

Orchestrating Human-AI Teams: The Manager Agent as a Unifying Research Challenge*

Charlie Masters, Advaith Vellanki, Jiangbo Shangguan, Bart Kultys,
Jonathan Gilmore, Alastair Moore, Stefano V. Albrecht

DeepFlow, London, United Kingdom

Abstract

While agentic AI has advanced in automating individual tasks, managing complex multi-agent workflows remains a challenging problem. This paper presents a research vision for autonomous agentic systems that orchestrate collaboration within dynamic human-AI teams. We propose the Autonomous Manager Agent as a core challenge: an agent that decomposes complex goals into task graphs, allocates tasks to human and AI workers, monitors progress, adapts to changing conditions, and maintains transparent stakeholder communication. We formalize workflow management as a Partially Observable Stochastic Game and identify four foundational challenges: (1) compositional reasoning for hierarchical decomposition, (2) multi-objective optimization under shifting preferences, (3) coordination and planning in ad hoc teams, and (4) governance and compliance by design. To advance this agenda, we release MA-GYM, an open-source simulation and evaluation framework for multi-agent workflow orchestration. Evaluating GPT-5-based Manager Agents across 20 workflows, we find they struggle to jointly optimize for goal completion, constraint adherence, and workflow runtime—underscoring workflow management as a difficult open problem.

1 Introduction

AI systems based on large language models (LLMs) have demonstrated remarkable proficiency at discrete, well-defined tasks across diverse domains, such as legal reasoning (Guha et al. 2023; Hendrycks et al. 2021), software engineering (Jimenez et al. 2023), drug discovery (Wu et al. 2018; Huang et al. 2022), and finance (Chen et al. 2021; Zhu et al. 2021).

However, while current agentic systems are able to dynamically plan and execute well-sscoped steps with high efficiency, the overarching strategic layer of workflow management consisting of task decomposition, dynamic resource allocation, progress monitoring, and adaptive re-planning remains fundamentally challenging (Xu et al. 2025a; Liu et al. 2023b). This limitation becomes particularly pronounced in complex multi-agent environments where tasks are inter-

dependent, objectives evolve dynamically, and coordination failures can cascade across entire workflows.

The next frontier in distributed AI lies in transcending task-level competence toward autonomous systems that can manage the entire life-cycle of complex, collaborative projects involving multiple stakeholders and evolving objectives. Our research vision is the creation of agentic ecosystems where autonomous AI agents and human workers collaborate as a team (Vats et al. 2024). To make progress toward this vision, we propose the **Autonomous Manager Agent** as a specific research challenge.

The Manager Agent is conceived as an autonomous entity responsible for the end-to-end management of complex workflows within a dynamic multi-agent environment. Its purpose is to orchestrate a team of human and AI “workers” to optimally achieve high-level goals specified by a human stakeholder. The responsibilities of the Manager Agent include decomposing complex goals into executable task graphs; allocating human and AI workers to tasks based on their skills, task requirements, and available resources; monitoring progress and proactively identifying potential impediments; adapting to changing environmental constraints and objectives; and maintaining transparent stakeholder communication. This vision aligns with the growing field of LLM-based Multi-Agent Systems (MAS), which aims to emulate the principles of human teamwork and specialization to solve problems collectively at scale (Tran et al. 2025; Yang et al. 2024).

Realizing human-AI ecosystems demands coordinated research efforts across the Distributed AI community, spanning multiple traditionally separate sub-fields. Historically, scientific fields have often advanced by coalescing around ambitious challenge problems (Deng et al. 2009; Bennett and Lanning 2006; Reddy 1988). The Manager Agent problem is designed to serve this role for distributed and agentic AI, requiring the integration of multiple sub-fields in multi-agent systems research, including multi-agent task decomposition and planning (Oliehoek and Amato 2016), multi-objective optimization and learning in dynamic teams with heterogeneous capabilities (Albrecht, Christianos, and Schäfer 2024; Mirsky et al. 2022), and governance design (Yang et al. 2024). The challenge is grounded in real-world workflow automation with scalable difficulty dimensions (e.g. number of tasks, team size, dependency complexity,

*The original paper with extended discussion was published at DAI 2025 (Masters et al. 2025).

Copyright © 2026, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

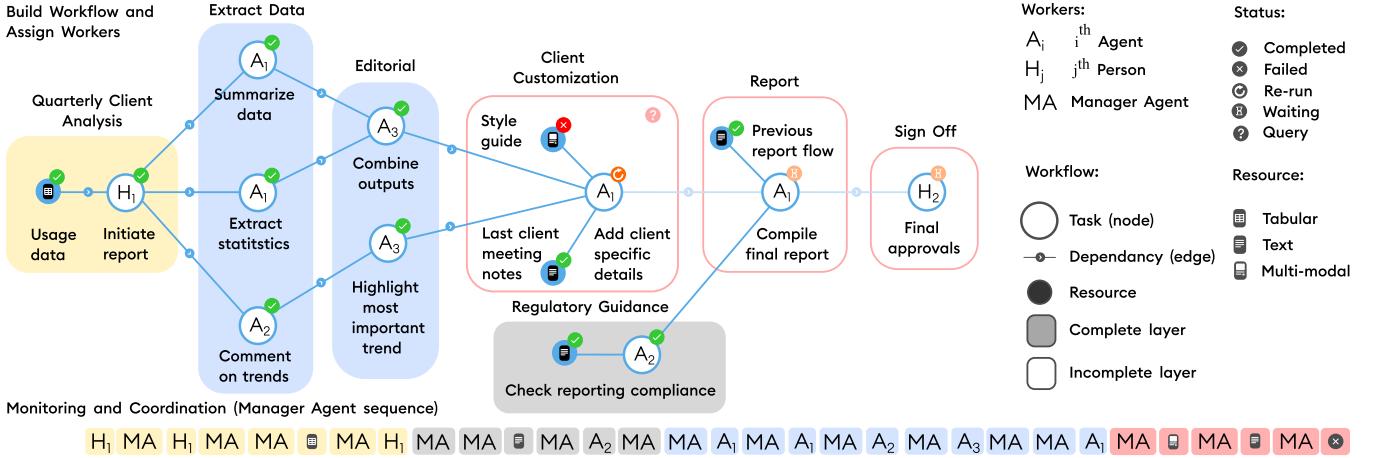


Figure 1: The Manager Agent (MA) as an orchestrator. Goal: “Write an updated quarterly report for the client”. Based on this prompt, the MA is responsible for creating, modifying, and executing actions on a task graph, G , with a heterogeneous team of workers, W (details in Section 3). The MA is responsible for coordinating the sequence of activity between workers, illustrated in the bottom row. Here, the Client Customization task does not complete as the resource fails verification, and the MA stops the execution, to then determine how to complete the flow successfully.

constraints). By proposing this challenge, we aim to galvanize research efforts and provide a common ground for evaluating progress in creating collaborative agentic AI systems.

This paper makes the following contributions:

- We propose the **Autonomous Manager Agent** as a unifying research challenge that bridges AI sub-fields including multi-agent coordination, compositional reasoning, and governance design (Section 2).
- We formally model autonomous workflow management as a **Partially Observable Stochastic Game** (POSG), enabling principled algorithmic development (Section 3).
- We identify **four foundational research problems** for autonomous workflow management – compositional reasoning for task decomposition, multi-objective optimization under non-stationary preferences, coordination in ad hoc teams, and governance by design (Section 4).
- We release *Manager Agent Gym* (MA-GYM): an **open-source library and simulator**¹ for multi-agent workflow management (Section 5). We evaluate Manager Agents based on GPT-5 across 20 diverse workflows and find that while they can achieve goal completion, constraint adherence, or workflow runtime, they fail to robustly solve for these qualities in tandem—highlighting workflow management as a difficult problem for agentic AI.

2 Conceptual Framework: The Manager Agent

The Manager Agent coordinates activity in a multi-agent system, analogous to a human project manager tasked with optimizing complex, large-scale workflows. Its environment is a dynamic task graph, illustrated in Figure 1, where nodes represent tasks and directed edges represent dependencies.

This graph is not static; it is created, modified, and executed by a heterogeneous team of “workers,” which can be specialized AI agents (e.g., a code-writing agent, a market-analysis agent) or human collaborators. This aligns with the MAS orchestrator-worker paradigm (Tran et al. 2025; Krnjaic et al. 2024), where a coordinator decomposes problems and delegates sub-tasks to specialized agents. Thus, the Manager Agent focuses on high-level strategy and coordination while worker agents focus on task execution. Worker agents operate autonomously to execute their assigned tasks.

A key aspect of this framework is the shift from a “human-in-the-loop” model, where human intervention is required for most critical decisions, to a “human-on-the-loop” model: the human stakeholder retains control over high-level objectives and oversight, but the Manager Agent autonomously handles the intricate, moment-to-moment operational management. This paradigm shift promises to significantly amplify human productivity by offloading the cognitive burden of complex coordination, while keeping humans in a strategic, supervisory role.

2.1 Core Capabilities

The Manager Agent must possess a suite of core capabilities that mirror and extend those of a human manager:

1. **Structuring Workflows:** The Manager Agent must be able to take high-level, often ambiguous, goals from a human stakeholder and decompose them into a structured graph of feasible, concrete tasks and sub-tasks with clearly defined dependencies.
2. **Assigning Workers:** It must dynamically allocate tasks to the most suitable human or AI workers based on a deep understanding of task requirements, worker skills and availability, and resource constraints.
3. **Monitoring and Coordination:** The Manager Agent must track the progress of all workers on their assigned

¹https://github.com/DeepFlow-research/manager_agent_gym

tasks, proactively identify and resolve bottlenecks, and ensure synchronized effort across the entire workflow.

4. **Adaptive Planning and Execution:** The environment is dynamic. The Manager Agent must be able to generate and execute modifications to the workflow in real-time—revising the task graph, adjusting worker roles, or reassigning tasks in response to unexpected events, information, or changing priorities.
5. **Stakeholder Communication:** It must maintain transparent communication with the stakeholder, providing regular updates on plans, progress, and potential issues to ensure robust oversight and enable informed intervention when necessary.

2.2 A Unifying Challenge

The Manager Agent problem is not merely a practical application, but a unifying research challenge that necessitates a synthesis of capabilities from traditionally separate sub-communities within multi-agent systems (MAS) research. Its core capabilities are directly related to long-standing research questions in task decomposition and allocation (Khamis, Hussein, and Elmogy 2015), team formation (Liemhetcharat and Veloso 2012), multi-agent coordination and learning (Albrecht, Christianos, and Schäfer 2024), communication (Zhu, Dastani, and Wang 2024), agent modeling (Albrecht and Stone 2018), and ad hoc teamwork (Mirsky et al. 2022).

