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ABSTRACT

Dynamic graph learning methods have recently emerged as pow-
erful tools for modelling relational data evolving through time.
However, despite extensive benchmarking efforts, it remains un-
clear whether current Temporal Graph Neural Networks (TGNNs)
effectively capture core temporal patterns such as periodicity, cause-
and-effect, and long-range dependencies. In this work, we intro-
duce the Temporal Graph Reasoning Benchmark (T-GRAB ),
a comprehensive set of synthetic tasks designed to systematically
probe the capabilities of TGNNS s to reason across time. T-GRAB pro-
vides controlled, interpretable tasks that isolate key temporal skills:
counting/memorizing periodic repetitions, inferring delayed causal
effects, and capturing long-range dependencies over both spatial
and temporal dimensions. We evaluate 11 temporal graph learn-
ing methods on these tasks, revealing fundamental shortcomings
in their ability to generalize temporal patterns. Our findings offer
actionable insights into the limitations of current models, high-
light challenges hidden by traditional real-world benchmarks, and
motivate the development of architectures with stronger temporal
reasoning abilities. The code for T-GRAB can be found at: https:
//github.com/alirezadizaji/T-GRAB.
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1 INTRODUCTION

Many real-world networks, such as social media networks [8], hu-
man contact networks [23] and financial transaction [21] networks
can be formulated as temporal graphs or graphs that evolve over
time. Recently, Temporal Graph Neural Networks (TGNNs) have
emerged as promising architectures to address the unique chal-
lenges associated with ML on temporal graphs, which necessitates
the modeling of both spatial and temporal dependencies [4, 6, 20, 25,
30, 32]. Naturally, the development of TGNNS is quickly followed by
an increased focus to design challenging benchmarks to understand
their capabilities [5, 8, 19, 24, 31] across node, edge, and graph-level
tasks. These benchmarks provide significant challenges for TGNNs
in both scale and domain diversity with a focus on real-world tasks.
However, current TGNNs have been shown to significantly struggle
in these benchmarks and, in some cases, even underperform simple
heuristics such as EdgeBank [19] and persistent forecast [8].
When compared to the increasing number of novel architec-
tures proposed, exploring the weaknesses of TGNNs remains under-
explored and often applies only to specific categories of methods [1,
26, 27]. Therefore, we argue that there is a strong need for a surgical
and well-designed benchmark to highlight the weakness of existing
models in performing crucial yet simple tasks on temporal graphs.
In the past, diagnostic benchmarks were developed with differ-
ent task classes to provide crucial insights into model capabilities
precisely when complex, real-world benchmarks proved insuffi-
cient for pinpointing specific failure modes. For instance, in com-
puter vision, the CLEVR dataset [10] utilized synthetically gener-
ated scenes to test the compositional reasoning abilities of visual
question-answering models, revealing limitations obscured by the
biases and confounding factors present in natural images. Similarly,
in early natural language processing, the bAbI dataset [29] pro-
vided a suite of 20 synthetic question-answering tasks generated
algorithmically to probe basic reasoning skills (such as counting,
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Figure 1: T-GRAB tests the capabilities of TGNNs to reason
over time in three fundamental aspects and includes three
carefully designed tasks.

induction, and deduction) essential for language understanding,
offering metrics for progress on these core competencies. Reinforce-
ment learning has also benefited from such focused evaluations;
for instance, the Behaviour Suite for RL [16] includes controlled
environments specifically designed to diagnose the memory and
exploration capabilities of RL agents.

These examples demonstrate the power of purely synthetic
datasets and environments designed for diagnostic evaluation: they
allow for precise control over task complexity and the factors being
tested, yielding clear insights into model strengths and weaknesses.
Such a dedicated, synthetic diagnostic benchmark is currently miss-
ing for the domain of temporal graph learning (TGL). While existing
benchmarks effectively test performance on complex, real-world
dynamics, they inherently entangle various challenges, noisy in-
teractions, complex graph structures evolving simultaneously with
temporal patterns, and diverse event types. This makes it difficult
to determine if a model’s failure stems from an inability to handle
graph complexity or from a fundamental deficit in capturing specific
temporal patterns like periodicity, cause-and-effect relationships,
or dependencies spanning long time horizons.

