
Sparse VideoGen2: Accelerate Video Generation with
Sparse Attention via Semantic-Aware Permutation

Shuo Yang∗ Haocheng Xi∗ Yilong Zhao Muyang Li Jintao Zhang
Han Cai Yujun Lin Xiuyu Li Chenfeng Xu Kelly Peng

Jianfei Chen Song Han Kurt Keutzer Ion Stoica

University of California, Berkeley MIT NVIDIA Stanford University

https://github.com/svg-project/Sparse-VideoGen

Wan 2.1 720P, Text-to-Video
Dense Attention | Latency = 30 min

Sparse VideoGen 2 | PSNR = 25.808 | Latency = 16 min

aerial and wide-angle, with ultra-high definition clarity and an artistic, timeless touch. the scene showcases a japanese princess suspended in the clear blue sky, wearing a beautifully ornate kimono with intricate embroidery and vibrant colors, the embodiment of traditional
beauty. her long, flowing sleeves and elegantly styled hair complete her regal appearance. behind her, faded but vivid bursts of colorful fireworks sporadically explode, casting a gentle glow. the scene has a dreamy charm

HunyuanVideo 720P, Text-to-Video
Dense Attention | Latency = 30 min

Sparse VideoGen 2 | PSNR = 30.452 | Latency = 13 min

the shot is vibrant and upbeat, capturing a british white cat with a glossy coat sprinting energetically across a sunlit beach. its four feet are off the ground, suggesting a sprint caught in suspension. the cat is adorned with stylish, miniature sunglasses that sit snugly on its
face, adding a playful and charming touch to its appearance. the sun casts a glistening glow on the gentle waves that lap at the shore, while the sand kicks up slightly under the cat's paws with each bound.

Figure 1: SVG2 accelerates video generation while maintaining high quality. On a single H100, for Hunyuan-
Video and Wan 2.1, SVG2 achieves up to 2.30 and 1.89 end-to-end speedup, with a PSNR up to 30 and 26.

Abstract

Diffusion Transformers (DiTs) are essential for video generation but suffer from
significant latency due to the quadratic complexity of attention. By computing only
critical tokens, sparse attention reduces computational costs and offers a promising
acceleration approach. However, we identify that existing methods fail to approach
optimal generation quality under the same computation budget for two reasons:
(1) Inaccurate critical token identification: current methods cluster tokens based
on position rather than semantics, leading to imprecise aggregated representations.
(2) Excessive computation waste: critical tokens are scattered among non-critical
ones, leading to wasted computation on GPUs, which are optimized for processing
contiguous tokens. In this paper, we propose SVG2, a training-free framework that
maximizes identification accuracy and minimizes computation waste, achieving
a Pareto frontier trade-off between generation quality and efficiency. The core of

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/svg-project/Sparse-VideoGen

SVG2 is semantic-aware permutation, which clusters and reorders tokens based on
semantic similarity using k-means. This approach ensures both a precise cluster
representation, improving identification accuracy, and a densified layout of critical
tokens, enabling efficient computation without padding. Additionally, SVG2
integrates top-p dynamic budget control and customized kernel implementations,
achieving up to 2.30× and 1.89× speedup while maintaining a PSNR of up to 30
and 26 on HunyuanVideo and Wan 2.1, respectively. Our code is open-sourced at
https://github.com/svg-project/Sparse-VideoGen.

1 Introduction

A
tte

nt
io

n
R

ec
al

l

0.5

0.6

0.7

0.8

0.9

1

Density

0 15 30 45 60

w/ Kmeans Permutation w/o Kmeans Permutation

PS
N

R

14

17

20

23

26

29

Density

10 18 26 34 42

Ours SVG SpargeAttn

2.3× Reduction

Figure 2: Trade-off curves between gen-
eration quality (PSNR) and efficiency
(density). SVG2 consistently surpasses
existing methods given the same den-
sity, achieving a Pareto frontier.

Diffusion Transformers (DiTs) have demonstrated significant
efficacy in generative tasks, particularly excelling in generating
high-quality images and videos [1, 2, 3]. However, the computa-
tional efficiency of DiTs remains a major bottleneck, primarily
due to the quadratic computational complexity introduced by
3D spatio-temporal attention mechanisms [4]. For instance,
generating just a five-second video using HunyuanVideo on
an NVIDIA A100 GPU takes nearly an hour, where the 3D
attention accounts for more than 80% of end-to-end runtime.
This inefficiency severely limits the practical deployment of
DiT-based generative models.

To mitigate the quadratic computational complexity, previous
studies have observed that self-attention mechanisms are nat-
urally sparse, where only a small portion of computations significantly influence the final out-
put [5, 6, 7]. Therefore, the computational costs can be dramatically reduced (up to 8×) with
negligible degradation in generation quality by only computing the critical tokens [4, 8]. To ef-
fectively identify these critical tokens, existing approaches introduce an identification step where
activations from each token are used to estimate attention scores [9, 10]. Tokens with the highest
scores are then selected as critical and processed by the following sparse attention. To minimize
overhead, the identification is typically processed at the block granularity, treating consecutive tokens
as an aggregated token, which are selected or ignored as a whole [11, 12].

However, we observe that given the same computational budget (i.e., the number of selected critical
tokens), existing sparse attention methods significantly fall behind the oracle generation quality,
where the critical tokens are selected assuming the attention scores are known in advance rather than
estimated (§ 3.2). We identify that this performance gap arises from two primary challenges:

1. Inaccurate identification: existing block-wise identification methods are ineffective in precisely
identifying critical tokens. Because tokens are clustered into blocks based on positions rather than
semantic similarities, tokens within the same block may have dramatically different activations
in the latent space. Consequently, the aggregated activations become less representative [11],
leading to inaccurate estimations of attention scores and thus incorrect identification of critical
tokens. E.g., widely used techniques such as mean pooling [9] and max pooling [5] are prone to
inaccuracies, particularly when applied to distinct tokens.

2. Computation waste: existing methods cause computation waste even if critical tokens could be
perfectly identified. This is because of the mismatch between sparse computation and hardware
specifications [13]. For instance, tensor cores on NVIDIA GPUs require a minimum matrix
multiplication shape of 16× 16× 8 [14], which necessitates a batch size of 16 tokens. Thus, even
if only a subset of a block of 16 tokens are critical, the entire block must still be computed to
utilize tensor cores, causing computation waste. Our empirical evaluations show that up to 80% of
computation can be wasted on non-critical tokens (§ 3.2).

To bridge this gap, we propose SVG2, a training-free sparse attention approach specifically designed
to accelerate video generation for DiT-based models, achieving a Pareto frontier trade-off between
generation quality and computational efficiency (as shown in § 5.4). Our key insight is to leverage
semantic-aware permutation to maximize the accuracy of critical token identification and minimize
the computation waste of sparse computation. Specifically, semantic-aware permutation clusters

2

https://github.com/svg-project/Sparse-VideoGen

tokens into blocks according to the semantics of activations rather than positions. Consequently,
tokens within each block exhibit closely aligned activations, ensuring more accurate aggregated
representations and thereby significantly improving identification accuracy. Additionally, semantic-
aware permutation densifies sparse computations by consolidating scattered critical tokens into
compact, dense blocks. Due to their semantic similarity, tokens in a single block tend to be either all
critical or all non-critical. This property ensures that computation is not wasted on blocks containing
a mix of critical and non-critical tokens, thus improving computational efficiency.

