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ABSTRACT

After developer adjustments to a machine learning (ML) algorithm, how can the
results of an old hyperparameter optimization (HPO) automatically be used to
speedup a new HPO? This question poses a challenging problem, as developer
adjustments can change which hyperparameter settings perform well, or even the
hyperparameter search space itself. While many approaches exist that leverage
knowledge obtained on previous tasks, so far, knowledge from previous develop-
ment steps remains entirely untapped. In this work, we remedy this situation and
propose a new research framework: hyperparameter transfer across adjustments
(HT-AA). To lay a solid foundation for this research framework, we provide four
simple HT-AA baseline algorithms and eight benchmarks changing various aspects
of ML algorithms, their hyperparameter search spaces, and the neural architectures
used. The best baseline, on average and depending on the budgets for the old and
new HPO, reaches a given performance 1.2–3.6x faster than a prominent HPO al-
gorithm without transfer. As HPO is a crucial step in ML development but requires
extensive computational resources, this speedup would lead to faster development
cycles, lower costs, and reduced environmental impacts. To make these benefits
available to ML developers off-the-shelf and to facilitate future research on HT-AA,
we provide python packages for our baselines and benchmarks.

Graphical Abstract: Hyperparameter optimization (HPO) across adjustments to the algorithm or
hyperparameter search space. A common practice is to perform HPO from scratch after each
adjustment or to somehow manually transfer knowledge. In contrast, we propose a new research
framework about automatic knowledge transfers across adjustments for HPO.

1 INTRODUCTION: A NEW HYPERPARAMETER TRANSFER FRAMEWORK

The machine learning (ML) community arrived at the current generation of ML algorithms by perform-
ing many iterative adjustments. Likely, the way to artificial general intelligence requires many more
adjustments. Each algorithm adjustment could change which settings of the algorithm’s hyperparam-
eters perform well, or even the hyperparameter search space itself (Chen et al., 2018; Li et al., 2020).
For example, when deep learning developers change the optimizer, the learning rate’s optimal value
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likely changes, and the new optimizer may also introduce new hyperparameters. Since ML algorithms
are known to be very sensitive to their hyperparameters (Chen et al., 2018; Feurer & Hutter, 2019),
developers are faced with the question of how to adjust their hyperparameters after changing their
code. Assuming that the developers have results of one or several hyperparameter optimizations
(HPOs) that were performed before the adjustments, they have two options:

1. Somehow manually transfer knowledge from old HPOs.

This is the option chosen by many researchers and developers, explicitly disclosed, e.g., in the seminal
work on AlphaGo (Chen et al., 2018). However, this is not a satisfying option since manual decision
making is time-consuming, often individually designed, and has already lead to reproducibility
problems (Musgrave et al., 2020).

2. Start the new HPO from scratch.

Leaving previous knowledge unutilized can lead to higher computational demands and worse perfor-
mance (demonstrated empirically in Section 5). This is especially bad as the energy consumption
of ML algorithms is already recognized as an environmental problem. For example, deep learning
pipelines can have CO2 emissions on the order of magnitude of the emissions of multiple cars for
a lifetime (Strubell et al., 2019), and their energy demands are growing furiously: Schwartz et al.
(2019) cite a “300,000x increase from 2012 to 2018”. Therefore, reducing the number of evaluated
hyperparameter settings should be a general goal of the community.

The main contribution of this work is the introduction of a new research framework: Hyperparame-
ter transfer across adjustments (HT-AA), which empowers developers with a third option:

3. Automatically transfer knowledge from previous HPOs.

This option leads to advantages in two aspects: The automation of decision making and the utilization
of previous knowledge. On the one hand, the automation allows to benchmark strategies, replaces
expensive manual decision making, and enables reproducible and comparable experiments; on the
other hand, utilizing previous knowledge leads to faster development cycles, lower costs, and reduced
environmental impacts.

To lay a solid foundation for the new HT-AA framework, our individual contributions are as follows:

• We formally introduce a basic version of the HT-AA problem (Section 2).
• We provide four simple baseline algorithms for our basic HT-AA problem (Section 3).
• We provide a comprehensive set of eight novel benchmarks for our basic HT-AA problem

(Section 4).
• We show the advantage of transferring across developer adjustments: some of our simple

baseline algorithms outperform HPO from scratch up to 1.2–3.6x on average depending on
the budgets (Section 5).
• We empirically demonstrate the need for well-vetted algorithms for HT-AA: two baselines

modelled after actually-practiced manual strategies perform horribly on our benchmarks
(Section 5).
• We relate the HT-AA framework to existing research efforts and discuss the research

opportunities it opens up (Section 6).
• To facilitate future research on HT-AA, we provide open-source code for our experiments

and benchmarks and provide a python package with an out-of-the-box usable implementation
of our HT-AA algorithms.

2 HYPERPARAMETER TRANSFER ACROSS ADJUSTMENTS

After presenting a broad introduction to the topic, we now provide a detailed description of hy-
perparameter transfer across developer adjustments (HT-AA). We first introduce hyperparameter
optimization, then discuss the types of developer adjustments, and finally describe the transfer across
these adjustments.
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Figure 1: Developer adjustments from the perspective of hyperparameter optimization.

Hyperparameter optimization (HPO) The HPO formulation we utilize in this work is as follows:

minimize
x∈X

fA(x) with b evaluations , (1)

where fA(x) is the objective function for ML algorithm A with hyperparameter setting x, b is the
number of available evaluations, and X is the search space. We allow the search space X to contain
categorical and numerical dimensions alike and consider only sequential evaluations. We refer to a
specific HPO problem with the 3-tuple (X , fA, b). For a discussion on potential extensions of our
framework to different HPO formulations, we refer the reader to Section 6.