Specifically, the capabilities of **Structuring Workflows** and **Assigning Workers** are a direct instantiation of the central MAS problem of task decomposition and allocation, which seeks optimal methods for breaking down complex goals and mapping sub-tasks to the most appropriate agents (Khamis, Hussein, and Elmogy 2015). This process is also intrinsically linked to team formation (Liemhetcharat and Veloso 2012), as the Manager Agent must dynamically assemble a group of workers to execute the workflow. The capabilities of **Monitoring and Coordination** and **Adaptive Planning and Execution** are the essence of multi-agent coordination and collaboration, a field focused on managing dependencies and ensuring coherent collective action (Oliehoek and Amato 2016). To improve over time, the Manager Agent must engage in multi-agent learning to refine its strategies for decomposition, allocation, and coordination (Albrecht, Christianos, and Schäfer 2024), as well as agent modeling (Albrecht and Stone 2018; Nashed and Zilberstein 2022) to infer the capabilities and state of its workers. Effective communication is vital, not only for **Stakeholder Communication** but also for the coordination protocols between the manager and workers, a topic that includes the potential for learning emergent languages (Zhu, Dastani, and Wang 2024). Because the team composition is not fixed, this entire process must occur under the challenging conditions of ad hoc teamwork (Mirsky et al. 2022; Rahman et al. 2023), where the Manager Agent must be able to collaborate with new teammates without pre-coordination between agents (such as prior joint training).

The ambition to build such a unifying agent is not new, but its feasibility has been unlocked by recent breakthroughs in

high-capacity foundation models (Bommasani et al. 2021; Comanici, Bieber, and et al. 2025). These models, particularly Large Language Models (LLMs), provide the “cognitive engine” for the Manager Agent, capable of high-level reasoning and planning across a range of complex, real-world tasks that was previously intractable for automated systems (Aghzal et al. 2025). The emergence of Large Reasoning Models (LRMs) in 2024-2025 marks a significant milestone (OpenAI 2024; DeepSeek-AI et al. 2025). These models leverage large-scale reinforcement learning to achieve stepwise reasoning required for dynamic planning and adaptation in complex workflows (DeepSeek-AI et al. 2025). This creates a unique opportunity to synthesize the reasoning power of foundation models with established MAS frameworks, positioning the Manager Agent as a timely and achievable research goal.

3 A Formal Model of Workflow Management

To ground this challenge in a mathematical framework, we model the problem of autonomous workflow management as a **Partially Observable Stochastic Game** (POSG) (Hansen, Bernstein, and Zilberstein 2004). A POSG models scenarios where multiple agents interact in a shared environment with incomplete information and different objectives. This is an appropriate model for our domain, as it explicitly accounts for the Manager Agent and the team of worker agents as distinct decision makers with their own action sets, observations, and preferences. A POSG is defined by the tuple $\langle I, S, b^0, \{A_i\}, \{O_i\}, P, \{R_i\} \rangle$, where each component is specified for our domain as follows.

3.1 Set of Agents (I)

The set of agents I consists of the Manager Agent (M) and the set of all worker agents (W), which can include both human and AI workers. Thus, $I = \{M\} \cup W$. (We will remark on modeling the stakeholder in Section 3.8.)

3.2 State Space (S)

The underlying state of the environment at any time t , denoted $s^t \in S$, is a comprehensive snapshot of the entire workflow. It is defined as a tuple $s \equiv \langle G, W, C, X, U \rangle$:

- G : The complete task-dependency graph, including all task nodes $\{T\}$, their metadata μ_T (e.g. status, owner, progress to date) and directed edges E_{T_i, T_j} representing dependencies between tasks.
- W : The set of all available human and AI workers, including their capabilities, current assignments, availability, and cost rates.
- C : A persistent set of communications $\{C_{i,j}\}$ between all agents $i, j \in I$.
- X : A registry of all artifacts produced by tasks so far, including documents, code, and other digital assets.
- U : A set of preference weights of the stakeholder for how tasks are completed (e.g. cost, speed, quality). These may be fully or partially observable to agents I , and can evolve over time.

The initial state s^0 is sampled from the initial state distribution b^0 .

3.3 Action Spaces (A_i)

Each agent $i \in I$ has its own set of available actions.

Manager Agent's Action Space (A_m): The Manager Agent possesses a rich action space designed to orchestrate complex workflows through three primary categories of capabilities:

- *Observability-increasing actions:* These actions allow the agent to reduce its uncertainty about the state by gathering information about the workflow's progress. Representative examples include `Inspect` (T_i) to view execution logs and outputs μ_{T_i}, X_{T_i} for specific tasks, and `GetChatHistory` (T_i) to retrieve the recent communication history related to a given task.
- *Graph-modifying actions:* These actions dynamically alter the structure of the workflow itself. Representative actions include `AddTask` (T_i) and `RemoveTask` (T_i) to add or remove tasks T_i from G , `AddEdge` (T_i, T_j) to establish or modify dependencies E_{T_i, T_j} between tasks, and `DecomposeTask` (T_i) to decompose a complex task into sub-tasks.
- *Delegation and communication actions:* These actions manage the team of workers. Examples include `AssignTask` (T_i, W_j) to assign a task to a human or AI worker, and `SendMessage` ($W_j, \text{message}$) to communicate directly with a worker to provide guidance, request updates, or alert them to changing priorities or constraints.

Worker Agent's Action Space (A_i for $i \in W$): Worker agents have an action space focused on task completion, including a set of tools which may be fixed or dynamic, or the ability to seek additional information when task requirements are ambiguous.

The evolution of the system depends on the **joint action** $a^t = \langle a_1^t, \dots, a_n^t \rangle \in \times_{i \in I} A_i$ taken by all agents at time t .

3.4 Observation Spaces (O_i)

Each agent has a private, partial view of the state, as well as (potentially) the past actions of other agents.

Manager Agent's Observation Space (O_M): The Manager Agent has full access to some parts of the state, such as the high-level task graph, resource metadata, and chat history, but may not directly observe other parts such as stakeholder preferences, or the contents of artifacts or detailed worker logs.

Worker Agent's Observation Space (O_i for $i \in W$): A worker's observation may be limited to the details of its assigned tasks, communications sent to or by the worker, and artifacts generated by the worker. Additional information about the workflow state may be observable to workers depending on their roles within the team.

3.5 Transition and Observation Dynamics (P)

The function $P(s', o|s, a)$ defines the probability of transitioning to state s' and all agents receiving a joint observation $o = \langle o_1, \dots, o_n \rangle$, given the current state s and the joint action a taken by all agents. The state dynamics can be deterministic, such as actions that modify the task graph (e.g.

removing a task). State dynamics can also be stochastic, particularly when actions involve workers whose performance is non-deterministic (e.g. time to task completion, quality of task output, etc.).

3.6 Reward Functions (R_i)

Each agent $i \in I$ has its own reward function $r_i = R_i(s, a)$, reflecting its preferences and objectives. We also include workflow-level constraints: hard constraints \mathcal{H} that must always hold, and soft constraints \mathcal{S} that can be violated with penalties.

Manager Agent's Reward (R_M): The Manager Agent's reward is aligned with the high-level goals of the stakeholder, represented by its preferences U . Conceptually, this is a multi-level function that includes a sparse terminal reward for successful workflow completion, and can include additional performance metrics such as time and cost for workflow execution and overall quality of work outputs, weighted according to stakeholder preferences U . Additionally, violations of hard and soft constraints (\mathcal{H}/\mathcal{S}) result in penalties of varying magnitudes (e.g. large penalty for violating hard constraints).

Worker Agent's Reward (R_i for $i \in W$): A worker agent's reward may be simpler, based on metrics such as the timely and successful completion of its assigned tasks. This allows for modeling self-interested behavior, where a worker might prioritize its individual task goals over the global workflow objective.

If all agents share the same reward function, i.e. $R_i = R, \forall i \in I$, then the model simplifies to a Decentralized POMDP (Dec-POMDP), which is a purely cooperative setting (Oliehoek and Amato 2016). The more general POSG formulation allows for a richer spectrum of mixed cooperative and self-interested behaviors.

3.7 Solution Concept

The actions of each agent $i \in I$ in the system are governed by a policy π_i , which assigns probabilities to the agent's available actions A_i based on the history of the agent's observations $\{o_i^t\}_{t=0,1,2,\dots}$.

The **optimal policy** π_M^* of the Manager Agent will depend on the assumptions we make about the behaviors of other agents W in the system. Borrowing concepts from Stochastic Bayesian Games (Albrecht, Crandall, and Ramamoorthy 2016) and Interactive POMDPs (Doshi and Gmytrasiewicz 2006), we may assume that the worker agents $j \in W$ draw their policies from a set of possible policies $\pi_j \in \Pi_W$. In this case, we seek a policy π_M^* for the Manager Agent that maximizes the expected return, given by the expected sum of rewards r_M^t it receives over time $t = 0, 1, 2, \dots$, assuming the worker agents can use any of the policies in Π_W . Such an assumption may be suitable if the possible behaviors of workers are well understood, which is often the case for defined AI workers.

In general, we may also assume that some worker agents may learn and adapt their behaviors over time based on past observations, as is the case with human workers and more advanced AI workers. This brings us into the realm of game

theory and multi-agent reinforcement learning (MARL) (Albrecht, Christianos, and Schäfer 2024). In a POSG, where agents may have different preferences, the optimal solution becomes an *equilibrium*—a joint policy from which no agent has a unilateral incentive to deviate. This idea is embodied by the **Nash Equilibrium (NE)** (Nash Jr 1950), which is a joint policy $\pi^* = (\pi_1^*, \dots, \pi_n^*)$ in which for every agent i , its policy π_i^* is a best response to the set of other agents' policies $\pi_{-i}^* = \pi^* \setminus \{\pi_i^*\}$. This means that no agent i can improve its expected return by changing its policy alone. Furthermore, a joint policy π^* is **Pareto-optimal** if there is no other joint policy π' that can increase the expected return for at least one agent without decreasing the expected return for any other agent.

Combining these concepts, one solution concept for our POSG is a **Pareto-optimal Nash Equilibrium (PONE)** (Munoz de Cote, Lazaric, and Restelli 2006). This is a joint policy that is both stable (a Nash Equilibrium) and efficient (Pareto-optimal), representing a desirable outcome for the collaborative human-AI team. In the Dec-POMDP case, in which agents share the same rewards, this corresponds to a joint policy that maximizes the expected return of all agents.

3.8 Modeling the Stakeholder

There are different ways to model the stakeholder in our POSG formalism. In the most general case, a stakeholder is itself an autonomous agent that can observe partial information about the workflow state, and take actions to interact with the workflow and other agents (manager, workers). Thus, a stakeholder agent $\alpha \in I$ can be represented via its own action set A_α , observation set O_α , and reward function R_α . The stakeholder's action set may include those of the Manager Agent and additional actions to enable communication with the Manager Agent and updating stakeholder preferences U (Section 3.2).

If the stakeholder is passive and does not directly choose actions in the POSG, thus giving full control to the Manager Agent, we may instead model the stakeholder as part of the transition dynamics P (Section 3.5). By including the time index t inside state s^t , the stakeholder can change its preferences $U \in s^t$ over time t through state transitions $P(s^{t+1}, o^{t+1} | s^t, a^t)$.

4 Foundational Research Challenges

The realization of an autonomous Manager Agent requires significant advances across several core areas of AI. We identify four foundational research challenges that are critical to our vision.