To integrate semantic-aware permutation into an end-to-end framework, SVG2 introduces three
key techniques. First, to implement semantic-aware permutation, SVG2 applies k-means clustering
on the Query, Key, and Value vectors of each head and layer before the identification step. The
resulting clusters are then permuted so that tokens within the same cluster are grouped together,
ensuring semantically coherent blocks. Second, to enable dynamic allocation of the computational
budget, SVG2 adopts a Top-p critical token selection strategy inspired by Tactic and Twilight [11, 15].
Specifically, SVG2 uses the centroids of clusters to approximate attention scores for each cluster,
selecting tokens with the highest estimated scores until their cumulative sum reaches p. This approach
enables dynamic budget allocation without manual adjustments. Third, to support dynamic block
sizes for sparse attention, SVG2 introduces a customized kernel implementation. This is essential
because the clusters formed by semantic-aware permutation naturally vary in size, and existing
block sparse attention kernels, which are limited to fixed block sizes, cannot efficiently handle such
variability.

We prototype SVG2 based on an open-sourced video generation framework [4] and customize kernels
with FlashInfer [16]. We evaluate SVG2’s quality and efficiency on representative video generative
models including HunyuanVideo [1] and Wan 2.1 [2]. Results demonstrate that SVG2 consistently
achieves a Pareto frontier, delivering superior generation quality at any given computational budget.
Specifically, SVG2 delivers significant efficiency improvements, achieving an end-to-end speedup of
up to 2.30× and 1.84× speedup while maintaining high visual quality with a PSNR of up to 30 and
26 on HunyuanVideo and Wan2.1-I2V, outperforming all prior methods.

2 Related Work

Sparse Attention for Video DiTs. Sparse attention mechanisms for accelerating DiTs fall into two
categories: static and dynamic, depending on whether to select critical tokens dynamically during
runtime or statically offline. Static methods [8, 4] predefine sparse patterns offline, such as identifying
recent tokens as critical [4]. These methods lack adaptability to diverse sparsity patterns, leading to
suboptimal performance. Dynamic methods [9, 10, 17, 18, 19, 20, 21, 22] determine sparse patterns
at runtime, selecting critical tokens through an additional identification step. However, existing
dynamic methods fail to achieve both high identification accuracy and low computation waste. In
contrast, SVG2 consistently achieves superior performance under the same computation budget.

Sparse Attention for Large Language Models (LLMs). Sparse attention for LLMs falls into
two categories: memory-efficient and compute-efficient. Memory-efficient methods [6, 5, 7, 23, 24]
reduce memory load to accelerate decoding but are ineffective for compute-bound DiT-based video
generation. Compute-efficient methods [25, 26, 27, 12, 28, 29] focus on processing only critical
tokens, yet cannot directly optimize video DiTs due to unique sparse patterns of video data. Notably,
MMInference [12] introduces a modality-aware permutation for multi-modal LLMs. This permutation
is rule-based, designed to permute inter-modality tokens.

Linear Attention for Diffusion Models Linear attention [30, 31, 32] and state space models [33, 34]
have gained attention in video generation, where the long-context problem makes attention module
dominate the latency. Matten [35] uses the mamba block to capture global information and uses
attention for local information. LinGen [36] adopts a combination of Mamba2 and Swin attention
block for 1-minute video generation. M4V [37] proposes an MM-DiM block to overcome the
adjacency of mamba in capturing complex spatial-temporal dynamics. Block-wise SSM scanning
scheme [38] achieves long-term memory ability in video generation. TTT [39] proposes to use
RNNs and designs a new TTT block for minute-long video generation. SANA [40, 41, 42] and
DC-AE [43, 44, 45] reduce the generation overhead by using Linear Attention and Deep-Compressed
Auto-Encoders. This line of research reduces the complexity of the attention from quadratic to linear,
making it efficient in long video generation.

3

Long Video Generation and Caching-Based Acceleration Minute-level long video generation
poses new challenges in the field of video generation in both quality and efficiency. CausVid [46]
and Self-Forcing [47] distill a bidirectional diffusion model to an autoregressive one to leverage the
efficiency of KV cache. LongLive [48] achieves multi-prompt minute-level video generation with KV
cache refreshing. Framepack [49] compressed the token number within frames to reduce the sequence
length. RifleX [50] and Freelong [51] extend the video generation length by context extrapolation in
a training-free manner. RadialAttention [52], VMOBA [53], Mixture-of-Context [54], and VSA [55]
adopt sparse attention in long-context fine-tuning to reduce the training overhead. Caching-based
methods [56, 57, 58, 59, 60] optimized the efficiency by utilizing the redundancy between timesteps
and classifier-free guidance (CFG). These lines of research is orthogonal to our sparse attention
method, and can be integrated to achieve higher speedup.

3 Motivation

3.1 Attention in DiTs is Inherently Sparse

Attention operation in DiTs is costly. During each denoising step, DiTs transform the input
activations with hidden dimension d into Query (Q), Key (K), and Value (V) tensors, followed by a
self-attention operation to produce the final output O [61]:

O = P × V, P = softmax
(
QK⊤
√
d

, dim = −1

)
where the attention score P captures the relationship among tokens However, computing P has
a quadratic complexity relative to the sequence length. State-of-the-art DiTs typically process
thousands of tokens per frame across multiple frames, creating a significant performance bottleneck.
E.g., generating a 33-frame video using HunyuanVideo-T2V-13B requires over 80% of the total
end-to-end time to be spent on the attention alone [4, 8].

Attention operation in DiTs is highly sparse. Fortunately, attention is inherently sparse, where only
a small subset of computations significantly contributes to the final output. This sparsity arises from
the characteristics of the softmax function, where a few largest values in Q ×K⊤ dominate the
attention score P , which in turn dictates the final weighted output P × V [6, 11].

A
tte

nt
io

n
R

ec
al

l

0.5

0.6

0.7

0.8

0.9

1

Density

0 12.5 25 37.5 50

Oracle Policy SVG Sparge

Figure 3: Comparison of attention recall ver-
sus density (i.e., number of sparse compu-
tation normalized by total computation) for
the oracle policy, SVG, and SpargeAttention.
Notably, the significant gap between the or-
acle policy and existing methods highlights
the potential for improvement.

To quantitatively assess this sparsity, we collect attention
maps from Wan2.1-I2V-14B video generation and visu-
alize the average recall of attention scores under varying
computational budgets, defined by the number of critical
K tokens. Specifically, the critical tokens are selected
following an oracle policy, where tokens are ranked in
descending order based on their attention scores. This
approach illustrates the upper bound of achievable recall
under a constrained computational budget.

As depicted in Figure 3, the attention is highly sparse,
where only 13% of the computations (i.e., the percentage
of attention map retained in the sparse attention) are suffi-
cient to achieve an attention recall of 95%, maintaining a
near-lossless PSNR of 27 while providing up to 2× theo-
retical end-to-end speedup. This observation highlights an
opportunity to leverage the trade-off between generation
quality and computational efficiency.

3.2 Existing Sparse Attention Fails to Match the Oracle Policy

Despite the potential of sparsity in reducing computational cost, directly adopting the oracle policy is
impractical. This is because identifying critical tokens requires calculating the full attention scores
P by Q × K, thus providing no actual speedup. To achieve practical efficiency, state-of-the-art
approaches [9, 10] implement a coarse-grained identification strategy. Specifically, they cluster
consecutive tokens into large blocks and calculate attention scores at the block level, providing an

4

(a) Original Attention Map (b) Inaccurate Identification (c) Computation Waste Semantic-aware
Permutation

Attention Recall: 89%
Compute Budget: 92%

Effective Compute: 26.4% ❌

Attention Recall: 90%
Compute Budget: 28%

Effective Compute: 86.6% ✅

Attention Recall: 70.5%
Compute Budget: 68%

Effective Compute: 27.9% ❌

Compute
Block

Critical
Token

(d)

Figure 4: Illustration of how existing methods fall short due to the inaccurate identification and computation
waste, assuming a computation unit of 4× 4 block. (a) Original attention map of a demonstration example. (b)
Position-based clustering groups distinct tokens within the same clustering, causing the imprecise representation
of mean-pooling or max-pooling. Therefore, blocks with smaller number of critical tokens are ignored, causing
lower recall of attention scores. (c) Due to the scattered layout of critical tokens, even if achieving a high
attention recall, each compute block processes both critical and non-critical tokens, thus causing computation
waste and decreasing effective compute on critical tokens. (d) Semantic-aware permutation clusters and reorders
similar tokens into contiguous layout, thus achieving high attention recall while minimizing computation waste.

approximation of the original P . This approach significantly reduces the identification overhead,
with less than 1% computation compared to the full attention when using a block size of 128.

