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Abstract

While agentic AI has advanced in automating individual
tasks, managing complex multi-agent workflows remains a
challenging problem. This paper presents a research vision
for autonomous agentic systems that orchestrate collabora-
tion within dynamic human-AI teams. We propose the Au-
tonomous Manager Agent as a core challenge: an agent that
decomposes complex goals into task graphs, allocates tasks to
human and AI workers, monitors progress, adapts to chang-
ing conditions, and maintains transparent stakeholder com-
munication. We formalize workflow management as a Par-
tially Observable Stochastic Game and identify four foun-
dational challenges: (1) compositional reasoning for hierar-
chical decomposition, (2) multi-objective optimization un-
der shifting preferences, (3) coordination and planning in ad
hoc teams, and (4) governance and compliance by design. To
advance this agenda, we release MA-GYM, an open-source
simulation and evaluation framework for multi-agent work-
flow orchestration. Evaluating GPT-5-based Manager Agents
across 20 workflows, we find they struggle to jointly opti-
mize for goal completion, constraint adherence, and work-
flow runtime–underscoring workflow management as a diffi-
cult open problem.

1 Introduction
AI systems based on large language models (LLMs)
have demonstrated remarkable proficiency at discrete, well-
defined tasks across diverse domains, such as legal reason-
ing (Guha et al. 2023; Hendrycks et al. 2021), software en-
gineering (Jimenez et al. 2023), drug discovery (Wu et al.
2018; Huang et al. 2022), and finance (Chen et al. 2021;
Zhu et al. 2021).

However, while current agentic systems are able to dy-
namically plan and execute well-scoped steps with high effi-
ciency, the overarching strategic layer of workflow manage-
ment consisting of task decomposition, dynamic resource al-
location, progress monitoring, and adaptive re-planning re-
mains fundamentally challenging (Xu et al. 2025a; Liu et al.
2023b). This limitation becomes particularly pronounced in
complex multi-agent environments where tasks are inter-
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dependent, objectives evolve dynamically, and coordination
failures can cascade across entire workflows.

The next frontier in distributed AI lies in transcend-
ing task-level competence toward autonomous systems that
can manage the entire life-cycle of complex, collaborative
projects involving multiple stakeholders and evolving objec-
tives. Our research vision is the creation of agentic ecosys-
tems where autonomous AI agents and human workers col-
laborate as a team (Vats et al. 2024). To make progress to-
ward this vision, we propose the Autonomous Manager
Agent as a specific research challenge.

The Manager Agent is conceived as an autonomous en-
tity responsible for the end-to-end management of complex
workflows within a dynamic multi-agent environment. Its
purpose is to orchestrate a team of human and AI “work-
ers” to optimally achieve high-level goals specified by a hu-
man stakeholder. The responsibilities of the Manager Agent
include decomposing complex goals into executable task
graphs; allocating human and AI workers to tasks based on
their skills, task requirements, and available resources; mon-
itoring progress and proactively identifying potential imped-
iments; adapting to changing environmental constraints and
objectives; and maintaining transparent stakeholder commu-
nication. This vision aligns with the growing field of LLM-
based Multi-Agent Systems (MAS), which aims to emu-
late the principles of human teamwork and specialization to
solve problems collectively at scale (Tran et al. 2025; Yang
et al. 2024).

Realizing human-AI ecosystems demands coordinated re-
search efforts across the Distributed AI community, span-
ning multiple traditionally separate sub-fields. Historically,
scientific fields have often advanced by coalescing around
ambitious challenge problems (Deng et al. 2009; Bennett
and Lanning 2006; Reddy 1988). The Manager Agent prob-
lem is designed to serve this role for distributed and agen-
tic AI, requiring the integration of multiple sub-fields in
multi-agent systems research, including multi-agent task
decomposition and planning (Oliehoek and Amato 2016),
multi-objective optimization and learning in dynamic teams
with heterogeneous capabilities (Albrecht, Christianos, and
Schäfer 2024; Mirsky et al. 2022), and governance design
(Yang et al. 2024). The challenge is grounded in real-world
workflow automation with scalable difficulty dimensions
(e.g. number of tasks, team size, dependency complexity,



Figure 1: The Manager Agent (MA) as an orchestrator. Goal: “Write an updated quarterly report for the client”. Based on this
prompt, the MA is responsible for creating, modifying, and executing actions on a task graph, G, with a heterogeneous team of
workers, W (details in Section 3). The MA is responsible for coordinating the sequence of activity between workers, illustrated
in the bottom row. Here, the Client Customization task does not complete as the resource fails verification, and the MA
stops the execution, to then determine how to complete the flow successfully.

constraints). By proposing this challenge, we aim to galva-
nize research efforts and provide a common ground for eval-
uating progress in creating collaborative agentic AI systems.

This paper makes the following contributions:

• We propose the Autonomous Manager Agent as a uni-
fying research challenge that bridges AI sub-fields in-
cluding multi-agent coordination, compositional reason-
ing, and governance design (Section 2).

• We formally model autonomous workflow management
as a Partially Observable Stochastic Game (POSG),
enabling principled algorithmic development (Section 3).

• We identify four foundational research problems for
autonomous workflow management – compositional rea-
soning for task decomposition, multi-objective optimiza-
tion under non-stationary preferences, coordination in ad
hoc teams, and governance by design (Section 4).

• We release Manager Agent Gym (MA-GYM): an open-
source library and simulator1 for multi-agent workflow
management (Section 5). We evaluate Manager Agents
based on GPT-5 across 20 diverse workflows and find
that while they can achieve goal completion, constraint
adherence, or workflow runtime, they fail to robustly
solve for these qualities in tandem—highlighting work-
flow management as a difficult problem for agentic AI.

2 Conceptual Framework: The Manager
Agent

The Manager Agent coordinates activity in a multi-agent
system, analogous to a human project manager tasked with
optimizing complex, large-scale workflows. Its environment
is a dynamic task graph, illustrated in Figure 1, where nodes
represent tasks and directed edges represent dependencies.

1https://github.com/DeepFlow-research/manager agent gym

This graph is not static; it is created, modified, and exe-
cuted by a heterogeneous team of “workers,” which can be
specialized AI agents (e.g., a code-writing agent, a market-
analysis agent) or human collaborators. This aligns with
the MAS orchestrator-worker paradigm (Tran et al. 2025;
Krnjaic et al. 2024), where a coordinator decomposes prob-
lems and delegates sub-tasks to specialized agents. Thus, the
Manager Agent focuses on high-level strategy and coordi-
nation while worker agents focus on task execution. Worker
agents operate autonomously to execute their assigned tasks.

A key aspect of this framework is the shift from a “human-
in-the-loop” model, where human intervention is required
for most critical decisions, to a “human-on-the-loop” model:
the human stakeholder retains control over high-level objec-
tives and oversight, but the Manager Agent autonomously
handles the intricate, moment-to-moment operational man-
agement. This paradigm shift promises to significantly am-
plify human productivity by offloading the cognitive burden
of complex coordination, while keeping humans in a strate-
gic, supervisory role.

2.1 Core Capabilities
The Manager Agent must possess a suite of core capabilities
that mirror and extend those of a human manager:

1. Structuring Workflows: The Manager Agent must be
able to take high-level, often ambiguous, goals from a
human stakeholder and decompose them into a struc-
tured graph of feasible, concrete tasks and sub-tasks with
clearly defined dependencies.

2. Assigning Workers: It must dynamically allocate tasks
to the most suitable human or AI workers based on a
deep understanding of task requirements, worker skills
and availability, and resource constraints.

3. Monitoring and Coordination: The Manager Agent
must track the progress of all workers on their assigned



tasks, proactively identify and resolve bottlenecks, and
ensure synchronized effort across the entire workflow.

4. Adaptive Planning and Execution: The environment is
dynamic. The Manager Agent must be able to generate
and execute modifications to the workflow in real-time—
revising the task graph, adjusting worker roles, or reas-
signing tasks in response to unexpected events, informa-
tion, or changing priorities.

5. Stakeholder Communication: It must maintain trans-
parent communication with the stakeholder, providing
regular updates on plans, progress, and potential issues
to ensure robust oversight and enable informed interven-
tion when necessary.

2.2 A Unifying Challenge
The Manager Agent problem is not merely a practical ap-
plication, but a unifying research challenge that necessi-
tates a synthesis of capabilities from traditionally sepa-
rate sub-communities within multi-agent systems (MAS)
research. Its core capabilities are directly related to long-
standing research questions in task decomposition and al-
location (Khamis, Hussein, and Elmogy 2015), team for-
mation (Liemhetcharat and Veloso 2012), multi-agent co-
ordination and learning (Albrecht, Christianos, and Schäfer
2024), communication (Zhu, Dastani, and Wang 2024),
agent modeling (Albrecht and Stone 2018), and ad hoc team-
work (Mirsky et al. 2022).