Developer adjustments We now put developer adjustments on concrete terms and introduce a
taxonomy of developer adjustments. We consider two main categories of developer adjustments: ones
that do not change the search space X (homogeneous adjustments) and ones that do (heterogenous
adjustments). Homogeneous adjustments could either change the algorithm’s implementation or the
hardware that the algorithm is run on. Heterogeneous adjustments can be further categorized into
adjustments that add or remove a hyperparameter (hyperparameter adjustments) and adjustments
that change the search space for a specific hyperparameter (range adjustments). Figure 1 shows an
illustration of the adjustment types.

Knowledge transfer across adjustments In general, a continuous stream of developer adjustments
could be accompanied by multiple HPOs. We simplify the problem in this fundamental work and only
consider the transfer between two HPO problems; we discuss a potential extension in Section 6. The
two HPO problems arise from adjustments Ψ to a ML algorithmAold and its search space Xold, which
lead to Anew,Xnew := Ψ(Aold, Xold). Specifically, the hyperparameter transfer across adjustments
problem is to solve the HPO problem (Xnew, fAnew , bnew), given the results for (Xold, fAold , bold).
Compared to HPO from scratch, developers can choose a lower budget bnew, given evidence for a
transfer algorithm achieving the same performance faster.

Relation to hyperparameter transfer across tasks (HT-AT) There exists an extensive research
field that studies the transfer across tasks for HPOs (Vanschoren, 2018). The main difference to
hyperparameter transfer across adjustments is that HT-AT assumes that there are no changes to hard-
ware, ML algorithm, and search space, whereas HT-AA is characterized by these changes. Another
difference is that most work on HT-AT considers large amounts of meta-data (up to more than a
thousand previous HPO runs and function evaluations (Wang et al., 2018; Metz et al., 2020)), whereas
in the basic HT-AA problem described above, only one previous HPO run is available. Compared to
HT-AT approaches, the main technical challenge for HT-AA approaches are heterogeneous developer
adjustments, as homogeneous HT-AA problems, where none of the adjustments changes the search
space, are syntactically equivalent to HT-AT problems with only one prior HPO run. For this homo-
geneous HT-AA, existing approaches for HT-AT could, in principle, be applied without modification;
this includes, for example the transfer acquisition function (Wistuba et al., 2018), multi-task bayesian
optimization (Swersky et al., 2013), multi-task adaptive bayesian linear regression (Perrone et al.,
2018), ranking-weighted gaussian process ensemble (Feurer et al., 2018), and difference-modelling
bayesian optimisation (Shilton et al., 2017). However, the low amount of meta-data in (homogeneous)
HT-AA poses additional challenges.
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3 BASELINE ALGORITHMS FOR HT-AA

In this section we present four baselines for the specific instantiation of the hyperparameter transfer
across adjustments (HT-AA) framework discussed in Section 2. We resist the temptation to introduce
complex approaches alongside a new research framework and instead focus on a solid foundation.
Specifically, we focus on approaches that do not use any knowledge from the new HPO for the
transfer and include two baselines that are modelled after actually-practiced manual strategies. We
first introduce the two basic HPO algorithm that the transfer approaches build upon, then introduce
two decompositions of HPO search spaces across adjustments, and finally, we present the four
baselines themselves.

3.1 BACKGROUND: HYPERPARAMETER OPTIMIZATION ALGORITHMS

We instantiate our transfer algorithms with two different basic hyperparameter optimization algo-
rithms, and also evaluate against these two algorithms (Section 5). Both algorithms are based on
Bayesian optimization (BO): Given observations D = {(xk, fA(xk)}nk=1, BO fits a probabilistic
model p(fA | D) for the objective function fA; then, to decide which hyperparameter setting to
evaluate next, BO maximizes an acquisition function α(x | D), which uses this probabilistic model.
For both approaches we follow standard practice and sample configurations randomly in a fraction of
cases (here 1/3). For a recent review of BO we refer to Shahriari et al. (2016). In the following, we
provide details for the two basic HPO algorithms which we use.

Tree-Structured Parzen Estimator One of the two algorithms that we use is the Tree-Structured
Parzen Estimator (TPE) (Bergstra et al., 2011), which is the default algorithm in the popular HyperOpt
package (Bergstra et al., 2013). TPE uses kernel density estimators to model the densities l(x) and
g(x), for the probability of a given hyperparameter configuration x being worse (l), or better (g),
than the best already evaluated configuration. To decide which configuration to evaluate, TPE then
maximizes the acquisition function x∗ ∈ arg maxx∈X g(x)/b(x) approximately. In our experiments,
we use the TPE implementation and hyperparameter settings from Falkner et al. (2018), which
requires 2(dim(Xnew) + 1) evaluations to build a model.

Bayesian optimization with Gaussian processes Bayesian optimization with Gaussian processes
uses Gaussian process regression (Rasmussen & Williams, 2006) to fit a probabilistic model p(fA |
D). To generate a sample, we optimize the widely used expected improvement (Jones et al., 1998)
acquisition function. If there are less than dim(X ) evaluations, we sample randomly. In our
experiments, we use the implementation from the SMAC3 package (Lindauer et al., 2017) with
default kernels, hyperparameters, and optimization procedures. In the following we will refer to BO
with Gaussian processes with GP.