However, existing coarse-grained approaches reduce identification accuracy and lead to computation
waste. As illustrated in Figure 3, existing sparse attention mechanisms consistently fall significantly
short of achieving the attention recall of the oracle policy, regardless of the computation budget. This
performance gap arises primarily from two key factors:

Position-based clustering leads to inaccurate identification. Existing methods reduce identification
overhead by clustering consecutive tokens into blocks. For instance, SpargeAttention [9] groups
every 128 query tokens and 64 key tokens, using mean pooling to create a single representation
for each block, which is then used to approximate P . However, this position-based clustering does
not guarantee semantic similarity among tokens. Tokens within the same block can exhibit vastly
different activations in the latent space. For example, two physically close objects in a video frame,
such as an apple and a cake, may have no semantic relationship. This variability within a block
degrades the quality of the aggregated block-wise representation, leading to reduced identification
accuracy. We illustrate this issue in Figure 4 and provide a quantitative analysis of the identification
accuracy in § 5.5. To address this problem, we propose using semantic-aware clustering instead of
position-based clustering, as detailed in § 4.1.

Scattered critical tokens cause computation waste. Even if all critical tokens are perfectly
identified, existing sparse attention mechanisms cannot achieve the theoretical computational savings
promised by the oracle policy due to a mismatch between scattered sparse computations and hardware
specifications. Since the criticality of tokens is determined by semantics, critical tokens are naturally
scattered across the tensor rather than being contiguous. However, modern ML accelerators, such as
NVIDIA GPU tensor cores, are optimized for dense matrix multiplication, which requires contiguous
input dimensions [14, 62]. As a result, scattered critical tokens must be padded with non-critical
tokens to maintain a contiguous layout, leading to significant computation waste. This issue is
visualized in Figure 4, and we further quantify the computation waste in § 5.5. To approach the
performance of the oracle policy, an automatic permutation is required to rearrange scattered critical
tokens into a dense layout to minimize computation waste, as detailed in § 4.1.

4 Methodology

In this section, we introduce SVG2, a training-free sparse attention framework designed to use
semantic-aware permutation to achieve a Pareto frontier trade-off between the generation quality and
computational efficiency for video DiTs. We visualize the workflow of SVG2 in Figure 5. At the
core of SVG2 is semantic-aware permutation, which aims to maximize identification accuracy of
critical tokens and minimize computation waste (§ 4.1). To dynamic select and adjust the computation
budget, SVG2 proposes centroid-based top-p selection, which enables practical deployment (§ 4.2).

5

-means
Clustering

Top-P
Selection

Key Centroids

Q
ue

ry
 C

en
tro

id
s

Semantic-similar tokens
attend to each other

(a) Original Attention Map
Centroid-based

 Top- Selection

<1% Overhead

(c) Permuted Attention Map

Attend to other
tokens

Semantic-aware Permutation

(b)

Figure 5: Overview of SVG2.†(a) Original attention map of a demonstration example, with various colors
representing various semantics. Only tokens with similar semantics attend to each other, having high attention
scores thus selected as critical tokens. (b) After k-means clustering, semantic-similar tokens (i.e., similar colors)
are grouped into the same cluster, with the query and key centroids to precisely represent the cluster-level
semantics. These centroids are then used to approximate the attention score for accurate identification of critical
tokens. (c) Combined with Top-p selection, critical tokens can be dynamically identified in a contiguous layout.

Additionally, SVG2 investigates several system-algorithm co-designs, such as fast k-means and
attention kernel, significantly accelerating video generation (§ 4.3).

4.1 Semantic-Aware Permutation with k-means Clustering

As discussed in § 3.2, existing sparse attention mechanisms suffer from inaccurate identification due
to the position-based clustering. To this end, SVG2 proposes using semantic similarity to cluster
rather than position, by performing k-means on the activations of the input tokens.

Specifically, for each attention head and transformer layer, k-means is independently applied to query
tokens (Q ∈ RNq×d) and key tokens (K ∈ RNk×d), where Nq and Nk represent the number of
tokens in Q and K, creating Cq query clusters Q1, . . . , QCq

and Ck key clusters K1, . . . ,KCk
. This

approach enables tokens within each cluster to share similar semantics, improving the precision of
centroid representation for better identification, as detailed in § 4.2.

Furthermore, to densify the sparse computation of scattered critical tokens, SVG2 performs semantic-
aware permutation based on the k-means clustering. Although the semantically similar tokens are
logically clustered, they are physically scattered in the tensors, resulting in substantial computational
waste as described in § 3.2. To address this, SVG2 permutes tokens within each cluster into a
contiguous layout. Such cluster-wise contiguous layout can be efficiently computed by the underlying
ML accelerators, thus reducing computation waste. We detail the permutation algorithm and the
mathematical equivalence for the attention output in the following formulations. Assuming πq ∈
RNq×Nq and πk ∈ RNk×Nk be the permutation matrices such that πqπ

⊤
q = I and πkπ

⊤
k = I , the

permuted tokens are then Q′ = πqQ, K ′ = πkK, and V ′ = πkV , where K and V share the same
permutation πk to guarantee the output equivalence. The permuted attention output O′ is:

O′ =π⊤
q Attention(Q′,K ′, V ′) = π⊤

q softmax
(
(πqQ)(πkK)⊤√

d

)
πkV

=(π⊤
q πq)softmax

(
QK⊤
√
d

)
(π⊤

k πk)V = softmax
(
QK⊤
√
d

)
V = O

4.2 Centroid-Based Top-p Selection

Despite the semantic-coherent clusters provided by the semantic-aware permutation, it remains
impractical to deploy SVG2 without addressing two critical challenges: (1) how to effectively
estimate the criticality of clusters, and (2) how to dynamically determine the number of selected
critical clusters (i.e., the number of critical tokens) to satisfy arbitrary accuracy requirements.

†Cross-category centroids arise from SVG2’s independent clustering, which enables a many-to-many map
where multiple query clusters share important key clusters.

6

Accurate and efficient estimation of criticality. To estimate the criticality of each cluster, SVG2
introduces a centroid-based estimation of attention scores P . Specifically, it approximates the
criticality of each token by estimating its P using the centroids of its cluster, mimicing the oracle
policy defined in § 3.1. As formulated in Equation 1, this approach calculates the pre-softmax scores
S using the centroids of each cluster. These scores are then weighted by the number of tokens within
the cluster (i.e., the size of the cluster), to generate an approximate attention score P ′ in Equation 2,
providing an estimation of the actual P .

Sij =
centroid(Qi) · centroid(Kj)

T

√
dk

(1)
P ′
ij =

|Kj | exp(Sij)∑Ck

k=1 |Kk| exp(Sik)
(2)

Since tokens within the same cluster already share similar semantics, the centroids can serve as highly
accurate representations of the actual activations, ensuring the reliability of such estimation. Further-
more, because the typical number of clusters (i.e., Cq and Ck) is less than 1024, the computational
overhead for this approximation is negligible compared to the full attention calculation, typically
accounting for less than 1% of the total computational cost.

Dynamic adjustment of computation budget. To dynamically adjust the number of critical tokens
instead of pre-defined constant, SVG2 employs a Top-p selection strategy based on the approximated
P ′. SVG2 first sorts all potential clusters in descending order according to their corresponding P ′. It
then selects clusters sequentially until the accumulated P ′ reaches a predefined target.