To address this gap and facilitate a deeper, more interpretable
understanding of TGNN limitations, we introduce the Temporal
Graph Reasoning Benchmark (T-GRAB ). T-GRAB (Figure 1) com-
prises a suite of purely synthetic, dynamic graph datasets explicitly
designed to probe the fundamental temporal reasoning capabil-
ities essential for modeling real-world dynamic systems. By iso-
lating core temporal patterns within controlled graph structures,
T-GRAB allows for a clear assessment of how well current TGNNs
capture and generalize these patterns.

Contributions. Our main contributions are as follows:

e We introduce T-GRAB , the first synthetic benchmark de-
signed to systematically evaluate temporal reasoning capa-
bilities of TGNNs in controlled settings. It features three
carefully crafted dynamic link prediction tasks: 1) period-
icity to assess temporal pattern counting and memorization,
2) cause-and-effect to evaluate delayed dependency infer-
ence, and 3) long-range spatio-temporal to test long-range
spatial-temporal dependency modeling.

e T-GRAB provides a configurable environment where task
difficulty can be precisely adjusted to identify the limita-
tions of TGNNSs. Our experiments reveal distinct behavioral
patterns between CTDG and DTDG methods, and highlight
that the number of temporal neighbors, an often overlooked
hyperparameter, significantly impacts model performance
across our benchmark tasks.
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e For the periodicity tasks, GC-LSTM consistently performs
best, even in the most challenging settings, indicating its
recurrent structure is better suited for capturing periodic
patterns and counting. In the cause-and-effect task, all mod-
els struggle with long-term memory, though DyGFormer,
TGAT, and TGN degrade most gracefully. Finally, in the
spatio-temporal task, DyGFormer’s transformer-based archi-
tecture excels with short-range spatial dependencies, while
TGAT and TGN outperform it as spatial dependencies grow
longer.

e Notably, no single model consistently outperforms across
all tasks in T-GRAB , contrasting with real-world bench-
marks where leaderboards are typically dominated by a few
methods. This finding underscores the value of T-GRAB as
a diagnostic tool that can guide the development of more ro-
bust and versatile temporal graph learning methods capable
of handling diverse temporal reasoning challenges.

Related Work Temporal Graph Neural Networks (TGNNs) are
categorized into continuous and discrete time dynamic graph meth-
ods (CTDG and DTDG). CTDG methods process event streams
with timestamps using neighbor sampling to model evolving re-
lations. They include TGAT [30] with self-attention and temporal
encoding, TGN [20] with memory modules, DyGFormer [32] us-
ing multi-head attention on temporal patches, and CTAN [6] em-
ploying ODEs. DTDG methods operate on regularly-spaced graph
snapshots and typically use recurrent neural networks to track
history; popular methods include GC-LSTM [2], T-GCN [33], and
EvolveGCN [18]). Recently, [9] compared CTDG and DTDG meth-
ods and found that DTDG methods sacrifice accuracy for efficiency
by computing on coarser-level snapshot information. Subsequently,
they showed that DTDG methods can operate on CTDG datasets by
using the Unified Temporal Graph (UTG) framework. In Section 3,
we evaluate and compare the above methods from both continuous
and discrete-time approaches on T-GRAB datasets to analyze their
capabilities in capturing core temporal patterns. Dedicated bench-
marks [13, 15, 17, 22] have significantly improved TGNN evaluation,
though [19] noted overly optimistic results due to simple negative
edges and introduced new sampling strategies and diverse datasets.
Subsequently, TGB [8] and TGB 2.0 [5] presented larger, challenging
datasets for link and node prediction, while TGB-Seq [31] proposed
real-world with complex sequential dynamics and low edge repeata-
bility, revealing limitations in current TGNN generalization. Our
work complements these recent efforts by constructing synthetic
tasks to more exactly pinpoint the current functional weaknesses
of TGNNEs.