Specifically, the capabilities of Structuring Workflows
and Assigning Workers are a direct instantiation of the
central MAS problem of task decomposition and alloca-
tion, which seeks optimal methods for breaking down com-
plex goals and mapping sub-tasks to the most appropriate
agents (Khamis, Hussein, and Elmogy 2015). This process
is also intrinsically linked to team formation (Liemhetcharat
and Veloso 2012), as the Manager Agent must dynamically
assemble a group of workers to execute the workflow. The
capabilities of Monitoring and Coordination and Adap-
tive Planning and Execution are the essence of multi-
agent coordination and collaboration, a field focused on
managing dependencies and ensuring coherent collective ac-
tion (Oliehoek and Amato 2016). To improve over time, the
Manager Agent must engage in multi-agent learning to re-
fine its strategies for decomposition, allocation, and coordi-
nation (Albrecht, Christianos, and Schäfer 2024), as well as
agent modeling (Albrecht and Stone 2018; Nashed and Zil-
berstein 2022) to infer the capabilities and state of its work-
ers. Effective communication is vital, not only for Stake-
holder Communication but also for the coordination proto-
cols between the manager and workers, a topic that includes
the potential for learning emergent languages (Zhu, Dastani,
and Wang 2024). Because the team composition is not fixed,
this entire process must occur under the challenging condi-
tions of ad hoc teamwork (Mirsky et al. 2022; Rahman et al.
2023), where the Manager Agent must be able to collabo-
rate with new teammates without pre-coordination between
agents (such as prior joint training).

The ambition to build such a unifying agent is not new, but
its feasibility has been unlocked by recent breakthroughs in

high-capacity foundation models (Bommasani et al. 2021;
Comanici, Bieber, and et al. 2025). These models, partic-
ularly Large Language Models (LLMs), provide the “cog-
nitive engine” for the Manager Agent, capable of high-
level reasoning and planning across a range of complex,
real-world tasks that was previously intractable for auto-
mated systems (Aghzal et al. 2025). The emergence of Large
Reasoning Models (LRMs) in 2024-2025 marks a signifi-
cant milestone (OpenAI 2024; DeepSeek-AI et al. 2025).
These models leverage large-scale reinforcement learning
to achieve stepwise reasoning required for dynamic plan-
ning and adaptation in complex workflows (DeepSeek-AI
et al. 2025). This creates a unique opportunity to synthe-
size the reasoning power of foundation models with estab-
lished MAS frameworks, positioning the Manager Agent as
a timely and achievable research goal.

3 A Formal Model of Workflow Management
To ground this challenge in a mathematical framework,
we model the problem of autonomous workflow manage-
ment as a Partially Observable Stochastic Game (POSG)
(Hansen, Bernstein, and Zilberstein 2004). A POSG models
scenarios where multiple agents interact in a shared environ-
ment with incomplete information and different objectives.
This is an appropriate model for our domain, as it explic-
itly accounts for the Manager Agent and the team of worker
agents as distinct decision makers with their own action sets,
observations, and preferences. A POSG is defined by the tu-
ple ⟨I, S, b0, {Ai}, {Oi}, P, {Ri}⟩, where each component
is specified for our domain as follows.

3.1 Set of Agents (I)
The set of agents I consists of the Manager Agent (M ) and
the set of all worker agents (W ), which can include both
human and AI workers. Thus, I = {M} ∪ W . (We will
remark on modeling the stakeholder in Section 3.8.)

3.2 State Space (S)
The underlying state of the environment at any time t, de-
noted st ∈ S, is a comprehensive snapshot of the entire
workflow. It is defined as a tuple s ≡ ⟨G,W,C,X,U⟩:
• G: The complete task-dependency graph, including all

task nodes {T}, their metadata µT (e.g. status, owner,
progress to date) and directed edges ETi,Tj representing
dependencies between tasks.

• W : The set of all available human and AI workers, in-
cluding their capabilities, current assignments, availabil-
ity, and cost rates.

• C: A persistent set of communications {Ci,j} between
all agents i, j ∈ I .

• X: A registry of all artifacts produced by tasks so far,
including documents, code, and other digital assets.

• U : A set of preference weights of the stakeholder for
how tasks are completed (e.g. cost, speed, quality). These
may be fully or partially observable to agents I , and can
evolve over time.

The initial state s0 is sampled from the initial state distribu-
tion b0.



3.3 Action Spaces (Ai)
Each agent i ∈ I has its own set of available actions.

Manager Agent’s Action Space (Am): The Manager
Agent possesses a rich action space designed to orchestrate
complex workflows through three primary categories of ca-
pabilities:

• Observability-increasing actions: These actions allow
the agent to reduce its uncertainty about the state by gath-
ering information about the workflow’s progress. Repre-
sentative examples include Inspect(Ti) to view exe-
cution logs and outputs µTi

, XTi
for specific tasks, and

GetChatHistory(Ti) to retrieve the recent commu-
nication history related to a given task.

• Graph-modifying actions: These actions dynamically al-
ter the structure of the workflow itself. Representative
actions include AddTask(Ti) and RemoveTask(Ti) to
add or remove tasks Ti from G, AddEdge(Ti, Tj) to
establish or modify dependencies ETi,Tj between tasks,
and DecomposeTask(Ti) to decompose a complex
task into sub-tasks.

• Delegation and communication actions: These ac-
tions manage the team of workers. Examples include
AssignTask(Ti,Wj) to assign a task to a human
or AI worker, and SendMessage(Wj,message) to
communicate directly with a worker to provide guidance,
request updates, or alert them to changing priorities or
constraints.

Worker Agent’s Action Space (Ai for i ∈ W ): Worker
agents have an action space focused on task completion, in-
cluding a set of tools which may be fixed or dynamic, or
the ability to seek additional information when task require-
ments are ambiguous.

The evolution of the system depends on the joint action
at = ⟨at1, . . . , atn⟩ ∈ ×i∈IAi taken by all agents at time t.

3.4 Observation Spaces (Oi)
Each agent has a private, partial view of the state, as well as
(potentially) the past actions of other agents.

Manager Agent’s Observation Space (OM ): The Man-
ager Agent has full access to some parts of the state, such as
the high-level task graph, resource metadata, and chat his-
tory, but may not directly observe other parts such as stake-
holder preferences, or the contents of artifacts or detailed
worker logs.

Worker Agent’s Observation Space (Oi for i ∈ W ):
A worker’s observation may be limited to the details of its
assigned tasks, communications sent to or by the worker,
and artifacts generated by the worker. Additional informa-
tion about the workflow state may be observable to workers
depending on their roles within the team.

3.5 Transition and Observation Dynamics (P )
The function P (s′, o|s, a) defines the probability of transi-
tioning to state s′ and all agents receiving a joint observa-
tion o = ⟨o1, . . . , on⟩, given the current state s and the joint
action a taken by all agents. The state dynamics can be de-
terministic, such as actions that modify the task graph (e.g.

removing a task). State dynamics can also be stochastic, par-
ticularly when actions involve workers whose performance
is non-deterministic (e.g. time to task completion, quality of
task output, etc.).

3.6 Reward Functions (Ri)
Each agent i ∈ I has its own reward function ri = Ri(s, a),
reflecting its preferences and objectives. We also include
workflow-level constraints: hard constraints H that must al-
ways hold, and soft constraints S that can be violated with
penalties.

Manager Agent’s Reward (RM ): The Manager Agent’s
reward is aligned with the high-level goals of the stake-
holder, represented by its preferences U . Conceptually, this
is a multi-level function that includes a sparse terminal re-
ward for successful workflow completion, and can include
additional performance metrics such as time and cost for
workflow execution and overall quality of work outputs,
weighted according to stakeholder preferences U . Addition-
ally, violations of hard and soft constraints (H/S) result in
penalties of varying magnitudes (e.g. large penalty for vio-
lating hard constraints).

Worker Agent’s Reward (Ri for i ∈ W ): A worker
agent’s reward may be simpler, based on metrics such as
the timely and successful completion of its assigned tasks.
This allows for modeling self-interested behavior, where a
worker might prioritize its individual task goals over the
global workflow objective.

If all agents share the same reward function, i.e. Ri =
R,∀i ∈ I , then the model simplifies to a Decentralized
POMDP (Dec-POMDP), which is a purely cooperative set-
ting (Oliehoek and Amato 2016). The more general POSG
formulation allows for a richer spectrum of mixed coopera-
tive and self-interested behaviors.

