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ABSTRACT

The generalization performance of a machine learning algorithm such as a neu-
ral network depends in an intricate way on the structure of the data distribution.
To analyze the influence of data structure on test loss dynamics, we study an ex-
actly solveable model of stochastic gradient descent (SGD) which predicts test
loss when training on features with arbitrary covariance structure. We solve the
theory exactly for both Gaussian features and arbitrary features and we show that
the simpler Gaussian model accurately predicts test loss of nonlinear random-
feature models and deep neural networks trained with SGD on real datasets such
as MNIST and CIFAR-10. We show that the optimal batch size at a fixed com-
pute budget is typically small and depends on the feature correlation structure,
demonstrating the computational benefits of SGD with small batch sizes. Lastly,
we extend our theory to the more usual setting of stochastic gradient descent on
a fixed subsampled training set, showing that both training and test error can be
accurately predicted in our framework on real data.

1 INTRODUCTION

Understanding the dynamics of SGD on realistic learning problems is fundamental to learning the-
ory. Due to the challenge of modeling the structure of realistic data, theoretical studies of general-
ization often attempt to derive data-agnostic generalization bounds or study the typical performance
of the algorithm on high-dimensional, factorized data distributions (Engel & Van den Broeck, 2001).
Realistic datasets, however, often lie on low dimensional structures embedded in high dimensional
ambient spaces (Pope et al., 2021). For example, MNIST and CIFAR-10 lie on surfaces with intrin-
sic dimension of ∼ 14 and ∼ 35 respectively (Spigler et al., 2020). To understand the average-case
performance of SGD in more realistic learning problems and its dependence on data, model and
hyperparameters, incorporating structural information about the learning problem is necessary.

In this paper, we calculate the average case performance of SGD on models of the form f(x) =
w ·ψ(x) for nonlinear feature mapψ trained with MSE loss. We express test loss dynamics in terms
of the induced second and fourth moments ofψ. Under a regularity condition on the fourth moments,
we show that the test error can be accurately predicted in terms of second moments alone. We
demonstrate the accuracy of our theory on random feature models and wide neural networks trained
on MNIST and CIFAR-10 and accurately predict test loss scalings on these datasets. We explore in
detail the effect of minibatch size, m, on learning dynamics. By varying m, we can interpolate our
theory between single sample SGD (m = 1) and gradient descent on the population loss (m→∞).
To explore the computational advantages SGD compared to standard full batch gradient descent
we analyze the loss achieved at a fixed compute budget C = tm for different minibatch size m and
number of steps t, trading off the number of parameter update steps for denoising through averaging.
We show that generally, the optimal batch size is small, with the precise optimum dependent on the
learning rate and structure of the features. Overall, our theory shows how learning rate, minibatch
size and data structure interact with the structure of the learning problem to determine generalization
dynamics. It provides a predictive account of training dynamics in wide neural networks.
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1.1 OUR CONTRIBUTIONS

The novel contributions of this work are described below.

• We calculate the exact expected test error for SGD on MSE loss for arbitrary feature struc-
ture in terms of second and fourth moments as we discuss in Section 4.2. We show how
structured gradient noise induced by sampling alters the loss curve compared to vanilla GD.

• For Gaussian features (or those with regular fourth moments), we compute the test error in
Section 1. This theory is shown to be accurate in experiments with random feature models
and wide networks in the kernel regime trained on MNIST and CIFAR-10.

• We show that for fixed compute/sample budgets and structured features with power law
spectral decays, optimal batch sizes are small. We study how optimal batch size depends
on the structure of the feature correlations and learning rate.

• We extend our exact theory to study multi-pass SGD on a fixed finite training set. Both test
and training error can be accurately predicted for random feature models on MNIST.

2 RELATED WORK

The analysis of stochastic gradient descent has a long history dating back to seminal works of Polyak
& Juditsky (1992) and Ruppert (1988), who analyzed time-averaged iterates in a noisy problem.
Many more works have examined a similar setting, identifying how averaged and accelerated ver-
sions of SGD perform asymptotically when the target function is noisy (not a deterministic function
of the input) (Flammarion & Bach, 2015; 2017; Shapiro, 1989; Robbins & Monro, 1951; Chung,
1954; Duchi & Ruan, 2021; Yu et al., 2020; Anastasiou et al., 2019; Gurbuzbalaban et al., 2021).

Recent studies have also analyzed the asymptotics of noise-free MSE problems with arbitrary fea-
ture structure to see what stochasticity arises from sampling. Prior works have found exponen-
tial loss curves problems as an upper bound (Jain et al., 2018) or as typical case behavior for
SGD on unstructured data (Werfel et al., 2004). A series of more recent works have considered
the over-parameterized (possibly infinite dimension) setting for SGD, deriving power law test loss
curves emerge with exponents which are better than the O(t−1) rates which arise in the noisy prob-
lem (Berthier et al., 2020; Pillaud-Vivien et al., 2018; Dieuleveut et al., 2016; Varre et al., 2021;
Dieuleveut & Bach, 2016; Ying & Pontil, 2008; Fischer & Steinwart, 2020; Zou et al., 2021). These
works provide bounds of the form O(t−β) for exponents β which depend on the task and feature
distribution.

Several works have analyzed average case online learning in shallow and two-layer neural networks.
Classical works often analyzed unstructured data (Heskes & Kappen, 1991; Biehl & Riegler, 1994;
Mace & Coolen, 1998; Saad & Solla, 1999; LeCun et al., 1991; Goldt et al., 2019), but recently
the hidden manifold model enabled characterization of learning dynamics in continuous time when
trained on structured data, providing an equivalence with a Gaussian covariates model (Goldt et al.,
2020; 2021). In the continuous time limit considered in these works, SGD converges to gradient
flow on the population loss, where fluctuations due to sampling disappear and order parameters
obey deterministic dynamics. Other recent works, however, have provided dynamical mean field
frameworks which allow for fluctuations due to random sampling of data during a continuous time
limit of SGD, though only on simple generative data models (Mignacco et al., 2020; 2021).

Studies of fully trained linear (in trainable parameters) models also reveal striking dependence on
data and feature structure. Analysis for models trained on MSE (Bartlett et al., 2020; Tsigler &
Bartlett, 2020; Bordelon et al., 2020; Canatar et al., 2020), hinge loss (Chatterji & Long, 2021; Cao
et al., 2021; Cao & Gu, 2019) and general convex loss functions (Loureiro et al., 2021) have now
been performed, demonstrating the importance of data structure for offline generalization.