2 TEMPORAL GRAPH PRELIMINARIES

Definition 2.1 (Discrete Time Dynamic Graphs). A Discrete Time
Dynamic Graph G is a sequence of graph snapshots sampled at
regularly-spaced time intervals [11]: G = G1,G2,Gs, -+ ,Gr. Each
Gt = (W4, Et, X;) is the graph at snapshot t = 1, - -, T, where V;, E;
are the set of nodes and edges in Gy, respectively, and X; € RIVelxd
is the matrix of node features at time ¢.

In this work, we focus on tasks designed for Discrete Time
Dynamic Graphs (DTDGs). As Continuous Time Dynamic Graph
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(CTDG) methods can be applied on DTDGs as well [9], we bench-
mark the performance of both types of methods for comprehensive
evaluation. In our tasks, the set of vertices is the same at all time
steps,ie., Vi =V, =--- =V; =--.. Node features are also constant
through time and consists of one-hot encoding of the N nodes (i.e.,
d = N and X; = I is the identity matrix for all ¢). While dynamic
graphs sometimes have edge features, we do not use any in T-GRAB .
We follow the methodology outlined in [9] to evaluate CTDG meth-
ods on discrete time graphs by translating all edges in each graph
snapshot G; into a batch of edges {(u,v,t) | (u,v) € E;}.

3 TEMPORAL GRAPH REASONING
BENCHMARK: T-GRAB

In this section, we introduce the Temporal Graph Reasoning Bench-
mark (T-GRAB ), the first synthetic benchmark designed to sys-
tematically evaluate the temporal reasoning capabilities of TGNNs
in a controlled environment. T-GRAB comprises three categories
of dynamic link prediction tasks, each probing distinct aspects of
temporal reasoning: 1) periodicity tasks, which assess counting and
memorization capabilities; 2) cause-and-effect tasks, which evalu-
ate the ability to identify causal relationships across time delays;
and 3) long-range spatio-temporal tasks, which measure how ef-
fectively models capture dependencies spanning both spatial and
temporal dimensions. These task families are examined in detail in
Sections 3.1, 3.2, and 3.3, respectively. As summarized in Table 1,
T-GRAB encompasses a diverse spectrum of graph characteristics
and temporal patterns, providing a comprehensive framework to
rigorously test the fundamental reasoning capabilities of TGNNSs.

Methods in Comparison. We conduct a comprehensive eval-
uation of diverse Temporal Graph Learning (TGL) approaches on
T-GRAB tasks . Our analysis encompasses four continuous-time
(CTDG) architectures (DyGFormer [32], CTAN [6], TGN [20], and
TGAT [30]), three discrete-time (DTDG) frameworks (EvolveGCN
[18], T-GCN [33], and GC-LSTM [2]), two static graph methods
(GCN [12] and GAT [28]), for which we use their DTDG implemen-
tations provided by UTG [9], and two established baselines (the per-
sistence heuristic, which predicts edges from the previous timestep,
and Edgebank, [19]). This selection represents the state-of-the-art
across different temporal graph learning paradigms, enabling a
rigorous assessment of their fundamental reasoning capabilities.

Evaluation Protocols. Prior research has demonstrated that
evaluation results for dynamic link prediction can vary substan-
tially depending on negative sampling strategies [19]. To ensure
methodological rigor and reproducibility, we implement a com-
prehensive evaluation framework that calculates the average F;
score across all possible node pairs at each test time step. This
approach eliminates sampling bias and provides a more reliable
performance assessment. For periodicity tasks, our evaluation in-
corporates all test edges in the F; calculation to capture the full
spectrum of temporal patterns. In contrast, for cause-and-effect
and long-range spatio-temporal tasks, we restrict the evaluation to
edges involving the memory/target node, as they are the only pre-
dictable connections within the otherwise stochastically generated
graph. This targeted evaluation ensures that model performance
reflects genuine temporal reasoning capabilities rather than chance
correlations in random edge formations.
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3.1 Periodicity Tasks

We introduce a family of synthetic tasks designed to evaluate tem-
poral graph learning (TGL) methods’ ability to recognize periodic
structures. These tasks assess two fundamental capabilities: count-
ing and memorization, in both deterministic and stochastic envi-
ronments.
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Figure 2: Periodic task in P9¢t(k = 2, n = 3) with 2 unique
snapshots repeated 3 times within a period.