4.3 Efficient System-Algorithm Co-design

Fast k-means with centroid cache. While k-means clustering is essential to semantic-aware
permutation, its iterative process can introduce substantial latency if the number of iterations is large
before convergence. For example, with the state-of-the-art GPU implementation of k-means++ [63], it
takes more than 100 iterations to converge, consuming 50% or even comparable time to the attention
computation. Fortunately, DiTs are known to be similar between consecutive denoising steps [59, 64],
enabling reusing the centroids from the previous step as the fast initialization for k-means in the next
step. Based on this observation, SVG2 implements a centroids cache, which automatically caches
and reuses centroids between consecutive steps. This technique reduces the runtime of k-means by
up to 76×, as evaluated in § 5.3.

Efficient sparse attention kernel for varied block-sizes. While existing efficient attention imple-
mentations (e.g., FlashAttention [65], FlexAttention [66], and FlashInfer [16]) support block-wise
sparse computation, they only support a static block size (e.g., 128 × 128). However, the sizes of
clusters after semantic-aware permutation are naturally dynamic and diverse, causing computation
waste with the static block size. For example, SVG2 could generate a query cluster with 128 tokens
with a key cluster with 32 tokens. Such 128× 32 computation needs to be padded into 128× 128
to use existing kernels, which causes 75% computation waste. To address this, SVG2 implements a
customized attention kernel that accepts dynamic block-sizes as input.

Our dynamic block-sparse attention kernel supports both FA2 (A100) and FA3 (H100), combining
sparse loading and dense computation. For FA3, we use wgmma (m64n64k16) for dense compute to
maximize hardware efficiency. For query tokens, we load contiguous tokens from the same cluster,
which are naturally contiguous in memory after permutation. For key/value tokens, which may be
scattered in global memory due to varying cluster sizes, SAPAttn uses per-token address offsets
to perform sparse loading and stores them in shared memory in a contiguous layout. This enables
efficient use of MMA instructions without the need for expensive key/value padding, leading to over
85% of the theoretical maximum performance, where the upper bound is estimated by multiplying
the sparsity density with the runtime of the dense FlashAttention-3. We evaluate the kernel efficiency
in § 5.3.

7

(a) Original Attention Map (b) After Permutation(c) Recovered after Top-p (c) Recovered after Top-p(a) Original Attention Map (b) After Permutation

Figure 6: Visualization of attention maps from different attention heads in Wan2.1 when generating videos from
VBench [67]. (a) Original attention maps with diverse sparse patterns, assuming critical tokens highlighted
in red. (b) Permuted attention maps. After semantic-aware permutation, critical tokens are permuted into a
contiguous layout based on the k-means clustering, enabling efficient block-wise computation without waste. (c)
Recovered attention maps after applying centroid-based top-p selection and undoing the permutation. The high
similarity between the original and recovered attention maps demonstrates the effectiveness of SVG2.

5 Experiment

5.1 Setup

Models. We evaluate SVG2 on open-sourced state-of-the-art video generation DiT models including
Wan2.1-I2V/T2V-14B [2], and HunyuanVideo-T2V-13B [1] to generate videos with 720p resolution.
After being tokenized by 3D-VAE, Wan2.1 generates 21 frames with 3600 tokens per frame, while
HunyuanVideo processes 33 frames with 3600 tokens per frame.

Metrics. We assess the similarity of generated video compared to full attention using the following
metrics: Peak Signal-to-Noise Ratio (PSNR), Learned Perceptual Image Patch Similarity (LPIPS),
and Structural Similarity Index Measure (SSIM). We use VBench [67] to evaluate the video quality.
To quantify the efficiency of sparse attention mechanisms (i.e., computational budget), we use density,
which is defined as the sparse attention computation divided by the full attention computation.
To assess end-to-end efficiency, we use the total amount of computation (i.e., FLOPs) needed for
generating videos.

Datasets. For text-to-video generation, we adopt the prompt in Penguin Benchmark after prompt
optimization provided by VBench team. For image-to-video generation, we adopt the prompt-image
pairs provided by VBench [67] and crop images to 16 : 9 ratios for 720p resolution.

Baselines. We compare SVG2 against state-of-the-art sparse attention algorithms including static
method Sparse VideoGen (SVG) [4], and dynamic methods SpargeAttention [9] and XAttention [10].
Note that we skip the evaluation of XAttention on Wan2.1 as it is not supported yet. For SVG,
SpargeAttention, and XAttention, we use their official configurations.

Implementations. We prototype SVG2 as an end-to-end framework with customized kernels from
FlashInfer [16] and benchmark on NVIDIA H100 GPU with CUDA 12.8. For SVG2, we choose
Cq = 100 and Ck = 500, and explain the choice in § D. To showcase the trade-off between generation
quality and efficiency, we evaluate on various accuracy target (i.e., attention score recall) as detailed
in § 5.4. We also sample a single data point for detailed comparison as shown in Table 1. We
conduct experiments with sparse attention skipped during the first 30% of denoising steps for all
methods, as these steps are critical for generation quality. following previous work [64, 68, 56, 59].
For experiment results without warmup, please check Table 2 in Appendix.

5.2 Quality Evaluation

We first qualitatively showcase the effectiveness of our proposed method by showing the visualization
of attention maps. As shown in Figure 6, we collect attention maps from different attention heads
when running Wan2.1 on prompts from VBench. Despite the diversity of the sparse patterns (i.e.,
different columns in Figure 6), semantic-aware permutation effectively densifies critical tokens into
contiguous layout, which enables efficient computation without waste. Furthermore, by applying

8

Table 1: Quality and efficiency benchmarking results of SVG2 and baselines. Warmup steps is set to 30%.

Model Config PSNR ↑ SSIM ↑ LPIPS ↓ VBench ↑ Density ↓ FLOP ↓ ↑ Speedup ↑

Wan 2.1 14B, 720P, Image-to-Video - - - 0.841 100% 526.76 PFLOPs 1×

SpargeAttn 21.181 0.665 0.333 - 38.99% 366.80 PFLOPs 1.47×
SVG 24.059 0.813 0.174 0.836 30.25% 343.88 PFLOPs 1.56×
Ours 26.562 0.861 0.138 0.838 31.28% 346.59 PFLOPs 1.58×
Ours-Turbo 24.510 0.812 0.179 0.836 14.13% 301.62 PFLOPs 1.84×

Wan 2.1 14B, 720P, Text-to-Video - - - 0.846 100% 658.46 PFLOPs 1×

SpargeAttn 20.519 0.623 0.343 0.820 42.03% 468.46 PFLOPs 1.44×
SVG 22.989 0.785 0.199 0.837 30.25% 429.86 PFLOPs 1.58×
Ours 25.808 0.854 0.138 0.842 29.51% 427.43 PFLOPs 1.60×
Ours-Turbo 23.682 0.789 0.196 0.838 12.87% 372.89 PFLOPs 1.89×

Hunyuan 13B, 720P, Text-to-Video - - - 0.850 100% 612.38 PFLOPs 1×

SpargeAttn 27.892 0.884 0.151 - 42.62% 399.16 PFLOPs 1.53×
XAttention 28.892 0.898 0.120 0.839 39.32% 386.90 PFLOPs 1.56×
SVG 29.157 0.905 0.120 0.845 29.86% 351.75 PFLOPs 1.91×
SVG + FP8 29.033 0.902 0.121 0.843 29.86% 351.75 PFLOPs 2.3×
Ours 30.452 0.910 0.117 0.852 25.45% 335.36 PFLOPs 2.30×
Ours + FP8 30.389 0.908 0.118 0.851 25.45% 335.36 PFLOPs 2.55×

G
FL

O
Ps

0

2250

4500

6750

9000

(# of Q Cluster, # of K Cluster)
(20,100) (20,200) (20,500) (100, 100)(100, 200)(100, 500)

FlashInfer (Static) Ours (Dynamic) Theoretical

1.88x1.72x

D
en

si
ty

23

24

25

26

27

Latency (ms)

0 5 10 15 20 25 30 35

w/ centroids cache w/o centroids cache
Kmeans Init Time

(Expensive)
0 step

1 step
2 step
5 step

10 step 50 step

0 step

1 step
2 step
5 step

10 step

76× smaller

(a) Efficiency evaluation of k-means (b) Efficiency evaluation of customized attention

Figure 7: Efficiency evaluation for fast k-means with centroids cache and customized attention kernel.

centroid-based top-p selection and then undoing the permutation, the permuted attention map is
recovered into the original layout, which shows high similarity to the original attention map.