3.2 PRELIMINARIES: SEARCH SPACE DECOMPOSITIONS

Hyperparameter adjustments For hyperparameter adjustments the new search space Xnew and
the old search space Xold only differ in hyperparameters, not in hyperparameter ranges, so we can
decompose the search spaces as Xnew = Xonly-new × Xboth and Xold = Xboth × Xonly-old, where Xboth
is the part of the search space that remains unchanged across adjustments (see Figure 2 for reference).
All baselines use this decomposition and project the hyperparameter settings that were evaluated in
the old HPO from Xold to Xboth.

Range adjustments A range adjustment can remove values from the hyperparameter range or
add values. For an adjustment of hyperparameter range XHi

old to XHi
new this can be expressed as

XHi
new = XHi

both ∪ XHi

both,range-only-new with XHi

both = XHi

old \ XHi

both,range-only-old.

3.3 BASELINE ALGORITHMS

Only Optimize New Hyperparameters A common developer strategy to manually transfer across
adjustments is to set previous hyperparameters inXboth to the best setting of the previous HPO and only
optimize hyperparameters in Xonly-new (Agostinelli et al., 2014; Huang et al., 2017; Wu & He, 2018).
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Figure 2: Example search space decomposition for a hyperparameter addition and removal.

If the previous best setting is not valid anymore, i.e., it has values in XHi

both,range-only-old for a hyperpa-
rameter Hi still in Xboth, this strategy uses the best setting that still is a valid configuration. In the
following, we refer to this strategy as only-optimize-new.

Drop Unimportant Hyperparameters A strategy inspired by manual HT-AA efforts is to only
optimize important hyperparameters. The utilization of importance statistics was, for example,
explicitly disclosed in the seminal work on AlphaGo (Chen et al., 2018). Here, we determine
the importance of each individual hyperparameter with functional analysis of variance (fANOVA)
(Hutter et al., 2014) and do not tune hyperparameters with below mean importance. Therefore, this
strategy only optimizes hyperparameters in Xonly-new and hyperparameters in Xboth with above mean
importance. In the following, we refer to this strategy as drop-unimportant.

First Evaluate Best The best-first strategy uses only-optimize-new for the first evaluation, and
uses standard GP for the remaining evaluations. This strategy has a large potential speedup and low
risk as it falls back to standard GP.

Transfer GP (TGP) / Transfer TPE (T2PE) The main idea of Transfer GP (TGP) / Trans-
fer TPE (T2PE) is to fit a GP / TPE model on the observations of the previous HPO Dold =

{(xk, fAold(xk)}bold
k=1 for the part of the search space that remained unchanged (i.e., Xboth, for refer-

ence see Figure 2). To this end, TGP/T2PE first discards now invalid hyperparameter settings and
projects the remaining settings xi in Dold from Xold to Xboth to yield Dold,both. Then, either a GP
or TPE model Mboth is fit on these transformed previous results Dold,both, and to generate a sample
x ∈ Xnew for the new HPO, a sample from Mboth over Xboth is combined with a random sample over
Xonly-new. Further, as in the basic HPO algorithms, TGP/T2PE uses a random sample over Xnew in
1/3 of cases, and after dim(Xnew) (TGP) or 2(dim(Xnew) + 1) (T2PE) evaluations, TGP/T2PE uses a
model fitted on the new observations. We provide pseudocode for TGP/T2PE in Algorithm 1.

Algorithm 1 Sampling strategy in transfer GP/TPE
Input: Current search space Xnew, previous search space Xold, previous results Dold, budget bnew

1: Decompose Xnew = (Xboth ∪ Xboth,range-only-new) × Xonly-new . See Section 3.2
2: Discard hyperparameter settings in Dold that have values in Xboth,range-only-new
3: Project configs in Dold to space Xboth, to yield Dold,both
4: Fit TPE or GP model Mboth for Xboth on Dold,both
5: for t in 1, . . . , bnew do
6: if is random fraction then . See Section 3.1
7: Sample xnew from prior on Xnew
8: else if no model for Xnew then . Differs for TPE and GP, see Section 3.1
9: Sample xboth from Xboth using Mboth

10: Sample xonly-new from prior on Xonly-new
11: Combine xboth with xonly-new to yield sample xnew
12: else
13: Fit TPE or GP model Mnew for Xnew on current observations
14: Sample xnew from Xnew using Mnew
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4 BENCHMARKS FOR HT-AA

We introduce eight novel benchmarks for the basic hyperparameter transfer across adjustments
(HT-AA) problem discussed in Section 2. As is common in hyperparameter optimization research, we
employ tabular and surrogate benchmarks to allow cheap and reproducible benchmarking (Perrone
et al., 2018; Falkner et al., 2018). Tabular benchmarks achieve this with a lookup table for all possible
hyperparameter settings. In contrast, surrogate benchmarks fit a surrogate model for the objective
function (Eggensperger et al., 2014). We base our surrogate models and lookup tables on code
and data from existing hyperparameter optimization (HPO) benchmarks (detailed in Appendix A)
that, together, cover four different machine learning algorithms: a fully connected neural network
(FCN), neural architecture search for a convolutional neural network (NAS), a support vector machine
(SVM), and XGBoost (XGB). While the NAS and FCN benchmarks are based on lookup tables,
the SVM and XGB based benchmarks use surrogate models. For each of these base benchmarks,
we simulate two different types of developer adjustments (Table 1), to arrive at a total of eight
benchmarks. Additionally, for each algorithm and adjustment, we consider multiple tasks in our
benchmarks. Further, we provide a python package with all our benchmarks and refer the reader to
Appendix A for additional details on the benchmarks.

Table 1: Developer adjustments and types of adjustments in the benchmarks.

