBA MOLHIV

Test AP(%)↑ Test ROC-AUC(%)↑
DeeperGCN-VN (Li et al., 2020) 28.42 (0.43) 79.42(1.20)
PNA (Corso et al., 2020) 28.38 (0.35) 79.05(1.32)
DGN (Beaini et al., 2021) 28.85 (0.30) 79.70(0.97)
GINE-VN (Brossard et al., 2020) 29.17 (0.15) 77.10(1.50)
PHC-GNN (Le et al., 2021) 29.47 (0.26) 79.34(1.16)

GIN-VNpretrain (Gilmer et al., 2017) 29.02 (0.17) 77.07(1.19)
Graphormer (Ying et al., 2021) 31.40 (0.34) 80.51(0.53)
EGT (Hussain et al., 2022) 29.61 (0.24) 80.60(0.65)
TGT (Hussain et al., 2024) 31.67 (0.31) 80.71(0.48)

AGT 31.79 (0.26) 81.06(0.39)

Table 6: Distance and angle prediction performance of different edge-angle interaction mechanisms
and training times on PCQM4Mv2.

No No Total Topological Axial Geometric
Angle Edge-Angle Edge-Angle Edge-Angle Edge-Angle Edge-Angle

Attention Interaction Interaction Interaction Interaction Interaction

Dist. Cross-Ent.(↓) 1.204 1.202 1.179 1.171 1.164 1.151
Angle Cross-Ent.(↓) - 1.375 1.307 1.283 1.310 1.268
Time/Epoch(↓) 1.00 1.17 1.43 1.21 1.36 1.24

TGT’s experimental configuration, we crop/sample based on the distance to adsorbate atoms, limit-
ing the number of atoms to a maximum of 64. Training the model requires approximately 38 A100
GPU days. Due to additional angle constraint optimization, it requires slightly more training time
compared to TGT, but still significantly less than the 112 GPU days used by UniMol+. Results for
the IS2RE task are presented in Table 2, expressed as MAE (in meV) and Energy within Threshold
(EwT) at 20 meV. The table shows that AGT achieves state-of-the-art (SOTA) performance on most
subsets of the IS2RE evaluation dataset without significantly increasing computational resources.
Specifically, it outperforms current methods on the ID (In Domain) and OOD (Out of Domain)
Adsorbates and Catalyst subsets, while performing comparably to TGT on the OOD Both subset.
Overall, our AGT model demonstrates superior average performance compared to the SOTA TGT
model, securing its position as the best-performing direct method on the OC20 IS2RE task.

4.2 TRANSFER LEARNING

Our model learns two distinct forms of knowledge in two stages during large-scale training on the
PCQM4Mv2 dataset. In the conformer prediction stage, the conformer predictor learns geometric
information by predicting high-precision conformations. In the pre-training stage, the task predictor
learns the quantum chemical properties of molecules by predicting the HOMO-LUMO gap. There-
fore, in this section, we validate the transfer learning effectiveness of these two types of knowledge
learned by AGT.

Finetuning on QM9 We fine-tuned the task predictor of PCQM4Mv2 in the QM9 data set. This
dataset allows the use of precise 3D conformational information during inference, so the task pre-
dictor only needs to train. We report the fine-tuning performance on a subset of 7 tasks out of 12
in QM9. See Appendix 14 for full results. As shown in Table 3, AGT achieves state-of-the-art re-
sults and, like TGT, significantly outperforms other models in predicting HOMO(ϵH ), LUMO(ϵL),
and HOMO-LUMO gap(∆ϵ) - three tasks directly related to the pre-training task. Notably, AGT
surpasses TGT in 6 of these tasks and performs comparably in the remaining one. This demon-
strates that AGT’s utilization of geometric information more effectively facilitates positive knowl-
edge transfer to these tasks.

Molecular Property Prediction For the MOLPCBA (Hu et al., 2020) and MOLHIV molecular
property prediction and LIT-PCBA (Tran-Nguyen et al., 2020) drug discovery benchmarks, we pro-
vide predictions of interatomic distances, bond angles, and torsion angles. These datasets lack
ground truth 3D information. Therefore, we employ AGT’s pre-trained conformer predictor as
a frozen feature extractor. Results for MOLPCBA and MOLHIV are presented in Table 5. For
MOLPCBA, the test mean Average Precision (%) is reported for a multi-task setting predicting 128
different binary molecular properties. For MOLHIV, the test ROC-AUC (%) is reported, indicating
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Table 7: Ablation Study on PCQM4Mv2.