Definition 3.1 (Periodicity Tasks). Let k,n € N. The task fam-
ilies Pdet(k, n) and P5t°(k, n) are defined based on a repeating
pattern where integers i = 1,...,k each appears n consecutive
times before cycling. For each ¢, let iy = ([t/n] mod k) + 1. In
Pdet(k, n), the dynamic graph G = Gi,Gg, ... is a periodic se-
quence alternating between k fixed static graphs Gy, ..., Gy, i.e.,
Gt = Gi,. In P50k, n), each G; is sampled from one of k distri-
butions Dy, ..., Dy over static graphs (e.g., Erdés-Rényi (ER) [3],
Stochastic Block Model (SBM) [7]), with G; ~ D;,. The resulting
sequence is stochastic, but the distribution pattern follows the peri-
odic structure of PIet(k, n).

For example, a task in P9 (k = 3,n = 2) will correspond to
a dynamic graph Gy, G1, Gz, G2, G3, Gs3, Gy, Gi,..., where G, G2, G3
are static graphs. A task in P9¢t(k, n) is illustrated in Figure 2.

Task objectives. Tasks in Pdet (k- n) test the counting and mem-
ory capacity of TGL methods. The parameter k controls the length
of the pattern and thus the memory demand, while n governs how
long each graph is repeated and tests the model’s ability to count.
For instance, solving a task in PdEt(Z, n) requires counting up to
n before switching graphs, while solving a task in P9 (k, 1) re-
quires memorizing k static graphs. Tasks in P5°(k, n) introduce
stochasticity, requiring models to reason over distributions rather
than fixed structures, increasing the complexity while retaining the
same periodic structure.

Can TGNN:s count? To evaluate the counting ability of TGNNs,
we construct tasks in P9 (k, n) with graphs sampled from the
Erd6s-Rényi (ER) model [3] (100 nodes, edge probability 0.01). We
set k = 2 and vary n, where increasing n corresponds to greater
task difficulty as models must count longer sequences.

Model performance on these Pdet(2, n) tasks for n ranging from
1 to 128 is presented in Figure 3. Since models that simply repeat
the previous timestep can perform well for large n, we evaluate
both overall performance (left plot) and performance at change
points (center plot) where the active graph switches (ie., t =
n+1,2n+1,---). High scores at change points indicate true count-
ing and pattern understanding, whereas good overall performance
with poor change point performance suggests the model is merely
exploiting continuity rather than reasoning about periodicity.
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Table 1: T-GRAB dataset statistics and characteristics.

Spatial
D # #E # Ti i M izi .
ataset Nodes dges imestamp Counting emorizing ;L0 ding
Periodicity 100 10,560 - 9,144,440 96 - 12,288 N4 Vv X
Cause-and-Effect 101 164,856 - 174,470 4,001 - 4,256 X N4 X
Long-Range Spatio-Temporal 102 48,006 - 411,072 4,001 - 4,032 X Vv vV
1.0 1.0
W M
0.8 v/ 0.8
lfo.e e 50-6 * Methods
5o 5o —e
— TGAT
0.2 0.2 = DyGFormer
EdgeBank
0.0 0.0 0.0 Persistence

Methods
—— GCLST™M
— T-GCN

EGCN
— GCN

GAT

Persistence

4 8

n

1 2 4 8 16 32 64 128

n

1 2

a) Pdet(2 n) - All time steps.
@ ,

(b) P4t (2, n) - Change points.

16 32 64 128 2 4 8 16 32 64 128 256
k

(c) pde‘(k, 1) - All time steps.

Figure 3: Performance of CTDG methods (top row) and DTDG methods (bottom row) on the deterministic periodicity tasks.