Benchmark Adjustments Adjustment Type

FCN-A Increase #units-per-layer 16× Homogeneous
Double #epochs Homogeneous
Fix batch size hyperparameter Heterogeneous

FCN-B Add per-layer choice of activation function Heterogeneous
Change learning rate schedule Homogeneous

NAS-A Add 3x3 average pooling as choice of operation to each edge Heterogeneous

NAS-B Add node to cell template (adds 3 hyperparameters) Heterogeneous

XGB-A Expose four booster hyperparameters Heterogeneous

XGB-B Change four unexposed booster hyperparameter values Homogeneous

SVM-A Change kernel Homogeneous
Remove hyperparameter for old kernel Heterogeneous
Add hyperparameter for new kernel Heterogeneous

SVM-B Increase range for cost hyperparameter Heterogeneous

5 EXPERIMENTS AND RESULTS

In this section, we empirically evaluate the four baseline algorithms presented in Section 3 as solutions
for the hyperparameter transfer across adjustments problem. We first describe the evaluation protocol
used through all studies and then present the results.

Evaluation protocol We use the benchmarks introduced in Section 4 and focus on the speedup
of transfer strategies over either Bayesian optimization with Gaussian processes (GP), or over Tree
Parzen Estimator (TPE). Specifically, we measured how much faster a transfer algorithm reaches a
given objective value compared to GP or TPE in terms of the number of evaluations. We repeated all
measurements across 25 different random seeds and report results for validation objectives, as not all
benchmarks provide test objectives, and to reduce noise in our evaluation. We terminate runs after
400 evaluations and report ratio of means. To aggregate these ratios across tasks and benchmarks, we
use the geometric mean. We use the geometric mean, as, intuitively, two speedups of e.g., 0.1x and
10x average to 1x, and not 5.05x. We want to note that the standard mean is an upper bound for the
geometric mean, so using the geometric mean in fact makes the speedups slightly less impressive than
had we used the standard arithmetic mean. To determine the target objective values, we measured
GP’s average performance for 10, 20, and 40 evaluations. We chose this range of evaluations as a

6



Under review as a conference paper at ICLR 2021

Table 2: Average speedup across benchmarks for different #evaluations for the old and new HPO. For
the GP based (left) and TPE based (right) evaluation.

#Evals Old #Evals New Best First Transfer GP/TPE Best First + Transfer GP/TPE

10 10 1.6 / 1.5 1.3 / 1.0 1.7 / 1.7
20 1.4 / 1.4 1.2 / 1.0 1.4 / 1.4
40 1.1 / 1.2 1.1 / 1.1 1.2 / 1.2

20 10 2.3 / 1.8 1.7 / 1.3 2.6 / 2.1
20 1.7 / 1.4 1.5 / 1.2 2.0 / 1.8
40 1.3 / 1.1 1.2 / 1.1 1.4 / 1.5

40 10 3.3 / 2.6 2.1 / 1.5 3.6 / 2.6
20 2.6 / 2.0 2.0 / 1.4 2.9 / 2.0
40 1.8 / 1.4 1.5 / 1.2 2.1 / 1.5

survey among NeurIPS2019 and ICLR2020 authors indicates that most hyperparameter optimizations
(HPOs) do not consider more than 50 evaluations (Bouthillier & Varoquaux, 2020). Further, for
transfer approaches, we perform this experiment for different evaluation budgets for the HPO before
the adjustments (also for 10, 20, and 40 evaluations).

Results The transfer GP (TGP) / transfer TPE (T2PE) and best-first strategy lead to large speedups,
while drop-unimportant and only-optimize-new perform poorly. Here, in this paragraph we focus
on the GP based evaluation. On average and depending on the budgets for the old and new HPO,
TGP reaches the given objective values 1.1–2.1x faster than GP, and best-first 1.1–3.3x faster. The
combination of TGP/T2PE and best-first leads to further speedups over best-first if the budget for the
old HPO was 20 or 40, and when the old budget and new budget both equal 10. These additional
average speedups when combining TGP with best-first are between 0.1 and 0.3. We visualize these
results with violin plots (Figure 3), as they take into account the multi modality of the results, and
also provide a table with exact averages (Table 2). There are two main trends visible: (1) The more
optimal the target objective, the smaller the speedup, and (2) the higher the budget for the previous
HPO, the higher the speedup. For a more fine-grained visualization that shows violin plots over task
averages for each benchmark, we refer to Appendix B. The approaches inspired by actually-practiced
manual strategies, drop-unimportant and only-optimize-new, do not reach the performance of GP in
a large percentage of (20%–70% on average), even while given at least 10x the budget compared
to GP These high failure rates makes an evaluation for the speedup unfeasible and indicates that
actually-practiced manual strategies perform worse than starting from scratch. For a visualization of
the failure rates of drop-unimportant and only-optimize-new, and for GP, TGP, and best-first (0-0.8%)
we refer the reader to Appendix C.

Additionally, we provide a study on the improvement in objective in Appendix D; in Appendix E we
show the results of a control study that compares GP and TPE with different ranges of random seeds;
and in Appendix F we compare GP and TPE to random search to validate their reliability.

6 RELATED WORK AND RESEARCH OPPORTUNITIES

In this section, we discuss work related to hyperparameter transfer across adjustments (HT-AA) and
present several research opportunities in combining existing ideas with HT-AA.

Transfer learning Transfer learning studies how to use observations from one or multiple source
tasks to improve learning on one or multiple target tasks (Zhuang et al., 2019). If we view the HPO
problems before and after specific developer adjustments as tasks, we can consider HT-AA as a
specific transfer learning problem. As developer adjustments may change the search space, HT-AA
would then be categorized as a heterogeneous transfer learning problem (Day & Khoshgoftaar, 2017).