Other works have studied the computational advantages of SGD at different batch sizes m. Ma et al.
(2018) study the tradeoff between taking many steps of SGD at small m and taking a small number
of steps at large m. After a critical m, they observe a saturation effect where increasing m provides
diminishing returns. Zhang et al. (2019) explore how this critical batch size depends on SGD and
momentum hyperparameters in a noisy quadratic model. Since they stipulate constant gradient noise
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induced by sampling, their analysis results in steady state error rather than convergence at late times,
which may not reflect the true noise structure induced by sampling.

3 PROBLEM DEFINITION AND SETUP

We study stochastic gradient descent on a linear model with parameters w and feature map
ψ(x) ∈ RN (with N possibly infinite). Some interesting examples of linear models are random
feature models, where ψ(x) = φ(Gx) for random matrixG and point-wise nonlinearity φ (Rahimi
& Recht, 2008; Mei & Montanari, 2020). Another interesting linearized setting is wide neural net-
works with neural tangent kernel (NTK) parameterization (Jacot et al., 2020; Lee et al., 2020). Here
the features are parameter gradients of the neural network function ψ(x) = ∇θf(x,θ)|θ0 at initial-
ization. We will study both of these special cases in experiments.

We optimize the set of parameters w by SGD to minimize a population loss of the form

L(w) =
〈

(w ·ψ(x)− y(x))
2
〉
x∼p(x)

, (1)

where x are input data vectors associated with a probability distribution p(x), ψ(x) is a nonlinear
feature map and y(x) is a target function which we can evaluate on training samples. We assume
that the target function is square integrable

〈
y(x)2

〉
x
< ∞ over p(x). Our aim is to elucidate how

this population loss evolves during stochastic gradient descent on w. We derive a formula in terms
of the eigendecomposition of the feature correlation matrix and the target function

Σ =
〈
ψ(x)ψ(x)>

〉
x

=

N∑
k=1

λkuku
>
k , y(x) =

∑
k

vku
>
k ψ(x) + y⊥(x), (2)

where 〈y⊥(x)ψ(x)〉 = 0. We justify this decomposition of y(x) in the Appendix A using an
eigendecomposition and show that it is general for target functions and features with finite variance.

During learning, parameters w are updated to estimate a target function y which, as discussed above,
can generally be expressed as a linear combination of features y = w∗ ·ψ + y⊥. At each time step
t, the weights are updated by taking a stochastic gradient step on a fresh mini-batch of m examples

wt+1 = wt −
η

m

m∑
µ=1

ψt,µ (wt ·ψt,µ − yt,µ) , (3)

where each of the vectors ψt,µ are sampled independently and yt,µ = w∗ · ψt,µ. The learning rate
η controls the gradient descent step size while the batch size m gives a empirical estimate of the
gradient at timestep t. At each timestep, the test-loss, or generalization error, has the form

Lt =
〈

(wt ·ψ(x)−w∗ ·ψ(x)− y⊥(x))
2
〉
x

= (wt −w∗)>Σ(wt −w∗) +
〈
y⊥(x)2

〉
, (4)

which quantifies exactly the test error of the vector wt. Note, however, that Lt is a random variable
since wt depends on the precise history of sampled feature vectorsDt = {ψt,µ}. Our theory, which
generalizes the recursive method of (Werfel et al., 2004) allows us to compute the expected test
loss by averaging over all possible sequences to obtain 〈Lt〉Dt

. Our calculated learning curves are
not limited to the one-pass setting, but rather can accommodate sampling minibatches from a finite
training set with replacement and testing on a separate test set which we address in Section 4.4.

In summary, we will develop a theory that predicts the expected test loss 〈Lt〉Dt
averaged over

training sample sequences Dt in terms of the quantities {λk, vk,
〈
y⊥(x)2

〉
x
}. This will reveal how

the structure in the data and the learning problem influence test error dynamics during SGD. This
theory is a quite general analysis of linear models on square loss, analyzing the performance of
linearized models on arbitrary data distributions, feature maps ψ, and target functions y(x).

4 ANALYTIC FORMULAE FOR LEARNING CURVES

4.1 LEARNABLE AND NOISE FREE PROBLEMS

Before studying the general case, we first analyze the setting where the target function is learnable,
meaning that there exist weights w∗ such that y(x) = w∗ · ψ(x). For many cases of interest, this
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is a reasonable assumption, especially when applying our theory to real datasets by fitting an atomic
measure on P points 1

P

∑
µ δ(x− xµ). We will further assume that the induced feature distribution

is Gaussian so that all moments of ψ can be written in terms of the covariance Σ. We will remove
these assumptions in later sections.
Theorem 1. Suppose the features ψ follow a Gaussian distribution ψ ∼ N (0,Σ) and the target
function is learnable in these features y = w∗ · ψ. After t steps of SGD with minibatch size m and
learning rate η, the expected (over possible sample sequences Dt) test loss 〈Lt〉Dt

has the form

〈Lt〉Dt
= λ>Atv2 , A = (I− η diag(λ))

2
+
η2

m
diag

(
λ2
)

+
η2

m
λλ> (5)

where λ is a vector containing the eigenvalues of Σ and v2 is a vector containing elements (v2)k =
v2k = (uk ·w∗)2 for eigenvectors uk of Σ. The function diag(·) constructs a diagonal matrix with
the argument vector placed along the diagonal.

Proof. See Appendix B for the full derivation. We will provide a brief sketch of the proof
here. The strategy of the proof relies on the fact that 〈Lt〉 = Tr Σ Ct where Ct =〈
(wt −w∗) (wt −w∗)>

〉
Dt

. We derive the following recursion relation for this error matrix

Ct+1 = (I− ηΣ)Ct(I− ηΣ) +
η2

m
[ΣCtΣ + ΣTr (ΣCt)] (6)

The loss only depends on ck,t = u>k Ctuk. Solving the recurrence, ct = Atv2 and using 〈Lt〉 =∑
k λku

>
k Ctuk =

∑
k ck,tλk = λ>Atv2, we obtain the desired result.

Below we provide some immediate interpretations of this result.

• The matrix A contains two components; a matrix (I− η diag(λ))
2 which represents

the time-evolution of the loss under average gradient updates. The remaining matrix
η2

m

(
diag(λ2) + λλ>

)
arises due to fluctuations in the gradients, a consequence of the stochas-

tic sampling process.
• The test loss obtained when training directly on the population loss can be obtained by taking the

minibatch size m→∞. In this case, A→ (I− η diag(λ))2 and one obtains the population loss
Lpopt =

∑
k v

2
kλk(1 − ηλk)2t. This population loss can also be obtained by considering small

learning rates, i.e. the η → 0 limit, where A = (I− η diag(λ))2 +O(η2).
• For general λ and η2/m > 0, A is non-diagonal, indicating that the components {u1, ...,uk} are

not learned independently as t increases like for Lpopt , but rather interact during learning due to
non-trivial coupling across eigenmodes at large η2/m. This is unlike offline theory for learning
in feature spaces (kernel regression), (Bordelon et al., 2020; Canatar et al., 2020), this observation
of mixing across covariance eigenspaces agrees with a recent analysis of SGD, which introduced
recursively defined “mixing terms” that couple each mode’s evolution (Varre et al., 2021).