To quantitatively assess the generation quality, we evaluate the quality of videos generated by SVG2,
when compared to baselines and report the results in Table 1. SVG2 consistently outperforms all
baseline methods in terms of PSNR, SSIM, and LPIPS, while still maintaining the highest speedup.
Specifically, SVG2 achieves an average PSNR of 26.5 on Wan2.1 and 30.4 on HunyuanVideo,
demonstrating its effectiveness on generating highly consistent and smooth videos.

Due to space limitations, the full results of VBench can be found at Table 3 and Table 4 in the
appendix.

5.3 Efficiency Evaluation

Efficient k-means with centroids cache. To demonstrate the effectiveness of centroids cache in
improving efficiency of k-means, we compare the density achieved by SVG2 to reach the 90%
attention recall, when varying different number of execution time (i.e., number of k-means iterations).
We use widely-used algorithm k-means++ [63]. Since the k-means quality directly determine the
accuracy of critical token identification, it also determines the achieved density. The lower the density
is, the better the k-means is. As shown in Figure 7(a), enabling centroids cache reduces the end-to-end
latency of k-means by 76× when reaching comparable or lower density. This demonstrates the
effectiveness of centroids cache, which greatly reduce the initialization time.

Efficient attention kernel with dynamic block-sizes. To showcase the efficiency of our customized
attention kernels with dynamic block-sizes, we evaluate the computation FLOPs of our implementa-

9

tion compared with a state-of-the-art attention library, FlashInfer [16]. We vary different combination
of hyper-parameters (i.e., number of clusters Cq and Ck) and apply centroid-based top-p selection
to generate the practical workloads of dynamic block sizes. We fix the attention recall as 90%. As
shown in Figure 7(b), our customized kernels achieve an average of 1.48× computation reduction.
On practical setup with Cq = 100, Ck = 500, ours achieves 1.88× reduction of computation waste.

End-to-end speedup evaluation. To showcase the end-to-end speedup of SVG2, we incorporate
several efficiency metrics, including density, FLOPs, and end-to-end speedup into Table 1. SVG2
achieves an average speedup of 1.82× while maintaining the highest generation quality. We also
include a SVG2-Turbo to showcase the efficiency potential, which maintains a similar generation
quality as baselines but achieves much higher speedup. Specifically, SVG2-Turbo achieves 2.5×
smaller density compared to SVG while achieving an even better PSNR of 23.7. Such results can be
cross-validated with the sensitivity evaluation in § 5.4.

5.4 Sensitivity Test on Quality-Efficiency Trade-off

To validate the effectiveness of SVG2, we conduct a comprehensive evaluation on Wan2.1-I2V-14B,
comparing it against baseline methods across a wide range of computational budgets (i.e., density).
As shown in Figure 2, SVG2 consistently achieves better generation quality at any given density,
positioning it on the Pareto frontier of the quality-efficiency trade-off. Notably, SVG2 reduces density
by up to 2.3× while maintaining the same PSNR.

5.5 Ablation Study on Semantic-Aware Permutation

A
tte

nt
io

n
R

ec
al

l

0.5

0.6

0.7

0.8

0.9

1

Density

0 15 30 45 60

w/ Kmeans Permutation w/o Kmeans Permutation

PS
N

R

14

17

20

23

26

29

Density

10 18 26 34 42

Ours SVG SpargeAttn

2.3× Reduction

Figure 8: Attention recall across various den-
sities. Enabling permutation consistently sur-
passes disabling permutation.

Effectiveness on improving identification accuracy. To
assess the effectiveness of semantic-aware permutation in
improving the accuracy of critical token identification, we
measure attention recall by comparing semantic-aware
permutation-enabled and semantic-aware permutation-
disabled configurations across varying computational bud-
gets. Both methods use mean-pooling and maintain the
same cluster size for consistency. As shown in Figure 8,
semantic-aware permutation consistently achieves higher
attention recall, indicating more accurate identification
of critical tokens. This improvement is attributed to the
semantic-coherent clusters generated by semantic-aware
permutation, which offer precise representations.

Effectiveness on reducing computation waste. We further investigate the impact of semantic-aware
permutation on reducing computational waste. Specifically, we use the same set of critical tokens
selected by centroid-based top-p selection. For the semantic-aware permutation-enabled configuration,
we feed the contiguous layout generated after permutation into GPUs, while for the semantic-aware
permutation-disabled configuration, we use the scattered layout before permutation. As shown in our
results, enabling semantic-aware permutation reduces computational overhead by an average of 36%,
while maintaining the same set of critical tokens.

6 Conclusion & Limitation

In this paper, we proposed SVG2, a training-free sparse attention approach for accelerating DiT-based
video generation. By clustering tokens based on semantic similarity, SVG2 accurately identifies
critical tokens. By permuting critical tokens into a contiguous layout, SVG2 effectively reduces
the computation waste. Comprehensive evaluations show that SVG2 achieves a superior trade-off
between generation quality and efficiency, making video generation more efficient and practical. The
major limitation of this paper lies in the lack of discussion and evaluation on whether the proposed
methods can be extended to attention mechanisms other than DiTs.

References
[1] Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu,

Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative models. arXiv

10

preprint arXiv:2412.03603, 2024. 2, 3, 8

[2] Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao, Jianxiao
Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan Chen, Kai Zhu,
Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pandeng Li, Pingyu Wu, Ruihang
Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong
Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou, Wente Wang, Wenting Shen, Wenyuan Yu,
Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang,
Yingya Zhang, Yitong Huang, Yong Li, You Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi,
Yutong Feng, Zeyinzi Jiang, Zhen Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale
video generative models. arXiv preprint arXiv:2503.20314, 2025. 2, 3, 8

[3] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi
Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert
transformer. arXiv preprint arXiv:2408.06072, 2024. 2

[4] Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai, Jintao
Zhang, Dacheng Li, et al. Sparse videogen: Accelerating video diffusion transformers with spatial-temporal
sparsity. In ICML, 2025. 2, 3, 4, 8

[5] Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest: Query-aware
sparsity for efficient long-context llm inference. In ICML, 2024. 2, 3

[6] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-hitter oracle for
efficient generative inference of large language models, 2023. 2, 3, 4

[7] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language
models with attention sinks. In ICLR, 2024. 2, 3

[8] Peiyuan Zhang, Yongqi Chen, Runlong Su, Hangliang Ding, Ion Stoica, Zhenghong Liu, and Hao Zhang.
Fast video generation with sliding tile attention. arXiv preprint arXiv:2502.04507, 2025. 2, 3, 4

[9] Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei Chen.
Spargeattn: Accurate sparse attention accelerating any model inference. In ICML, 2025. 2, 3, 4, 5, 8

[10] Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
attention with antidiagonal scoring. In ICML, 2025. 2, 3, 4, 8

[11] Kan Zhu, Tian Tang, Qinyu Xu, Yile Gu, Zhichen Zeng, Rohan Kadekodi, Liangyu Zhao, Ang Li, Arvind
Krishnamurthy, and Baris Kasikci. Tactic: Adaptive sparse attention with clustering and distribution fitting
for long-context llms, 2025. 2, 3, 4