3.7 Solution Concept
The actions of each agent i ∈ I in the system are governed
by a policy πi, which assigns probabilities to the agent’s
available actions Ai based on the history of the agent’s ob-
servations {oti}t=0,1,2,....

The optimal policy π∗
M of the Manager Agent will de-

pend on the assumptions we make about the behaviors of
other agents W in the system. Borrowing concepts from
Stochastic Bayesian Games (Albrecht, Crandall, and Ra-
mamoorthy 2016) and Interactive POMDPs (Doshi and
Gmytrasiewicz 2006), we may assume that the worker
agents j ∈ W draw their policies from a set of possible
policies πj ∈ ΠW . In this case, we seek a policy π∗

M for the
Manager Agent that maximizes the expected return, given
by the expected sum of rewards rtM it receives over time
t = 0, 1, 2, ..., assuming the worker agents can use any of the
policies in ΠW . Such an assumption may be suitable if the
possible behaviors of workers are well understood, which is
often the case for defined AI workers.

In general, we may also assume that some worker agents
may learn and adapt their behaviors over time based on past
observations, as is the case with human workers and more
advanced AI workers. This brings us into the realm of game



theory and multi-agent reinforcement learning (MARL) (Al-
brecht, Christianos, and Schäfer 2024). In a POSG, where
agents may have different preferences, the optimal solu-
tion becomes an equilibrium—a joint policy from which
no agent has a unilateral incentive to deviate. This idea is
embodied by the Nash Equilibrium (NE) (Nash Jr 1950),
which is a joint policy π∗ = (π∗

1 , . . . , π
∗
n) in which for ev-

ery agent i, its policy π∗
i is a best response to the set of other

agents’ policies π∗
−i = π∗\{π∗

i }. This means that no agent i
can improve its expected return by changing its policy alone.
Furthermore, a joint policy π∗ is Pareto-optimal if there is
no other joint policy π′ that can increase the expected return
for at least one agent without decreasing the expected return
for any other agent.

Combining these concepts, one solution concept for
our POSG is a Pareto-optimal Nash Equilibrium
(PONE) (Munoz de Cote, Lazaric, and Restelli 2006). This
is a joint policy that is both stable (a Nash Equilibrium) and
efficient (Pareto-optimal), representing a desirable outcome
for the collaborative human-AI team. In the Dec-POMDP
case, in which agents share the same rewards, this corre-
sponds to a joint policy that maximizes the expected return
of all agents.

3.8 Modeling the Stakeholder
There are different ways to model the stakeholder in our
POSG formalism. In the most general case, a stakeholder
is itself an autonomous agent that can observe partial infor-
mation about the workflow state, and take actions to inter-
act with the workflow and other agents (manager, workers).
Thus, a stakeholder agent α ∈ I can be represented via its
own action set Aα, observation set Oα, and reward func-
tion Rα. The stakeholder’s action set may include those of
the Manager Agent and additional actions to enable commu-
nication with the Manager Agent and updating stakeholder
preferences U (Section 3.2).

If the stakeholder is passive and does not directly choose
actions in the POSG, thus giving full control to the Man-
ager Agent, we may instead model the stakeholder as part
of the transition dynamics P (Section 3.5). By including the
time index t inside state st, the stakeholder can change its
preferences U ∈ st over time t through state transitions
P (st+1, ot+1|st, at).

4 Foundational Research Challenges
The realization of an autonomous Manager Agent requires
significant advances across several core areas of AI. We
identify four foundational research challenges that are criti-
cal to our vision.

4.1 Hierarchical Task Decomposition
For a Manager Agent, mapping a high-level workflow de-
scription into a task graph G with governance constraints
{H,S} is the bottleneck that unlocks all downstream ca-
pabilities (e.g. allocation, monitoring, adaptation). Recent
LLM-based multi-agent frameworks (Bai et al. 2024; Yu,
Ding, and Sato 2025) show that performance gains corre-
late almost linearly with the quality of the induced task

graph—underlining that structure learning, not raw language
generation, is the critical path. Empirical studies reveal that
both single-agent LRMs and multi-agent orchestration sys-
tems fail once graph depth, branching factor or novelty ex-
ceed modest thresholds. For example, large-scale audits of
reasoning tasks (Kwa et al. 2025; Lin et al. 2025) find
sharp phase transitions beyond which success probability
collapses. Multi-agent variants inherit these limits, with re-
cent research (Wang et al. 2025b,a) reporting substantial
error cascades when sub-agents produce incompatible sub-
plans, despite significant engineering for coordination. Cur-
rent agents can discover local patterns but lack a hierarchi-
cal notion of causality that scales with problem complexity,
prompting the question:

How can a Manager Agent scale to robustly solving large
complex planning problems in dynamic multi-agent sys-
tems?

Why might models struggle? Recent work shows that
transformer-based agents appear to rely on shallow sub-
graph matching over memorized patterns rather than gen-
uine composition (Dziri et al. 2023). This shortcut is effec-
tive for in-distribution tasks but can fail when unseen com-
binations or long-range dependencies dominate in dynamic,
heterogeneous teams. Moreover, partial observability and
non-stationary interactions make these problems worse in
multi-agent settings. They amplify exposure bias: when one
worker deviates locally, errors propagate through the task
graph. This invalidates the Manager Agent’s original plan-
ning assumptions made to satisfy environment constraints
H, S and preferences U .

Despite this, we can find some promising directions to
tackle these problems in the following areas:
1. Structured latent planning. Augment LRMs with ex-

plicit symbolic planners or graph-structured controllers
that operate over learned abstractions, enabling verifi-
able sub-plan composition in the style of neuro-symbolic
planning (Capitanelli and Mastrogiovanni 2024; Liu et al.
2023a; Besta et al. 2024).

2. Meta-adaptive decomposition. Treat task-graph induc-
tion itself as a meta-RL problem: train the manager to
iteratively propose, simulate and revise decompositions
with self-consistency and outcome feedback (Lambert
et al. 2025).

4.2 Multi-Objective Optimization with
Non-Stationary Preferences

An optimal policy π∗
M for the Manager Agent must juggle

multiple, often competing objectives such as cost, latency
and quality, yet the workflow stakeholder can re-rank these
objectives mid-execution. This creates a dynamic multi-
objective problem layered on top of the usual multi-agent
coordination issues.

Two separate sub-fields attack aspects of this prob-
lem, but neither address the entire setting. Multi-Objective
Reinforcement Learning (MORL) provides a framework
for optimizing multiple, potentially conflicting objectives
via scalarization methods that combine objectives via
weighted sums (Vamplew et al. 2008), and Pareto-based



methods that learn policy sets representing different trade-
offs (Van Moffaert and Nowé 2014); both of which assume
the objectives are fixed a priori, and break when preference
weights shift online.

Conversely, modern preference-learning pipelines model
one scalar reward and thus ignore multi-objective trade-offs.
In reinforcement learning from human feedback (RLHF),
a reward model is trained to score an output higher than
a ranked alternative, and the policy is fine-tuned to maxi-
mize that score (Rafailov et al. 2024). In contrast, reinforce-
ment learning from verifiable rewards (RLVR) replaces this
learned model with a verifiable reward, modeling preference
in task execution via reward shaping around easily measured
attributes such as length or clarity (Lambert et al. 2025;
DeepSeek-AI et al. 2025). Both lines of work assume the re-
ward remains fixed; recent extensions handle non-stationary
scalar preferences (Son et al. 2025) but still optimize a single
objective.

Since an effective manager must pragmatically handle
evolving, conflicting objectives, the open research question
remains:

How can a Manager Agent learn a robust policy that can
efficiently adapt to non-stationary stakeholder preferences
over multiple objectives without requiring costly retraining?

Early answers may lie in test-time alignment and meta-
learning that infer fresh weight vectors from a few stake-
holder corrections (Xu et al. 2025b; Nguyen et al. 2025), or
explicit hierarchical control where the Manager Agent re-
weights objectives based on stakeholder interactions while
task agents solve the resulting single-objective sub-tasks,
both of which remain unexplored in verifiable-reward,
multi-agent settings.

4.3 Coordination in Ad Hoc Teams
The Manager Agent must orchestrate collaboration in dy-
namic, heterogeneous teams where agents may join or leave
without prior coordination. This means the Manager Agent
cannot rely on pre-coordinated strategies or prior joint train-
ing with a fixed set of teammates. This defines the classic ad
hoc teamwork (AHT) problem—a long-standing challenge
in multi-agent systems (Mirsky et al. 2022).