Transfer learning across adjustments Recently, Berner et al. (2019) transferred knowledge be-
tween deep reinforcement learning agents across developer adjustments. They crafted techniques
to preserve, or approximately preserve, the neural network policy for each type of adjustment they
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Figure 3: Speedup to reach a given reference objective value compared to GP/TPE for best-first,
best-first combined with transfer GP/TPE, and transfer GP/TPE (from left to right in each violin
triplet) across 8 benchmarks. The violins estimate densities of benchmark geometric means. The
horizontal line in each violin shows the geometric mean across these benchmark means. #Evaluations
for the old HPO increases from left to right. The x-axis shows the budget for the GP and TPE
reference. Note that the GP and TPE runs we used to determine the reference objective are different
to the ones that we show the speedups over.

encountered. Their transfer strategies are inspired by Net2Net knowledge transfer (Chen et al., 2015),
and they use the term surgery to refer to this practice. Their work indicates that transfer learning
across adjustments is not limited to knowledge about hyperparameters, but extends to a more general
setting, leaving room for many research opportunities.

Continuous knowledge transfer In this paper, we focus on transferring knowledge from the last
HPO performed, but future work could investigate a continuous transfer of knowledge across many
cycles of adjustments and HPOs. Transferring knowledge from HPO runs on multiple previous
versions could lead to further performance gains, as information from each version could be useful
for the current HPO. Such continuous HT-AA would then be related to the field of continual learning
(Thrun & Mitchell, 1995; Lange et al., 2020).

Hyperparameter transfer across tasks (HT-AT) While we have related HT-AA to HT-AT in
Section 2, here, we want to complement this discussion with the research opportunities we see
in HT-AA based on HT-AT. First, an adaptation of across-task strategies, e.g., the ones cites in
Section 2, to the across-adjustments setting could lead to more powerful HT-AA approaches in the
future. Second, the combination of across-task and across-adjustments hyperparameter transfer could
provide even larger speedups than either transfer strategy on its own.
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and only-optimize-new. Each data point for the violins represents the mean percentage of failures for
a benchmark. The line in each violin shows the mean across these benchmark means. #Evaluations
for the old HPO increases from left to right. The x-axis shows the budget for the GP reference.

Advanced hyperparameter optimization HT-AA can be combined with the many extensions to
hyperparameter optimization (HPO). One such extension is multi-fidelity HPO, which allows the
use of cheap-to-evaluate approximations to the actual objective (Li et al., 2017; Falkner et al., 2018).
Similarly, cost-aware HPO adds a cost to each hyperparameter setting, so the evaluation of cheap
settings can be prioritized over expensive ones (Snoek et al., 2012). Yet another extension is to take
evaluation noise into account (Kersting et al., 2007), or to consider not one, but multiple objectives
to optimize for (Khan et al., 2002). All these HPO formulations can be studied in conjunction with
HT-AA, to either provide further speedups or deal with more general optimization problems.

Guided machine learning The field of guided machine learning (gML) studies the design of
interfaces that enables humans to guide ML processes (Westphal et al., 2019). An HT-AA algorithm
could be viewed as a ML algorithm that receives incremental guidance in the form of arbitrary
developer adjustments; the interface would then be the programming language(s) the ML algorithm
is implemented in. On a different note, gML could provide HT-AA algorithms with additional
information about the adjustments to the ML algorithm. For example, when adding a hyperparameter,
there are two distinctions we can make: Either an existing hyperparameter is exposed , or a new
component is added to the algorithm that introduces a new hyperparameter From the HPO problem
itself, we cannot know which case it is, and neither which fixed value an exposed hyperparameter had.
Guided HT-AA algorithms could ask for user input to fill this knowledge gap, or HT-AA algorithms
with code analysis could extract this knowledge from the source code.

Programming by optimization The programming by optimization (PbO) framework (Hoos, 2012)
proposes the automatic construction of a search space of algorithms based on code annotations,
and the subsequent search in this search space. While PbO considers changing search spaces over
developer actions, each task and development step restarts the search from scratch. This is in contrast
to HT-AA, which alleviates the need to restart from scratch after each developer adjustment.

7 CONCLUSION

In this work, we introduced hyperparameter transfer across developer adjustments to improve effi-
ciency during the development of ML algorithms. In light of rising energy demands of ML algorithms
and rising global temperatures, more efficient ML development practices are an important issue now
and will become more important in the future. As already some of the simple baseline algorithm
considered in this work lead to large empirical speedups, our new framework represents a promising
step towards efficient ML development.
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A BENCHMARK SUITE DETAILS

A.1 OVERVIEW

Table 3: Benchmarks overview

Benchmark #Hyperparameters Old #Hyperparameters New #Tasks Metric

FCN-A 6 5 4 MSE
FCN-B 6 8 4 MSE

NAS-A 6 6 3 Accuracy
NAS-B 3 6 3 Accuracy

XGB-A 5 9 10 AUC
XGB-B 6 6 10 AUC

SVM-A 2 2 10 AUC
SVM-B 2 2 10 AUC

A.2 FCN-A & FCN-B

Base benchmark We use code and data from (Klein & Hutter, 2019). We use the tasks HPO-
Bench-Protein, HPO-Bench-Slice, HPO-Bench-Naval, and HPO-Bench-Parkinson.

Budget For FCN-A the budget is set to 100. For FCN-B, additional to the changes in the search
space (Table 6), the budget is increased from 50 to 100 epochs.