4.1 Hierarchical Task Decomposition

For a Manager Agent, mapping a high-level workflow description into a task graph G with governance constraints $\{\mathcal{H}, \mathcal{S}\}$ is the bottleneck that unlocks all downstream capabilities (e.g. allocation, monitoring, adaptation). Recent LLM-based multi-agent frameworks (Bai et al. 2024; Yu, Ding, and Sato 2025) show that performance gains correlate almost linearly with the quality of the induced task

graph—underlining that structure learning, not raw language generation, is the critical path. Empirical studies reveal that both single-agent LRM and multi-agent orchestration systems fail once graph depth, branching factor or novelty exceed modest thresholds. For example, large-scale audits of reasoning tasks (Kwa et al. 2025; Lin et al. 2025) find sharp phase transitions beyond which success probability collapses. Multi-agent variants inherit these limits, with recent research (Wang et al. 2025b,a) reporting substantial error cascades when sub-agents produce incompatible sub-plans, despite significant engineering for coordination. Current agents can discover local patterns but lack a hierarchical notion of causality that scales with problem complexity, prompting the question:

How can a Manager Agent scale to robustly solving large complex planning problems in dynamic multi-agent systems?

Why might models struggle? Recent work shows that transformer-based agents appear to rely on shallow subgraph matching over memorized patterns rather than genuine composition (Dziri et al. 2023). This shortcut is effective for in-distribution tasks but can fail when unseen combinations or long-range dependencies dominate in dynamic, heterogeneous teams. Moreover, partial observability and non-stationary interactions make these problems worse in multi-agent settings. They amplify exposure bias: when one worker deviates locally, errors propagate through the task graph. This invalidates the Manager Agent's original planning assumptions made to satisfy environment constraints \mathcal{H}, \mathcal{S} and preferences U .

Despite this, we can find some promising directions to tackle these problems in the following areas:

1. **Structured latent planning.** Augment LRM with explicit symbolic planners or graph-structured controllers that operate over learned abstractions, enabling verifiable sub-plan composition in the style of neuro-symbolic planning (Capitanelli and Mastrogiovanni 2024; Liu et al. 2023a; Besta et al. 2024).
2. **Meta-adaptive decomposition.** Treat task-graph induction itself as a meta-RL problem: train the manager to iteratively propose, simulate and revise decompositions with self-consistency and outcome feedback (Lambert et al. 2025).

4.2 Multi-Objective Optimization with Non-Stationary Preferences

An optimal policy π_M^* for the Manager Agent must juggle multiple, often competing objectives such as *cost*, *latency* and *quality*, yet the workflow stakeholder can re-rank these objectives mid-execution. This creates a **dynamic multi-objective** problem layered on top of the usual multi-agent coordination issues.

Two separate sub-fields attack aspects of this problem, but neither address the entire setting. Multi-Objective Reinforcement Learning (MORL) provides a framework for optimizing multiple, potentially conflicting objectives via **scalarization methods** that combine objectives via weighted sums (Vamplew et al. 2008), and **Pareto-based**

methods that learn policy sets representing different trade-offs (Van Moffaert and Nowé 2014); both of which assume the objectives are fixed a priori, and break when preference weights shift online.

Conversely, modern preference-learning pipelines model *one* scalar reward and thus ignore multi-objective trade-offs. In reinforcement learning from human feedback (RLHF), a reward model is trained to score an output higher than a ranked alternative, and the policy is fine-tuned to maximize that score (Rafailov et al. 2024). In contrast, reinforcement learning from verifiable rewards (RLVR) replaces this learned model with a verifiable reward, modeling preference in task execution via reward shaping around easily measured attributes such as length or clarity (Lambert et al. 2025; DeepSeek-AI et al. 2025). Both lines of work assume the reward remains fixed; recent extensions handle *non-stationary* scalar preferences (Son et al. 2025) but still optimize a single objective.

Since an effective manager must pragmatically handle evolving, conflicting objectives, the open research question remains:

How can a Manager Agent learn a robust policy that can efficiently adapt to non-stationary stakeholder preferences over multiple objectives without requiring costly retraining?

Early answers may lie in test-time alignment and meta-learning that infer fresh weight vectors from a few stakeholder corrections (Xu et al. 2025b; Nguyen et al. 2025), or explicit hierarchical control where the Manager Agent re-weights objectives based on stakeholder interactions while task agents solve the resulting single-objective sub-tasks, both of which remain unexplored in verifiable-reward, multi-agent settings.

4.3 Coordination in Ad Hoc Teams

The Manager Agent must orchestrate collaboration in dynamic, heterogeneous teams where agents may join or leave without prior coordination. This means the Manager Agent cannot rely on pre-coordinated strategies or prior joint training with a fixed set of teammates. This defines the classic *ad hoc teamwork* (AHT) problem—a long-standing challenge in multi-agent systems (Mirsky et al. 2022).

Key open problems in AHT that are directly relevant to our setting include generalizing to new types of teammates with their individual capabilities, expectations, and working preferences, as well as effectively collaborating with teammates who are themselves learning and adapting their behavior (Mirsky et al. 2022). The Manager Agent must be able to quickly infer the skills, knowledge, and preferences of workers based on limited interactions, and flexibly adapt how it communicates and coordinates with workers (Albrecht, Crandall, and Ramamoorthy 2016; Barrett 2015). The open research question is therefore:

How can the Manager Agent rapidly infer the capabilities, reliability, and intent of new teammates from limited interaction and leverage this understanding for effective, on-the-fly task delegation and coordination?

Several approaches point toward partial solutions. Ribeiro et al. (Ribeiro et al. 2023) use model-based reinforcement learning to learn teammate behavior and adapt policies on

the fly, but their method assumes sufficient prior interaction and struggles under extreme heterogeneity. Zhang et al. (Zhang, Lee, and Stone 2025) propose training on offline trajectories to predict teammate-aware goals, though their approach lacks the ability to reason about unobserved agent types. Wang et al. (Wang et al. 2024) embed teammate behaviors to support policy generalization in novel teams, but still assume consistent observation structures and offer limited mechanisms for dynamic role negotiation. Liu et al. (Liu et al. 2024) leverage large language models for hierarchical plan generation using interactive reasoning, though their reliance on language abstractions may not scale to low-level execution. Jin et al. (Jin et al. 2023) introduce a capability-aware ad hoc teamwork model using agent hierarchies, but this approach presumes known capability classes.

Each method tackles a facet of the problem: policy adaptation, team modeling, or high-level coordination, but none yet provide the full-stack reasoning, real-time inference, and dynamic task restructuring required for Manager Agents to operate robustly in open, evolving teams. Ad hoc coordination remains a critical and unsolved challenge for collaborative AI.

4.4 Governance and Compliance by Design

Manager Agent autonomy in complex organizational workflows creates a critical challenge: maintaining governance and compliance across dynamic multi-agent systems. These agents must interpret natural language constraints, adapt to evolving regulations, and demonstrate compliance across heterogeneous teams. The rapid advancement and deployment of AI to safety critical environments poses significant regulatory challenges with highly unpredictable and rapidly changing requirements (Dimitriou and Gantzias 2024; Kuznetsov et al. 2024). Solving these challenges involves tackling a series of problems, specifically:

How can Manager Agents maintain governance and compliance in dynamic multi-agent workflows while adapting to evolving regulatory constraints without compromising operational effectiveness?

Multi-agent constraint satisfaction requires ensuring workflow-level compliance across dynamically changing teams where agents have heterogeneous capabilities and roles. Recent works attempt to address distributed safety coordination. Gu et al. (Gu et al. 2024) make progress on safe decentralized MARL via scalable constrained policy optimization, but only in a static team composition setting. Aydeniz et al. (Aydeniz et al. 2025) achieve team-level constraint satisfaction through joint entropy maximization but only for binary collision avoidance scenarios, not tackling the complex and ambiguous requirements found in regulatory compliance.

The Manager Agent’s need to interpret natural language constraints demands translating ambiguous regulatory text into executable policies that can guide agent behavior. Existing approaches address binary safety constraints versus nuanced regulatory requirements that are inherently ambiguous, where optimal policies depend on how organizations choose to handle uncertainty and interpretation. Yao et al. (Yao et al. 2023) achieve zero-shot adaptation to varying

constraint thresholds using conditioned policy optimization, but do not address the problem of mapping from complex regulatory reasoning, focusing purely on numerical parameter adjustment.

Real-time governance adaptation requires adapting to varying safety constraints during deployment without retraining, as regulatory landscapes change post-deployment while agents must continue operating. Recent interpretability advances attempt to enable runtime safety analysis. Anthropic researchers (Anthropic 2025a,b) achieve training-time safety analysis through mechanistic interpretability and circuit tracing, but do not address automated post-deployment adaptation to regulatory changes. This connects to the broader challenge that test-time alignment remains an open problem, and optimal helpfulness-harmlessness trade-offs are domain-specific, often creating conflicts between compliance objectives (Bai et al. 2022; Ganguli et al. 2022).

Some promising solution areas to these problems could be found in *ad-hoc constraint-aware teaming* which extends existing team constraint approaches (Gu et al. 2024; Aydeniz et al. 2025) to dynamic compositions, *natural language constraint grounding* that combines existing work into using control barrier function learning with LLM-based regulatory interpretation (Yao et al. 2023), and further mechanistic research to better understand the underlying traces of models inner workings (Gyevnar et al. 2024).

5 Manager Agent Gym: A Simulator for Human–AI Workflow Orchestration

Progress on the four challenges discussed in Section 4 demands a single testbed that exercises hierarchical control, dynamic multi-objective preferences, ad-hoc teaming, and governance *together*. As summarized by the comparison in Table 1 (Appendix A), existing benchmarks each cover some of these aspects but none evaluates the full spectrum of Manager Agent capabilities.

To fill this gap, we release **Manager Agent Gym** (MA-GYM): a discrete-timestep environment where a manager operates over a graph-based multi-agent workflow and must address any or all of the four challenges per episode. We provide a high-level description of MA-GYM in Section 5.1 along with initial benchmark results in Section 5.2. Detailed specifications can be found in Appendix C and the MA-GYM code repository.

5.1 MA-GYM Overview and Workflows

MA-GYM instantiates the POSG formalism in Section 3 with an initial task dependency graph G and agent team I consisting of AI workers and simulated human workers, which are able to communicate via actions that invoke a communication store C . Additionally, MA-GYM includes a stakeholder agent α (Section 3.8) with preference weights U , which can choose to take actions based on its policy π_α configured in the simulator, including communicating with other agents, updating stakeholder preferences, and answering questions from the Manager Agent.

MA-GYM runs each workflow episode as defined in our POSG model: at each timestep, each agent $i \in I$ (includ-

ing Manager and stakeholder agents) gets an observation and takes an action from its set of available actions A_i (full action sets in Appendix C.5, Table 3) based on its policy π_i . The actions are then executed in MA-GYM, and all tasks that are ready and have been assigned to a worker are executed. Worker agents can join and leave the team at any timestep during an episode, as configured in MA-GYM.