The results reveal distinct behaviors across different TGNN fam-
ilies. Among CTDG models, TGAT excels for small n, while DyG-
Former demonstrates more consistent performance at larger n. For
DTDG methods, T-GCN and GC-LSTM are strongest overall. No-
tably, EvolveGCN performs worse than static graph learning meth-
ods (GCN and GAT), which lack temporal processing mechanisms,
underscoring how challenging these seemingly simple periodic pat-
terns can be for current TGNNs. EdgeBank remains constant across
all n values, always predicting the union of both graphs. The persis-
tence baseline improves over all timesteps as n increases by simply
copying the previous snapshot, but scores zero at change points.

A key observation, evident when comparing performance over
all timesteps versus at change points (Figure 3), is that as n grows,
many models increasingly rely on repetition rather than explicit
counting. While their overall scores might remain high or even im-
prove for larger n (due to successfully predicting links during long
static phases), their performance at change points often degrades.
At n = 32, EdgeBank even starts to outperform all TGNNs. This
divergence suggests that current TGNNs struggle to robustly count
long sequences and instead learn a simpler heuristic reminiscent
of persistence.

How much can TGNNs memorize? To evaluate the memoriza-
tion capabilities of TGNNs, we fix n = 1 and vary k. The difficulty

scales with k: as more unique graph structures are introduced, mod-
els must maintain a larger and more distinct set of representations
to correctly predict links at each timestep.

Figure 3 (right) shows results on P9 (k, 1) for k ranging from
2 to 256. As expected, EdgeBank steadily degrades to zero perfor-
mance at k = 256, eventually defaulting to predicting each snapshot
as a clique. All TGNN models show a gradual decline as k increases.
GC-LSTM and DyGFormer consistently perform best, demonstrat-
ing strong memorization of patterns. T-GCN, TGN, and TGAT re-
main robust up to k = 128, but drop sharply at k = 256, suggesting
these models reach their maximum memorization capacity at this
point.

In contrast, TGNNs such as CTAN and EvolveGCN struggle
significantly as the number of unique graphs increases. CTAN’s
performance begins to degrade considerably after k = 64. Notably,
both these methods are often outperformed by static GNNs like
GCN and GAT, which exhibit a more gradual decline. This suggests
that for tasks dominated by the need to memorize distinct states,
an ineffective temporal mechanism can be more detrimental than
no temporal mechanism at all.

Can TGNN s learn stochastic periodic structures? Finally, we
investigate how models’ memorization capabilities extend to prob-
abilistic settings, where periodic structure emerges from stochastic



T-GRAB: A Synthetic Diagnostic Benchmark for Learning on Temporal Graphs

0.9
0s
Loy
Eos

05

0.4]

Figure 4: Performance of TGL methods on the stochastic
periodicity tasks Pt (k, 1) for different values of the intra-
community edge probability: p = 0.9 (left) and p = 0.5 (right).

processes rather than deterministic patterns. We employ Stochastic
Block Models (SBMs) with 100 nodes divided into 3 communities.
While all SBM distributions share identical inter-community (0.01)
edge probabilities, they differ in community structures . We exam-
ine two intra-community edge probability settings: p = 0.9 and
p = 0.5 (the latter being more difficult).

Figure 4 presents model performance across these stochastic pe-
riodicity tasks. As expected, performance decreases as k increases,
reflecting the growing challenge of memorizing multiple stochastic
patterns. GC-LSTM consistently achieves the highest performance
across both probability settings, with TGAT as the second-best per-
former. While T-GCN performs strongly with clearer community
structure (p = 0.9), it struggles in the noisier setting (p = 0.5),
falling behind TGAT and TGN. Overall, performance decreases
under lower intra-community density, confirming that increased
stochasticity challenges memorization capabilities. Notably, un-
like in deterministic scenarios, static baselines (GCN and GAT)
consistently underperform temporal models, highlighting the ef-
fectiveness of temporal modeling in capturing stochastic periodic
structures within dynamic graphs.