• Though increasingm always improves generalization at fixed time t (proof given in Appendix D),
learning with a fixed compute budget (number of gradient evaluations) C = tm, can favor smaller
batch sizes. We provide an example of this in the next sections and Figure 1 (d)-(f).

• The lower bound 〈Lt〉 ≥ λ>v2
[
(1− η)2 + η2

m |λ|
2
]t

can be used to find necessary stability con-

ditions onm, η. This bound implies that 〈Lt〉will diverge ifm < η
2−η |λ|

2. The learning rate must
be sufficiently small and the batch size sufficiently large to guarantee convergence. This stability
condition depends on the features through |λ|2 =

∑
k λ

2
k. One can derive heuristic optimal batch

sizes and optimal learning rates through this lower bound. See Figure 2 and Appendix C.

4.1.1 SPECIAL CASE 1: UNSTRUCTURED ISOTROPIC FEATURES

This special case was previously analyzed by Werfel et al. (2004) which takes Σ = I ∈ RN×N and
m = 1. We extend their result for arbitrary m, giving the following learning curve

〈Lt〉Dt
=

(
(1− η)

2
+

1 +N

m
η2
)t
||w∗||2 , 〈L∗t 〉Dt

=

(
1− m

m+N + 1

)t
||w∗||2, (7)
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Figure 1: Isotropic features generated as ψ ∼ N (0, I) have qualitatively different learning curves
than power-law features observed in real data. Black dashed lines are theory. (a) Online learning
with N -dimensional isotropic features gives a test loss which scales like Lt ∼ e−t/N for any target
function, indicating that learning requires t ∼ N steps of SGD, using the optimal learning rates
η∗ = m

N+m+1 . (b) Power-law features ψ ∼ N (0,Λ) with Λkl = δk,lk
−2 have non-extensive give a

power-law scaling Lt ∼ t−β with exponent β = ON (1). (c) Learning to discrimninate MNIST 8’s
and 9’s with N = 4000 dimensional random ReLU features (Rahimi & Recht, 2008), generates a
power law scaling at large t, which is both quantitatively and qualitatively different than the scaling
predicted by isotropic features e−t/N . (d)-(f) The loss at a fixed compute budget C = tm = 100 for
(d) isotropic features, (e) power law features and (f) MNIST ReLU random features with simulations
(dots average and standard deviation for 30 runs). Intermediate batch sizes are preferable on real
data.

where the second expression has optimal η. First, we note the strong dependence on the ambient
dimension N : as N � m, learning happens at a rate 〈Lt〉 ∼ e−tm/N . Increasing the minibatch size
m improves the exponential rate by reducing the gradient noise variance. Second, we note that this
feature model has the same rate of convergence for every learnable target function y. At small m,
the convergence at any learning rate η is much slower than the convergence of the m → ∞ limit,
Lpop = (1 − η)2t||w∗||2 which does not suffer from a dimensionality dependence due to gradient
noise. Lastly, for a fixed compute budget C = tm, the optimal batch size is m∗ = 1; see Figure 1
(d). This can be shown by differentiating

〈
LC/m

〉
with respect to m (see Appendix E). In Figure 1

(a) we show theoretical and simulated learning curves for this model for varying values of N at the
optimal learning rate and in Figure 1 (d), we show the loss as a function of minibatch size for a fixed
compute budget C = tm = 100. While fixed C represents fixed sample complexity, we stress that
it may not represent wall-clock run time when data parallelism is available (Shallue et al., 2018).

4.1.2 SPECIAL CASE 2: POWER LAWS AND EFFECTIVE DIMENSIONALITY

Realistic datasets such as natural images or audio tend to exhibit nontrivial correlation structure,
which often results in power-law spectra when the data is projected into a feature space, such as a
randomly intialized neural network (Spigler et al., 2020; Canatar et al., 2020; Bahri et al., 2021).
In the η2

m � 1 limit, if the feature spectra and task specra follow power laws, λk ∼ k−b and
λkv

2
k ∼ k−a with a, b > 1, then Theorem 1 implies that generalization error also falls with a power

law: 〈Lt〉 ∼ Ct−β , β = a−1
b where C is a constant. See Appendix G for a derivation with

saddle point integration. Notably, these predicted exponents we recovered as a special case of our
theory agree with prior work on SGD with power law spectra, which give exponents in terms of the
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Figure 2: Optimal batch size depends on feature structure and noise level. (a) For power law features
λk ∼ k−b, λkv2k ∼ k−a, the m dependence of the loss LC/m depends strongly on the feature
exponent b. Each color is a different b value, evenly spaced in [0.6, 2.5] with a = 2.5, C = 500.
Solid lines show exact theory while dashed lines show the error predicted by approximating the mode
coupling term η2

mλλ
> with decoupled η2

m diag(λ2). Mode coupling is thus necessary to accurately
predict optimal m. (b) The optimal m scales proportionally with |λ|2 ≈ 1

2b−1 . We plot the lower
bound mmin (black), the heuristic optimum (m which optimizes a lower bound for L, green) and
2η
2−η |λ|

2 (red). (c) The loss at fixed compute C = 150, a = 2, b = 0.85, optimal batchsize m for
each η shown in dashed black. For sufficiently small η, the optimal batchsize is m = 1. For large η,
it is better to trade off update steps for denoised gradients resulting in m∗ > 1.

feature correlation structure (Berthier et al., 2020; Dieuleveut et al., 2016; Velikanov & Yarotsky,
2021; Varre et al., 2021). Further, our power law scaling appears to accurately match the qualitative
behavior of wide neural networks trained on realistic data (Hestness et al., 2017; Bahri et al., 2021),
which we study in Section 5.

We show an example of such a power law scaling with synthetic features in Figure 1 (b). Since the
total variance approaches a finite value as N → ∞, the learning curves are relatively insensitive to
N , and are rather sensitive to the eigenspectrum through terms like |λ|2 and 1>λ, etc. In Figure
1 (c), we see that the scaling of the loss is more similar to the power law setting than the isotropic
features setting in a random features model of MNIST, agreeing excellently with our theory. For this
model, we find that there can exist optimal batch sizes when the compute budget C = tm is fixed
(Figure 1 (e) and (f)). In Appendix C.1, we heuristically argue that the optimal batch size for power
law features should scale as, m∗ ≈ 1

(2b−1) . Figure 2 tests this result.