Key open problems in AHT that are directly relevant to
our setting include generalizing to new types of teammates
with their individual capabilities, expectations, and working
preferences, as well as effectively collaborating with team-
mates who are themselves learning and adapting their behav-
ior (Mirsky et al. 2022). The Manager Agent must be able to
quickly infer the skills, knowledge, and preferences of work-
ers based on limited interactions, and flexibly adapt how
it communicates and coordinates with workers (Albrecht,
Crandall, and Ramamoorthy 2016; Barrett 2015). The open
research question is therefore:

How can the Manager Agent rapidly infer the capabil-
ities, reliability, and intent of new teammates from limited
interaction and leverage this understanding for effective, on-
the-fly task delegation and coordination?

Several approaches point toward partial solutions. Ribeiro
et al. (Ribeiro et al. 2023) use model-based reinforcement
learning to learn teammate behavior and adapt policies on

the fly, but their method assumes sufficient prior interac-
tion and struggles under extreme heterogeneity. Zhang et
al. (Zhang, Lee, and Stone 2025) propose training on offline
trajectories to predict teammate-aware goals, though their
approach lacks the ability to reason about unobserved agent
types. Wang et al. (Wang et al. 2024) embed teammate be-
haviors to support policy generalization in novel teams, but
still assume consistent observation structures and offer lim-
ited mechanisms for dynamic role negotiation. Liu et al. (Liu
et al. 2024) leverage large language models for hierarchical
plan generation using interactive reasoning, though their re-
liance on language abstractions may not scale to low-level
execution. Jin et al. (Jin et al. 2023) introduce a capability-
aware ad hoc teamwork model using agent hierarchies, but
this approach presumes known capability classes.

Each method tackles a facet of the problem: policy adap-
tation, team modeling, or high-level coordination, but none
yet provide the full-stack reasoning, real-time inference, and
dynamic task restructuring required for Manager Agents to
operate robustly in open, evolving teams. Ad hoc coordina-
tion remains a critical and unsolved challenge for collabora-
tive AI.

4.4 Governance and Compliance by Design
Manager Agent autonomy in complex organizational work-
flows creates a critical challenge: maintaining governance
and compliance across dynamic multi-agent systems. These
agents must interpret natural language constraints, adapt to
evolving regulations, and demonstrate compliance across
heterogeneous teams. The rapid advancement and deploy-
ment of AI to safety critical environments poses signifi-
cant regulatory challenges with highly unpredictable and
rapidly changing requirements (Dimitriou and Gantzias
2024; Kuznietsov et al. 2024). Solving these challenges in-
volves tackling a series of problems, specifically:

How can Manager Agents maintain governance and com-
pliance in dynamic multi-agent workflows while adapting to
evolving regulatory constraints without compromising oper-
ational effectiveness?

Multi-agent constraint satisfaction requires ensuring
workflow-level compliance across dynamically changing
teams where agents have heterogeneous capabilities and
roles. Recent works attempt to address distributed safety co-
ordination. Gu et al. (Gu et al. 2024) make progress on safe
decentralized MARL via scalable constrained policy opti-
mization, but only in a static team composition setting. Ayd-
eniz et al. (Aydeniz et al. 2025) achieve team-level constraint
satisfaction through joint entropy maximization but only for
binary collision avoidance scenarios, not tackling the com-
plex and ambiguous requirements found in regulatory com-
pliance.

The Manager Agent’s need to interpret natural language
constraints demands translating ambiguous regulatory text
into executable policies that can guide agent behavior. Ex-
isting approaches address binary safety constraints versus
nuanced regulatory requirements that are inherently am-
biguous, where optimal policies depend on how organiza-
tions choose to handle uncertainty and interpretation. Yao et
al. (Yao et al. 2023) achieve zero-shot adaptation to varying



constraint thresholds using conditioned policy optimization,
but do not address the problem of mapping from complex
regulatory reasoning, focusing purely on numerical parame-
ter adjustment.

Real-time governance adaptation requires adapting to
varying safety constraints during deployment without re-
training, as regulatory landscapes change post-deployment
while agents must continue operating. Recent interpretabil-
ity advances attempt to enable runtime safety analysis. An-
thropic researchers (Anthropic 2025a,b) achieve training-
time safety analysis through mechanistic interpretability
and circuit tracing, but do not address automated post-
deployment adaptation to regulatory changes. This connects
to the broader challenge that test-time alignment remains an
open problem, and optimal helpfulness-harmlessness trade-
offs are domain-specific, often creating conflicts between
compliance objectives (Bai et al. 2022; Ganguli et al. 2022).

Some promising solution areas to these problems could
be found in ad-hoc constraint-aware teaming which extends
existing team constraint approaches (Gu et al. 2024; Ayd-
eniz et al. 2025) to dynamic compositions, natural language
constraint grounding that combines existing work into using
control barrier function learning with LLM-based regulatory
interpretation (Yao et al. 2023), and further mechanistic re-
search to better understand the underlying traces of models
inner workings (Gyevnar et al. 2024).

5 Manager Agent Gym: A Simulator for
Human–AI Workflow Orchestration

Progress on the four challenges discussed in Section 4 de-
mands a single testbed that exercises hierarchical control,
dynamic multi-objective preferences, ad-hoc teaming, and
governance together. As summarized by the comparison in
Table 1 (Appendix A), existing benchmarks each cover some
of these aspects but none evaluates the full spectrum of Man-
ager Agent capabilities.

To fill this gap, we release Manager Agent Gym
(MA-GYM): a discrete-timestep environment where a man-
ager operates over a graph-based multi-agent workflow and
must address any or all of the four challenges per episode.
We provide a high-level description of MA-GYM in Sec-
tion 5.1 along with initial benchmark results in Section 5.2.
Detailed specifications can be found in Appendix C and the
MA-GYM code repository.

5.1 MA-GYM Overview and Workflows
MA-GYM instantiates the POSG formalism in Section 3
with an initial task dependency graph G and agent team
I consisting of AI workers and simulated human workers,
which are able to communicate via actions that invoke a
communication store C. Additionally, MA-GYM includes
a stakeholder agent α (Section 3.8) with preference weights
U , which can choose to take actions based on its policy πα

configured in the simulator, including communicating with
other agents, updating stakeholder preferences, and answer-
ing questions from the Manager Agent.

MA-GYM runs each workflow episode as defined in our
POSG model: at each timestep, each agent i ∈ I (includ-

ing Manager and stakeholder agents) gets an observation and
takes an action from its set of available actions Ai (full ac-
tion sets in Appendix C.5, Table 3) based on its policy πi.
The actions are then executed in MA-GYM, and all tasks
that are ready and have been assigned to a worker are ex-
ecuted. Worker agents can join and leave the team at any
timestep during an episode, as configured in MA-GYM.

As part of the initial release of MA-GYM, we define 20
challenging workflow scenarios representing a diverse range
of real-world domains, with different stakeholder prefer-
ences, graph complexity (number of nodes and dependen-
cies), team composition (number and types of agents), and
hard/soft constraints. A full listing of these workflows can
be found in Appendix C.6, Table 4.

5.2 Baselines and Results
We evaluate three baselines of LLM-based Manager Agents
with OpenAI GPT-5 as a base model. Random: observes the
dependency graph G and at each timestep is restricted to tak-
ing an action chosen uniform-randomly from AM (the agent
still has to specify input parameters for the sampled action);
CoT: observes the dependency graph and uses Chain-of-
Thought reasoning to choose its next action from the full
action set AM ; Assign-All: reads the starting state of the
workflow G and assigns each task in T to the most suitable
human or AI worker based on their skill descriptions and
task requirements, thus performing all workflow planning
upfront. A list of allowed Manager Agent actions can be
found in Appendix C.5. We repeat all 20 workflows across
5 random seeds, capping the maximum number of Manager
Agent actions at 100 before terminating the episode. We re-
port on Preference alignment, Constraint adherence, Goal
achievement, Stakeholder management, and Workflow com-
pletion time in Figure 2; see Appendix C.2 for definitions of
these metrics.