3.2 Delayed Cause-and-Effect Tasks

To assess how effectively TGL methods capture delayed causal
relationships, we introduce delayed cause-and-effect tasks. These
tasks involve a sequence of randomly generated graphs (e.g., from
an Erd6s-Rényi distribution) with a designated memory node that
connects to nodes participating in edges from ¢ time steps in the
past. This design creates a clear temporal dependency that models
must identify. We formalize this framework as follows:

Definition 3.2 (Delayed Cause-and-Effect Task). Let £ € N. The
delayed cause-and-effect task family CE(f) consists of dynamic
graphs G = Gy, Gy, . . . generated as follows: First, each graph G; =
(V, E;) is sampled independently from a distribution D over static
graphs, where V = {01, ...,0n} is the set of nodes, shared across
time steps. For t > ¢, the graph G; is augmented by introducing a
memory node v y( and connecting it to the nodes:

Ve VU{opm}
E; «— E; U {(UM,u),(UM,U) | (u,0) EEt,[} fort > ¢.

Intuitively, the model needs to remember nodes that were con-
nected to each other at E;_, to predict the edges of the memory
node at time E;. An example of this task is illustrated in Figure 5.
As ¢ increases, the task becomes more challenging in terms of the
memory capacity required from the model. While the number of
nodes and edges in the graphs G; also affect the task’s difficulty,
we focus on varying ¢. Since only the edges involving the memory
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Figure 5: Illustration of a delayed cause-and-effect dataset
with lag ¢ = 1. Black edges show the cause subgraph (nodes 1
to N). Blue edges show the effect subgraph, where the mem-
ory node (0) connects to previously active cause nodes (degree
> 1).
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Figure 6: Methods’ performance on cause-and-effect tasks
CE(?) across five temporal lags ¢.

node can be predicted (the other ones being completely random),
only the F; over possible edges involving the memory node are
reported in our experiments.

Task objectives and implementation. In the delayed cause-
and-effect tasks C&(¢), TGNNs must propagate information across
time steps while identifying the causal relationship governing the
memory node’s connectivity. This requires models to recognize
temporal patterns and maintain historical information. The task
difficulty scales with ¢: larger values require retaining information
longer, making causal relationship identification increasingly chal-
lenging. For implementation, we generate the underlying graphs
(excluding the memory node) using an Erdés-Rényi model with 100
nodes and edge probability 0.01, creating a controlled environment
to isolate and evaluate temporal reasoning capabilities.

Results. Figure 6 illustrates performance on cause-and-effect
tasks across varying temporal lags. For minimal lags (£ = 1), most
methods demonstrate strong performance, as the task primarily re-
quires extracting information from the immediate past, a capability
even static models possess. However, as lag increases, performance
degrades systematically, with static and DTDG approaches strug-
gling significantly with longer temporal dependencies. GC-LSTM
and T-GCN exhibit particularly pronounced performance deteriora-
tion at £ = 4 and ¢ = 16, revealing limitations in recurrent architec-
tures’ capacity to maintain long-term temporal information. Con-
versely, DyGFormer, TGAT, and TGN consistently outperform other
methods, underscoring the efficacy of attention mechanisms and
memory modules in capturing dynamic temporal patterns. At ex-
tended lags (£ = 64 and ¢ = 256), all methods converge toward Edge-
Bank’s performance level, indicating a common challenge in model-
ing distant causal relationships. Notably, CTAN shows inconsistent
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Figure 7: Illustration of a long-range spatio-temporal task
LR(t,d)witht=1,d=3and P = 3.

performance even at minimal lags, suggesting inherent limitations
in this context. These findings emphasize the crucial importance
of architectural design choices, particularly attention and memory
components, for effective temporal reasoning in dynamic graphs.