AGT Directed Hiera. Mode Distribution Val.
Att. Cycle Virtual (pDistance, pAngle) MAE↓

Module Loss Node (meV)
- - - - 73.6
✓ - - - 71.3
✓ ✓ - - 70.8
✓ ✓ ✓ 1:1 70.3
✓ ✓ ✓ 1:2 70.7
✓ ✓ ✓ 2:1 69.8
✓ ✓ ✓ 4:1 69.1
✓ ✓ ✓ 8:1 70.4

the model’s ability to predict whether a molecule inhibits HIV virus replication or not. As shown in
the table, using the conformer predictor from the pre-trained AGT model yields the best results, sur-
passing TGT and significantly outperforming other pre-trained models. For the LIT-PCBA dataset,
we report the average ROC-AUC (%) across 7 separate tasks predicting protein interactions in Ta-
ble 4. We observe that AGT surpasses other pre-trained models, achieving state-of-the-art results.
These experiments indicate that our pre-trained AGT’s conformer predictor can provide more valu-
able 3D information to the task predictor for downstream tasks compared to RDKit coordinates,
even when trained on a different dataset.

Ablation Study Table 6 compares the impact of different interaction methods between substructures
of various orders in the AGT module on interatomic distance prediction, angle prediction in confor-
mations, and training time. We use cross-entropy loss on the PCQM4Mv2 validation-3D set as the
metric for distances and angles. Total edge-angle interaction refers to information exchange between
bond angle and torsion angle structures with all pairwise embeddings. Axial edge-angle interaction
involves interaction with pairwise embeddings that share common atoms with the endpoints of angle
structures. Topological edge-angle interaction selects pairwise embeddings corresponding to edges
in the 2D molecular topology graph for interaction. Geometric edge-angle interaction communicates
with pairwise embeddings corresponding to the edges of the triangle containing the bond angle and
the edges of the tetrahedron containing the torsion angle. We observe that geometric edge-angle in-
teraction performs best in both distance and angle predictions, with a relatively low time cost among
all variants. Notably, total edge-angle interaction is the most time-consuming but performs poorly,
while axial edge-angle interaction, which reduces interaction objects, improves prediction perfor-
mance. This suggests that interaction between higher-order and lower-order substructures requires
finding the most relevant representations.

Table 7 presents an ablation study on our three main optimization designs and the ratio of distance to
angle loss in the objective function. The results are from a 12-layer AGT model on PCQM4Mv2. We
observe that the addition of the AGT module brings significant improvements. When learning angle
information, the Directed Cycle Angle Loss helps reduce optimization difficulty for the model. The
hierarchical virtual nodes in the task predictor serve as intermediate representations, aggregating and
transmitting features from different levels of graph structures, providing a richer information basis
for the final prediction task. Lastly, we experimented with different ratios of distance loss to angle
loss and found that the model performs best when the ratio is 1:4.

5 CONCLUSION

In this work, we introduce the AGT architecture, which directly models higher-order substructures
such as bond angles and torsion angles in molecular graphs, significantly enhancing the expressive-
ness and accuracy of molecular geometry modeling. We propose efficient interaction mechanisms
between substructures of different orders and an angle objective function optimized for local chi-
rality. Furthermore, we employ hierarchical virtual nodes in the task predictor, mitigating informa-
tion compression of critical structures and neglect of geometric structures in property prediction.
Through extensive experiments, we demonstrate state-of-the-art prediction accuracy on quantum
chemistry datasets, as well as the transfer learning capabilities of both the conformation predictor
and task predictor. In future work, we plan to explore inequality relationships and dynamic change
representations of higher-order substructures in spatial stereochemistry, enabling more effective and
rational geometric constraints for structural predictions.
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A DENSITY FUNCTIONAL THEORY FOR MOLECULAR CONFORMATION
PREDICTION

Density Functional Theory (DFT) (Kohn et al., 1996; Orio et al., 2009) is a first-principles compu-
tational method based on quantum mechanics that plays a crucial role in molecular conformation
generation and property prediction. DFT describes many-electron systems through electron den-
sity rather than wave functions, significantly reducing computational complexity. Its theoretical
foundation rests on the Hohenberg-Kohn theorem, which proves that all properties of a system’s
ground state can be uniquely determined by the electron density. In practical applications, the com-
plex many-electron problem is transformed into more tractable single-electron problems through
the Kohn-Sham equations. In molecular conformation generation, DFT can obtain precise three-
dimensional conformations of molecules by solving electronic structure equations. This process in-
cludes optimizing molecular geometry, calculating bond lengths, bond angles, and dihedral angles,
determining the lowest energy conformation, and predicting electron distribution within molecules.
The molecular conformations generated by DFT possess high accuracy and are often used as bench-
marks for the evaluation of other conformation generation methods. This high precision stems from
its rigorous quantum mechanical theoretical foundation, which can accurately describe electronic
effects, chemical bonding properties, and intramolecular interactions in molecules. However, DFT
calculations also have limitations, such as high computational cost and difficulty in handling large
molecular systems. In modern molecular design, DFT often complements machine learning meth-
ods (Schütt et al., 2017; Axelrod & Gomez-Bombarelli, 2022; Smith et al., 2020). Machine learning
models can quickly predict molecular properties and initial conformations, while DFT is used to gen-
erate high-precision reference conformations and validate results. This combination leverages the
advantages of both methods: the efficiency of machine learning and the high accuracy of DFT. With
improvements in computational power and algorithms, DFT’s applications in molecular science re-
search will continue to expand, providing crucial support for drug design, materials development,
and other fields.