As part of the initial release of MA-GYM, we define 20 challenging workflow scenarios representing a diverse range of real-world domains, with different stakeholder preferences, graph complexity (number of nodes and dependencies), team composition (number and types of agents), and hard/soft constraints. A full listing of these workflows can be found in Appendix C.6, Table 4.

5.2 Baselines and Results

We evaluate three baselines of LLM-based Manager Agents with OpenAI GPT-5 as a base model. **Random**: observes the dependency graph G and at each timestep is restricted to taking an action chosen uniform-randomly from A_M (the agent still has to specify input parameters for the sampled action); **CoT**: observes the dependency graph and uses Chain-of-Thought reasoning to choose its next action from the full action set A_M ; **Assign-All**: reads the starting state of the workflow G and assigns each task in T to the most suitable human or AI worker based on their skill descriptions and task requirements, thus performing all workflow planning upfront. A list of allowed Manager Agent actions can be found in Appendix C.5. We repeat all 20 workflows across 5 random seeds, capping the maximum number of Manager Agent actions at 100 before terminating the episode. We report on Preference alignment, Constraint adherence, Goal achievement, Stakeholder management, and Workflow completion time in Figure 2; see Appendix C.2 for definitions of these metrics.

How challenging is MA-GYM as an environment?

Across the 20 workflows, all baselines struggle to balance goal completion, completion time, and constraint adherence. On average, CoT achieves only modest goal completion (0.313 ± 0.187), a limited uplift over Random (0.135 ± 0.098). The Assign-All baseline, despite lacking adaptive planning or oversight, achieves higher goal completion (0.502 ± 0.209), suggesting that managerial interventions can sometimes be actively detrimental. Yet this advantage is fragile: Assign-All shows lower constraint adherence (0.475 ± 0.080) compared to CoT (0.589 ± 0.140), only marginally higher than Random (0.432 ± 0.095). Grouping workflows by capability demands reveals systematic variance in our objectives across baselines: Action-heavy processes (e.g., airline launches, marketing campaigns, AI product rollouts) strongly favor Assign-All, which achieves on average 0.373 higher goal completion compared to CoT. In documentation and audit-heavy workflows (e.g., contract negotiation, university accreditation), and CoT retains a clear lead in constraint adherence (0.579 vs. 0.419). These mixed outcomes emphasize that no single baseline performs consistently well across domains.

What trade-offs do we observe in different policies?

The differences above reflect a series of trade-offs in the

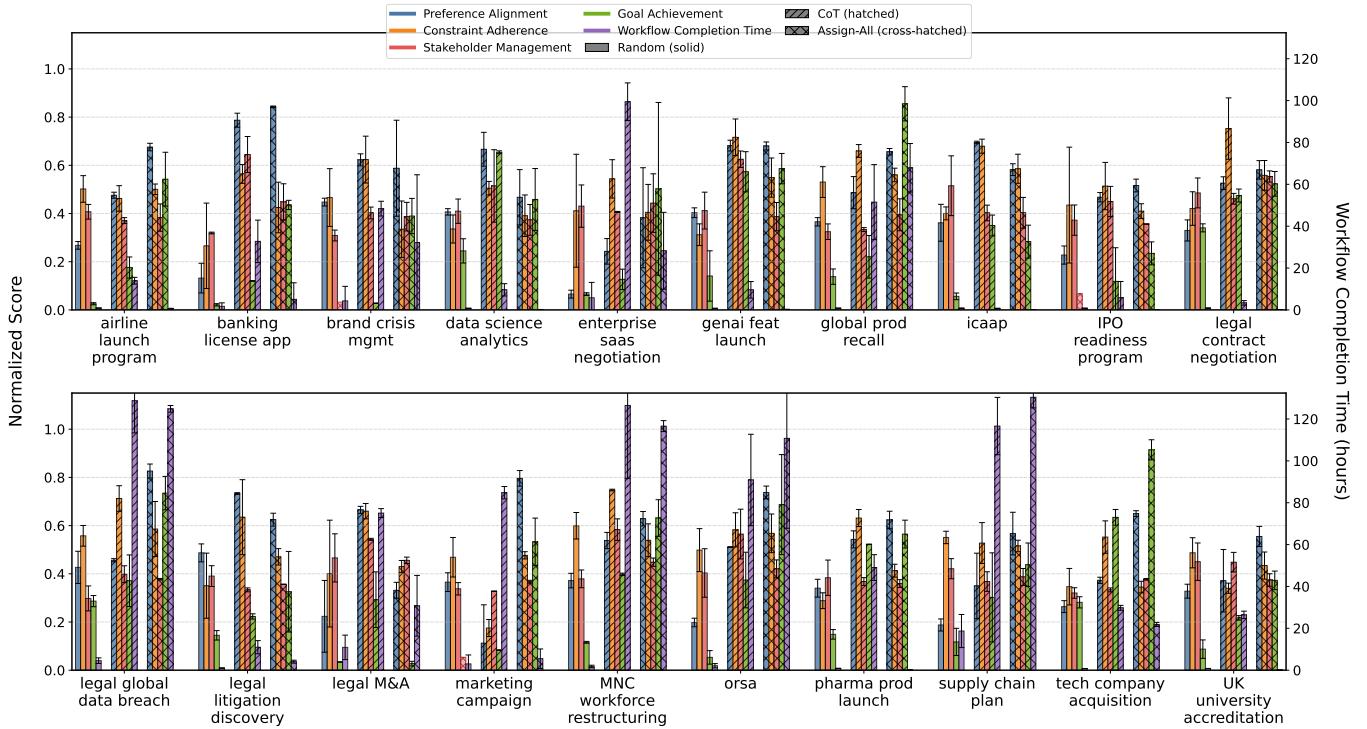


Figure 2: Random, Chain-of-Thought (CoT) and Assign-All policy performances plotted across 20 workflows (bars show average and standard deviation across 5 random seeds per workflow). Details of workflows can be found in Appendix C.6.

MA-GYM setting. CoT reliably completes most generated task nodes (80% vs. 0% for Random), but at great cost: average runtime rises to 46.9 hours compared to 2.7 for Random, with 25.8% delegation overhead and end-to-end execution 17 \times slower. These slowdowns stem from dependency bottlenecks, where human actions block downstream tasks. Assign-All reduces such stalls by dispatching tasks in bulk, cutting runtime dramatically in 16 of 20 workflows (e.g., -82.9 hours in Marketing; -68.3 hours in SaaS) and achieving higher average goal completion than CoT. Yet these gains come only by bypassing reasoning and sequencing, which weakens constraint adherence and stakeholder engagement. Taken together, this reveals a multidimensional trade-off space: goal achievement, completion time, constraint adherence, and stakeholder engagement cannot all be maximized simultaneously.

We also study the efficacy of “reasoning models” trained with verifiable rewards in place of “traditional” LLMs, comparing GPT-5 and GPT-4.1 under identical conditions. We find that GPT-5 achieved consistently higher goal completion (0.6–0.7 on analytics and product-launch workflows; see Figure 3) and deployed richer planning operators, executing 14 \times more decompositions and 26 \times more dependency links than GPT-4.1 (see Table 2). GPT-4.1 instead relied heavily on messaging and status queries, resembling a reactive communicator (see Appendix B for further discussion). This highlights that stronger reasoning supports more proactive orchestration but does not eliminate the bottlenecks, stakeholder neglect, or constraint violations.

6 Conclusion and Future Work

This paper has outlined an ambitious vision: an autonomous Manager Agent that orchestrates dynamic teams of human and AI agents to solve complex problems. This timely research goal, enabled by advances in large language and reasoning models, integrates multiple areas of multi-agent systems research. We formalized autonomous workflow management as a structured POSG and identified four core technical challenges: compositional reasoning, multi-objective optimization with non-stationary preferences, ad hoc team coordination, and governance by design. The Manager Agent problem unifies these disparate research threads into a holistic challenge.

To support research on the Manager Agent challenge, we have released the Manager Agent Gym (MA-GYM) which implements the POSG formalism and supports algorithm design and evaluation for Manager Agents. We benchmarked LLM-based Manager Agents across a diverse set of workflows inspired by real-world tasks, showing that jointly optimizing for goal achievement, constraint adherence, and resource usage (e.g. workflow runtime) is a difficult problem for agentic AI. Our future work includes building on this initial release of MA-GYM by defining additional workflow scenarios and expanding the types and capabilities of worker agents. A complementary direction is to deepen the Manager Agent’s ability to learn and apply stakeholder-specific reward rubrics for aligning LLM worker agents, as explored in our recent work (Masters, Grzeskiewicz, and Albrecht 2026).

References

Aghzal, M.; Plaku, E.; Stein, G. J.; and Yao, Z. 2025. A Survey on Large Language Models for Automated Planning. *arXiv preprint arXiv:2502.12435*.

Albrecht, S. V.; Christianos, F.; and Schäfer, L. 2024. *Multi-Agent Reinforcement Learning: Foundations and Modern Approaches*. MIT Press.

Albrecht, S. V.; Crandall, J. W.; and Ramamoorthy, S. 2016. Belief and Truth in Hypothesised Behaviours. *Artificial Intelligence*, 235: 63–94. DOI: 10.1016/j.artint.2016.02.004.

Albrecht, S. V.; and Stone, P. 2018. Autonomous Agents Modelling Other Agents: A Comprehensive Survey and Open Problems. *Artificial Intelligence*, 258: 66–95. DOI: 10.1016/j.artint.2018.01.002.

Anthropic. 2025a. Attribution Graphs: Learning Circuits in Language Models. <https://transformer-circuits.pub/2025/attribution-graphs/methods.html>.

Anthropic. 2025b. Tracing Thoughts: Language Model Responses. <https://www.anthropic.com/research/tracing-thoughts-language-model>.

Aydeniz, A. A.; Marchesini, E.; Loftin, R.; Amato, C.; and Tumer, K. 2025. Safe Entropic Agents under Team Constraints. In *Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems*, 2411–2413.

Bai, D.; Singh, I.; Traum, D.; and Thomason, J. 2024. TwoStep: Multi-agent Task Planning using Classical Planners and Large Language Models. *arXiv preprint arXiv:2403.17246*.

Bai, Y.; Kadavath, S.; Kundu, S.; Askell, A.; Kernion, J.; Jones, A.; Chen, A.; Goldie, A.; Mirhoseini, A.; McKinnon, C.; Chen, C.; Olsson, C.; Olah, C.; Hernandez, D.; Drain, D.; Ganguli, D.; Li, D.; Tran-Johnson, E.; Perez, E.; Kerr, J.; Mueller, J.; Ladish, J.; Landau, J.; Ndousse, K.; Lukosuite, K.; Lovitt, L.; Sellitto, M.; Elhage, N.; Schiefer, N.; Mercado, N.; DasSarma, N.; Lasenby, R.; Larson, R.; Ringer, S.; Johnston, S.; Kravec, S.; Showk, S. E.; Fort, S.; Lanham, T.; Telleen-Lawton, T.; Conerly, T.; Henighan, T.; Hume, T.; Bowman, S. R.; Hatfield-Dodds, Z.; Mann, B.; Amodei, D.; Joseph, N.; McCandlish, S.; Brown, T.; and Kaplan, J. 2022. Constitutional AI: Harmlessness from AI Feedback. *arXiv:2212.08073*.