How challenging is MA-GYM as an environment?
Across the 20 workflows, all baselines struggle to balance
goal completion, completion time, and constraint adher-
ence. On average, CoT achieves only modest goal com-
pletion (0.313 ± 0.187), a limited uplift over Random
(0.135 ± 0.098). The Assign-All baseline, despite lacking
adaptive planning or oversight, achieves higher goal com-
pletion (0.502 ± 0.209), suggesting that managerial inter-
ventions can sometimes be actively detrimental. Yet this ad-
vantage is fragile: Assign-All shows lower constraint adher-
ence (0.475±0.080) compared to CoT (0.589±0.140), only
marginally higher than Random (0.432 ± 0.095). Group-
ing workflows by capability demands reveals systematic
variance in our objectives across baselines: Action-heavy
processes (e.g., airline launches, marketing campaigns, AI
product rollouts) strongly favor Assign-All, which achieves
on average 0.373 higher goal completion compared to CoT.
In documentation and audit-heavy workflows (e.g., con-
tract negotiation, university accreditation), and CoT retains
a clear lead in constraint adherence (0.579 vs. 0.419). These
mixed outcomes emphasize that no single baseline performs
consistently well across domains.

What trade-offs do we observe in different policies?
The differences above reflect a series of trade-offs in the
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Figure 2: Random, Chain-of-Thought (CoT) and Assign-All policy performances plotted across 20 workflows (bars show
average and standard deviation across 5 random seeds per workflow). Details of workflows can be found in Appendix C.6.

MA-GYM setting. CoT reliably completes most generated
task nodes (80% vs. 0% for Random), but at great cost: av-
erage runtime rises to 46.9 hours compared to 2.7 for Ran-
dom, with 25.8% delegation overhead and end-to-end ex-
ecution 17× slower. These slowdowns stem from depen-
dency bottlenecks, where human actions block downstream
tasks. Assign-All reduces such stalls by dispatching tasks
in bulk, cutting runtime dramatically in 16 of 20 workflows
(e.g., −82.9 hours in Marketing; −68.3 hours in SaaS) and
achieving higher average goal completion than CoT. Yet
these gains come only by bypassing reasoning and sequenc-
ing, which weakens constraint adherence and stakeholder
engagement. Taken together, this reveals a multidimensional
trade-off space: goal achievement, completion time, con-
straint adherence, and stakeholder engagement cannot all be
maximized simultaneously.

We also study the efficacy of “reasoning models” trained
with verifiable rewards in place of “traditional” LLMs, com-
paring GPT-5 and GPT-4.1 under identical conditions. We
find that GPT-5 achieved consistently higher goal comple-
tion (0.6–0.7 on analytics and product-launch workflows;
see Figure 3) and deployed richer planning operators, ex-
ecuting 14× more decompositions and 26× more depen-
dency links than GPT-4.1 (see Table 2). GPT-4.1 instead
relied heavily on messaging and status queries, resembling
a reactive communicator (see Appendix B for further dis-
cussion). This highlights that stronger reasoning supports
more proactive orchestration but does not eliminate the bot-
tlenecks, stakeholder neglect, or constraint violations.

6 Conclusion and Future Work
This paper has outlined an ambitious vision: an autonomous
Manager Agent that orchestrates dynamic teams of human
and AI agents to solve complex problems. This timely re-
search goal, enabled by advances in large language and rea-
soning models, integrates multiple areas of multi-agent sys-
tems research. We formalized autonomous workflow man-
agement as a structured POSG and identified four core tech-
nical challenges: compositional reasoning, multi-objective
optimization with non-stationary preferences, ad hoc team
coordination, and governance by design. The Manager
Agent problem unifies these disparate research threads into
a holistic challenge.

To support research on the Manager Agent challenge, we
have released the Manager Agent Gym (MA-GYM) which
implements the POSG formalism and supports algorithm de-
sign and evaluation for Manager Agents. We benchmarked
LLM-based Manager Agents across a diverse set of work-
flows inspired by real-world tasks, showing that jointly op-
timizing for goal achievement, constraint adherence, and re-
source usage (e.g. workflow runtime) is a difficult problem
for agentic AI. Our future work includes building on this
initial release of MA-GYM by defining additional workflow
scenarios and expanding the types and capabilities of worker
agents. A complementary direction is to deepen the Man-
ager Agent’s ability to learn and apply stakeholder-specific
reward rubrics for aligning LLM worker agents, as explored
in our recent work (Masters, Grzeskiewicz, and Albrecht
2026).
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Schäfer, L.; To, A. W. K.; Lao, K.-H.; Cubuktepe, M.; Ha-
ley, M.; Börsting, P.; and Albrecht, S. V. 2024. Scalable
Multi-Agent Reinforcement Learning for Warehouse Logis-
tics with Robotic and Human Co-Workers. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems.

Kuznietsov, A.; Gyevnar, B.; Wang, C.; Peters, S.; and Al-
brecht, S. V. 2024. Explainable AI for Safe and Trustworthy
Autonomous Driving: A Systematic Review. IEEE Transac-
tions on Intelligent Transportation Systems (T-ITS).
Kwa, T.; West, B.; Becker, J.; Deng, A.; Garcia, K.; Hasin,
M.; Jawhar, S.; Kinniment, M.; Rush, N.; Arx, S. V.; Bloom,
R.; Broadley, T.; Du, H.; Goodrich, B.; Jurkovic, N.; Miles,
L. H.; Nix, S.; Lin, T.; Parikh, N.; Rein, D.; Sato, L.
J. K.; Wijk, H.; Ziegler, D. M.; Barnes, E.; and Chan, L.
2025. Measuring AI Ability to Complete Long Tasks.
arXiv:2503.14499.
Lambert, N.; Morrison, J.; Pyatkin, V.; Huang, S.; Ivison,
H.; Brahman, F.; Miranda, L. J. V.; Liu, A.; Dziri, N.; Lyu,
S.; Gu, Y.; Malik, S.; Graf, V.; Hwang, J. D.; Yang, J.;
Bras, R. L.; Tafjord, O.; Wilhelm, C.; Soldaini, L.; Smith,
N. A.; Wang, Y.; Dasigi, P.; and Hajishirzi, H. 2025. Tulu 3:
Pushing Frontiers in Open Language Model Post-Training.
arXiv:2411.15124.
Liemhetcharat, S.; and Veloso, M. 2012. Modeling and
learning synergy for team formation with heterogeneous
agents. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems-Volume 1,
365–374.
Lin, B. Y.; Bras, R. L.; Richardson, K.; Sabharwal, A.;
Poovendran, R.; Clark, P.; and Choi, Y. 2025. ZebraLogic:
On the Scaling Limits of LLMs for Logical Reasoning. In
International Conference on Machine Learning (ICML).
Liu, B.; Jiang, Y.; Zhang, X.; Liu, Q.; Zhang, S.; Biswas, J.;
and Stone, P. 2023a. LLM+P: Empowering Large Language
Models with Optimal Planning Proficiency. arXiv preprint
arXiv:2304.11477. V3, Sep 2024.
Liu, X.; Li, P.; Yang, W.; Guo, D.; and Liu, H. 2024. Lever-
aging Large Language Models for Heterogeneous Ad Hoc
Teamwork Collaboration. arXiv preprint arXiv:2406.12224.
Liu, X.; Yu, H.; Zhang, H.; Xu, Y.; Lei, X.; Lai, H.; Gu, Y.;
Ding, H.; Men, K.; Yang, K.; Zhang, S.; Deng, X.; Zeng,
A.; Du, Z.; Zhang, C.; Shen, S.; Zhang, T.; Su, Y.; Sun, H.;
Huang, M.; Dong, Y.; and Tang, J. 2023b. AgentBench:
Evaluating LLMs as Agents. arXiv:2308.03688.
Masters, C.; Grzeskiewicz, M.; and Albrecht, S. V. 2026.
ARCANE: A Multi-Agent Framework for Interpretable and
Configurable Alignment. In AAAI 2026 Workshop on LLM-
based Multi-Agent Systems: Towards Responsible, Reliable,
and Scalable Agentic Systems.
Masters, C.; Vellanki, A.; Shangguan, J.; Kultys, B.;
Gilmore, J.; Moore, A.; and Albrecht, S. V. 2025. Or-
chestrating Human-AI Teams: The Manager Agent
as a Unifying Research Challenge. In International
Conference on Distributed Artificial Intelligence.
Https://arxiv.org/abs/2510.02557.
Mirsky, R.; Carlucho, I.; Rahman, A.; Fosong, E.; Macke,
W.; Sridharan, M.; Stone, P.; and Albrecht, S. V. 2022. A
Survey of Ad Hoc Teamwork Research. In European Con-
ference on Multi-Agent Systems (EUMAS).
Munoz de Cote, E.; Lazaric, A.; and Restelli, M. 2006.
Learning to Cooperate in Multi-Agent Social Dilemmas. In



Proceedings of the International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS).
Nash Jr, J. F. 1950. Equilibrium points in n-person games.
Proceedings of the National Academy of Sciences, 36(1):
48–49.
Nashed, S.; and Zilberstein, S. 2022. A survey of opponent
modeling in adversarial domains. Journal of Artificial Intel-
ligence Research, 73: 277–327.
Nguyen, D.; Prasad, A.; Stengel-Eskin, E.; and Bansal, M.
2025. Multi-Attribute Steering of Language Models via Tar-
geted Intervention. arXiv:2502.12446.
Oliehoek, F. A.; and Amato, C. 2016. A concise introduction
to decentralized POMDPs. Springer.
OpenAI. 2024. Introducing OpenAI o1. OpenAI Blog.
Park, J. S.; O’Brien, J. C.; Cai, C. J.; Morris, M. R.; Liang,
P.; and Bernstein, M. S. 2023. Generative Agents: Interac-
tive Simulacra of Human Behavior. arXiv:2304.03442.
Rafailov, R.; Sharma, A.; Mitchell, E.; Ermon, S.; Manning,
C. D.; and Finn, C. 2024. Direct Preference Optimiza-
tion: Your Language Model is Secretly a Reward Model.
arXiv:2305.18290.
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A Multi-Agent Benchmarks
Table 1 compares existing multi-agent benchmarks and lim-
itations for Manager Agent evaluation. Existing multi-agent
benchmarks cover a range of task domains, but fail to study
all of the key problems of the management setting in one
single unified environment.