[12] Yucheng Li, Huiqiang Jiang, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Amir H. Abdi,
Dongsheng Li, Jianfeng Gao, Yuqing Yang, and Lili Qiu. Mminference: Accelerating pre-filling for
long-context vlms via modality-aware permutation sparse attention, 2025. 2, 3

[13] Ningxin Zheng, Huiqiang Jiang, Quanlu Zhang, Zhenhua Han, Yuqing Yang, Lingxiao Ma, Fan Yang,
Chengruidong Zhang, Lili Qiu, Mao Yang, and Lidong Zhou. Pit: Optimization of dynamic sparse deep
learning models via permutation invariant transformation, 2023. 2

[14] NVIDIA. Nvidia a100 tensor core gpu. https://www.nvidia.com/content/dam/en-zz/
Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.
pdf, 2021. 2, 5

[15] Chaofan Lin, Jiaming Tang, Shuo Yang, Hanshuo Wang, Tian Tang, Boyu Tian, Ion Stoica, Song Han, and
Mingyu Gao. Twilight: Adaptive attention sparsity with hierarchical top-p pruning, 2025. 3

[16] Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen, Baris
Kasikci, Vinod Grover, Arvind Krishnamurthy, and Luis Ceze. Flashinfer: Efficient and customizable
attention engine for llm inference serving, 2025. 3, 7, 8, 10

[17] Yifei Xia, Suhan Ling, Fangcheng Fu, Yujie Wang, Huixia Li, Xuefeng Xiao, and Bin Cui. Training-free
and adaptive sparse attention for efficient long video generation, 2025. 3

[18] Tianchen Zhao, Ke Hong, Xinhao Yang, Xuefeng Xiao, Huixia Li, Feng Ling, Ruiqi Xie, Siqi Chen,
Hongyu Zhu, Yichong Zhang, and Yu Wang. Paroattention: Pattern-aware reordering for efficient sparse
and quantized attention in visual generation models, 2025. 3

11

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

[19] Xin Tan, Yuetao Chen, Yimin Jiang, Xing Chen, Kun Yan, Nan Duan, Yibo Zhu, Daxin Jiang, and Hong
Xu. Dsv: Exploiting dynamic sparsity to accelerate large-scale video dit training, 2025. 3

[20] Akide Liu, Zeyu Zhang, Zhexin Li, Xuehai Bai, Yizeng Han, Jiasheng Tang, Yuanjie Xing, Jichao Wu,
Mingyang Yang, Weihua Chen, Jiahao He, Yuanyu He, Fan Wang, Gholamreza Haffari, and Bohan Zhuang.
Fpsattention: Training-aware fp8 and sparsity co-design for fast video diffusion, 2025. 3

[21] Wenhao Sun, Rong-Cheng Tu, Yifu Ding, Zhao Jin, Jingyi Liao, Shunyu Liu, and Dacheng Tao. Vorta:
Efficient video diffusion via routing sparse attention, 2025. 3

[22] Yuechen Zhang, Jinbo Xing, Bin Xia, Shaoteng Liu, Bohao Peng, Xin Tao, Pengfei Wan, Eric Lo, and
Jiaya Jia. Training-free efficient video generation via dynamic token carving, 2025. 3

[23] Shuo Yang, Ying Sheng, Joseph E. Gonzalez, Ion Stoica, and Lianmin Zheng. Post-training sparse attention
with double sparsity, 2024. 3

[24] Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and Song
Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads, 2024. 3

[25] Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling for long-context
llms via dynamic sparse attention. NeurIPS, 2024. 3

[26] Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
attention mechanism for efficient long-sequence inference, 2025. 3

[27] Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden Kwok-
Hay So, Ting Cao, Fan Yang, and Mao Yang. Seerattention: Learning intrinsic sparse attention in your
llms, 2025. 3

[28] Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, and
Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an efficient context memory,
2024. 3

[29] Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite:
Zero-shot extreme length generalization for large language models, 2024. 3

[30] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast
autoregressive transformers with linear attention, 2020. 3

[31] Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training, 2024. 3

[32] Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with delta rule,
2025. 3

[33] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024. 3

[34] Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality, 2024. 3

[35] Yu Gao, Jiancheng Huang, Xiaopeng Sun, Zequn Jie, Yujie Zhong, and Lin Ma. Matten: Video generation
with mamba-attention, 2024. 3

[36] Hongjie Wang, Chih-Yao Ma, Yen-Cheng Liu, Ji Hou, Tao Xu, Jialiang Wang, Felix Juefei-Xu, Yaqiao Luo,
Peizhao Zhang, Tingbo Hou, Peter Vajda, Niraj K. Jha, and Xiaoliang Dai. Lingen: Towards high-resolution
minute-length text-to-video generation with linear computational complexity, 2025. 3

[37] Jiancheng Huang, Gengwei Zhang, Zequn Jie, Siyu Jiao, Yinlong Qian, Ling Chen, Yunchao Wei, and Lin
Ma. M4v: Multi-modal mamba for text-to-video generation, 2025. 3

[38] Ryan Po, Yotam Nitzan, Richard Zhang, Berlin Chen, Tri Dao, Eli Shechtman, Gordon Wetzstein, and
Xun Huang. Long-context state-space video world models, 2025. 3

[39] Karan Dalal, Daniel Koceja, Gashon Hussein, Jiarui Xu, Yue Zhao, Youjin Song, Shihao Han, Ka Chun
Cheung, Jan Kautz, Carlos Guestrin, Tatsunori Hashimoto, Sanmi Koyejo, Yejin Choi, Yu Sun, and
Xiaolong Wang. One-minute video generation with test-time training, 2025. 3

12

[40] Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng Yu, Ligeng Zhu, Chengyue Wu, Yujun Lin, Zhekai
Zhang, Muyang Li, Junyu Chen, Han Cai, Bingchen Liu, Daquan Zhou, and Song Han. Sana 1.5: Efficient
scaling of training-time and inference-time compute in linear diffusion transformer, 2025. 3

[41] Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li,
Ligeng Zhu, Yao Lu, and Song Han. Sana: Efficient high-resolution image synthesis with linear diffusion
transformers, 2024. 3

[42] Junsong Chen, Yuyang Zhao, Jincheng Yu, Ruihang Chu, Junyu Chen, Shuai Yang, Xianbang Wang,
Yicheng Pan, Daquan Zhou, Huan Ling, Haozhe Liu, Hongwei Yi, Hao Zhang, Muyang Li, Yukang Chen,
Han Cai, Sanja Fidler, Ping Luo, Song Han, and Enze Xie. Sana-video: Efficient video generation with
block linear diffusion transformer, 2025. 3

[43] Junyu Chen, Dongyun Zou, Wenkun He, Junsong Chen, Enze Xie, Song Han, and Han Cai. Dc-ae 1.5:
Accelerating diffusion model convergence with structured latent space, 2025. 3

[44] Wenkun He, Yuchao Gu, Junyu Chen, Dongyun Zou, Yujun Lin, Zhekai Zhang, Haocheng Xi, Muyang
Li, Ligeng Zhu, Jincheng Yu, Junsong Chen, Enze Xie, Song Han, and Han Cai. Dc-gen: Post-training
diffusion acceleration with deeply compressed latent space, 2025. 3

[45] Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, and Song
Han. Deep compression autoencoder for efficient high-resolution diffusion models, 2025. 3

[46] Tianwei Yin, Qiang Zhang, Richard Zhang, William T Freeman, Fredo Durand, Eli Shechtman, and Xun
Huang. From slow bidirectional to fast autoregressive video diffusion models. CVPR, 2025. 4