We provide further evidence of the existence of power law structure on realistic data in Figure 3
(a)-(c), where we provide spectra and test loss learning curves for MNIST and CIFAR-10 on ReLU
random features. The eigenvalues λk ∼ k−b and the task power tail sums

∑∞
n=k λnv

2
n ∼ k−a+1

both follow power laws, generating power law test loss curves. These learning curves are contrasted
with isotropically distributed data in R784 passed through the same ReLU random feature model and
we see that structured data distributions allow much faster learning than the unstructured data. Our
theory is predictive across variations in learning rate, batch size and noise (Figure 3).

4.2 ARBITRARY INDUCED FEATURE DISTRIBUTIONS: THE GENERAL SOLUTION

The result in the previous section was proven exactly for Gaussian vectors (see Appendix B). For
arbitrary distributions, we obtain a slightly more involved result (see Appendix F).

Theorem 2. Let ψ(x) ∈ RN be an arbitrary feature map with covariance matrix Σ =∑
k λkuku

>
k . After diagonalizing the features φk(x) = u>k ψ(x), introduce the fourth moment

tensor κ4ijkl = 〈φiφjφkφl〉. The expected loss is exactly 〈Lt〉 =
∑
k λkck(λ,κ,v, t).

We provide an exact formula for ck in the Appendix F We see that the test loss dynamics depends
only on the second and fourth moments of the features through quantities λk and κijk` respectively.
We recover the Gaussian result as a special case when κijkl is a simple weighted sum of these three
products of Kronecker tensors κGaussijkl = λiλjδikδjl +λiλkδijδkl +λiλjδilδjk. As an alternative to
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Figure 3: Structure in the data distribution, nonlinearity, batchsize and learning rate all influence
learning curves. (a) ReLU random feature embedding in N = 4000 dimensions of MNIST and
CIFAR images have very different eigenvalue scalings than spherically isotropic vectors in 784
dimensions. (b) The task power spectrum decays much faster for MNIST than for random isotropic
vectors. (c) Learning curves reveal the data-structure dependence of test error dynamics. Dashed
lines are theory curves derived from equation. (d) Increasing the learning rate increases the initial
speed of learning but induces large fluctuations in the loss and can be worse at large t. Experiment
curves averaged over 20 random trajectories of SGD. (e) Increasing the batch size alters both the
average test loss Lt and the variance. (f) Noise in the target values during training produces an
asymptotic error L∞ which persists even as t→∞.

the above closed form expression for 〈Lt〉, a recursive formula which tracks N mixing coefficients
has also been used to analyze the test loss dynamics for arbitrary distributions (Varre et al., 2021).

Next we show that a regularity condition, similar to those assumed in other recent works (Jain et al.,
2018; Berthier et al., 2020; Varre et al., 2021), on the fourth moment structure of the features allows
derivation of an upper bound which is qualitatively similar to the Gaussian theory.
Theorem 3. If the fourth moments satisfy

〈
ψψ>Gψψ>

〉
� (α + 1)ΣGΣ + αΣTrΣG for any

positive-semidefiniteG, then

Lt ≤ λ>Atv2 , A = (I− η diag(λ))
2

+
αη2

m

[
diag(λ2) + λλ>

]
. (8)

We provide this proof in Appendix F.1. We note that the assumed bound on the fourth moments is
tight for Gaussian features with α = 1, recovering our previous theory. Thus, if this condition on
the fourth moments is satisfied, then the loss for the non-Gaussian features is upper bounded by the
Gaussian test loss theory with the batch size effectively altered m̃ = m/α.

The question remains whether the Gaussian approximation will provide an accurate model on re-
alistic data. We do not provide a proof of this conjecture, but verify its accuracy in empirical
experiments on MNIST and CIFAR-10 as shown in Figure 3. In Appendix Figure F.1, we show that
the fourth moment matrix for a ReLU random feature model and its projection along the eigenbasis
of the feature covariance is accurately approximated by the equivalent Gaussian model.

4.3 UNLEARNABLE OR NOISE CORRUPTED PROBLEMS

In general, the target function y(x) may depend on features which cannot be expressed as linear
combinations of features ψ(x), y(x) = w∗ · ψ(x) + y⊥(x). Let

〈
y⊥(x)2

〉
x

= σ2. Note that y⊥
need not be deterministic, but can also be a stochastic process which is uncorrelated with ψ(x).
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Figure 4: Training and test errors of a model trained on a training set of size M can be computed
with the Ct matrix. Dashed black lines are theory. (a) The training error for MNIST random feature
model approaches zero asymptotically. (b) The test error saturates to a quantity dependent on M .

Theorem 4. For a target function with unlearnable variance
〈
y2⊥
〉

= σ2 trained on Gaussian ψ,
the expected test loss has the form

〈Lt〉 − σ2 = λ>Atv2 +
1

m
η2σ2λ>(I−A)−1(I−At)λ (9)

which has an asymptotic, irreducible error 〈L∞〉 = σ2 + 1
mη

2σ2λ>(I−A)−1λ as t→∞.

See Appendix H for the proof. The convergence to the asymptotic error takes the form 〈Lt − L∞〉 =
λ>At

(
v2 − 1

mη
2σ2(I−A)−1λ

)
. We note that this quantity is not necessarily monotonic in t and

can exhibit local maxima for sufficiently large σ2, as in Figure 3 (f).

4.4 TEST/TRAIN SPLITS

Rather than interpreting our theory as a description of the average test loss during SGD in a one-pass
setting, where data points are sampled from the a distribution at each step of SGD, our theory can be
suitably modified to accommodate multiple random passes over a finite training set. To accomplish
this, one must first recognize that the training and test distributions are different.
Theorem 5. Let p̂(x) = 1

M

∑
µ δ(x − xµ) be the empirical distribution on the M training data

points and let Σ̂ =
〈
ψ(x)ψ(x)>

〉
x∼p̂(x) =

∑
k λ̂kuku

>
k be the feature correlation matrix on this

training set. Let p(x) be the test distribution Σ its corresponding feature correlation. Then we have

〈Ltrain,t〉 = Tr
[
Σ̂Ct

]
, 〈Ltest,t〉 = Tr [ΣCt]

Ct+1 = (I− ηΣ̂)Ct(I− ηΣ̂) +
η2

m

[〈
ψ(x)ψ(x)>Ctψ(x)ψ(x)>

〉
x∼p̂(x) − Σ̂CtΣ̂

]
(10)

We provide the proof of this theorem in Appendix I. The interpretation of this result is that it pro-
vides the expected training and test loss if, at each step of SGD, m points from the training set
{x1, ...,xM} are sampled uniformly with replacement and used to calculate a stochastic gradient.
Note that while Σ can be full rank, the rank of Σ̂ has rank upper bounded by M , the number of
training samples. The recurrence for Ct can again be more easily solved under a Gaussian approx-
imation which we employ in Figure 4. Since learning will only occur along the M dimensional
subspace spanned by the data, the test error will have an irreducible component at large time, as
evidenced in Figure 4. While the training errors continue to go to zero, the test errors saturate at a
M -dependent final loss. This result can also allow one to predict errors on other test distributions.