Table 4: Values for integer coded hyperparameters in FCN benchmarks

Hyperparameter Values

# Units Layer {1, 2} (16, 32, 64, 128, 256, 512)
Dropout Layer {1, 2} (0.0, 0.3, 0.6)
Initial Learning Rate (0.0005, 0.001, 0.005, 0.01, 0.05, 0.1)
Batch Size (8, 16, 32, 64)

Table 5: Search spaces in FCN-A. Numerical hyperparameters are encoded as integers, see Table 4
for specific values for these hyperparameters.

Steps Hyperparameter Range/Value Prior

1 # Units Layer 1 1 -
1 # Units Layer 2 1 -
1 Batch Size {0, . . . , 3} Uniform

1, 2 Dropout Layer 1 {0, . . . , 2} Uniform
1, 2 Dropout Layer 2 {0, . . . , 2} Uniform
1, 2 Activation Layer 1 {ReLu, tanh} Uniform
1, 2 Activation Layer 2 {ReLu, tanh} Uniform
1, 2 Initial Learning Rate {0, . . . , 5} Uniform
1, 2 Learning Rate Schedule Constant Uniform

2 # Units Layer 1 5 -
2 # Units Layer 2 5 -
2 Batch Size 1 -
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Table 6: Search spaces in FCN-B. Numerical hyperparameters are encoded as integers, see Table 4
for specific values for these hyperparameters.

Steps Hyperparameter Range/Value Prior

1 Activation Layer 1 tanh -
1 Activation Layer 2 tanh -
1 Learning Rate Schedule Constant -

1, 2 # Units Layer 1 {0, . . . , 5} Uniform
1, 2 # Units Layer 2 {0, . . . , 5} Uniform
1, 2 Dropout Layer 1 {0, . . . , 2} Uniform
1, 2 Dropout Layer 2 {0, . . . , 2} Uniform
1, 2 Initial Learning Rate {0, . . . , 5} Uniform
1, 2 Batch Size {0, . . . , 3} Uniform

2 Activation Layer 1 {ReLu, tanh} Uniform
2 Activation Layer 2 {ReLu, tanh} Uniform
2 Learning Rate Schedule Cosine -

A.3 NAS-A & NAS-B

Base benchmark We use code and data from (Dong & Yang, 2019). We use the tasks CIFAR10,
CIFAR100, and ImageNet.

Table 7: Search spaces in NAS-A.

Steps Hyperparameter Range/Value Prior

1, 2 0→ 2 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
1, 2 0→ 3 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
1, 2 2→ 3 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform

2 0→ 1 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 1→ 2 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 1→ 3 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform

Table 8: Search spaces in NAS-B.

Steps Hyperparameter Range/Value Prior

1 0→ 1 { none, skip-connect, conv1x1, conv3x3 } Uniform
1 0→ 2 { none, skip-connect, conv1x1, conv3x3 } Uniform
1 0→ 3 { none, skip-connect, conv1x1, conv3x3 } Uniform
1 1→ 2 { none, skip-connect, conv1x1, conv3x3 } Uniform
1 1→ 3 { none, skip-connect, conv1x1, conv3x3 } Uniform
1 2→ 3 { none, skip-connect, conv1x1, conv3x3 } Uniform

2 0→ 1 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 0→ 2 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 0→ 3 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 1→ 2 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 1→ 3 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform
2 2→ 3 { none, skip-connect, conv1x1, conv3x3, avg-pool3x3 } Uniform

A.4 SVM-A & SVM-B

Base benchmark We use an open source implementation by the HPOlib authors following Perrone
et al. (2018). This implementation uses data from Kühn et al. (2018) and employs a random forest as a
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surrogate model (Eggensperger et al., 2014). For our benchmarks, we randomly selected the ten tasks
monks-problems-2, tic-tac-toe, kc2, monks-problems-1, qsar-biodeg, nomao, pc3, bank-marketing,
ada-agnostic, and hill-valley.

Table 9: Search spaces in SVM-A.

Steps Hyperparameter Range/Value Prior

1 Kernel Radial -
1 Degree {2, . . . , 5} Uniform

1, 2 Cost [2−10, 210] Log-uniform

2 Kernel Polynomial -
2 γ [2−5, 25] Log-uniform

Table 10: Search spaces in SVM-B.

Steps Hyperparameter Range/Value Prior

1 Cost [2−5, 25] Log-uniform

1, 2 γ 1 -
1, 2 Degree 5 -
1, 2 Kernel {Polynomial, Linear, Radial} Uniform

2 Cost [2−10, 210] Log-uniform

A.5 XGB-A & XGB-B

Base benchmark We use an open source implementation by the HPOlib authors following Perrone
et al. (2018). This implementation uses data from Kühn et al. (2018) and employs a random forest as a
surrogate model (Eggensperger et al., 2014). For our benchmarks, we randomly selected the ten tasks
monks-problems-2, tic-tac-toe, kc2, monks-problems-1, qsar-biodeg, nomao, pc3, bank-marketing,
ada-agnostic, hill-valley

Table 11: Search spaces in XGB-A

Steps Hyperparameter Range/Value Prior

1 Colsample-by-tree 1 -
1 Colsample-by-level 1 -
1 Minimum child weight 1 -
1 Maximum depth 6 -

1, 2 Booster Tree -
1, 2 # Rounds {1, . . . , 5, 000} Uniform
1, 2 Subsample [0, 1] Uniform
1, 2 Eta [2−10, 20] Log-uniform
1, 2 Lambda [2−10, 210] Log-uniform
1, 2 Alpha [2−10, 210] Log-uniform

2 Colsample-by-tree [0, 1] Uniform
2 Colsample-by-level [0, 1] Uniform
2 Minimum child weight [20, 27] Log-uniform
2 Maximum depth {1, . . . , 15} Uniform
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Table 12: Search spaces in XGB-B