Barrett, S. 2015. *Making friends on the fly: Advances in ad hoc teamwork*, volume 603. Springer.

Bennett, J.; and Lanning, S. 2006. The Netflix Prize. Technical report, Los Gatos, CA. Dataset release and competition announcement.

Besta, M.; Blach, N.; Kubicek, A.; Gerstenberger, R.; Podstawska, M.; Gianinazzi, L.; Gajda, J.; Lehmann, T.; Niewiadomski, H.; Nyczyk, P.; and Hoefer, T. 2024. Graph of Thoughts: Solving Elaborate Problems with Large Language Models. In *Proceedings of the 38th AAAI Conference on Artificial Intelligence*.

Bommasani, R.; et al. 2021. On the Opportunities and Risks of Foundation Models. *arXiv preprint arXiv:2108.07258*.

Capitanelli, A.; and Mastrogiovanni, F. 2024. A framework for neurosymbolic robot action planning using large language models. *Frontiers in Neurorobotics*, 18.

Cemri, M.; Pan, M. Z.; Yang, S.; Agrawal, L. A.; Chopra, B.; Tiwari, R.; Keutzer, K.; Parameswaran, A.; Klein, D.; Ramchandran, K.; Zaharia, M.; Gonzalez, J. E.; and Stoica, I. 2025. Why Do Multi-Agent LLM Systems Fail? *arXiv:2503.13657*.

Chang, M.; Chhablani, G.; Clegg, A.; Cote, M. D.; Desai, R.; Hlavac, M.; Karashchuk, V.; Krantz, J.; Mottaghi, R.; Parashar, P.; Patki, S.; Prasad, I.; Puig, X.; Rai, A.; Ramrakhy, R.; Tran, D.; Truong, J.; Turner, J. M.; Undersander, E.; and Yang, T.-Y. 2024. PARTNR: A Benchmark for Planning and Reasoning in Embodied Multi-agent Tasks. *arXiv:2411.00081*.

Chen, Z.; Chen, W.; Smiley, C.; Shah, S.; Borova, I.; Langdon, D.; Moussa, R.; Beane, M.; Huang, T.-H.; Routledge, B.; et al. 2021. FinQA: A Dataset of Numerical Reasoning over Financial Data. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, 3697–3711.

Comanici, G.; Bieber, E.; and et al., M. S. 2025. Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multi-modality, Long Context, and Next Generation Agentic Capabilities. *arXiv:2507.06261*.

DeepSeek-AI; Guo, D.; Yang, D.; et al. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. *arXiv:2501.12948*.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L. 2009. ImageNet: A large-scale hierarchical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*, 248–255.

Dimitriou, S.; and Gantzias, G. 2024. AI Governance in a Complex and Rapidly Changing Regulatory Landscape: A Global Perspective. *Humanities and Social Sciences Communications*, 11(1): 1–13.

Doshi, P.; and Gmytrasiewicz, P. J. 2006. On the Difficulty of Achieving Equilibrium in Interactive POMDPs. In *Proceedings of the National Conference on Artificial Intelligence*, volume 21, 1131.

Dziri, N.; Lu, X.; Sclar, M.; Li, X. L.; Jiang, L.; Lin, B. Y.; West, P.; Bhagavatula, C.; Bras, R. L.; Hwang, J. D.; Sanyal, S.; Welleck, S.; Ren, X.; Ettinger, A.; Harchaoui, Z.; and Choi, Y. 2023. Faith and Fate: Limits of Transformers on Compositionality. *arXiv:2305.18654*.

Ganguli, D.; Lovitt, L.; Kernion, J.; Askell, A.; Bai, Y.; Kadavath, S.; Mann, B.; Perez, E.; Schiefer, N.; Ndousse, K.; Jones, A.; Bowman, S.; Chen, A.; Conerly, T.; DasSarma, N.; Drain, D.; Elhage, N.; El-Showk, S.; Fort, S.; Hatfield-Dodds, Z.; Henighan, T.; Hernandez, D.; Hume, T.; Jacobson, J.; Johnston, S.; Kravec, S.; Olsson, C.; Ringer, S.; Tran-Johnson, E.; Amodei, D.; Brown, T.; Joseph, N.; McCandlish, S.; Olah, C.; Kaplan, J.; and Clark, J. 2022. Red Teaming Language Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned. *arXiv:2209.07858*.

Gu, S.; Kuba, J. G.; Chen, R.; Wang, Z.; Tian, Z.; Wang, J.; Knoll, A.; and Yang, Y. 2024. Scalable Constrained Policy Optimization for Safe Multi-agent Reinforcement Learning.

In *Advances in Neural Information Processing Systems*, volume 37.

Guha, N.; Nyarko, J.; Ho, D. E.; Ré, C.; Chilton, A.; Narayana, A.; Chohlas-Wood, A.; Peters, A.; Waldon, B.; Rockmore, D. N.; Zambrano, D.; Talisman, D.; Hoque, E.; Surani, F.; Fagan, F.; Sarfaty, G.; Dickinson, G. M.; Porat, H.; Hegland, J.; Wu, J.; Nudell, J.; Niklaus, J.; Nay, J.; Choi, J. H.; Tobia, K.; Hagan, M.; Ma, M.; Livermore, M.; Rasumov-Rahe, N.; Holzenberger, N.; Kolt, N.; Henderson, P.; Rehaag, S.; Goel, S.; Gao, S.; Williams, S.; Gandhi, S.; Zur, T.; Iyer, V.; and Li, Z. 2023. LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models. *arXiv:2308.11462*.

Gyevnar, B.; Wang, C.; Lucas, C. G.; Cohen, S. B.; and Albrecht, S. V. 2024. Causal Explanations for Sequential Decision-Making in Multi-Agent Systems. In *Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems*.

Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004. Dynamic programming for partially observable stochastic games. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 4, 709–715.

Hendrycks, D.; Burns, C.; Chen, A.; and Ball, S. 2021. CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*.

Hong, S.; Zhuge, M.; Chen, J.; Zheng, X.; Cheng, Y.; Wang, J.; Zhang, C.; Wang, Z.; Yau, S. K. S.; Lin, Z.; et al. 2023. MetaGPT: Meta programming for a multi-agent collaborative framework. In *The Twelfth International Conference on Learning Representations*.

Huang, K.; Fu, T.; Gao, W.; Zhao, Y.; Roohani, Y.; Leskovec, J.; Coley, C. W.; Xiao, C.; Sun, J.; and Zitnik, M. 2022. Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development. *Proceedings of Neural Information Processing Systems, NeurIPS Datasets and Benchmarks*.

Hyun, J.; Waytowich, N. R.; and Chen, B. 2025. CREW-WILDFIRE: Benchmarking Agentic Multi-Agent Collaborations at Scale. *arXiv preprint arXiv:2507.05178*.

Jimenez, C. E.; Yang, J.; Wettig, A.; Yao, S.; Pei, K.; Press, O.; and Narasimhan, K. 2023. SWE-bench: Can Language Models Resolve Real-World GitHub Issues? *arXiv preprint arXiv:2310.06770*.

Jin, C.; Hong, Z.-W.; Arthaud, F.; Orzech, I.; and Rinard, M. 2023. Decentralized Inference via Capability Type Structures in Cooperative Multi-Agent Systems. *arXiv preprint arXiv:2304.13957*.

Khamis, A.; Hussein, A.; and Elmogy, A. 2015. Multi-robot task allocation: A review of the state-of-the-art. *Cooperative Robots and Sensor Networks*, 31–51.

Krnjaic, A.; Steleac, R. D.; Thomas, J. D.; Papoudakis, G.; Schäfer, L.; To, A. W. K.; Lao, K.-H.; Cubuktepe, M.; Haley, M.; Börsting, P.; and Albrecht, S. V. 2024. Scalable Multi-Agent Reinforcement Learning for Warehouse Logistics with Robotic and Human Co-Workers. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*.

Kuznetsov, A.; Gyevnar, B.; Wang, C.; Peters, S.; and Albrecht, S. V. 2024. Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review. *IEEE Transactions on Intelligent Transportation Systems (T-ITS)*.

Kwa, T.; West, B.; Becker, J.; Deng, A.; Garcia, K.; Hasin, M.; Jawhar, S.; Kinniment, M.; Rush, N.; Arx, S. V.; Bloom, R.; Broadley, T.; Du, H.; Goodrich, B.; Jurkovic, N.; Miles, L. H.; Nix, S.; Lin, T.; Parikh, N.; Rein, D.; Sato, L. J. K.; Wijk, H.; Ziegler, D. M.; Barnes, E.; and Chan, L. 2025. Measuring AI Ability to Complete Long Tasks. *arXiv:2503.14499*.

Lambert, N.; Morrison, J.; Pyatkin, V.; Huang, S.; Ivison, H.; Brahman, F.; Miranda, L. J. V.; Liu, A.; Dziri, N.; Lyu, S.; Gu, Y.; Malik, S.; Graf, V.; Hwang, J. D.; Yang, J.; Bras, R. L.; Tafjord, O.; Wilhelm, C.; Soldaini, L.; Smith, N. A.; Wang, Y.; Dasigi, P.; and Hajishirzi, H. 2025. Tulu 3: Pushing Frontiers in Open Language Model Post-Training. *arXiv:2411.15124*.

Liemhetcharat, S.; and Veloso, M. 2012. Modeling and learning synergy for team formation with heterogeneous agents. In *Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume 1*, 365–374.

Lin, B. Y.; Bras, R. L.; Richardson, K.; Sabharwal, A.; Poovendran, R.; Clark, P.; and Choi, Y. 2025. ZebraLogic: On the Scaling Limits of LLMs for Logical Reasoning. In *International Conference on Machine Learning (ICML)*.

Liu, B.; Jiang, Y.; Zhang, X.; Liu, Q.; Zhang, S.; Biswas, J.; and Stone, P. 2023a. LLM+P: Empowering Large Language Models with Optimal Planning Proficiency. *arXiv preprint arXiv:2304.11477*. V3, Sep 2024.

Liu, X.; Li, P.; Yang, W.; Guo, D.; and Liu, H. 2024. Leveraging Large Language Models for Heterogeneous Ad Hoc Teamwork Collaboration. *arXiv preprint arXiv:2406.12224*.

Liu, X.; Yu, H.; Zhang, H.; Xu, Y.; Lei, X.; Lai, H.; Gu, Y.; Ding, H.; Men, K.; Yang, K.; Zhang, S.; Deng, X.; Zeng, A.; Du, Z.; Zhang, C.; Shen, S.; Zhang, T.; Su, Y.; Sun, H.; Huang, M.; Dong, Y.; and Tang, J. 2023b. AgentBench: Evaluating LLMs as Agents. *arXiv:2308.03688*.

Masters, C.; Grzeskiewicz, M.; and Albrecht, S. V. 2026. ARCANe: A Multi-Agent Framework for Interpretable and Configurable Alignment. In *AAAI 2026 Workshop on LLM-based Multi-Agent Systems: Towards Responsible, Reliable, and Scalable Agentic Systems*.