B QUANTITATIVE ANALYSIS OF CHIRALITY PREDICTION

The conformation predictor outputs binned distances and angles under local chirality constraints,
providing essential structural information for downstream task predictors. To quantitatively evaluate
AGT’s improvement over TGT in handling local chirality, we conducted a systematic evaluation on
the PCQM4M training set, which contains 3,803,453 molecules, including 1,772,922 molecules with
chiral centers (46.61%). The evaluation methodology compares model-predicted 3D conformers
with high-precision DFT-calculated conformers, using angular deviations around chiral centers as
the assessment criterion, with a deviation threshold of π/6. Experimental results demonstrate AGT’s
superiority over the baseline TGT model across three key metrics in Table 8. In terms of bond
angle MAE, AGT achieves 0.209 rad, a 15.0% reduction compared to TGT’s 0.246 rad. For torsion
angle MAE, AGT reaches 0.334 rad, significantly lower than TGT’s 0.597 rad by 44.1%. Regarding
chirality prediction accuracy, AGT attains 74.7%, substantially outperforming TGT’s 32.5% with
a 130% improvement. These quantitative results strongly validate AGT’s excellence in modeling
chiral structures, particularly in complex torsion angle prediction and overall chirality determination
tasks. The substantial improvements across all metrics demonstrate the effectiveness of AGT’s direct
angle modeling approach in capturing local molecular geometry.

Table 8: Comparison of AGT and TGT performance on chirality prediction
Model Bond Angles MAE (rad) Torsion Angles MAE (rad) Chirality Pred (%)

TGT 0.246 0.597 32.5
AGT 0.209 0.334 74.7
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C THE ACCURACY OF CONFORMATION PREDICTOR IN ANGLES AND
DISTANCES

To demonstrate the accuracy of AGT in geometric conformation prediction, we convert distances and
angles to continuous unbounded values. Following the strategy employed in TGT (Hussain et al.,
2024), we train two small refinement networks for distances and angles respectively. These net-
works accept clipped and binned values as input and output continuous, unbounded values. We train
these networks using MAE loss and employ random inference to obtain the median of the output
distances. We compare the accuracy of individual pairwise distances and angles on the validation-
3D split of the PCQM4Mv2 dataset (i.e., data unseen during training), based on MAE, RMSE (Root
Mean Square Error), and percentage errors within different thresholds as shown in Table 9 and
Table 10. Our findings indicate that in terms of distances, our AGT predictor outperforms TGT
across all metrics. Regarding angles, AGT significantly surpasses both RDKit and TGT in bond
angle prediction and substantially leads in torsion angle prediction. This suggests that through angle
constraints, AGT’s conformation predictor can more accurately predict the underlying structure of
molecules compared to the distance predictor in TGT.

Table 9: Accuracy of pairwise distances in terms of MAE↓, RMSE↓ and percent error within a
threshold (EwT↑).

Model MAE (Å) RMSE (Å) EwT-0.2Å(%) EwT-0.1Å(%) EwT-0.05Å(%) EwT-0.01Å(%)

RDKit 0.248 0.541 73.33 66.65 56.90 26.79
TGT + Refiner 0.152 0.378 80.53 75.68 70.80 54.54
AGT + Refiner 0.131 0.327 86.74 78.51 74.09 57.17

Table 10: Accuracy of bond angles and torsion angles in terms of MAE↓, RMSE↓ and percent error
within a threshold (EwT↑).

Model Bond Angles Torsion Angles

MAE (rad) RMSE (rad) EwT-π/16 rad (%) MAE (rad) RMSE (rad) EwT-π/16 rad (%)

RDKit 0.239 0.575 71.43 0.694 1.145 33.62
TGT + Refiner 0.225 0.431 76.26 0.563 0.713 41.89
AGT + Refiner 0.191 0.380 82.31 0.329 0.490 60.51

D EFFICIENCY ANALYSIS OF AGT VERSUS BASELINE MODELS

D.1 PCQM4MV2

Table 11 presents a comprehensive comparison of AGT against state-of-the-art molecular pre-
training methods, Unimol+ and TGT, across different model scales, showing parameter counts, com-
putational complexity, experimental performance on the PCQM4Mv2 dataset, and training/inference
times. Based on experimental results, we comprehensively analyze AGT’s method from both effi-
ciency and effectiveness perspectives. Regarding computational complexity, where N represents the
number of atoms, AGT requires O(N3) complexity for standard atom and pair embedding interac-
tions, plus additional interactions between bond angles and torsion angles. In typical molecules, the
number of bond angles ranges from 1.5N to 2N, and torsion angles from N to 2N, resulting in an
additional computational complexity ofO(N2), yielding an overall complexity of O(N3)+O(N2).