[47] Xun Huang, Zhengqi Li, Guande He, Mingyuan Zhou, and Eli Shechtman. Self forcing: Bridging the
train-test gap in autoregressive video diffusion, 2025. 4

[48] Shuai Yang, Wei Huang, Ruihang Chu, Yicheng Xiao, Yuyang Zhao, Xianbang Wang, Muyang Li, Enze
Xie, Yingcong Chen, Yao Lu, Song Han, and Yukang Chen. Longlive: Real-time interactive long video
generation, 2025. 4

[49] Lvmin Zhang and Maneesh Agrawala. Packing input frame context in next-frame prediction models for
video generation, 2025. 4

[50] Min Zhao, Guande He, Yixiao Chen, Hongzhou Zhu, Chongxuan Li, and Jun Zhu. Riflex: A free lunch for
length extrapolation in video diffusion transformers, 2025. 4

[51] Yu Lu and Yi Yang. Freelong++: Training-free long video generation via multi-band spectralfusion, 2025.
4

[52] Xingyang Li, Muyang Li, Tianle Cai, Haocheng Xi, Shuo Yang, Yujun Lin, Lvmin Zhang, Songlin Yang,
Jinbo Hu, Kelly Peng, Maneesh Agrawala, Ion Stoica, Kurt Keutzer, and Song Han. Radial attention:
o(n logn) sparse attention with energy decay for long video generation, 2025. 4

[53] Jianzong Wu, Liang Hou, Haotian Yang, Xin Tao, Ye Tian, Pengfei Wan, Di Zhang, and Yunhai Tong.
Vmoba: Mixture-of-block attention for video diffusion models, 2025. 4

[54] Shengqu Cai, Ceyuan Yang, Lvmin Zhang, Yuwei Guo, Junfei Xiao, Ziyan Yang, Yinghao Xu, Zhenheng
Yang, Alan Yuille, Leonidas Guibas, Maneesh Agrawala, Lu Jiang, and Gordon Wetzstein. Mixture of
contexts for long video generation, 2025. 4

[55] Peiyuan Zhang, Yongqi Chen, Haofeng Huang, Will Lin, Zhengzhong Liu, Ion Stoica, Eric Xing, and Hao
Zhang. Vsa: Faster video diffusion with trainable sparse attention, 2025. 4

[56] Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, and Kwan-Yee K. Wong.
Fastercache: Training-free video diffusion model acceleration with high quality. 2024. 4, 8

[57] Jiazi Bu, Pengyang Ling, Yujie Zhou, Yibin Wang, Yuhang Zang, Tong Wu, Dahua Lin, and Jiaqi Wang.
Dicache: Let diffusion model determine its own cache, 2025. 4

[58] Huanpeng Chu, Wei Wu, Guanyu Fen, and Yutao Zhang. Omnicache: A trajectory-oriented global
perspective on training-free cache reuse for diffusion transformer models, 2025. 4

[59] Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang, Qixiang
Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion model. In CVPR, 2025.
4, 7, 8

13

[60] Xin Zhou, Dingkang Liang, Kaijin Chen, Tianrui Feng, Xiwu Chen, Hongkai Lin, Yikang Ding, Feiyang
Tan, Hengshuang Zhao, and Xiang Bai. Less is enough: Training-free video diffusion acceleration via
runtime-adaptive caching, 2025. 4

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017. 4

[62] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. Sparsetir: Composable abstractions for
sparse compilation in deep learning, 2023. 5

[63] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, page 1027–1035, USA,
2007. Society for Industrial and Applied Mathematics. 7, 9

[64] Xuanlei Zhao, Xiaolong Jin, Kai Wang, and Yang You. Real-time video generation with pyramid attention
broadcast, 2025. 7, 8

[65] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao. Flashattention-3:
Fast and accurate attention with asynchrony and low-precision. NeurIPS, 2024. 7

[66] Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A programming
model for generating optimized attention kernels, 2024. 7

[67] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu,
Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin, Yu Qiao, and
Ziwei Liu. Vbench: Comprehensive benchmark suite for video generative models, 2023. 8

[68] Muyang Li, Tianle Cai, Jiaxin Cao, Qinsheng Zhang, Han Cai, Junjie Bai, Yangqing Jia, Ming-Yu Liu, Kai
Li, and Song Han. Distrifusion: Distributed parallel inference for high-resolution diffusion models. In
CVPR, 2024. 8

14

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims are empirically verified by § 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the applicability limitation in § 6.

15

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the theoretical proof for the correctness of semantic permutation
in § 4.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experiment details are included in § 5.

Guidelines:

• The answer NA means that the paper does not include experiments.

16

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the algorithms and implementation details are mentioned in § 4 and § 5.
Our code and scripts will be released upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experiment hyperparameters are included in § 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We test over multiple random seeds and the results are highly deterministic
and reproducible. So we don’t include error bar in the figure.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments are all conducted on common NVIDIA GPUs described in
§ 5.

Guidelines:

• The answer NA means that the paper does not include experiments.

18

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper introduces a method to accelerate video generation models, so it
does not have direct societal impact. However, the use of video generation models may have
social impact, which can be amplified by this technique.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

19

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]

Justification: We will explicitly specify the usage permission of our method with proper
licenses.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper uses open-source datasets and models in § 5. The usage respects all
the original licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

20

paperswithcode.com/datasets

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this paper does not involve LLMs as any
important, original or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Visualization of the Generated Videos

We provide visualization comparison between SVG2 and Dense Attention on HunyuanVideo and
Wan 2.1. Results in Figure 9 and Figure 10 demonstrate that SVG2 can preserve high pixel-level
fidelity, achieving similar generation quality compared with the dense attention. Real video samples
are provided in the supplementary materials.

Dense Attention

SVG2

Dense Attention

SVG2

Dense Attention

SVG2

Dense Attention

SVG2

Dense Attention

SVG2

Dense Attention

SVG2

Dense Attention

SVG2

Figure 9: Comparion of Dense Attention and SVG2 on HunyuanVideo and Wan 2.1 Text-to-Video generation.

22

Dense Attention SVG2

Dense Attention SVG2

Dense Attention SVG2

Dense Attention SVG2

Dense Attention SVG2

Dense Attention SVG2

Dense Attention

SVG2

Dense Attention

SVG2

Figure 10: Comparison of Dense Attention and SVG2 on Wan 2.1 Image-to-Video generation.

23

B Performance Comparison in Warmup-free Setting

We present the performance comparison between SVG2 and the baseline without warmup steps. We
find that our method consistently offers better quality under a warmup-free setting.

Table 2: Quality and efficiency benchmarking results of SVG2 and baselines. Warmup steps is set to 0%.

Model Config PSNR ↑ SSIM ↑ LPIPS ↓ VBench ↑ Density ↓ FLOP ↓ Attn Speedup ↑ Speedup ↑

Wan 2.1 14B, 720P, Image-to-Video - - - 0.841 100% 526.76 PFLOPs 1× 1×

SVG 15.608 0.512 0.404 0.823 29.54% 262.85 PFLOPs 2.26× 1.86×
Ours 18.276 0.615 0.317 0.832 29.34% 262.10 PFLOPs 2.95× 2.10×

Wan 2.1 14B, 720P, Text-to-Video - - - 0.851 100% 658.46 PFLOPs 1× 1×

SVG 13.294 0.407 0.512 0.849 29.54% 328.56 PFLOPs 2.28× 1.89×
Ours 16.502 0.562 0.373 0.852 30.12% 331.28 PFLOPs 2.98× 2.13×

Hunyuan 13B, 720P, Text-to-Video - - - 0.820 100% 612.38 PFLOPs 1× 1×

SVG 12.298 0.492 0.483 0.808 29.86% 240.05 PFLOPs 3.45× 2.48×
Ours 19.879 0.735 0.260 0.816 28.94% 235.16 PFLOPs 4.06× 2.69×

C VBench Results

We provide the full VBench results of SVG2 and baselines in Table 3 and Table 4. These results
clearly shows that SVG2 outperforms all other baselines.