Steps Hyperparameter Range/Value Prior

1 Colsample-by-tree 1 -
1 Colsample-by-level 1 -
1 Minimum child weight 1 -
1 Maximum depth 6 -

1, 2 Booster { Linear, Tree } -
1, 2 # Rounds {1, . . . , 5, 000} Uniform
1, 2 Subsample [0, 1] Uniform
1, 2 Eta [2−10, 20] Log-uniform
1, 2 Lambda [2−10, 210] Log-uniform
1, 2 Alpha [2−10, 210] Log-uniform

2 Colsample-by-tree 1 -
2 Colsample-by-level 0.5 -
2 Minimum child weight 10 -
2 Maximum depth 10 -
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B DETAILED SPEEDUPS

B.1 GP BASED EVALUATION
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Figure 5: Speedup compared to GP for best-first, best-first combined with transfer GP, and transfer
GP across tasks for each of 8 benchmarks. The previous HPO has a budget of 10 evaluations here.
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Figure 6: Speedup compared to GP for best-first, best-first combined with transfer GP, and transfer
GP (from left to right in each violin triplet) across tasks for each of 8 benchmarks. The previous HPO
has a budget of 20 evaluations.
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Figure 7: Speedup compared to GP for best-first, best-first combined with transfer GP, and transfer
GP (from left to right in each violin triplet) across tasks for each of 8 benchmarks. The previous HPO
has a budget of 40 evaluations.
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B.2 TPE BASED EVALUATION
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Figure 8: Speedup compared to GP for best-first, best-first combined with transfer GP, and transfer
GP across tasks for each of 8 benchmarks. The previous HPO has a budget of 10 evaluations here.
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Figure 9: Speedup compared to GP for best-first, best-first combined with transfer GP, and transfer
GP (from left to right in each violin triplet) across tasks for each of 8 benchmarks. The previous HPO
has a budget of 20 evaluations.
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Figure 10: Speedup compared to GP for best-first, best-first combined with transfer GP, and transfer
GP (from left to right in each violin triplet) across tasks for each of 8 benchmarks. The previous HPO
has a budget of 40 evaluations.
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C FAILURE RATES
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Figure 11: Failure rates for best-first, GP, and transfer GP (from left to right in each violin triplet)
across 8 benchmarks. The violins estimate densities of the task means. The horizontal line in each
violin shows the mean across these task means. The plots from left to right utilize increasing budget
for the pre-adjustment hyperparameter. The x-axis shows the budget for the GP reference.
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Figure 12: Failure rates for best-first, TPE, and transfer TPE (from left to right in each violin triplet)
across 8 benchmarks. The violins estimate densities of the task means. The horizontal line in each
violin shows the mean across these task means. The plots from left to right utilize increasing budget
for the pre-adjustment hyperparameter. The x-axis shows the budget for the GP reference.
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Figure 13: Failure rates for the TPE based drop-unimportant and only-optimize-new across 8
benchmarks. The violins estimate densities of the task means. The horizontal line in each violin
shows the mean across these task means. The plots from left to right utilize increasing budget for the
pre-adjustment hyperparameter. The x-axis shows the budget for the GP reference.

D OBJECTIVE IMPROVEMENTS

Here, we show the standardized improvement over the control algorithm. We compute the standard-
ized mean improvement by averaging the final performance across repetitions, then subtract the mean
performance of the control algorithm, and divide by the standard deviation of the control algorithm.
This metric is known as glass’ delta and intuitively gives the improvement of an algorithm over a
control algorithm in the standard units of this control algorithm. As some benchmarks had a standard
deviation of 0, we added a small constant in those cases. We chose this constant according to the
0.2-quantile of the observed values. For the plots we clip the improvement to [−10, ∞), as for some
plots there are extreme outliers. We provide results for two aggregation levels: the distribution over
task standardized mean improvements, where we compute the standardized mean improvement over
repetitions and show results on a per-benchmark level; and the distribution over benchmark means,
i.e., the means across task standardized mean improvements for all tasks in a given benchmark.
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D.1 TRANSFER GP, BEST FIRST, AND TRANSFER GP COMBINED WITH BEST FIRST VS. GP
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Figure 14: Standardized objective improvements of best-first, best-first combined with transfer GP,
and transfer GP (from left to right in each violin triplet) over GP across 8 benchmarks. The violins
estimate densities of the benchmark means. The horizontal line in each violin shows the mean across
these benchmark means. #Evaluations for the old HPO increases from left to right. In each plot, the
evaluation budget increases.

25



Under review as a conference paper at ICLR 2021

−10.0

−7.5

−5.0

−2.5

0.0

FCN-A FCN-B

−10.0

−7.5

−5.0

−2.5

0.0

Im
pr

ov
em

en
tO

ve
r

G
P

[S
D

G
P
+
ε]

NAS-A NAS-B

−10.0

−7.5

−5.0

−2.5

0.0

SVM-A SVM-B

10 20 40
Evaluations [#]

−10.0

−7.5

−5.0

−2.5

0.0

XGB-A

10 20 40

XGB-B

Best First Best First + Transfer GP Transfer GP

Figure 15: Standardized objective improvements of best-first, best-first combined with transfer GP,
and transfer GP (from left to right in each violin triplet) across tasks for each of 8 benchmarks. The
previous HPO has a budget of 10 evaluations.
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Figure 16: Standardized objective improvements of best-first, best-first combined with transfer GP,
and transfer GP (from left to right in each violin triplet) across tasks for each of 8 benchmarks. The
previous HPO has a budget of 20 evaluations.
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Figure 17: Standardized objective improvements of best-first, best-first combined with transfer GP,
and transfer GP (from left to right in each violin triplet) across tasks for each of 8 benchmarks. The
previous HPO has a budget of 40 evaluations.
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D.2 TRANSFER TPE, BEST FIRST, AND TRANSFER TPE COMBINED WITH BEST FIRST VS.
TPE
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Figure 18: Standardized objective improvements of best-first, best-first combined with transfer TPE,
and transfer TPE (from left to right in each violin triplet) over GP across 8 benchmarks. The violins
estimate densities of the benchmark means. The horizontal line in each violin shows the mean across
these benchmark means. #Evaluations for the old HPO increases from left to right. In each plot, the
evaluation budget increases.