On the large-scale PCQM4Mv2 dataset, AGT demonstrates an excellent balance between perfor-
mance and computational efficiency. We systematically analyzed the trade-off between model scale
and performance. Results show that 6-layer AGT (68M parameters) achieves an MAE of 69.4 meV,
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comparable to 18-layer Unimol+ (77M parameters) at 69.3 meV, while significantly reducing train-
ing time (approximately 14 days versus 40 days using A100 GPU). As model layers increase, 24-
layer AGT (241M parameters) reduces MAE to 66.2 meV, significantly outperforming 24-layer TGT
(203M parameters, 67.1 meV MAE). Notably, although AGT’s theoretical complexity is slightly
higher than baseline models, 12-layer AGT (127M parameters) maintains competitive performance
(69.1 meV MAE) while reducing training time from 38 to 20 GPU days, with corresponding in-
ference time reduction. These results indicate that AGT architecture is competitive even at smaller
scales and can better leverage its structural modeling advantages as parameter count increases.

D.2 OPEN CATALYST 2020 IS2RE

Table 12 presents a comprehensive evaluation of AGT against both pre-trained and non-pre-trained
methods on the OC20 dataset, focusing on computational efficiency and model performance. Based
on experimental results, we analyze AGT’s capabilities from multiple perspectives. Regarding com-
putational efficiency, AGT demonstrates competitive inference and fine-tuning times compared to
non-pre-training methods. Specifically, AGT’s fine-tuning duration (240 minutes) aligns well with
established models such as DimeNet++ (230 minutes), GemNet-T (200 minutes), and SphereNet
(290 minutes). While ComENet exhibits faster training speed (20 minutes), AGT achieves substan-
tially superior performance metrics, with energy MAE of 399.5 meV versus 588.8 meV and FwT of
8.99% versus 3.56%, validating the effectiveness of our pre-training strategy. In comparison with
other pre-trained methods, AGT shows remarkable efficiency improvements while maintaining per-
formance advantages. Compared to TGT, despite incorporating additional angular information and
direct angle modeling mechanisms, AGT maintains similar training efficiency (approximately 34
days versus 32 days using A100 GPU) while achieving superior performance. Notably, compared to
Uni-Mol+, AGT achieves better performance metrics while significantly reducing pre-training time
(34 days versus 112 days using A100 GPU), demonstrating an optimal balance between computa-
tional efficiency and model effectiveness.

Table 11: Comparison of performance and efficiency metrics on PCQM4Mv2
Model # param. Complexity # layers MAE (meV) Training Time Inference Time

Unimol+ 27.7M O(N3) 6 71.4 - -
Unimol+ 52.4M O(N3) 12 69.6 - -
Unimol+ 77M O(N3) 18 69.3 ∼40 A100 GPU day ∼56 V100 GPU min
TGT 116M O(N3) 12 70.9 - -
TGT 203M O(N3) 24 67.1 ∼32 A100 GPU day ∼40 A100 GPU min
AGT 68M O(N3) +O(N2) 6 69.4 ∼14 A100 GPU day ∼19 A100 GPU min
AGT 127M O(N3) +O(N2) 12 69.1 ∼20 A100 GPU day ∼31 A100 GPU min
AGT 241M O(N3) +O(N2) 24 66.2 ∼38 A100 GPU day ∼40 A100 GPU min

Table 12: Comparison of performance and efficiency metrics on OC20
Model Pretraining Time Train Time Inference Time Avg. Energy MAE (meV) ↓ Avg. FwT (%) ↑
CGCNN - 18min 1min 658.5 2.82
SchNet - 10min 1min 666.0 2.65
DimeNet++ - 230min 4min 621.7 3.42
GemNet-T - 200min 4min 638.2 3.38
SphereNet - 290min 5min 602.3 3.64
ComENet - 20min 1min 588.8 3.56
Unimol+ 112 A100 GPU days - - 408.8 8.61
TGT 32 A100 GPU days - - 403.0 8.82
AGT 34 A100 GPU days 240min 7min 399.5 8.99

E EXPERIMENTAL DETAILS

The hyperparameters used for each dataset are presented in Table E. For PCQM4Mv2 and OC20 we
list the hyperparameters for both the conformation and the task predictor models and both training
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Table 13: Hyperparameters for each dataset.
Hyperparameters PCQM4Mv2 OC20 QM9 MOLPCBA LIT-PCBA MOLHIV

Conf. Pred. Task Pred. Conf. Pred. Task Pred. Task Pred. Task Pred. Task Pred. Task Pred.