Masters, C.; Vellanki, A.; Shangguan, J.; Kultys, B.; Gilmore, J.; Moore, A.; and Albrecht, S. V. 2025. Orchestrating Human-AI Teams: The Manager Agent as a Unifying Research Challenge. In *International Conference on Distributed Artificial Intelligence*. [Https://arxiv.org/abs/2510.02557](https://arxiv.org/abs/2510.02557).

Mirsky, R.; Carlucho, I.; Rahman, A.; Fosong, E.; Macke, W.; Sridharan, M.; Stone, P.; and Albrecht, S. V. 2022. A Survey of Ad Hoc Teamwork Research. In *European Conference on Multi-Agent Systems (EUMAS)*.

Munoz de Cote, E.; Lazaric, A.; and Restelli, M. 2006. Learning to Cooperate in Multi-Agent Social Dilemmas. In

Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS).

Nash Jr, J. F. 1950. Equilibrium points in n-person games. *Proceedings of the National Academy of Sciences*, 36(1): 48–49.

Nashed, S.; and Zilberstein, S. 2022. A survey of opponent modeling in adversarial domains. *Journal of Artificial Intelligence Research*, 73: 277–327.

Nguyen, D.; Prasad, A.; Stengel-Eskin, E.; and Bansal, M. 2025. Multi-Attribute Steering of Language Models via Targeted Intervention. *arXiv:2502.12446*.

Oliehoek, F. A.; and Amato, C. 2016. *A concise introduction to decentralized POMDPs*. Springer.

OpenAI. 2024. Introducing OpenAI o1. OpenAI Blog.

Park, J. S.; O’Brien, J. C.; Cai, C. J.; Morris, M. R.; Liang, P.; and Bernstein, M. S. 2023. Generative Agents: Interactive Simulacra of Human Behavior. *arXiv:2304.03442*.

Rafailov, R.; Sharma, A.; Mitchell, E.; Ermon, S.; Manning, C. D.; and Finn, C. 2024. Direct Preference Optimization: Your Language Model is Secretly a Reward Model. *arXiv:2305.18290*.

Rahman, A.; Carlucho, I.; Höpner, N.; and Albrecht, S. V. 2023. A General Learning Framework for Open Ad Hoc Teamwork Using Graph-based Policy Learning. *Journal of Machine Learning Research*, 24(298): 1–74.

Reddy, R. 1988. Foundations and Grand Challenges of Artificial Intelligence. *AI Magazine*, 9(4): 9.

Ribeiro, J. G.; Rodrigues, G.; Sardinha, A.; and Melo, F. S. 2023. TEAMSTER: Model-based reinforcement learning for ad hoc teamwork. *Artificial Intelligence*, 324: 104013.

Son, S.; Bankes, W.; Chowdhury, S. R.; Paige, B.; and Bogunovic, I. 2025. Right Now, Wrong Then: Non-Stationary Direct Preference Optimization under Preference Drift.

Spiliopoulou, E.; Fogliato, R.; Burnsky, H.; Soliman, T.; Ma, J.; Horwood, G.; and Ballesteros, M. 2025. Play Favorites: A Statistical Method to Measure Self-Bias in LLM-as-a-Judge. *arXiv:2508.06709*.

Tran, K.-T.; Dao, D.; Nguyen, M.-D.; Pham, Q.-V.; O’Sullivan, B.; and Nguyen, H. D. 2025. Multi-Agent Collaboration Mechanisms: A Survey of LLMs. *arXiv:2501.06322*.

Vamplew, P.; Yearwood, J.; Dazeley, R.; and Berry, A. 2008. On the Limitations of Scalarisation for Multi-objective Reinforcement Learning of Pareto Fronts. 372–378. ISBN 978-3-540-89377-6.

Van Moffaert, K.; and Nowé, A. 2014. Multi-objective reinforcement learning using sets of Pareto dominating policies. *The Journal of Machine Learning Research*, 15(1): 3483–3512.

Vats, V.; et al. 2024. A Survey on Human-AI Teamming with Large Pre-Trained Models. *arXiv preprint arXiv:2403.04931*.

Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhnevets, A. S.; Yeo, M.; Makhzani, A.; Kütterl, H.; Agapiou, J.; Schrittweiser, J.; Quan, J.; Gaffney, S.; Petersen, S.; Simonyan, K.; Schaul, T.; van Hasselt, H.; Silver, D.; Lillicrap, T.; Calderone, K.; Keet, P.; Brunasso, A.; Lawrence, D.; Ekermo, A.; Repp, J.; and Tsing, R. 2017. StarCraft II: A New Challenge for Reinforcement Learning. *arXiv:1708.04782*.

Wang, C.; Rahman, A.; Durugkar, I.; Liebman, E.; and Stone, P. 2024. N-Agent Ad Hoc Teamwork. In *Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS)*.

Wang, Q.; Wang, T.; Tang, Z.; Li, Q.; Chen, N.; Liang, J.; and He, B. 2025a. MegaAgent: A large-scale autonomous LLM-based multi-agent system without predefined SOPs. In *Findings of the Association for Computational Linguistics: ACL 2025*, 4998–5036.

Wang, Y.; Wu, Z.; Yao, J.; and Su, J. 2025b. TDAG: A Multi-Agent Framework Based on Dynamic Task Decomposition and Agent Generation. *Neural Networks*, 185.

Wu, Z.; Ramsundar, B.; Feinberg, E. N.; Gomes, J.; Geniesse, C.; Pappu, A.; Leswing, K.; and Pande, V. 2018. MoleculeNet: a benchmark for molecular machine learning. *Chemical Science*, 9(2): 513–530.

Xu, F. F.; Song, Y.; Li, B.; Tang, Y.; Jain, K.; Bao, M.; Wang, Z. Z.; Zhou, X.; Guo, Z.; Cao, M.; Yang, M.; Lu, H. Y.; Martin, A.; Su, Z.; Maben, L.; Mehta, R.; Chi, W.; Jang, L.; Xie, Y.; Zhou, S.; and Neubig, G. 2025a. TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks. *arXiv:2412.14161*.

Xu, Y.; Sehwag, U. M.; Koppel, A.; Zhu, S.; An, B.; Huang, F.; and Ganesh, S. 2025b. GenARM: Reward Guided Generation with Autoregressive Reward Model for Test-Time Alignment. In *The Thirteenth International Conference on Learning Representations*.

Yang, Y.; Peng, Q.; Wang, J.; Wen, Y.; and Zhang, W. 2024. LLM-based Multi-Agent Systems: Techniques and Business Perspectives. *arXiv:2411.14033*.

Yao, S.; Shinn, N.; Razavi, P.; and Narasimhan, K. 2024. τ -bench: A Benchmark for Tool-Agent-User Interaction in Real-World Domains. *arXiv:2406.12045*.

Yao, Y.; Cen, Z.; Liu, Z.; Isenbaev, V.; Liu, W.; Wu, Z. S.; Li, B.; and Liu, D. 2023. Constraint-Conditioned Policy Optimization for Versatile Safe Reinforcement Learning. *arXiv preprint arXiv:2310.03718*.

Yu, J.; Ding, Y.; and Sato, H. 2025. DynTaskMAS: A Dynamic Task Graph-driven Framework for Asynchronous and Parallel LLM-based Multi-Agent Systems. *arXiv preprint arXiv:2503.07675*.

Zhang, Y.; Lee, V.; and Stone, P. 2025. TAGET: Offline Goal-Conditioned Policy Learning for Ad Hoc Teamwork. *Proceedings of the International Conference on Machine Learning (ICML)*.

Zhou, X.; Zhu, H.; Mathur, L.; Zhang, R.; Yu, H.; Qi, Z.; Morency, L.-P.; Bisk, Y.; Fried, D.; Neubig, G.; et al. 2024. SOTPIA: Interactive evaluation for social intelligence in language agents. In *Twelfth International Conference on Learning Representations*.

Zhu, C.; Dastani, M.; and Wang, S. 2024. A survey of multi-agent deep reinforcement learning with communication. *Autonomous Agents and Multi-Agent Systems*, 38(1): 4.

Zhu, F.; Lei, W.; Huang, Y.; Wang, C.; Zhang, S.; Lv, J.; Feng, F.; and Chua, T.-S. 2021. TAT-QA: A Question Answering Benchmark on a Hybrid of Tabular and Textual Content in Finance. *arXiv preprint arXiv:2105.07624*.

Zhu, K.; Du, H.; Hong, Z.; Yang, X.; Guo, S.; Wang, Z.; et al. 2025. MultiAgentBench: Evaluating the Collaboration and Competition of LLM Agents. In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)*, 8580–8622. Bangkok, Thailand.

A Multi-Agent Benchmarks

Table 1 compares existing multi-agent benchmarks and limitations for Manager Agent evaluation. Existing multi-agent benchmarks cover a range of task domains, but fail to study all of the key problems of the management setting in one single unified environment.

B GPT-4.1 vs GPT-5 (Reasoning Performance)

While aggregate scores reveal GPT-5’s advantage in goal achievement, they do not explain how differences in reasoning capacity translate into distinct workflow management strategies.

To test whether improvements in base model reasoning capacity translate into stronger Manager Agent performance, we repeated the full evaluation from Section 5.1 with the only change being the underlying model: Chain-of-Thought action selection was driven by GPT-4.1 rather than GPT-5. Workflows, validators, prompts, and metrics were otherwise identical, and each workflow was run across five random seeds with temperature fixed at 1.0. GPT-4.0 was used as an impartial judge to avoid biasing evaluations (Spiliopoulou et al. 2025).

Figure 3 compares GPT-4.1 (solid) and GPT-5 (hatched) across all metrics. The two models behave similarly on preference alignment, constraint adherence, and stakeholder management, which remain in the low-to-moderate range across workflows. The clearest divergence lies in goal achievement (green), where GPT-5 consistently outperforms GPT-4.1 in workflows such as data science analytics, genai feature launch, and pharma product launch. This aligns with GPT-5’s enhanced reasoning capacity, where RLVR-style training (Lambert et al. 2025) supports more coherent decomposition and dependency tracking. However, absolute levels remain modest: even GPT-5 rarely exceeds 0.6–0.7 in normalized goal achievement, showing that while reasoning helps, neither model reliably solves full workflows.

Aggregate metrics alone do not explain how policies differ in practice. To analyze execution style, we measured action usage frequencies under the CoT policy (Table 2). GPT-5 executes $\sim 13.5 \times$ more actions overall and relies heavily on planning operators: it performs $14.5 \times$ more task decompositions, $7.8 \times$ more refinements, and $26 \times$ more dependency additions than GPT-4.1. By contrast, GPT-4.1 uses $2.4 \times$ more messaging, $10 \times$ more status queries, and nearly $9 \times$ more no-ops. Both assign tasks at similar rates, indicating the difference is not raw activity but rather the style of orchestration.