B GPT-4.1 vs GPT-5 (Reasoning
Performance)

While aggregate scores reveal GPT-5’s advantage in goal
achievement, they do not explain how differences in rea-
soning capacity translate into distinct workflow management
strategies.

To test whether improvements in base model reason-
ing capacity translate into stronger Manager Agent perfor-
mance, we repeated the full evaluation from Section 5.1
with the only change being the underlying model: Chain-
of-Thought action selection was driven by GPT-4.1 rather
than GPT-5. Workflows, validators, prompts, and metrics
were otherwise identical, and each workflow was run across
five random seeds with temperature fixed at 1.0. GPT-4o
was used as an impartial judge to avoid biasing evaluations
(Spiliopoulou et al. 2025).

Figure 3 compares GPT-4.1 (solid) and GPT-5 (hatched)
across all metrics. The two models behave similarly on
preference alignment, constraint adherence, and stakeholder
management, which remain in the low-to-moderate range
across workflows. The clearest divergence lies in goal
achievement (green), where GPT-5 consistently outperforms
GPT-4.1 in workflows such as data science analytics, genai
feature launch, and pharma product launch. This aligns with
GPT-5’s enhanced reasoning capacity, where RLVR-style
training (Lambert et al. 2025) supports more coherent de-
composition and dependency tracking. However, absolute
levels remain modest: even GPT-5 rarely exceeds 0.6–0.7 in
normalized goal achievement, showing that while reasoning
helps, neither model reliably solves full workflows.

Aggregate metrics alone do not explain how policies dif-
fer in practice. To analyze execution style, we measured ac-
tion usage frequencies under the CoT policy (Table 2). GPT-
5 executes ∼13.5% more actions overall and relies heavily
on planning operators: it performs 14.5× more task decom-
positions, 7.8× more refinements, and 26× more depen-
dency additions than GPT-4.1. By contrast, GPT-4.1 uses
2.4× more messaging, 10× more status queries, and nearly
9× more no-ops. Both assign tasks at similar rates, indicat-
ing the difference is not raw activity but rather the style of
orchestration.
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Figure 3: GPT-4.1 vs. GPT-5 on Manager Agent perfor-
mance. GPT-5 achieves consistently higher goal achieve-
ment through improved reasoning, but absolute levels re-
main modest and other metrics show little difference.

Examining action sequences reveals further diver-
gence. GPT-5 frequently builds structured chains such as
decompose → refine → assign and get agents
→ assign, reflecting proactive orchestration. GPT-4.1,
in contrast, clusters send message → send message
and assign → status check, reflecting a reactive
style centered on communication and monitoring rather than
long-horizon planning. These patterns suggest GPT-5 acts as
a “proactive orchestrator,” while GPT-4.1 behaves more like
a “reactive communicator.”

These results demonstrate that stronger reasoning models
provide a measurable advantage for long-horizon task exe-
cution in our environment, but also underscore their limita-
tions. GPT-5’s gains in goal achievement are tied to its abil-
ity to deploy a richer and more diverse set of planning op-
erators—using decomposition, refinement, and dependency
management in structured chains that explore the workflow
state space more proactively. GPT-4.1, in contrast, falls back
on narrow reactive loops centered on messaging and sta-
tus checks, reflecting under-exploration of available actions.
This suggests that while stronger reasoning models support
more proactive orchestration, reasoning alone is insufficient:
critical gaps remain in stakeholder alignment and coordi-
nation efficiency. RLVR training appears well-suited to se-
quential decision making, yielding tangible improvements in
deliverable completion, but the absence of progress on pref-
erence adaptation and stakeholder engagement shows that
current reasoning-focused training objectives are not aligned
out-of-the-box with the demands of multi-agent workflow
management. Reinforcement learning may be a critical in-
gredient for this setting, but new objectives and signals are
required to close the gap between improved reasoning and
effective orchestration. In this sense, the observed limita-
tions directly surface the core challenges we have outlined,
providing a natural setting in which to investigate them fur-
ther.



C MA-GYM Simulator API and Metric
Specifications

C.1 Core API Components
The simulator in MA-GYM is implemented as a discrete-
timestep partially observable stochastic game (POSG) with
modular evaluation interfaces. The key components are:
• WorkflowExecutionEngine: Central controller manag-

ing timestep progression, action execution, and state tran-
sitions.

• ManagerAgent: Abstract base class for orches-
tration policies. Our main implementations for
baselines are ChainOfThoughtManager and
RandomActionManager.

• ValidationEngine: Stateless evaluator applying evalua-
tion rubrics to score workflow runs.

• Workflow: Encodes tasks, dependencies, resources, con-
straints, and communication history.

• AgentRegistry: Maintains worker pools, including sim-
ulated humans and AI agents.

• CommunicationService: Handles inter-agent messag-
ing and stakeholder communication channels.

C.2 Metric Definitions
We report results across five metrics:

Preference alignment. Weighted linear sum of stake-
holder preferences, normalized to [0, 1]:

Preference alignment =
∑
i

wi · norm(si)

where wi is the preference weight and si the rubric score.
Workflows define 5–7 preferences (e.g., quality, cost, speed,
compliance), each with multiple rubrics.

Constraint Adherence. A normalized score in [0, 1] de-
signed to measure the Manager Agent’s adherence to both
soft and hard workflow constraints over the episode (higher
is better). If any hard constraint fails, then the overall score
is 0, and the workflow is terminated. If no hard constraint
violations are present, the score is calculated by checking
each task and resource (output of a task) in the workflow
to check for soft constraint adherence, removing points for
each violation found. Rubrics include constraint coverage,
deadline guardrails, prohibited action checks and then work-
flow specific rubrics such as sign-off verification, and data
governance evidence.

Goal achievement. Workflow-specific evaluator defined
by 10–25 deliverables (critical, major, supporting), with
point values reflecting business criticality: critical deliver-
ables (12–18 points), major deliverables (8–12 points), and
supporting tasks (3–8 points). Each deliverable is assessed
via LLM rubrics using primarily binary prompts (true/-
false for completion) or graduated scoring with proportional
credit for partial fulfillment. Individual rubric scores are
combined to a total metric by accumulating the scores across
all deliverables. Total scores are normalized to [0, 1], ensur-
ing goal achievement reflects actual deliverable completion
rather than planning effort (higher is better).

Stakeholder management. Normalized score in [0, 1] de-
signed to quantify how responsive, proactive, and clear the
Manager Agent’s communication with the stakeholder is
(higher is better). Fixed evaluator across all workflows com-
prising 6 universal rubrics: communication penalties (en-
gagement frequency, assignment load, response latency), co-
ordination quality (graph complexity), and LLM-assessed
interaction effectiveness (preference clarification, negoti-
ation). Deterministic rubrics use penalty functions (e.g.,
max(0, 10 − manager messages) for engagement), while
LLM rubrics assess qualitative aspects like preference elici-
tation and stakeholder input utilization on 8–30 point scales.
Aggregation uses zeroing gate: returns 0 if no manager-
stakeholder communication occurs; otherwise computes
mean of normalized rubric scores. Total scores normalized
to [0, 1].

Workflow Completion Time. Total simulated hours until
workflow has been completed or the timestep cap (100) has
been reached. Reported as average across random seeds.