# Layers 24 24 24 14 24 12 8 12
Node Embed. Dim 768 768 768 768 768 768 1024 768
Edge Embed. Dim 256 256 256 512 256 32 256 32
Angle Embed. Dim 128 128 128 256 128 32 128 32

# Attn. Heads 64 64 64 64 64 32 64 32
# Triplet Heads 16 16 16 16 16 4 0 4
Node FFN Dim. 768 768 1536 768 768 768 2048 768
Edge FFN Dim. 256 256 512 512 256 32 512 32
Angle FFN Dim. 128 128 256 256 128 32 256 32
Max. Hops Enc. 32 32 - - 32 32 32 32

Activation GELU GELU GELU GELU GELU GELU GELU GELU
Input Dist. Enc. RBF RBF Fourier Fourier RBF RBF RBF RBF

Source Dropout 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Triplet Dropout 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0
Path Dropout 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1

Node Activ. Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Edge Activ. Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Angle Activ. Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Input 3D Noise - 0.2 - 0.6 0.0 - - -
Input Noise Smooth. - 1.0 - 1.0 0.0 - - -

Optimizer Adam Adam Adam Adam Adam Adam Adam Adam

Batch Size 1024 2048 256 256 - 256 1024 256
Max. LR 0.001 0.0015 0.001 0.001 - 4× 10−4 5× 10−4 3× 10−4

Min. LR 10−6 10−6 0.001 10−6 - 10−8 5× 10−7 10−8

Warmup Steps 30000 20000 8000 16000 - 5000 600 5000
Total Training Steps 60000 350000 30000 100000 - 30000 1200 30000
Grad. Clip. Norm 5.0 5.0 5.0 5.0 5.0 5.0 2.0 5.0

Conf. Loss Weight - 0.1 - 3.0 0.0 0.05 0.1 0.05
# Angle Bins 256 512 256 512 - 512 512 512
# Dist. Bins 256 512 256 512 - 512 512 512

Dist. Bins Range 8 8 16 16 - 8 8 8

FT Batch Size - 2048 - 1024 2048 - - -
FT Warmup Steps - 3000 - 0 3000 - - -

FT Total Steps - 50000 - 12000 150000 - - -
FT Max. LR - 2× 10−4 - 10−5 2× 10−4 - - -
FT Min. LR - 10−6 - 10−5 10−6 - - -

FT Conf. Loss Weight - 0.1 - 2.0 0.1 - - -

and finetuning. For QM9, we only list the hyperparameters for finetuning. For MOLPCBA, LIT-
PCBA, and MOLHIV we only show the hyperparameters for training from scratch. The missing
hyperparameters do not apply to the corresponding dataset or model. For QM9 no secondary dis-
tance and angle denoising objective is used. For LIT-PCBA, 0 triplet interaction heads indicate that
an EGT is used without any triplet interaction module.

To provide the conformation predictor with initial 3D information, we utilize RDKit (Landrum,
2013) to extract 3D coordinates and apply MM Force Field Optimization (Halgren, 1996). Due to the
absence of Ground Truth 3D coordinates in the the PCQM4Mv2 validation set, we randomly divide
the training set into train-3D and validation-3D splits, with the latter containing 5% of the training
data. Hyperparameters of the conformation predictor are fine-tuned by monitoring the average cross-
entropy loss of binned distance and angle prediction on the validation-3D split, which is found to
be a good indicator of downstream performance. The input noise level is adjusted by evaluating the
finetuned performance on the validation set. We get the best results by using an average of 50 sample
predictions during stochastic inference. Other training configurations not mentioned are based on
TGT (Hussain et al., 2024).

F ADDITIONAL RESULTS AND ANALYSES

F.1 QM9

In this appendix, we present the comprehensive evaluation results on the QM9 dataset across all 12
prediction tasks (see Table 14). The detailed performance analysis shows that AGT demonstrates
strong predictive capabilities across various molecular properties. Particularly noteworthy are the
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Table 14: Results (MAE(↓)) on the QM9 dataset.
Method µ α ϵH ϵL ∆ϵ ZPVE Cv U0 U H G R2

GraphMVP (Liu et al.) 0.031 0.070 28.5 26.3 46.9 1.63 0.033 - - - - -
GEM (Fang et al., 2022) 0.034 0.081 33.8 27.7 52.1 1.73 0.035 - - - - -
3D Infomax (Stärk et al., 2022) 0.034 0.075 29.8 25.7 48.8 1.67 0.033 - - - - -
3D-MGP (Jiao et al., 2023) 0.020 0.057 21.3 18.2 37.1 1.38 0.026 - - - - -

Schnet (Schütt et al., 2017) 0.033 0.235 41.0 34.0 63.0 1.7 0.033 14 19 14 14 73
PhysNet (Unke & Meuwly, 2019) 0.053 0.062 32.9 24.7 42.5 1.39 0.028 8.15 8.34 8.42 9.4 765
Cormorant (Anderson et al., 2019) 0.038 0.085 34.0 38.0 61.0 2.03 0.026 22 21 21 20 961
DimeNet++ (Gasteiger et al., 2020) 0.030 0.044 24.6 19.5 32.6 1.21 0.023 6.32 6.28 6.53 7.56 331
PaiNN (Schütt et al., 2021) 0.012 0.045 27.6 20.4 45.7 1.28 0.024 5.85 5.83 5.98 7.35 66
EGNN (Satorras et al., 2021) 0.029 0.071 29.0 25.0 48.0 1.55 0.031 11 12 12 12 106
NoisyNode (Godwin et al., a) 0.025 0.052 20.4 18.6 28.6 1.16 0.025 7.30 7.57 7.43 8.30 700
SphereNet (Liu et al., 2022b) 0.025 0.053 22.8 18.9 31.1 1.12 0.024 6.26 6.36 6.33 7.78 268
ComENet (Wang et al., 2022) 0.025 0.045 23.1 19.8 32.4 1.20 0.024 6.59 6.82 6.86 7.98 259
SEGNN (Brandstetter et al., 2022) 0.023 0.060 24.0 21.0 42.0 1.62 0.031 15 13 16 15 660
EQGAT (Le et al., 2022) 0.011 0.053 20.0 16.0 32.0 2.00 0.024 25 25 24 23 382
LEFTNet (Du et al., 2024) 0.011 0.039 23 18 39 1.19 0.022 5 5 5 6 66
SaVeNet (Aykent & Xia, 2024) 0.0085 0.035 16.6 15.1 22.7 1.10 0.021 4.83 4.74 4.83 6.10 49