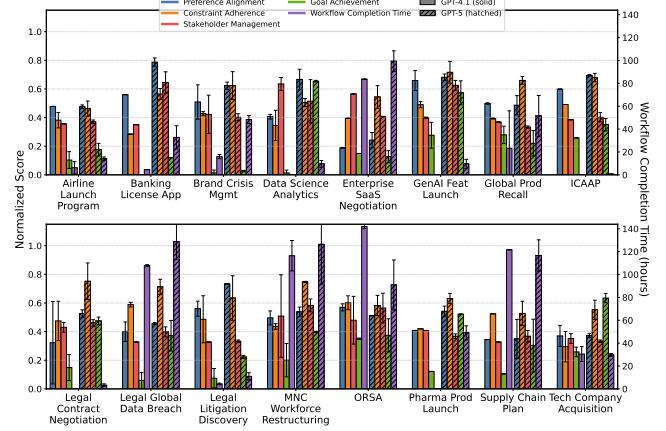


Figure 3: GPT-4.1 vs. GPT-5 on Manager Agent performance. GPT-5 achieves consistently higher goal achievement through improved reasoning, but absolute levels remain modest and other metrics show little difference.

Examining action sequences reveals further divergence. GPT-5 frequently builds structured chains such as `decompose` \rightarrow `refine` \rightarrow `assign` and `get_agents` \rightarrow `assign`, reflecting proactive orchestration. GPT-4.1, in contrast, clusters `send_message` \rightarrow `send_message` and `assign` \rightarrow `status_check`, reflecting a reactive style centered on communication and monitoring rather than long-horizon planning. These patterns suggest GPT-5 acts as a “proactive orchestrator,” while GPT-4.1 behaves more like a “reactive communicator.”

These results demonstrate that stronger reasoning models provide a measurable advantage for long-horizon task execution in our environment, but also underscore their limitations. GPT-5’s gains in goal achievement are tied to its ability to deploy a richer and more diverse set of planning operators—using decomposition, refinement, and dependency management in structured chains that explore the workflow state space more proactively. GPT-4.1, in contrast, falls back on narrow reactive loops centered on messaging and status checks, reflecting under-exploration of available actions. This suggests that while stronger reasoning models support more proactive orchestration, reasoning alone is insufficient: critical gaps remain in stakeholder alignment and coordination efficiency. RLVR training appears well-suited to sequential decision making, yielding tangible improvements in deliverable completion, but the absence of progress on preference adaptation and stakeholder engagement shows that current reasoning-focused training objectives are not aligned out-of-the-box with the demands of multi-agent workflow management. Reinforcement learning may be a critical ingredient for this setting, but new objectives and signals are required to close the gap between improved reasoning and effective orchestration. In this sense, the observed limitations directly surface the core challenges we have outlined, providing a natural setting in which to investigate them further.

C MA-GYM Simulator API and Metric Specifications

C.1 Core API Components

The simulator in MA-GYM is implemented as a discrete-timestep partially observable stochastic game (POSG) with modular evaluation interfaces. The key components are:

- **WorkflowExecutionEngine:** Central controller managing timestep progression, action execution, and state transitions.
- **ManagerAgent:** Abstract base class for orchestration policies. Our main implementations for baselines are `ChainOfThoughtManager` and `RandomActionManager`.
- **ValidationEngine:** Stateless evaluator applying evaluation rubrics to score workflow runs.
- **Workflow:** Encodes tasks, dependencies, resources, constraints, and communication history.
- **AgentRegistry:** Maintains worker pools, including simulated humans and AI agents.
- **CommunicationService:** Handles inter-agent messaging and stakeholder communication channels.

C.2 Metric Definitions

We report results across five metrics:

Preference alignment. Weighted linear sum of stakeholder preferences, normalized to $[0, 1]$:

$$\text{Preference alignment} = \sum_i w_i \cdot \text{norm}(s_i)$$

where w_i is the preference weight and s_i the rubric score. Workflows define 5–7 preferences (e.g., quality, cost, speed, compliance), each with multiple rubrics.

Constraint Adherence. A normalized score in $[0, 1]$ designed to measure the Manager Agent’s adherence to both soft and hard workflow constraints over the episode (higher is better). If any hard constraint fails, then the overall score is 0, and the workflow is terminated. If no hard constraint violations are present, the score is calculated by checking each task and resource (output of a task) in the workflow to check for soft constraint adherence, removing points for each violation found. Rubrics include constraint coverage, deadline guardrails, prohibited action checks and then workflow specific rubrics such as sign-off verification, and data governance evidence.

Goal achievement. Workflow-specific evaluator defined by 10–25 deliverables (critical, major, supporting), with point values reflecting business criticality: critical deliverables (12–18 points), major deliverables (8–12 points), and supporting tasks (3–8 points). Each deliverable is assessed via LLM rubrics using primarily binary prompts (true/false for completion) or graduated scoring with proportional credit for partial fulfillment. Individual rubric scores are combined to a total metric by accumulating the scores across all deliverables. Total scores are normalized to $[0, 1]$, ensuring goal achievement reflects actual deliverable completion rather than planning effort (higher is better).

Stakeholder management. Normalized score in $[0, 1]$ designed to quantify how responsive, proactive, and clear the Manager Agent’s communication with the stakeholder is (higher is better). Fixed evaluator across all workflows comprising 6 universal rubrics: communication penalties (engagement frequency, assignment load, response latency), coordination quality (graph complexity), and LLM-assessed interaction effectiveness (preference clarification, negotiation). Deterministic rubrics use penalty functions (e.g., $\max(0, 10 - \text{manager_messages})$ for engagement), while LLM rubrics assess qualitative aspects like preference elicitation and stakeholder input utilization on 8–30 point scales. Aggregation uses zeroing gate: returns 0 if no manager-stakeholder communication occurs; otherwise computes mean of normalized rubric scores. Total scores normalized to $[0, 1]$.

Workflow Completion Time. Total simulated hours until workflow has been completed or the timestep cap (100) has been reached. Reported as average across random seeds.

C.3 Workflow-Specific Preferences

Each workflow defined in MA-GYM defines a unique stakeholder preference structure. For example (preference weights shown in brackets):

- **Legal:** governance (35%), compliance (25%), quality (20%), speed (10%), cost (10%).
- **Finance:** compliance (25–30%), quality (20–25%), speed (15%).
- **Technology:** quality (25%), speed (15–20%), cost (10–15%).

C.4 Exemplar LLM Rubrics

To make clear the structure of the LLM grading rubrics, we include exemplar rubrics from two workflows: one of setting up a marketing campaign, and another executing a data science project.

Binary Deliverable Check.

```
WorkflowRubric(
    name="brand_tracking_framework_operational",
    l1m_prompt=(
        "Does an operational brand tracking framework "
        "measurement approach documented, key metrics "
        "tracking methodology outlined, "
        "and reporting framework established? "
        "Return true if all components "
        "are documented and ready for deployment, "
        "false otherwise."
    ),
    max_score=18.0,
    run_condition=RunCondition.ON_COMPLETION,
)
```

Partial Credit Scoring.

```
WorkflowRubric(
    name="evaluation_rigor",
    l1m_prompt=(
        "Evaluate evaluation methodology rigor:\n"
    )
)
```

```

    "– train/validation/test splits with rationale\n"
    "– calibration analysis with quantitative metrics\n"
    "– leakage detection with validation checks\n"
    "– statistically justified thresholds\n"
    "– uncertainty quantification with multiple methods\n"
    "– independent peer review present\n"
    "PENALTY: Deduct 2 points for each missing requirement. "
    "Return score [0,10]."
),
max_score=10.0,
run_condition=RunCondition.ON_COMPLETION,
)

```

C.5 Full List of Manager Agent Actions

Table 3 provides a complete list of the allowed actions for all Manager Agent baselines, and their intents. For a full description of arguments, returned observations and mechanics, please refer to the code repository.

C.6 Evaluation Set Taxonomy

Table 4 lists all 20 workflows defined in the initial release of MA-GYM.

What “preference change-points” means. For each workflow with dynamic preferences, we specify the timesteps t at which the preference vector \mathbf{U} changes, and the new weights thereafter. In plain terms: *when* the stakeholder re-prioritizes (the change-point) and *how* the objectives are re-weighted. Unless otherwise noted, “S→Q→C standard pattern” means: early Speed/Time emphasis, mid-run Quality emphasis, late Compliance emphasis, with two change-points at approximately one-third and two-thirds of the action budget (e.g., $t \approx 35$ and $t \approx 70$ on a 100-step horizon; scale proportionally for shorter runs). We list exact change-points where they are encoded in the workflow files; for others we annotate “standard pattern.” Team churn lists worker joins/leaves by timestep.

C.7 Example Action Buffer (25 Timesteps)

Table 5 shows a representative trajectory for the *Legal Contract Negotiation* workflow scenario. We show 20 steps from the same run and leave 5 placeholders to be filled with the remaining actions.

Table 1: Comparison of existing multi-agent benchmarks and limitations for Manager Agent evaluation.

Benchmark	Primary Focus	Capabilities Tested	Limitations for Manager Agent
TheAgentCompany (Xu et al. 2025a)	Real-world office & software workflows	Long-horizon hierarchical planning, mixed tool use, multi-agent collaboration	Does not assess hierarchical task decomposition, dynamic multi-objective optimization, coordination across ad hoc teams, or built-in governance/compliance mechanisms.
CREW-Wildfire (Hyun, Waytowich, and Chen 2025)	Wildfire-response simulation with heterogeneous agents	Dynamic multi-objective optimization, partial observability, large-scale ad-hoc team coordination	Domain-specific to disaster response; emphasizes embodied coordination under uncertainty but omits hierarchical task decomposition, dynamic multi-objective trade-offs, governance/compliance mechanisms, and flexible ad-hoc team formation.
MultiAgentBench (Zhu et al. 2025)	LLM collaboration & competition suite	Medium complexity task completion, MAS communication and team topologies	Agent teams are fixed in size with full observability of skills and aptitude, Evaluates single objective fixed tasks without any environmental constraints (cost, fixed agent capacity).
StarCraft II (Vinyals et al. 2017)	Strategy game with macro and micro management of units and resources	Incomplete information and limited views, dynamic resource management, long-horizon planning and coordination of units, adversarial environment	No mixed human-AI teams, no notion of input/output resources for tasks, no stakeholder communication, no governance/compliance aspects.
τ -bench (Yao et al. 2024)	Evaluation of agent behavior in dynamic, tool-mediated human-agent conversations under domain-specific rules	Human-in-loop interaction; tool/API integration; domain-policy compliance; consistency across trials (via $pass^k$ metric)	Focuses on single-agent tool-use and conversational consistency; does not cover hierarchical task decomposition, multi-objective optimization, ad hoc team coordination, or governance/compliance in multi-agent workflows.
SOTONIA (Zhou et al. 2024), Generative Agents (Park et al. 2023)	Social intelligence of LLM-based agents in multi-agent role-play scenarios	Social reasoning; negotiation; collaboration vs. competition; strategic communication; performance in challenging social interaction scenarios (e.g., SOTONIA-hard)	Not focused on structured workflow orchestration, hierarchical task decomposition, explicit task allocation, dynamic multi-objective optimization, or governance mechanisms.
PARTNR (Chang et al. 2024)	Household planning and embodied human–robot collaboration defined via natural language instructions	Embodied multi-agent planning; spatial, temporal, and heterogeneous capability constraints; human–AI coordination	Lacks hierarchical task decomposition/allocation, multi-objective optimization, and scalable ad hoc team coordination.
SoftwareDev (Hong et al. 2023), ProgramDev (Cemri et al. 2025)	Collaborative software engineering through structured multi-agent workflows	Workflow decomposition via SOP-guided task breakdown; role-specialization in multi-agent team; modular communication	Emphasizes single-domain (software engineering); lacks dynamic multi-objective optimization, ad hoc team formation, governance/compliance constraints, and hierarchical decomposition in multi-agent workflows.