5 COMPARING NEURAL NETWORK FEATURE MAPS

We can utilize our theory to compare how wide neural networks of different depths generalize when
trained with SGD on a real dataset. With a certain parameterization, large width NNs are approxi-
mately linear in their parameters (Lee et al., 2020). To predict test loss dynamics with our theory,
it therefore suffices to characterize the geometry of the gradient features ψ(x) = ∇θf(x,θ). In

8
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Figure 5: ReLU neural networks of depthD and width 500 are trained with SGD on full MNIST. (a)-
(b) Feature and spectra are estimated by diagonalizing the infinite width NTK matrix on the training
data. We fit a simple power law to each of the curves λk ∼ k−b and v2k ∼ k−a. (c) Experimental test
loss during SGD (color) compared to theoretical power-law scalings t−

a−1
b (dashed black). Deeper

networks train faster due to their slower decay in their feature eigenspectra λk, though they have
similar task spectra. (d)-(f) The spectra and test loss for convolutional and fully connected networks
on CIFAR-10. The CNN obtains a better convergence exponent due to its faster decaying task
spectra. The predicted test loss scalings (dashed black) match experiments (color).

Figure 5, we show the Neural Tangent Kernel (NTK) eigenspectra and task-power spectra for fully
connected neural networks of varying depth, calculated with the Neural Tangents API (Novak et al.,
2020). We compute the kernel on a subset of 10, 000 randomly sampled MNIST images and es-
timate the power law exponents for the kernel and task spectra λk and v2k. Across architectures,
the task spectra v2k are highly similar, but that the kernel eigenvalues λk decay more slowly for
deeper models, corresponding to a smaller exponent b. As a consequence, deeper neural network
models train more quickly during stochastic gradient descent as we show in Figure 5 (c). After
fitting power laws to the spectra λk ∼ k−b and the task power v2k ∼ k−a, we compared the true
test loss dynamics (color) for a width-500 neural network model with the predicted power-law scal-
ings β = a−1

b from the fit exponents a, b. The predicted scalings from NTK regression accurately
describe trained width-500 networks. On CIFAR-10, we compare the scalings of the CNN model
and a standard MLP and find that the CNN obtains a better exponent due to its faster decaying tail
sum

∑∞
n=k λnv

2
n. We stress that the exponents β were estimated from our one-pass theory, but were

utilized experiments on a finite training set. This approximate and convenient version of our theory
is quite accurate across these varying models, in line with recent conjectures about early training
dynamics (Nakkiran et al., 2021).

6 CONCLUSION

Studying a simple model of SGD, we were able to uncover how the feature geometry governs the
dynamics of the test loss. We derived average learning curves 〈Lt〉 for both Gaussian and general
features and showed conditions under which the Gaussian approximation is accurate. The proposed
model allowed us to explore the role of the data distribution and neural network architecture on
the learning curves, and choice of hyperparameters on realistic learning problems. While our theory
accurately describes networks in the lazy training regime, average case learning curves in the feature
learning regime would be interesting future extension. Further extensions of this work could be used
to calculate the expected loss throughout curriculum learning where the data distribution evolves
over time as well as alternative optimization strategies such as SGD with momentum.

9
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A DECOMPOSITION OF THE FEATURES AND TARGET FUNCTION

Let y(x) be a square integrable target function with
〈
y(x)2

〉
< ∞. Define the following integral

operator TK for kernel K(x,x′) = ψ(x) ·ψ(x′):

TK [φ](x′) =

∫
p(x)K(x,x′)φ(x)dx (11)

We are interested in eigenfunctions of this operator, function φk for which TK [φk] = λkφk. For
kernels with finite trace

∫
K(x,x)p(x)dx <∞, Mercer’s theorem (Rasmussen & Williams, 2005)

guarantees the existence of a set of orthonormal eigenfunctions. Sinceψ(x) spans anN dimensional
function space, only N of the kernel eigenfunctions will have non-zero eigenvalue. Since the basis
of kernel eigenfunctions (including the zero eigenvalue functions) is complete over the space of
square integrable functions. After ordering the eigenvalues λ1 > λ2 > ... > λN with λN+` = 0,
we obtain the expansion

y(x) =
∑
k

〈y(x)φk(x)〉x φk(x) =
∑
k≤N

vkφk(x) + y⊥(x) , y⊥(x) =
∑
k>N

〈y(x)φk(x)〉φk(x)

(12)

Further, we can decompose the feature map in this basis ψ(x) =
∑N
k=1

√
λkukφk(x). We

recognize through these decompositions the coefficients vk can be computed uniquely as vk =

λ
−1/2
k u>k 〈ψ(x)y(x)〉. This provides a recipe for determining the necessary spectral quantities for

our theory. We see that the feature map’s decomposition above reveals that λk are also the eigenval-
ues of the feature correlation matrix Σ since

Σ =
〈
ψ(x)ψ(x)>

〉
=
∑
k`

√
λkλ`uku

>
` 〈φk(x)φ`(x)〉 =

∑
k

λkuku
>
k . (13)

A.1 FINITE SAMPLE SPACES

When we discuss experiments on MNIST or CIFAR, we use this technology for an atomic data
distribution p(x) = 1

M

∑M
µ=1 δ(x− x′). Plugging this into the integral operator gives

TK [φ](x) =
1

M

∑
µ

K(x,xµ)φ(xµ) (14)

We see that, restricting the domain to the set of points {x1, ...,xM}, this amounnts to solving a
matrix eigenvalue problem 1

MKφk = λkφk where K ∈ RM×M is the kernel gram matrix with
entries Kµν = K(xµ,xν) and φk has entries φk,µ = φk(xµ).