C.3 Workflow-Specific Preferences
Each workflow defined in MA-GYM defines a unique
stakeholder preference structure. For example (preference
weights shown in brackets):
• Legal: governance (35%), compliance (25%), quality

(20%), speed (10%), cost (10%).
• Finance: compliance (25–30%), quality (20–25%),

speed (15%).
• Technology: quality (25%), speed (15–20%), cost (10–

15%).

C.4 Exemplar LLM Rubrics
To make clear the structure of the LLM grading rubrics, we
include exemplar rubrics from two workflows: one of set-
ting up a marketing campaign, and another executing a data
science project.

Binary Deliverable Check.
WorkflowRubric(
name="brand_tracking_framework_operational",
llm_prompt=(
"Does an operational brand tracking framework exist with:"
"measurement approach documented, key metrics defined, "
"tracking methodology outlined,
"and reporting framework established? "
"Return true if all components
"are documented and ready for deployment, "
"false otherwise."

),
max_score=18.0,
run_condition=RunCondition.ON_COMPLETION,

)

Partial Credit Scoring.
WorkflowRubric(
name="evaluation_rigor",
llm_prompt=(
"Evaluate evaluation methodology rigor:\n"



"- train/validation/test splits with rationale\n"
"- calibration analysis with quantitative metrics\n"
"- leakage detection with validation checks\n"
"- statistically justified thresholds\n"
"- uncertainty quantification with multiple methods\n"
"- independent peer review present\n"
"PENALTY: Deduct 2 points for each missing requirement. "
"Return score [0,10]."

),
max_score=10.0,
run_condition=RunCondition.ON_COMPLETION,

)

C.5 Full List of Manager Agent Actions
Table 3 provides a complete list of the allowed actions for
all Manager Agent baselines, and their intents. For a full de-
scription of arguments, returned observations and mechan-
ics, please refer to the code repository.

C.6 Evaluation Set Taxonomy
Table 4 lists all 20 workflows defined in the initial release of
MA-GYM.

What “preference change-points” means. For each
workflow with dynamic preferences, we specify the
timesteps t at which the preference vector U changes, and
the new weights thereafter. In plain terms: when the stake-
holder re-prioritizes (the change-point) and how the objec-
tives are re-weighted. Unless otherwise noted, “S→Q→C
standard pattern” means: early Speed/Time emphasis, mid-
run Quality emphasis, late Compliance emphasis, with two
change-points at approximately one-third and two-thirds of
the action budget (e.g., t ≈ 35 and t ≈ 70 on a 100-step
horizon; scale proportionally for shorter runs). We list exact
change-points where they are encoded in the workflow files;
for others we annotate “standard pattern.” Team churn lists
worker joins/leaves by timestep.

C.7 Example Action Buffer (25 Timesteps)
Table 5 shows a representative trajectory for the Legal Con-
tract Negotiation workflow scenario. We show 20 steps from
the same run and leave 5 placeholders to be filled with the
remaining actions.



Table 1: Comparison of existing multi-agent benchmarks and limitations for Manager Agent evaluation.

Benchmark Primary Focus Capabilities Tested Limitations for Manager Agent

TheAgentCompany (Xu
et al. 2025a)

Real-world office & soft-
ware workflows

Long-horizon hierarchical planning,
mixed tool use, multi-agent collabora-
tion

Does not assess hierarchical task decom-
position, dynamic multi-objective opti-
mization, coordination across ad hoc
teams, or built-in governance/compli-
ance mechanisms.

CREW-Wildfire (Hyun,
Waytowich, and Chen
2025)

Wildfire-response
simulation with hetero-
geneous agents

Dynamic multi-objective optimization,
partial observability, large-scale ad-hoc
team coordination

Domain-specific to disaster response;
emphasizes embodied coordination un-
der uncertainty but omits hierarchi-
cal task decomposition, dynamic multi-
objective trade-offs, governance/compli-
ance mechanisms, and flexible ad-hoc
team formation.

MultiAgentBench (Zhu
et al. 2025)

LLM collaboration &
competition suite

Medium complexity task completion,
MAS communication and team topolo-
gies

Agent teams are fixed in size with full
observability of skills and aptitude, Eval-
uates single objective fixed tasks with-
out any environmental constraints (cost,
fixed agent capacity).

StarCraft II (Vinyals
et al. 2017)

Strategy game with
macro and micro man-
agement of units and
resources

Incomplete information and limited
views, dynamic resource management,
long-horizon planning and coordination
of units, adversarial environment

No mixed human-AI teams, no notion
of input/output resources for tasks, no
stakeholder communication, no gover-
nance/compliance aspects.

τ -bench (Yao et al. 2024) Evaluation of agent
behavior in dynamic,
tool-mediated human-
agent conversations
under domain-specific
rules

Human-in-loop interaction; tool/API in-
tegration; domain-policy compliance;
consistency across trials (via passk met-
ric)

Focuses on single-agent tool-use and
conversational consistency; does not
cover hierarchical task decomposition,
multi-objective optimization, ad hoc
team coordination, or governance/com-
pliance in multi-agent workflows.

SOTOPIA (Zhou et al.
2024),
Generative Agents (Park
et al. 2023)

Social intelligence of
LLM-based agents in
multi-agent role-play
scenarios

Social reasoning; negotiation; collabo-
ration vs. competition; strategic com-
munication; performance in challeng-
ing social interaction scenarios (e.g.,
SOTOPIA-hard)

Not focused on structured workflow or-
chestration, hierarchical task decompo-
sition, explicit task allocation, dynamic
multi-objective optimization, or gover-
nance mechanisms.

PARTNR (Chang et al.
2024)

Household planning and
embodied human–robot
collaboration defined via
natural language instruc-
tions

Embodied multi-agent planning; spatial,
temporal, and heterogeneous capability
constraints; human–AI coordination

Lacks hierarchical task decomposi-
tion/allocation, multi-objective opti-
mization, and scalable ad hoc team
coordination.

SoftwareDev (Hong
et al. 2023),
ProgramDev (Cemri
et al. 2025)

Collaborative software
engineering through
structured multi-agent
workflows

Workflow decomposition via SOP-
guided task breakdown; role-
specialization in multi-agent team;
modular communication

Emphasizes single-domain (software
engineering); lacks dynamic multi-
objective optimization, ad hoc team
formation, governance/compliance con-
straints, and hierarchical decomposition
in multi-agent workflows.



Table 2: Action usage frequencies (CoT policy). GPT-5 em-
phasizes diverse planning operators (decomposition, refine-
ment, dependency management), forming proactive orches-
tration chains. GPT-4.1 relies more heavily on messaging,
status checks, and no-ops, reflecting a reactive style with
narrower exploration of the action space.

Action GPT-4.1 GPT-5 Ratio

assign task 2,594 2,882 1.1×
decompose task 15 217 14.5×
refine task 36 281 7.8×
add dependency 9 234 26.0×
send message 509 213 0.4×
get status/checks 126 15 0.1×
noop 107 12 0.1×



Table 3: Detailed set of all actions the Manager Agent is allowed to take, including names, inputs, and a brief description of the
intent of the action.

Action Rationale (when to use)

(1) assign task(task id, agent id) Route a specific READY task to a capacity/skill-matched agent; avoid for
approvals/sign-offs or human-only items.

(2) assign all pending tasks([agent id]) Fast triage for demos or low-stakes phases: bulk-assign unassigned, non-
completed tasks to one agent (auto-picks a deterministic agent if omitted).

(3) create task(name, description,
est hrs, est cost)

Add concrete work items (artifacts, reviews, approvals) when pipeline is empty,
evaluators require evidence, or you need explicit human steps.

(4) remove task(task id) Prune scope: delete out-of-scope/duplicate/obsolete tasks to reduce clutter and
protect the critical path.

(5) send message(content, [receiver id]) Coordinate: solicit tradeoffs, request approvals, clarify requirements, or broadcast
instructions; incurs communication/oversight costs in evaluators.

(6) noop() Observe without changing state when no safe/productive action exists or you are
waiting for information.

(7) get workflow status() Snapshot health: task status histogram, ready set size, and available agents to in-
form next scheduling/creation moves.

(8) get available agents() Inspect who is idle/available and their capability summaries before (re)allocation.

(9) get pending tasks() Triage backlog: list PENDING tasks and a name preview for quick selection.

(10) refine task(task id,
new task instructions)

Tighten scope and clarity: rename, update description/estimates, and inject/replace
MANAGER INSTRUCTIONS: in execution notes.

(11) add task dependency(prereq id,
dep id)

Enforce sequencing; guards against self-links and detects circular dependencies
before linking.

(12) remove task dependency(prereq id,
dep id)

Remove obsolete/incorrect prerequisite edges when ordering is no longer needed.