3.3 Long-Range Spatio-Temporal Task

Finally, we introduce long-range spatio-temporal tasks to evaluate
how effectively TGL methods reason across both temporal and spa-
tial dimensions. These tasks extend the delayed cause-and-effect
framework by incorporating multi-hop spatial paths alongside tem-
poral dependencies. In this setting, each graph snapshot contains
multiple paths originating from a source node vg, while a target
node vg- connects to the endpoints of paths appearing ¢ time steps
earlier. We formalize this task as follows:

Definition 3.3 (Long-Range Spatio-Temporal Task). Let £,d, P € N.
The long-range spatio-temporal task family LRp(¢,d) is defined
over dynamic graphs G = Gy, Ga, ..., where each snapshot G; =
(V,E;) has a fixed node set V = {vg,05,01,...,0N}. The edge
set E; consists of P disjoint paths of length d from the source
node vg through randomly chosen intermediate nodes. For t >
¢, E; additionally includes P edges from the target node vs to
the endpoints of the P paths in G;—,. Formally, for t > ¢: E; =
Uﬁ:l{(vs’uitﬁ))’ (ufl‘:P)) uétrp))’ . (u(trp) uc(ltrp))} U

d-1"
{ (v, uc(lt_[’p))}, where the nodes uft’p) for1<i<d, 1<p<P

are drawn at random in {vy,...,oN} (without replacement).

Intuitively, we can treat node v g as the progenitor of some signal
that 1) reaches a set of nodes that are spatially separated from v g
by a distance d and 2) whose effect (connecting the nodes that it
reached to node vg) is additionally delayed by ¢ timesteps. An
illustration of a dynamic graph for this task is given in Figure 7. We
will focus on the effect of the lag £ and distance d in our experiments
and set the number of path P to 3 in all tasks, which we will simply
denote by LR(¢,d).

Task objectives and implementation. Dynamic graphs inher-
ently contain two fundamental distance metrics: temporal (between
time steps) and spatial (between nodes). Effective TGL methods
must reason across both dimensions simultaneously to capture
complex patterns. The LR(¢, d) task family specifically evaluates
this capability by requiring models to track information across both
temporal lags and multi-hop spatial paths. The parameter ¢ deter-
mines the temporal memory requirement, while d defines the spatial
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Table 2: Average method rank (|) for T-GRAB tasks (c.p.
stands for change points). Top results are shown in first,
second, third.

Periodicity Cause & | Spatio-temporal long-range
Method Ppet(2,n) Pl (). 1) PS(2,n) Effect LR(¢,d)
allt  cp. " p=05 p=09| CE() |t=1 =4 t=16 (=32
CTAN 5.625 375 7.625 3.167 5.167 6.4 10.0 86 8.4 6.8
R DyGFormer | 325 35 2.625 7167 75 32 22 18 30 34
S TGAT 4.75 5.0 4.375 3.667 3.167 2.6 3.8 1.6 1.0 1.8
TGN 5.75 7.125 4.625 3.667 4.33 24 4.8 2.8 20 1.8
GC-LSTM 2.875 3.125 1.25 1.0 1.167 4.8 3.0 4.6 5.6 6.2
o EGCN 10.875 10.0 9.75 6.5 8.167 5.0 8.2 7.8 7.0 8.0
E T-GCN 3.25 3.75 2.5 6.5 3.333 9.6 1.8 4.2 4.8 6.0
A GCN 8.875 8.0 7.0 9.833 9.833 7.8 6.8 8.8 9.2 9.0
GAT 7.625 6.5 6.0 7.5 5.333 8.0 5.6 8.6 8.2 6.4
EdgeBank 8.5 4.25 9.25

11.0

6.0 7.0 5.2 8.8 6.0 5.4 9.8
Persistence 4.625 110 11.0 11.0 11.0

propagation distance. This dual-parameter design creates a compre-
hensive benchmark for assessing spatio-temporal reasoning depth
in TGL architectures. To systematically evaluate model capabilities,
we generate tasks with increasing complexity using distance values
d € {1,2,4,8,16} and temporal lags £ € {1,4, 16,32}.

Results. Figure 8 presents Fy scores for top-performing methods
and the EdgeBank baseline . At small temporal lags, both DTDG ap-
proaches and DyGFormer demonstrate strong performance. How-
ever, as ¢ increases, DTDG methods exhibit sharp performance
declines, revealing limitations in recurrent architectures’ capacity
to maintain long-range temporal memory. DyGFormer’s perfor-
mance deteriorates more gradually but still struggles with extended
temporal dependencies. In contrast, TGAT and TGN maintain ro-
bust performance even at substantial lags (¢ = 16, 32), highlighting
the efficacy of attention-based message passing for complex spatio-
temporal reasoning. Nevertheless, all models, even the strongest
temporal reasoners, show significant performance degradation
when spatial distance exceeds d = 8, emphasizing the persistent
challenge of capturing long-range spatial dependencies in dynamic
graphs.