B PROOF OF THEOREM 1

Let ∆t = wt −w∗ represent the difference between the current and optimal weights and define the
correlation matrix for this difference

Ct =
〈
∆t∆

>
t

〉
Dt−1

. (15)

Using stochastic gradient descent, wt+1 = wt − ηgt with gradient vector gt = 1
m

∑m
i=1ψiψ

>
i ∆t,

the Ct matrix satisfies the recursion

Ct+1 =
〈
(∆t − ηgt)(∆t − ηgt)>

〉
Dt

= Ct − η
〈
gt∆

>
t

〉
− η

〈
∆tg

>
t

〉
+ η2

〈
gtg
>
t

〉
. (16)

First, note that since ψi are all independently sampled at timestep t, we can break up the average
into the fresh batch of m samples and an average over Dt−1

〈gt∆t〉Dt
=

1

m

m∑
i=1

〈
ψiψ

>
i

〉
ψi

〈
∆∆>t

〉
Dt−1

= ΣCt. (17)

14



Published as a conference paper at ICLR 2022

The last term requires computation of fourth moments〈
gtg
>
t

〉
=

1

m2

∑
i,j

〈
ψiψ

>
i

〈
∆t∆

>
t

〉
Dt−1

ψjψ
>
j

〉
ψi,ψj

(18)

=
1

m2

∑
i,j

〈
ψiψ

>
i Ctψjψ

>
j

〉
ψi,ψj

. (19)

First, consider the case where i = j. Letting ψ = ψi, we need to compute terms of the form∑
k,`

Ck,` 〈ψjψkψ`ψn〉 . (20)

For Gaussian random vectors, we resort to Wick-Isserlis theorem for the fourth moment

〈ψjψkψlψn〉 = 〈ψjψk〉 〈ψ`ψn〉+ 〈ψjψ`〉 〈ψkψn〉+ 〈ψjψn〉 〈ψ`ψk〉 (21)

giving 〈
gtg
>
t

〉
=
m+ 1

m
ΣCtΣ +

1

m
Σ Tr (ΣCt) . (22)

This correlation structure for gt implies that its covariance has the form

〈Covψ(gt)〉Dt
=

1

m
ΣCtΣ +

1

m
ΣTr(ΣCt). (23)

Using the formula for
〈
gtg
>
t

〉
, we arrive at the following recursion relation for Ct

Ct+1 = Ct − ηCtΣ− ηΣCt + η2
m+ 1

m
ΣCtΣ +

1

m
η2Σ Tr (ΣCt) . (24)

Since we are ultimately interested in the generalization error 〈Lt〉 =
〈
∆>t Σ∆t

〉
= TrΣCt =∑

k λku
>
k Ctuk, it suffices to track the evolution of ct,k = u>k Ctuk

ct+1,k =

(
1− 2ηλk + η2

m+ 1

m
λ2k

)
ct,k +

1

m
η2λk

∑
j

λjct,j . (25)

Vectorizing this equation for c generates the following solution

ct = Atc0 , A = I− 2η diag(λ) +
m+ 1

m
η2 diag(λ2) +

η2

m
λλ>. (26)

The coefficient c0,k = v2k =
(
u>k w∗

)2
. To get the generalization error, we merely compute 〈Lt〉 =

λ>at = λ>Atv2 as desired.

C PROOF OF STABILITY CONDITIONS

We will first establish the following lower bound on the loss, where without loss of generality we
assumed the maximum correlation is 1:

Lt ≥ λ>v2

[
(1− η)2 +

η2

m
|λ|2

]t
. (27)

We will then use this lower bound to provide necessary conditions on the learning rate and batch
size for stability of the loss evolution. First, note that the following inequality holds elementwise

Aλ =

[
(I − η diag (λ))

2
+
η2

m
diag(λ2) +

η2

m
λ

]
λ ≥

[
(1− η)2 +

η2

m
|λ|2

]
λ (28)

Repeating this inequality t times gives Atλ ≥
[
(1− η)2 + η2

m |λ|
2
]t
λ. Using the fact that Lt =

λ>Atv2 gives the desired inequality. Note that this inequality is very close to the true result for
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isotropic features λ = 1 which gives Lt ∝
[
(1− η)2 + η2

m (|λ|2 + 1)
]t

. For anisotropic features
with small learning rate, this bound becomes less tight. For the loss to converge to zero at large time,
the quantity in brackets must necessarily be less than one. This implies the following necessary
condition on the batchsize and learning rate

η <
2m

m+ |λ|2
⇐⇒ m > mmin =

η|λ|2

2− η
(29)

where mmin is the minimal batch size for learning rate η and feature covariance eigenvalues λ.

C.1 HEURISTIC BATCH SIZE AND LEARNING RATE

We can derive heuristic optimal choices of the learning rate and batch size hyperparameters η,m at
a fixed compute budget which optimize the lower bound derived above.

C.1.1 FIXED LEARNING RATE

We will first consider optimizing only the batch size at a fixed learning rate η before discussing
the optimal m when η is chosen optimally. The loss at a fixed compute budget C = tm is lower
bounded by

LC/m ≥ λ>v2
[
(1− η)2 +

η2

m
|λ|2

]C/m
(30)

For the purposes of optimization, we introduce x = 1/m and consider optimizing

f(x) = x ln [A+Bx] , A = (1− η)2, B = η2|λ|2 (31)

The first order optimality condition f ′(x) = 0 implies that ln(A+ Bx) + Bx
A+Bx = 0. Letting z =

A+Bx, this is equivalent to z ln z+ z−A = 0. This equation has solutions for all valid A ∈ (0, 1)
giving solutions z ∈ (e−1, 1). Letting z(η), represent the solution to z + z ln z − (1− η)2 = 0, the
optimal batchsize has the form

m∗(η) =
B

z(A)−A
=

η2|λ|2

z(η)− (1− η)2
(32)

We can gain intuition for this result by considering the limit of η → 0 and η → 1. First, in the
η → 0 limit, we find that z ∼ A+1

2 so m∗ ∼ 2η|λ|2
2−η = 2mmin, making contact with the stability

bound derived in Appendix Section C. Thus for small learning rates, this heuristic optimum suggests
doubling the minimal stable batchsize for optimal convergence. At large learning rates, η ∼ 1 with
A ∼ 0, we find z ∼ e−1 so m∗(η) ∼ eη2|λ|2. Thus for small η, we expect m∗ to scale linearly with
η while for large η, we expect a scaling of the form η2. In either case, the optimal batchsize scales
with feature eigenvalues through the sum of the squares |λ|2 =

∑
k λ

2
k.

C.1.2 HEURISTIC OPTIMAL LEARNING RATE AND BATCH SIZE

We will now examine what happens when one first optimizes loss bounmd with respect to the the
learning rate at any value of m and then subsequently optimizes over the batch size m. We can
easily find the η which minimizes the lower bound.