29



Under review as a conference paper at ICLR 2021

−1

0

FCN-A FCN-B

−1

0

Im
pr

ov
em

en
tO

ve
r

T
PE

[S
D

G
P
+
ε]

NAS-A NAS-B

−1

0

SVM-A SVM-B

10 20 40
Evaluations [#]

−1

0

XGB-A

10 20 40

XGB-B

Best First Best First + Transfer TPE Transfer TPE

Figure 19: Standardized objective improvements of best-first, best-first combined with transfer TPE,
and transfer TPE (from left to right in each violin triplet) across tasks for each of 8 benchmarks. The
previous HPO has a budget of 10 evaluations.
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Figure 20: Standardized objective improvements of best-first, best-first combined with transfer TPE,
and transfer TPE (from left to right in each violin triplet) across tasks for each of 8 benchmarks. The
previous HPO has a budget of 20 evaluations.
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Figure 21: Standardized objective improvements of best-first, best-first combined with transfer TPE,
and transfer TPE (from left to right in each violin triplet) across tasks for each of 8 benchmarks. The
previous HPO has a budget of 40 evaluations.
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D.3 GP BASED ONLY OPTIMIZE NEW AND DROP UNIMPORTANT VS. GP
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Figure 22: Standardized objective improvements of only-optimize-new and drop-unimportant over
GP across 8 benchmarks. The violins estimate densities of the benchmark means. The horizontal
line in each violin shows the mean across these benchmark means. #Evaluations for the old HPO
increases from left to right. In each plot, the evaluation budget increases.

33



Under review as a conference paper at ICLR 2021

−10.0

−7.5

−5.0

−2.5

0.0

FCN-A FCN-B

−10.0

−7.5

−5.0

−2.5

0.0

Im
pr

ov
em

en
tO

ve
r

G
P

[S
D

G
P
+
ε]

NAS-A NAS-B

−10.0

−7.5

−5.0

−2.5

0.0

SVM-A SVM-B

10 20 40
Evaluations [#]

−10.0

−7.5

−5.0

−2.5

0.0

XGB-A

10 20 40

XGB-B

Drop Unimportant Only Optimize New

Figure 23: Standardized objective improvements of only-optimize-new and drop-unimportant across
tasks for each of 8 benchmarks. The previous HPO has a budget of 10 evaluations.
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Figure 24: Standardized objective improvements of only-optimize-new and drop-unimportant across
tasks for each of 8 benchmarks. The previous HPO has a budget of 20 evaluations.
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Figure 25: Standardized objective improvements of only-optimize-new and drop-unimportant across
tasks for each of 8 benchmarks. The previous HPO has a budget of 40 evaluations.
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D.4 TPE BASED ONLY OPTIMIZE NEW AND DROP UNIMPORTANT VS. TPE
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Figure 26: Standardized objective improvements of only-optimize-new and drop-unimportant over
TPE across 8 benchmarks. The violins estimate densities of the benchmark means. The horizontal
line in each violin shows the mean across these benchmark means. #Evaluations for the old HPO
increases from left to right. In each plot, the evaluation budget increases.
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Figure 27: Standardized objective improvements of only-optimize-new and drop-unimportant across
tasks for each of 8 benchmarks. The previous HPO has a budget of 10 evaluations.
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Figure 28: Standardized objective improvements of only-optimize-new and drop-unimportant across
tasks for each of 8 benchmarks. The previous HPO has a budget of 20 evaluations.
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Figure 29: Standardized objective improvements of only-optimize-new and drop-unimportant across
tasks for each of 8 benchmarks. The previous HPO has a budget of 40 evaluations.
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E CONTROL STUDY: GP AND TPE FOR DIFFERENT RANDOM SEED RANGES

As a sanity check, and to gauge the influence of random seeds, we compare GP (and TPE) to itself
with different random seed ranges (GP1 and GP2). We observe little differences in GP1 and GP2

(likewise for TPE) compared to the differences between GP and the transfer approaches (Figure 30
and Figure 31).
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Figure 30: Speedup of GP1 over GP2 across 8 benchmarks. The violins estimate densities of the
benchmark geometric means. The horizontal line in each violin shows the geometric mean across
these benchmark means. #Evaluations for the old HPO increases from left to right. The x-axis shows
the budget for the GP reference.
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Figure 31: Speedup of TPE1 over TPE2 across 8 benchmarks. The violins estimate densities of the
benchmark geometric means. The horizontal line in each violin shows the geometric mean across
these benchmark means. #Evaluations for the old HPO increases from left to right. The x-axis shows
the budget for the TPE reference.
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F CONTROL STUDY: RELIABILITY OF GP AND TPE

As a sanity check for the reliability of GP and TPE, we compare them to random search.
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Figure 32: Speedup of GP and TPE over random search across 8 benchmarks. The violins estimate
densities of the benchmark means. The horizontal line in each violin shows the geometric mean
across these benchmark means. #Evaluations for the old HPO increases from left to right. The x-axis
shows the budget for the GP reference.
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