SE(3)-T (Fuchs et al., 2020) 0.051 0.142 35.0 33.0 53.0 - 0.052 - - - - -
TorchMD-Net (Thölke & De Fabritiis, 2022) 0.011 0.059 20.3 17.5 36.1 1.84 0.026 6.15 6.38 6.16 7.62 33
Equiformer (Liao & Smidt) 0.011 0.046 15.0 14.0 30.0 1.26 0.023 6.59 6.74 6.63 7.63 251
Transformer-M (Luo et al., 2022) 0.037 0.041 17.5 16.2 27.4 1.18 0.022 9.37 9.41 9.39 9.63 75
TGT (Hussain et al., 2024) 0.025 0.040 9.9 9.7 17.4 1.18 0.020 - - - - -
EquiformerV2 (Liao et al., 2024) 0.010 0.050 14 13 29 1.47 0.023 6.17 6.49 6.22 7.57 186
EquiformerV2+NN (Liao et al., 2024) 0.009 0.039 12.2 11.4 24.2 1.21 0.020 4.34 4.28 4.24 5.34 182
Geoformer (Wang et al., 2024a) 0.010 0.040 18.4 15.4 33.8 1.28 0.022 4.43 4.41 4.39 6.13 27.5
AGT 0.019 0.037 8.8 9.1 16.4 1.14 0.020 6.33 6.52 6.59 6.94 70

Table 15: LIT-PCBA results in terms of ROC-AUC↑ (%).

ALDH1 FEN1 GBA KAT2A MAPK1 PKM2 VDR Average

No. active 7,168 369 166 194 308 546 884
No. inactive 137,965 355,402 296,052 348,548 62,629 245,523 355,388

NaiveBayes (Webb et al., 2010) 69.3 87.6 70.9 65.9 68.6 68.4 80.4 73.0
SVM (Hearst et al., 1998) 76.0 87.7 77.8 61.2 66.5 75.3 69.7 73.4
RandomForest (Breiman, 2001) 74.1 65.7 59.9 53.7 57.9 58.1 64.4 62.0
XGBoost (Chen & Guestrin, 2016) 75.0 88.8 83.0 50.0 59.3 73.7 78.2 72.6

GCN (Kipf & Welling, 2016) 73.0 89.7 73.5 62.1 66.8 63.6 77.3 72.3
GAT (Velickovic et al., 2017) 73.9 88.8 77.6 66.2 69.7 72.4 78.0 75.2
FP-GNN (Cai et al., 2022) 76.6 88.9 75.1 63.2 77.1 73.2 77.4 75.9

EGT (Hussain et al., 2022) 78.7(2) 92.9(1) 75.4(4) 72.8(1) 75.3(3) 76.5(2) 80.7(2) 78.9
GEM (Fang et al., 2022) 77.2(1) 91.4(2) 82.1(2) 74.0(1) 71.0(2) 74.6(2) 78.5(1) 78.4
GEM-2 (Liu et al., 2022a) 80.2(0.2) 94.5(0.3) 85.6(2) 76.3(1) 73.3(1) 78.2(0.4) 82.3(0.5) 81.5
EGT+RDKit (Hussain et al., 2024) 80.2(0.2) 95.2(0.3) 84.5(4) 74.3(1) 73.5(1) 78.0(0.2) 82.8(0.3) 81.2
TGT (Hussain et al., 2024) 80.6(0.3) 95.5(0.3) 84.4(3) 74.6(2) 74.3(0.7) 78.4(0.2) 82.9(0.3) 81.5

AGT 80.7(0.2) 95.6(0.3) 84.8(3) 74.8(2) 75.0(0.9) 78.6(0.3) 83.1(0.4) 81.7

results in energy-related metrics (εH : 8.8, εL: 9.1, ∆ε: 16.4, achieving state-of-the-art performance)
and physical properties (Cv: 0.020, matching TGT’s performance). For optical and quantum prop-
erties such as α and ZPVE, AGT shows competitive performance near the top of the benchmark.
The model also demonstrates robust performance in thermodynamic properties (U0, U , H , G) and
geometric features (R2), surpassing previous pre-trained approaches including Transformer-M.