∂

∂η

[
(1− η)2 +

η2|λ|2

m

]
= 0 =⇒ η∗ =

m

m+ |λ|2
(33)

Note that this heuristic optimal learning rate is very close to the true optimum in the isotropic data
setting ηtrue = m

m+N+1 ≈
m

m+N . Plugging this back into the loss bound, we find that at fixed
compute C = tm, the loss scales like

LC/m ≥ λ>v2
[
|λ|2

m+ |λ|2

]C/m
(34)

With the optimal choice of learning rate, the loss at fixed compute monotonically increases with
batch size, giving an optimal batchsize of m = 1. This shows that if the learning rate is chosen
optimally then small batch sizes give the best performance per unit of computation. This corresponds
to the hyperparameter choices (η,m) =

(
1

1+|λ|2 , 1
)

.
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D INCREASING m REDUCES THE LOSS AT FIXED t

We will show that for a fixed number of steps t, increasing the minibatch size m can only decrease
the expected error. To do this, we will simply show that the derivative of the expected loss with
respect to m,

∂ 〈Lt〉
∂m

= λ>
∂At

∂m
v2, (35)

is always non-positive. The derivative of the t-th power of A can be identified with the chain rule
∂At

∂m
=
∂A

∂m
At−1 + A

∂A

∂m
At−2 + A2 ∂A

∂m
At−3 + ...+ At−1 ∂A

∂m
. (36)

Note that the matrix
∂A

∂m
= − η2

m2

[
diag(λ2) + λλ>

]
(37)

has all non-positive entries. Thus we find that

∂ 〈Lt〉
∂m

=

t−1∑
n=0

λ>An ∂A

∂m
At−n−1v2. (38)

Note that since all entries in v2
k and At−n−1 are non-negative, the vector zn = At−n−1v2 has

non-negative entries. By the same argument, the vector qn = Anλ is also non-negative in each
entry. Therefore, each of the terms in ∂〈Lt〉

∂m above must be non-positive

∂ 〈Lt〉
∂m

=

t−1∑
n=0

z>n
∂A

∂m
qn = −η

2

m

∑
n

∑
k,`

zn,k
[
δk,`λ

2
k + λkλ`

]
qn,` ≤ 0. (39)

Thus we find ∂〈Lt〉
∂m ≤ 0, implying that optimal 〈Lt〉 is always obtained (possibly non-uniquely) at

m→∞.

E INCREASING m INCREASES THE LOSS AT FIXED C = tm ON ISOTROPIC
FEATURES

Unlike the previous section, which considered fixed t and varying m, in this section we consider
fixing the total number of samples (or gradient evaluations) which we call the compute budget
C = tm. For a fixed compute budget C = tm, and unstructured N dimensional Gaussian features
and optimal learning rate η∗ = m

m+N+1 , we have〈
LC/m

〉
=

(
N + 1

m+N + 1

)C/m
||w∗||2. (40)

Taking a derivative with respect to the batch size we get
∂

∂m
log
〈
LC/m

〉
=

∂

∂m

C

m
log

(
N + 1

m+N + 1

)
=

C

m2
log

(
m+N + 1

N + 1

)
+

C

m(m+N + 1)
> 0. (41)

This exercise demonstrates that, for the isotropic features, smaller batch-sizes are preferred at a fixed
compute budget C. This result does not hold for arbitrary spectra λk. In the general case, optimal
minibatch sizes can exist as we show in Figure 1 (e)-(f) for power law and MNIST spectra.

F PROOF OF THEOREM 2

Let Vec(·) denote a flattening of anN×N matrix into a vector of lengthN2 and let Mat(·) represent
a flattening of a 4D tensor into a N2 ×N2 two-dimensional matrix. We will show that the expected
loss (over Dt) is

〈Lt〉 =
∑
k

λkct,kk , ct =

(
G +

η2

m
Mat(κ)

)t
Vec(vv>) ∈ RN

2

(42)
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where [G]ij,kl = δikδjl

(
1− η(λi + λj) + η2(m−1)

m λiλj

)
and [v]k = uk ·w∗.

We rotate all of the feature vectors into the eigenbasis of the covariance, generating diagonalized
features φk = u>k ψ and introduce the following fourth moment tensor

κijkl = 〈φiφjφkφ`〉 . (43)

We redefine Ct in the appropriate (rotated) basis by projecting onto the eigenvectors of the covari-
ance

Ct = U>
〈
∆t∆

>
t

〉
U, (44)

where U = [u1,u2, ...,uN ]. With this definition, C’s dynamics take the form

Ct+1 = Ct −ΛCt −CtΛ +
η2(m− 1)

m
ΛCtΛ +

〈
φφ>Ctφφ

>〉 . (45)

The elements of the matrix can be expressed with the fourth moment tensor∑
k`

〈φiφjφkφ`〉Ck` =
∑
k`

κijklCk,`. (46)

We thus generate the following dynamics for Ctij

Ct+1
ij =

(
1− η(λi + λj) +

η2(m− 1)

m
λiλj

)
Ctij +

η2

m

∑
kl

κijklC
t
kl. (47)

Let ct = Vec(Ct), then we have

ct+1 =

(
G0 +

η2

m
Mat(κ)

)
ct , [G0]ij,k` = δikδj`

[
1− η(λi + λj) +

η2(m− 1)

m
λiλj

]
. (48)

Solving these dynamics for c, recognizing that c0 = Vec(vv>), and computing 〈Lt〉 = TrΣCt =∑
k Ckkλk gives the desired result.

F.1 PROOF OF THEOREM 3

Suppose that the features satisfy the regularity condition〈
ψψ>Gψψ>

〉
� (α+ 1)ΣGΣ + αΣTr (ΣG) (49)

Recalling the recursion relation for Ct

Ct+1 = Ct − ηΣCt − ηCtΣ + η2
m2 −m
m2

ΣCtΣ +
η2

m

〈
ψψ>Ctψψ

>〉
� Ct − ηΣCt − ηCtΣ + η2

m2 −m
m2

ΣCtΣ +
η2

m
[(α+ 1)ΣCtΣ + αΣTrCtΣ] (50)

= (I− ηΣ)Ct(I− ηΣ) +
αη2

m
[ΣCtΣ + ΣTrΣCt] (51)

Defining that ck,t = u>k Ctuk, we note ct+1 ≤
(

(I − η diag(λ))2 + η2α
m

[
diag(λ2) + λλ>

])
ct.

Using the fact that Lt = c>t λ, we find

Lt ≤ λ>
(

(I − η diag(λ))2 +
η2α

m

[
diag(λ2) + λλ>

])t
v2 (52)

which proves the desired bound.

G POWER LAW SCALINGS IN SMALL LEARNING RATE LIMIT

By either taking a small learning rate η or a large batch size, the test loss dynamics reduce to the test
loss obtained from gradient descent on the population loss. In this section, we consider the small
learning rate limit η → 0, where the average test loss follows

〈Lt〉 ∼
∞∑
k=1

λkv
2
k(1− ηλk)2t. (53)
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Figure F.1: Non-Gaussian effects are small on random feature models. (a)-(b) The first 20-
dimensions of the summed fourth moment matrix κ4ij = u>i

〈
ψψ>ψψ>

〉
uj are plotted for the

Gaussian approximation and the empirical fourth moment. Differences between the Gaussian ap-
proximation and true fourth moment matrices on this example are visible, but are only on the order
of ∼ 5% of the size of the entries in κ4.