Table 3: VBench result of SVG2. Warmup steps is 0%.

Model Config SubConsis BackConsis MotionSmooth AesQual ImagQual Average

Wan 2.1 14B, 720P, Image-to-Video 0.946 0.956 0.979 0.618 0.709 0.841

SVG 0.916 0.935 0.976 0.591 0.698 0.823
Ours 0.936 0.946 0.977 0.597 0.700 0.832

Wan 2.1 14B, 720P, Text-to-Video 0.970 0.970 0.992 0.612 0.708 0.851

SVG 0.963 0.969 0.991 0.612 0.708 0.849
Ours 0.971 0.970 0.992 0.624 0.707 0.852

Hunyuan 13B, 720P, Text-to-Video 0.888 0.938 0.994 0.594 0.685 0.820

SVG 0.867 0.930 0.991 0.594 0.656 0.808
Ours 0.888 0.935 0.994 0.589 0.675 0.816

Table 4: VBench result of SVG2. Warmup steps is 30%.

Model Config SubConsis BackConsis MotionSmooth AesQual ImagQual Average

Wan 2.1 14B, 720P, Image-to-Video 0.946 0.956 0.979 0.618 0.709 0.841

SVG 0.941 0.948 0.978 0.606 0.709 0.836
Ours 0.943 0.951 0.977 0.606 0.709 0.838

Wan 2.1 14B, 720P, Text-to-Video 0.956 0.968 0.983 0.613 0.713 0.846

SpargeAttn 0.927 0.948 0.978 0.567 0.684 0.820
SVG 0.947 0.960 0.980 0.597 0.703 0.837
Ours 0.954 0.965 0.982 0.602 0.709 0.842

Hunyuan 13B, 720P, Text-to-Video 0.915 0.941 0.993 0.648 0.753 0.850

XAttention 0.912 0.924 0.992 0.631 0.739 0.839
SVG 0.914 0.928 0.993 0.652 0.739 0.845
Ours 0.917 0.946 0.993 0.657 0.751 0.852

24

Figure 11: Efficiency evaluation for our attention kernel. We fix the number of query clusters and vary the
number of key clusters.

Figure 12: Efficiency evaluation of our attention kernel, where we fix the number of key clusters and vary the
number of query clusters.

D Ablation on the Number of Clusters

D.1 Effect on the Sparse Attention Kernel

Our sparse attention kernel is fully compatible with both FlashAttention-2 and FlashAttention-3. We
implemented Sparse VideoGen2 on both FA2 and FA3 backends, achieving substantial speedups on
A100 and H100 GPUs. Under the Wan 2.1 setting with a sequence length of 74,256 on H100, we
benchmark kernel performance by comparing sparse and dense attention across varying densities and
cluster configurations. In each experiment, we control either Cq or Ck, fixing one while varying the
other. Results in Figure 11 and Figure 12 demonstrate that the kernel’s performance will drastically
decrease when Cq is larger than 200. However, the performance is nearly identical as we increase Ck

to as large as 4000. This suggests us to adopt a larger Ck than Cq .

D.2 End-to-end Latency-quality Trade-off

We further varied the Q/K cluster counts and measured both PSNR and end-to-end efficiency. Our
results in Table 5 show that setting Q = 100 and K = 500 provides the best balance between
generation quality and efficiency. While increasing the number of clusters generally improves quality,
efficiency can degrade due to hardware layout constraints. In particular, tensor cores require fixed
input sizes (e.g., 64 for m64n64k16) to fully utilize computation, meaning that each Q cluster

25

Cq Ck PSNR SSIM LPIPS Speedup

100 250 25.497 0.801 0.182 1.90x
100 1000 26.276 0.825 0.159 1.71x

50 500 22.561 0.742 0.258 1.90x
200 500 26.213 0.820 0.157 1.78x
400 500 26.488 0.868 0.132 1.25x
100 500 26.128 0.816 0.169 1.89x

Table 5: Performance comparison across different QC and KC settings.

must contain at least 64 tokens on average. Cluster counts beyond Q = 100 or K = 500 lead to
underutilization, reducing efficiency despite potential quality gains.

D.3 Ablation on Permutation

We performed ablation studies to investigate whether the query and key representations can adopt the
same clustering strategy. Specifically, we evaluated three variants: applying Q clustering permutation
πQ to both Q and K, applying K clustering permutation πK to both, and using clustering based on
hidden states before QKV linear layer (i.e., shared QK embedding) for both sides πS . As shown
in Table 6, all three variants led to worse PSNR even with more computation budget (i.e., density)
compared to clustering Q and K independently.

Table 6: Permutation comparison with corresponding Density and PSNR values

Permutation used by Q Permutation used by K Density PSNR
πQ πK 31.28% 26.562
πQ πQ 38.23% 22.439
πK πK 38.58% 22.183
πS πS 87.27% 26.495

To further understand this, we compared the permutations of Q and K clustering and found that the
permutation patterns differ substantially. Specifically, we calculate the Adjusted Rand Index value
between Q clusters and K clusters, and the average ARI is 0.345, which is not very high. Therefore,
clustering Q and K independently is necessary for preserving the expressiveness of attention.

E Performance Gap between HunyuanVideo and Wan 2.1

E.1 Quality Difference

In our experiments, we find that the quality performance (e.g., PSNR, SSIM, LPIPS) on Wan 2.1 is
generally lower than HunyuanVideo across all methods. The reason is that Hunyuan is relatively
robust against precision variance while Wan2.1 is highly sensitive. For instance, when evaluating
the same dense attention using different backends (FlexAttention, FlashAttention, Torch SDPA),
Wan2.1 exhibited PSNR as low as 27–28. However, HunyuanVideo exhibits 33-34 PSNR despite no
setup changes. Therefore, it is natural that SVG2 achieves a lower PSNR on Wan compared with
HunyuanVideo, due to its sensitivity to numerical changes. These differences are largely model-
specific and reflect varying sensitivity to low-level numerical behaviors, which do not correlate with
the performance of the methodology.

E.2 Speedup Difference

We also find that the speedup result on Wan 2.1 is generally lower than HunyuanVideo (1.89× versus
2.30×). The difference in end-to-end speedup between HunyuanVideo and Wan primarily stems
from their varying attention cost ratios, which are mainly due to different context lengths and model
architectures. Specifically, HunyuanVideo’s context length is 118k, while Wanx‘s context length is
75k. HunyuanVideo has 2 parts in its layers: Self Attention and Feed-Forward Network, while Wanx

26

has an additional cross-attention block. Therefore, the attention proportion in HunyuanVideo will be
larger than WanX. Since our method primarily accelerates the attention module via SVG2, the overall
speedup naturally scales with its contribution to total runtime. We will revise Table 1 to separate
attention-level and end-to-end speedups to improve clarity explicitly.

27

	Introduction
	Related Work
	Motivation
	Attention in DiTs is Inherently Sparse
	Existing Sparse Attention Fails to Match the Oracle Policy

	Methodology
	Semantic-Aware Permutation with k-means Clustering
	Centroid-Based Top-p Selection
	Efficient System-Algorithm Co-design

	Experiment
	Setup
	Quality Evaluation
	Efficiency Evaluation
	Sensitivity Test on Quality-Efficiency Trade-off
	Ablation Study on Semantic-Aware Permutation

	Conclusion & Limitation
	Visualization of the Generated Videos
	Performance Comparison in Warmup-free Setting
	VBench Results
	Ablation on the Number of Clusters
	Effect on the Sparse Attention Kernel
	End-to-end Latency-quality Trade-off
	Ablation on Permutation

	Performance Gap between HunyuanVideo and Wan 2.1
	Quality Difference
	Speedup Difference