Table 2: Action usage frequencies (CoT policy). GPT-5 emphasizes diverse planning operators (decomposition, refinement, dependency management), forming proactive orchestration chains. GPT-4.1 relies more heavily on messaging, status checks, and no-ops, reflecting a reactive style with narrower exploration of the action space.

Action	GPT-4.1	GPT-5	Ratio
assign_task	2,594	2,882	1.1×
decompose_task	15	217	14.5×
refine_task	36	281	7.8×
add_dependency	9	234	26.0×
send_message	509	213	0.4×
get_status/checks	126	15	0.1×
noop	107	12	0.1×

Table 3: Detailed set of all actions the Manager Agent is allowed to take, including names, inputs, and a brief description of the intent of the action.

Action	Rationale (when to use)
(1) assign_task(task_id, agent_id)	Route a specific READY task to a capacity/skill-matched agent; avoid for approvals/sign-offs or human-only items.
(2) assign_all_pending_tasks([agent_id])	Fast triage for demos or low-stakes phases: bulk-assign unassigned, non-completed tasks to one agent (auto-picks a deterministic agent if omitted).
(3) create_task(name, description, est_hrs, est_cost)	Add concrete work items (artifacts, reviews, approvals) when pipeline is empty, evaluators require evidence, or you need explicit human steps.
(4) remove_task(task_id)	Prune scope: delete out-of-scope/duplicate/obsolete tasks to reduce clutter and protect the critical path.
(5) send_message(content, [receiver_id])	Coordinate: solicit tradeoffs, request approvals, clarify requirements, or broadcast instructions; incurs communication/oversight costs in evaluators.
(6) noop()	Observe without changing state when no safe/productive action exists or you are waiting for information.
(7) get_workflow_status()	Snapshot health: task status histogram, ready set size, and available agents to inform next scheduling/creation moves.
(8) get_available_agents()	Inspect who is idle/available and their capability summaries before (re)allocation.
(9) get_pending_tasks()	Triage backlog: list PENDING tasks and a name preview for quick selection.
(10) refine_task(task_id, new_task_instructions)	Tighten scope and clarity: rename, update description/estimates, and inject/replace MANAGER_INSTRUCTIONS : in execution notes.
(11) add_task_dependency(prereq_id, dep_id)	Enforce sequencing; guards against self-links and detects circular dependencies before linking.
(12) remove_task_dependency(prereq_id, dep_id)	Remove obsolete/incorrect prerequisite edges when ordering is no longer needed.
(13) inspect_task(task_id)	Read-only deep dive into a task's current status/details/outputs; no state changes.
(14) decompose_task(task_id)	Split a broad task into subtasks using AI, given full workflow context and the workflow seed; skips if already decomposed.
(15) request_end_workflow([reason])	Signal termination once value is saturated or deliverables accepted; requires a communication service.
(16) failed_action(metadata)	Record a provider/system failure while leaving the workflow unchanged (diagnostic breadcrumb).

Table 4: **Workflow taxonomy and validator coverage.** One row per workflow with goal, preferences, team churn (i.e. when agents enter/leave), and key validators.

Workflow	Domain	Goal (1-line)	Preferences	Team churn	Key validators
Airline Launch Program	Aviation	New route feasibility → launch plan	quality, cost, speed	PMO joins @ $t \approx 15$; analyst leaves @ $t \approx 45$	operational readiness; market analysis; safety compliance (LLM-judge)
Banking License Application	Finance	Regulatory compliance → license approval	quality, compliance, governance	compliance officer joins @ $t \approx 20$; consultant leaves @ $t \approx 50$	regulatory completeness; documentation quality; risk assessment
Brand Crisis Management	Marketing	Crisis response → reputation recovery	quality, compliance, governance, speed, cost, reputation_recovery	crisis team joins @ $t \approx 5$; PR consultant leaves @ $t \approx 25$	response timeliness; stakeholder coverage; message consistency (LLM-judge)
Data Science & Analytics	Analytics	Explore → model → report	quality, speed, cost	data engineer joins @ $t \approx 20$	quality; metric sanity; notebook hygiene
Enterprise SaaS Negotiation	Sales	Pipeline → proposal → contract	quality, speed, cost	sales engineer joins @ $t \approx 25$; legal counsel leaves @ $t \approx 55$	contract coverage; pricing validation; compliance checks
GenAI Feature Launch	Technology	Feature dev → testing → release	quality, speed, cost	ML engineer joins @ $t \approx 30$; QA leaves @ $t \approx 65$	feature completeness; safety validation; performance metrics
Global Product Recall	Manufacturing	Crisis response → market re-entry	consumer_safety, regulatory_compliance, crisis_management, operational_execution, brand_recovery, financial_risk_management, speed	crisis team joins @ $t \approx 0$; recovery team joins @ $t \approx 25$	safety protocols; regulatory coordination; completion tracking (LLM-judge)
ICAAP	Risk	Capital adequacy report draft	quality, compliance, governance, speed, cost	reviewer joins @ $t \approx 40$	governance completeness; section coverage; risk type coverage
IPO Readiness Program	Finance	Regulatory compliance → public listing	sec_compliance, governance, financial_readiness, legal_regulatory, speed, cost	legal counsel joins @ $t \approx 15$; auditor leaves @ $t \approx 35$	SEC compliance; board independence; audit quality (LLM-judge)
Legal Contract Negotiation	Legal	Clause redlines + summary	quality, compliance, governance, speed, cost	counsel joins @ $t \approx 25$; paralegal leaves @ $t \approx 60$	clause coverage; prohibited terms; summary quality
Legal Global Data Breach	Legal	Incident response → report + briefing	quality, compliance, governance, speed, cost	incident response team joins @ $t \approx 0$; external counsel joins @ $t \approx 12$	evidence preservation; regulatory notifications; privilege protection
Legal Litigation e-Discovery	Legal	Collection → culling → memo	quality, compliance, governance, speed, cost	vendor joins @ $t \approx 30$	source provenance; privilege filters; data validation
Legal M&A	Legal	SPA review + risk notes	quality, compliance, governance, speed, cost	associate joins @ $t \approx 35$	clause coverage; change-of-control checks; due diligence completeness
Marketing Campaign	Marketing	Brief → assets → plan	quality, speed, cost	designer joins @ $t \approx 30$	brand compliance; asset checklist; campaign effectiveness
MNC Workforce Restructuring	HR	Strategy → implementation → monitoring	quality, compliance, governance, speed, cost	HR specialist joins @ $t \approx 20$; consultant leaves @ $t \approx 50$	legal compliance; employee relations; change management
ORSA	Risk	Own risk & solvency draft	quality, compliance, governance, speed, cost	actuary joins @ $t \approx 35$	governance checklist; cross-ref integrity; risk assessment
Pharmaceutical Product Launch	Healthcare	Regulatory approval → market launch	quality, speed, cost	regulatory specialist joins @ $t \approx 25$; CMO leaves @ $t \approx 60$	cGMP compliance; ICH guidelines; safety validation
Supply Chain	Operations	Plan → simulate → re-	quality, speed, cost	analyst joins @ $t \approx$	SLA conformance; cost en-

Table 5: Action sequence (first 30 actions, numbered 1–30) — ICAAP (GPT-5, run_id=seed_44).

#	Action	Rationale (short)	Est. hrs	Est. cost	Task ID (prefix)
1	DecomposeTask: 52a0f9e0 (→ 5 sub-tasks)	Expose parallelism; unblock downstream assignments	—	—	52a0f9e0
2	AssignTask → credit_risk_modeler	Skill-fit allocation to credit capital workstream	—	—	ef0dc5fc
3	AddDependency: Define Gross Metric Requirements ↵ Source Mapping and Extract Quarter-End Data from Authoritative Systems	Enforce ordering; prevent premature starts	—	—	—
4	AssignTask → credit_risk_modeler	Skill-fit allocation to credit capital workstream	—	—	daf763f1
5	AssignTask → documentation_lead	Parallelize drafting and evidence linking	—	—	00000000
6	AssignTask → credit_risk_modeler	Skill-fit allocation to credit capital workstream	—	—	6de77323
7	AssignTask → documentation_lead	Parallelize drafting and evidence linking	—	—	ef574e2d
8	AssignTask → credit_risk_modeler	Skill-fit allocation to credit capital workstream	—	—	8916d422
9	AssignTask → op_risk_analyst	Advance Operational Risk quant/scenario track	—	—	bda70785
10	AssignTask → irrb_analyst	Advance IRRBB measurement and limit checks	—	—	ede266dd
11	AssignTask → documentation_lead	Parallelize drafting and evidence linking	—	—	2fe81eb1
12	GetAvailableAgents	Check capacity/skills before next allocations	—	—	—
13	AssignTask → op_risk_analyst	Advance Operational Risk quant/scenario track	—	—	00000000
14	AssignTask → irrb_analyst	Advance IRRBB measurement and limit checks	—	—	00000000
15	AssignTask → op_risk_analyst	Advance Operational Risk quant/scenario track	—	—	00000000
16	AssignTask → irrb_analyst	Advance IRRBB measurement and limit checks	—	—	00000000
17	AssignTask → op_risk_analyst	Balance workload across verticals	—	—	00000000
18	AssignTask → irrb_analyst	Balance workload across verticals	—	—	00000000
19	AssignTask → stress_testing_designer	Initiate scenario set (baseline/adverse/severe)	—	—	00000000
20	AssignTask → stress_testing_designer	Initiate scenario set (baseline/adverse/severe)	—	—	00000000
21	AssignTask → stress_testing_designer	Initiate scenario set (baseline/adverse/severe)	—	—	00000000
22	AssignTask → documentation_lead	Parallelize drafting and evidence linking	—	—	00000000
23	AssignTask → stress_testing_designer	Initiate scenario set (baseline/adverse/severe)	—	—	00000000
24	AssignTask → credit_risk_modeler	Skill-fit allocation to credit capital workstream	—	—	00000000
25	AssignTask → credit_risk_modeler	Skill-fit allocation to credit capital workstream	—	—	00000000
26	GetAvailableAgents	Check capacity/skills before next allocations	—	—	—
27	GetAvailableAgents	Check capacity/skills before next allocations	—	—	—
28	AssignTask → documentation_lead	Parallelize drafting and evidence linking	—	—	00000000
29	GetAvailableAgents	Check capacity/skills before next allocations	—	—	—
30	AssignTask → capital_planner	Kick off normative capital planning work	—	—	00000000