(13) inspect task(task id) Read-only deep dive into a task’s current status/details/outputs; no state changes.

(14) decompose task(task id) Split a broad task into subtasks using AI, given full workflow context and the
workflow seed; skips if already decomposed.

(15) request end workflow([reason]) Signal termination once value is saturated or deliverables accepted; requires a
communication service.

(16) failed action(metadata) Record a provider/system failure while leaving the workflow unchanged (diagnos-
tic breadcrumb).



Table 4: Workflow taxonomy and validator coverage. One row per workflow with goal, preferences, team churn (i.e. when
agents enter/leave), and key validators.

Workflow Domain Goal (1-line) Preferences Team churn Key validators

Airline Launch
Program

Aviation New route feasibility
→ launch plan

quality, cost, speed PMO joins @ t ≈
15; analyst leaves @
t ≈ 45

operational readiness; mar-
ket analysis; safety compli-
ance (LLM-judge)

Banking Li-
cense
Application

Finance Regulatory compliance
→ license approval

quality, compliance, gover-
nance

compliance officer
joins @ t ≈ 20;
consultant leaves @
t ≈ 50

regulatory completeness;
documentation quality; risk
assessment

Brand Crisis
Management

Marketing Crisis response → rep-
utation recovery

quality, compliance, gover-
nance, speed, cost, reputa-
tion recovery

crisis team joins @
t ≈ 5; PR consul-
tant leaves @ t ≈
25

response timeliness; stake-
holder coverage; message
consistency (LLM-judge)

Data Science &
Analytics

Analytics Explore → model →
report

quality, speed, cost data engineer joins
@ t ≈ 20

quality; metric sanity; note-
book hygiene

Enterprise SaaS
Negotiation

Sales Pipeline → proposal →
contract

quality, speed, cost sales engineer joins
@ t ≈ 25; le-
gal counsel leaves
@ t ≈ 55

contract coverage; pricing
validation; compliance
checks

GenAI Feature
Launch

Technology Feature dev → testing
→ release

quality, speed, cost ML engineer joins
@ t ≈ 30; QA
leaves @ t ≈ 65

feature completeness; safety
validation; performance
metrics

Global Product
Recall

Manufacturing Crisis response → mar-
ket re-entry

consumer safety,
regulatory compliance,
crisis management,
operational execution,
brand recovery,
financial risk management,
speed

crisis team joins @
t ≈ 0; recovery
team joins @ t ≈ 25

safety protocols; regulatory
coordination; completion
tracking (LLM-judge)

ICAAP Risk Capital adequacy report
draft

quality, compliance, gover-
nance, speed, cost

reviewer joins @
t ≈ 40

governance completeness;
section coverage; risk type
coverage

IPO Readiness
Program

Finance Regulatory compliance
→ public listing

sec compliance, governance,
financial readiness, le-
gal regulatory, speed, cost

legal counsel joins
@ t ≈ 15; auditor
leaves @ t ≈ 35

SEC compliance; board in-
dependence; audit quality
(LLM-judge)

Legal Contract
Negotiation

Legal Clause redlines + sum-
mary

quality, compliance, gover-
nance, speed, cost

counsel joins @ t ≈
25; paralegal leaves
@ t ≈ 60

clause coverage; prohibited
terms; summary quality

Legal Global
Data Breach

Legal Incident response → re-
port + briefing

quality, compliance, gover-
nance, speed, cost

incident response
team joins @ t ≈ 0;
external counsel
joins @ t ≈ 12

evidence preservation; reg-
ulatory notifications; privi-
lege protection

Legal Litiga-
tion
e-Discovery

Legal Collection → culling
→ memo

quality, compliance, gover-
nance, speed, cost

vendor joins @ t ≈
30

source provenance; privilege
filters; data validation

Legal M&A Legal SPA review + risk notes quality, compliance, gover-
nance, speed, cost

associate joins @
t ≈ 35

clause coverage; change-of-
control checks; due dili-
gence completeness

Marketing
Campaign

Marketing Brief → assets → plan quality, speed, cost designer joins @
t ≈ 30

brand compliance; asset
checklist; campaign effec-
tiveness

MNC Work-
force
Restructuring

HR Strategy → implemen-
tation → monitoring

quality, compliance, gover-
nance, speed, cost

HR specialist joins
@ t ≈ 20; consul-
tant leaves @ t ≈
50

legal compliance; employee
relations; change manage-
ment

ORSA Risk Own risk & solvency
draft

quality, compliance, gover-
nance, speed, cost

actuary joins @ t ≈
35

governance checklist; cross-
ref integrity; risk assessment

Pharmaceutical
Product
Launch

Healthcare Regulatory approval →
market launch

quality, speed, cost regulatory specialist
joins @ t ≈ 25;
CMO leaves @ t ≈
60

cGMP compliance; ICH
guidelines; safety validation

Supply Chain
Planning

Operations Plan → simulate → re-
port

quality, speed, cost analyst joins @ t ≈
20

SLA conformance; cost en-
velope; logistics coordina-
tion

Tech Acquisi-
tion
Integration

Technology Due diligence → inte-
gration → validation

quality, compliance, gover-
nance, speed, cost

integration team
joins @ t ≈ 10;
consultant leaves @
t ≈ 45

regulatory approval; system
integration; talent retention

UK University
Accreditation

Education Application → review
→ certification

quality, compliance, gover-
nance, speed, cost

external reviewer
joins @ t ≈ 30;
admin leaves @
t ≈ 55

academic standards; docu-
mentation quality; regula-
tory compliance



Table 5: Action sequence (first 30 actions, numbered 1–30) — ICAAP (GPT-5, run id=seed 44).

# Action Rationale (short) Est. hrs Est. cost Task ID (prefix)

1 DecomposeTask: 52a0f9e0 (→ 5 sub-
tasks)

Expose parallelism; unblock downstream as-
signments

— — 52a0f9e0

2 AssignTask → credit risk modeler Skill-fit allocation to credit capital workstream — — ef0dc5fc
3 AddDependency: Define Gross Metric

Requirements ≺ Source Mapping and
Extract Quarter-End Data from Author-
itative Systems

Enforce ordering; prevent premature starts — — —

4 AssignTask → credit risk modeler Skill-fit allocation to credit capital workstream — — daf763f1
5 AssignTask → documentation lead Parallelize drafting and evidence linking — — 00000000
6 AssignTask → credit risk modeler Skill-fit allocation to credit capital workstream — — 6de77323
7 AssignTask → documentation lead Parallelize drafting and evidence linking — — ef574e2d
8 AssignTask → credit risk modeler Skill-fit allocation to credit capital workstream — — 8916d422
9 AssignTask → op risk analyst Advance Operational Risk quant/scenario track — — bda70785

10 AssignTask → irrbb analyst Advance IRRBB measurement and limit checks — — ede266dd
11 AssignTask → documentation lead Parallelize drafting and evidence linking — — 2fe81eb1
12 GetAvailableAgents Check capacity/skills before next allocations — — —
13 AssignTask → op risk analyst Advance Operational Risk quant/scenario track — — 00000000
14 AssignTask → irrbb analyst Advance IRRBB measurement and limit checks — — 00000000
15 AssignTask → op risk analyst Advance Operational Risk quant/scenario track — — 00000000
16 AssignTask → irrbb analyst Advance IRRBB measurement and limit checks — — 00000000
17 AssignTask → op risk analyst Balance workload across verticals — — 00000000
18 AssignTask → irrbb analyst Balance workload across verticals — — 00000000
19 AssignTask → stress testing designer Initiate scenario set (baseline/adverse/severe) — — 00000000
20 AssignTask → stress testing designer Initiate scenario set (baseline/adverse/severe) — — 00000000
21 AssignTask → stress testing designer Initiate scenario set (baseline/adverse/severe) — — 00000000
22 AssignTask → documentation lead Parallelize drafting and evidence linking — — 00000000
23 AssignTask → stress testing designer Initiate scenario set (baseline/adverse/severe) — — 00000000
24 AssignTask → credit risk modeler Skill-fit allocation to credit capital workstream — — 00000000
25 AssignTask → credit risk modeler Skill-fit allocation to credit capital workstream — — 00000000
26 GetAvailableAgents Check capacity/skills before next allocations — — —
27 GetAvailableAgents Check capacity/skills before next allocations — — —
28 AssignTask → documentation lead Parallelize drafting and evidence linking — — 00000000
29 GetAvailableAgents Check capacity/skills before next allocations — — —
30 AssignTask → capital planner Kick off normative capital planning work — — 00000000