The inability to achieve comprehensive superiority across all metrics can be attributed to several
factors. First, there may be a mismatch between pre-training objectives and specific task require-
ments. AGT’s pre-training optimization primarily focuses on the holistic representation of molecular
structures, which might not fully capture the detailed features required for certain physicochemical
properties. For instance, the prediction of µ may require better characterization of atomic elec-
tronegativity differences. Second, the task-specific nature of certain property predictions may de-
mand more specialized model architectures or loss function designs, which a general pre-trained
model might struggle to accommodate. Notably, since the supervision signal during pre-training
comes from the HOMO-LUMO gap in the PCQM4Mv2 dataset, the pre-trained model may exhibit
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a natural bias towards metrics with similar distributions, such as εH , εL, and ∆ε, potentially at the
expense of other metrics. Finally, the optimization strategy involves inherent trade-offs: to main-
tain model generality, AGT’s pre-training process may have made compromises in performance on
certain specific tasks. This balance between generalization and task-specific optimization remains a
fundamental challenge in molecular representation learning.

In Table 3 and its complete version Table 14, we categorize methods into three distinct groups.
The first group comprises pre-trained GNN methods, including GraphMVP, GEM, 3D Infomax, and
3D-MGP. The second group consists of directly trained GNN methods, spanning from GraphMVP
through SaVeNet. The third group encompasses Transformer-based methods from SE(3)-T through
AGT, where we do not distinguish between pre-trained and non-pre-trained models due to their
common large-scale training dataset.

F.2 LIT-PCBA

We also show a breakdown of the LIT-PCBA results for the individual protein targets in Table 15.
Notice that, AGT outperforms other models in ALDH1, FEN1, PKM2, and VDR. Despite the low
number of positive samples, AGT ranked second among all models on GBA and KAT2A, surpassing
TGT (Hussain et al., 2024) on all proteins target. we can analyze why AGT shows slightly lower
performance on GBA, KAT2A, and MAPK1 compared to some other methods. For GBA, which has
a relatively small dataset (166 active samples vs 296,052 inactive samples), the extreme class imbal-
ance might affect AGT’s performance, resulting in a score of 84.8% compared to GEM-2’s 85.6%.
Similarly, KAT2A and MAPK1 both have limited active samples (194 and 308 respectively) with
significant class imbalance. The performance differences are relatively small - for KAT2A, AGT
achieves 74.8% compared to GEM-2’s 76.3%, and for MAPK1, AGT’s 75.0% is close to the best
performers. These marginal differences might be attributed to the specific structural characteristics
of these proteins and the extreme class imbalance in their datasets, which could potentially benefit
from more specialized handling of imbalanced data during model training.

In Tables 4 and 15, we present three groups of methods. The first group consists of traditional
machine learning methods (NaiveBayes, SVM, RandomForest, XGBoost). The second group con-
sists of directly trained GNNs (GCN, GAT, FP-GNN). The third group consists of pre-trained deep
learning methods from EGT through TGT.

F.3 PCQM4MV2

In Table 1, we organize methods into three groups. The first group represents earlier methods,
ranging from MLP-Fingerprint through GPS++. The second group includes current state-of-the-
art methods (Transformer-M, Uni-Mol+, TGT) that incorporate 3D conformation perturbation and
denoising prediction. The final group consists solely of our proposed AGT method.

F.4 OC20

For Table 2, methods are divided into two main categories. The first group encompasses GNN meth-
ods from SchNet through GNS+NN, while the second group includes Transformer-based methods
from Graphormer-3D through TGT.

F.5 MOLPCBA AND MOLHIV

In Table 5, we categorize methods into two groups. The first group includes directly trained GNN
methods from DeeperGCN-VN through PHC-GNN, while the second group comprises pre-trained
deep learning methods from GIN-VN through TGT.

G ANALYSIS OF AGT’S CAPABILITIES AND LIMITATIONS
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G.1 TASK-SPECIFIC PERFORMANCE ANALYSIS

Analysis of experimental results on the QM9 dataset reveals heterogeneous performance across
different property prediction tasks. AGT demonstrates exceptional performance in energy-related
metrics (εH : 8.8, εL: 9.1, ∆ε: 16.4, all achieving state-of-the-art results) and certain physical prop-
erties (Cv: 0.020, matching TGT’s performance). However, the variation in performance across
different metrics can be attributed to several key factors. The pre-training optimization of AGT pri-
marily emphasizes comprehensive molecular structure representation. This approach may not fully
capture the specific features required for certain physicochemical properties, particularly evident in
properties like µ that demand precise characterization of atomic electronegativity differences. Fur-
thermore, certain property prediction tasks necessitate specialized architectural components or loss
function designs that may not be optimally addressed by general pre-trained frameworks. Notably,
the pre-training process on PCQM4Mv2 dataset, which focuses on HOMO-LUMO gap prediction,
introduces a beneficial bias towards related downstream tasks. This explains AGT’s superior per-
formance on QM9’s energy-level related metrics (εH , εL, ∆ε), as these properties share similar un-
derlying electronic structure characteristics with the HOMO-LUMO gap. The strong correlation be-
tween pre-training objectives and downstream task performance demonstrates both the effectiveness
of transfer learning in capturing fundamental electronic properties and the potential task-specific
limitations of the pre-training approach. Additionally, the maintenance of model generality dur-
ing pre-training may necessitate performance compromises on specific tasks, reflecting the balance
between general applicability and task-specific optimization.