Under the assumption that the eigenvalue and target function power spectra both follow power laws
λk ∼ k−b and v2kλk ∼ k−a, the loss can be approximated by an integral over all modes k

〈Lt〉 =
∑
k

k−a(1− ηk−b)2t ∼
∫ ∞
1

exp
(
2η ln(1− ηk−b)t− a ln k

)
dk (54)

∼
∫ ∞
1

exp
(
−2ηηk−bt− a ln k

)
dk , η → 0 (55)

We identify the function f(k) = 2ηk−b + 1
t ln k and proceed with Laplace’s method (Bender &

Orszag, 1999). This consists of Taylor expanding f(k) around its minimum to second order and
computing a Gaussian integral∫

exp(−tf(k))dk ∼
∫

exp

(
−tf(k∗)− t

2
f ′′(k∗)(k − k∗)2

)
∼ exp(−tf(k∗))

√
2π

tf ′′(k∗)
.

(56)
We must identify the k∗ which minimizes f(k). The interpretation of this value is that it indexes the
mode which dominates the error at a large time t. The first order condition gives

f ′(k) = −2bηk−b−1 +
a

tk
= 0 =⇒ k∗ = (2bηt/a)

1/b
. (57)

The second derivative has the form

f ′′(k∗) = 2b2ηk−b−2 − 1

tk2
|k∗ = 2b2η (2bηt/a)

−(b+2)/b − 1

t
(2bηt/a)

−2/b ∼ t−1−2/b. (58)

Thus we are left with a scaling of the form

〈Lt〉 ∼ exp(−a/b ln t)t1/b ∼ t−
a−1
b . (59)

H PROOF OF THEOREM 4

Let
〈
y2⊥
〉

= σ2 and 〈y⊥〉 = 0, 〈y⊥ψ〉 = 0. The gradient descent updates take the following form
∆t+1 = ∆t − ηgt with

gt =
1

m

m∑
i=1

ψi
[
ψ>i ∆t + y⊥,i

]
. (60)

Again, defining Ct =
〈
∆t∆

>
t

〉
we perform the average over each of the ψi vectors to obtain the

following recursion relation

Ct+1 =
〈
∆t∆

>
t

〉
− η

〈
∆tg

>
t

〉
− η

〈
gt∆

>
t

〉
+ η2

〈
gtg
>
t

〉
= Ct − ηΣCt − ηCtΣ +

m+ 1

m
ΣCtΣ +

1

m
ΣTr (CtΣ) + η2σ2Σ. (61)

Again, analyzing ct,k = u>k Ctuk we find

ct+1,k =

(
1− 2ηλk + η2

m+ 1

m
λ2k

)
ct,k +

1

m

∑
`

λ`ct,` + η2σ2λk. (62)
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The vector ct follows the linear evolution

ct+1 = Act + η2σ2λ. (63)

Let b = η2σ2λ. Writing out the first few steps, we identify a pattern

c1 = Ac0 + b

c2 = Ac1 + b = A2c0 + Ab+ b

c3 = Ac2 + b = A3c0 + A2b+ Ab+ b

...

ct = Atc0 +

(
t−1∑
n=0

An

)
b. (64)

The geometric sum
(∑t−1

n=0 An
)

can be computed exactly under the assumption that (I − A) is
invertible which holds provided all of A’s eigenvalues are less than unity, which necessarily holds
provided the system is stable. The geometric sum yields(

t−1∑
n=0

An

)
= (I−A)−1

(
I−At

)
. (65)

Recalling the definition of b = σ2η2λ and the definition of the average loss 〈Lt〉 = λ>ct, we have

〈Lt〉 = σ2 + λ>Atc0 + η2σ2λ>(I−A)−1
(
I−At

)
λ. (66)

Recognizing c0 = v2 gives the desired result.

I PROOF OF THEOREM 5

We will now prove that if the training p̂(x) and test distributions p(x) are different and have feature
correlation matrices Σ̂ and Σ respectively, then the average training and test losses have the form

Ltrain = Tr
[
Σ̂Ct

]
Ltest = Tr [ΣCt] . (67)

As before, we will assume that there exist weights w∗ which satisfy y = w∗ ·ψ. We start by noticing
that the update rule for gradient descent

wt = wt − ηgt , gt =
1

m

m∑
µ=1

ψt,µψ
>
t,µ [wt −w∗] (68)

generates the following dynamics for the weight discrepancy correlation Ct =〈
(wt −w∗)(wt −w∗)>

〉
Dt

.

Ct+1 = Ct − ηΣ̂Ct − ηCtΣ̂ + η2
(

1− 1

m

)
Σ̂CtΣ̂ +

η2

m

〈
ψψ>Ctψψ

>〉 (69)

This formula can be obtained through the simple averaging procedure shown in B. Under the Gaus-
sian approximation, we can obtain a simplification

Ct+1 = (I− ηΣ)Ct(I− ηΣ) +
η2

m
[ΣCtΣ + ΣTrΣCt] (70)

We can solve for the evolution of the diagonal and off-diagonal entries in this matrix giving

u>k Ctuk =
[
Atv2

]
k
, u>k Ctu` =

(
1− ηλ̂k − ηλ̂` + η2

(
1 +

1

m

)
λ̂kλ̂`

)t
vkv` (71)
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To calculate the training and test error, we have

〈Ltest〉 =
〈
(ψ(x) ·wt −ψ(x) ·w∗)2

〉
x∼p(x),Dt

= 〈(wt −w∗)Σ (wt −w∗)〉 = TrΣCt.

〈Ltrain〉 =
〈
(ψ(x) ·wt −ψ(x) ·w∗)2

〉
x∼p̂(x),Dt

=
〈

(wt −w∗)Σ̂ (wt −w∗)
〉

= TrΣ̂Ct. (72)

Note that in the training error formula, since Σ̂ has eigenvectors uk only the diagonal terms u>k Ctuk
enter into the formula for Ltrain, but off-diagonal components u>k Ctu` do enter into the formula
for Ltest

J EXPERIMENTAL DETAILS

For Figures 3, we use the last two classes of MNIST and CIFAR-10. We encode the target values
as binary y ∈ {+1,−1}. For Figure 5, we use 6000 random training points drawn from entire
MNIST and CIFAR-10 datasets to calculate the spectrum of the Fisher information matrix. We train
with SGD on these training data, using one-hot label vectors for each training example and plot the
error on the test set. We train our models on a Google Colab GPU and include code to reproduce
all experimental results in the supplementary materials. To match our theory, we use fixed learning
rate SGD. Both evaluation of the infinite width kernels and training were performed with the Neural
Tangents API (Novak et al., 2020).
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