4 DISCUSSION AND ANALYSIS

In this section, we synthesize key findings and insights across all
three task categories in T-GRAB .

Bird’s eye view of the results. Table 2 presents a comprehen-
sive ranking of methods across our benchmark tasks. Our analysis
reveals a striking dichotomy in model effectiveness across different
temporal reasoning challenges. For periodicity tasks, GC-LSTM
consistently outperforms all competitors across all five settings,
challenging the prevailing assumption that CTDG methods out-
perform DTDG ones [9]. This suggests that for tasks requiring
precise counting and pattern memorization, the simpler recurrent
architecture of DTDG models may offer computational advantages
over their more complex continuous-time counterparts. Conversely,
for cause-and-effect and spatio-temporal long-range tasks, CTDG
methods, particularly TGN and TGAT emerge as the dominant
methods. Notably, CTAN, despite being explicitly designed for
long-range temporal propagation, performs surprisingly poorly
on spatio-temporal long-range tasks. This unexpected result high-
lights potential limitations in its ability to jointly reason over spatial
and temporal dimensions.
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Figure 8: Performance varying spatial and temporal distances in the long-range spatio-temporal tasks.
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Figure 9: Effect of the number of neighbors on periodic (left), and cause-and-effect (right) tasks .

These findings collectively demonstrate that no single architec-
tural paradigm excels across all T-GRAB tasks. The observed per-
formance variations suggest that different architectural inductive
biases are better suited to specific temporal reasoning challenges.
This insight points to a promising research direction: developing
hybrid architectures that can effectively combine the strengths of
different approaches to achieve superior performance across diverse
temporal reasoning scenarios.

Effect of Number of Neighbors. Temporal neighbor sampling
is a fundamental mechanism in CTDG methods [14, 20, 30, 32], that
allows models to access historical interactions and model temporal
dependencies, especially crucial in scenarios with sparse edge distri-
butions. Despite its importance, the number of sampled neighbors
remains an under-examined hyperparameter, commonly fixed at
default values (e.g., 20 neighbors in established literature [32]). We
maintained this conventional setting in our previous experiments
but now systematically investigate how this parameter influences
performance across T-GRAB tasks.

Figures 9a and 9b illustrate performance on periodic tasks as a
function of neighbor count. Our analysis reveals that CTAN, TGN,
and TGAT exhibit pronounced performance improvements with
increased neighbor sampling across both stochastic and determin-
istic settings, demonstrating their substantial sensitivity to this
parameter. For DyGFormer, this parameter directly determines the
temporal context length for sequence construction, and it main-
tains relatively consistent performance, suggesting a more robust
architecture with respect to neighbor sampling.

Extending our investigation to cause-and-effect tasks (Figures 9c
and 9d), we observe that for CE(64), TGAT, TGN, and DyGFormer
continue to benefit from sampling beyond 32 neighbors, while

CTAN plateaus, indicating a fundamental limitation in its capacity
and design. For the more challenging C&(256) task, DyGFormer
demonstrates continued improvement with larger neighbor counts
(particularly beyond 128), while other methods reach performance
saturation. These findings suggest potential for further performance
gains through even larger sampling windows (e.g., 512 neighbors),
albeit with corresponding computational overhead.

5 CONCLUSION

We introduced T-GRAB , a synthetic benchmark designed to sys-
tematically probe the temporal reasoning abilities of TGNNs. Our
results reveal that no single method excels across all tasks, with
performance varying notably across tasks. Attention and memory-
based architectures like DyGFormer, TGAT, and TGN show strong
performance on long-range and causal tasks, while simpler recur-
rent models like GC-LSTM excel in periodic tasks. Our findings
highlight limitations of current models and the need for architec-
tures tailored to diverse temporal reasoning challenges.
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