G.2 SCALABILITY ANALYSIS

Our comprehensive evaluation of AGT spans across datasets with significantly different molecular
scales, including PCQM4Mv2 (mean: 15 atoms), downstream tasks MolHIV and MolPCBA (mean:
26 atoms), and larger-scale OC20 systems (approximately 80 atoms). Notably, AGT achieves state-
of-the-art performance among pre-training methods across all these datasets, demonstrating robust
scalability without performance degradation even on OC20 dataset where molecules contain sub-
stantially more atoms.

Theoretically, AGT’s architecture poses no inherent limitations on molecular size processing. How-
ever, in practical applications, the scalability of molecular processing is primarily constrained by
two fundamental factors. The primary limitation stems from GPU memory capacity, which defines
the maximum processable molecular system size when handling 3D conformer data. This constraint
is particularly relevant for large-scale molecular systems requiring extensive memory allocation.
From an algorithmic perspective, the scalability challenges for large-scale molecular systems (e.g.,
proteins) primarily arise from the rapid growth of higher-order structures. This growth pattern in-
troduces challenges: the computational complexity increases quadratically with the system size,
and the attention mechanism tends to suffer from performance degradation due to averaging effects
across an expanding interaction space. For such challenges, potential solutions could draw inspi-
ration from recent advances in protein structure prediction, particularly the mechanisms employed
in AlphaFold3 (Abramson et al., 2024). Local attention mechanisms or sliding window strategies
could theoretically constrain the attention parameters of bond angles and torsion angles to focus
only on the k-nearest neighboring structures of the same order. Such localized approaches would
potentially optimize the computation of angular interactions while preserving the essential local ge-
ometric relationships that typically dominate molecular properties. These theoretical modifications
could substantially reduce computational complexity while maintaining model effectiveness, as lo-
cal structural correlations often carry the most relevant information for property prediction tasks.

These theoretical considerations suggest potential pathways for handling larger molecular systems
through algorithmic optimizations and computational strategies. The current demonstrated scala-
bility, combined with consistent performance across different molecular sizes, indicates promising
applications across an expanded range of molecular systems, from small molecules to larger bio-
chemical structures. Future exploration of these optimization strategies may enable the extension of
AGT to more complex molecular systems while maintaining computational efficiency.
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H ADDITIONAL DETAILS ABOUT RELATED WORKS

Molecular Property Prediction The remarkable performance of message-passing GNNs in pre-
dicting molecular properties has inspired a new generation of geometric and physics-aware neu-
ral networks, which maintain invariance or equivariance under 3D rotational and translational
transformations. Early developments in this direction include SchNet (Schütt et al., 2017) and
DimeNet (Gasteiger et al., 2020), which pioneered the use of distance-based convolution ap-
proaches. The field further evolved with the introduction of spherical methodologies, as exemplified
by GemNet (Gasteiger et al., 2021), SphereNet (Liu et al., 2022b), ComENet (Wang et al., 2022),
LEFTNet (Du et al., 2024), and SAVENet (Aykent & Xia, 2024), each incorporating various forms
of angular information. This architectural evolution ultimately led to more sophisticated equivari-
ant transformer designs, including Equiformer (Liao & Smidt), EquiformerV2 (Liao et al., 2024),
TorchMD-Net (Thölke & De Fabritiis, 2022), and Geoformer (Wang et al., 2024a), which gener-
alized the concept of equivariant aggregation. While these advances have significantly improved
molecular representation learning, our work proposes a fundamentally different paradigm for mod-
eling higher-order structures. Recent models like QuinNet (Wang et al., 2024c) and ViSNet (Wang
et al., 2024b) have introduced four or five-atom interactions to enhance model expressiveness and
accuracy. However, these methods primarily focus on local representations of atomic nodes and
chemical bonds, capturing higher-order features implicitly through combinatorial operations be-
tween atom-level tokens. In contrast, our approach transforms higher-order graph structures into in-
dependent token representations, enabling direct learning and representation of structural patterns in
molecules. This innovation is particularly crucial for model interpretability and effective utilization
of expert prior knowledge. From an information propagation perspective, traditional methods re-
quire higher-order structural information (such as four-body and five-body interactions) to propagate
gradually along the graph topology, creating significant information bottlenecks. As demonstrated
in TGT research, even information exchange between adjacent embeddings faces restrictions. Our
method addresses these limitations through direct structural token representation, not only avoiding
these bottlenecks but also enabling efficient access and utilization of key higher-order information
by all graph nodes, thereby providing a more effective framework for learning molecular structural
information.
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