
Reducing the Cost of Fitting Mixture Models via Stochastic Sampling

Milan Papež1 Tomáš Pevný1 Václav Šmídl1

1Artifcial Intelligence Center, Czech Technical University, Prague, Czech Republic

Abstract

Traditional methods for unsupervised learning of
finite mixture models require to evaluate the like-
lihood of all components of the mixture. This
quickly becomes prohibitive when the components
are abundant or expensive to compute. Therefore,
we propose to apply a combination of the expecta-
tion maximization and the Metropolis-Hastings
algorithm to evaluate only a small number of,
stochastically sampled, components, thus substan-
tially reducing the computational cost. The Markov
chain of component assignments is sequentially
generated across the algorithm’s iterations, having
a non-stationary target distribution whose param-
eters vary via a gradient-ascent scheme. We put
emphasis on generality of our method, equipping
it with the ability to train mixture models which in-
volve complex, and possibly nonlinear, transforma-
tions. The performance of our method is illustrated
on mixtures of normalizing flows.

1 INTRODUCTION

Finite mixture models [McLachlan et al., 2019] constitute a
fundamental class of density estimation models. They are
formed by a weighted sum of probability distributions—here
referred to as components—and their training is commonly
undertaken via the maximum likelihood estimation. This
approach maximizes either (i) the marginal likelihood via
gradient-ascent [Redner and Walker, 1984] or (ii) the evi-
dence lower bound via variational methods [Blei et al., 2017,
Humphreys and Titterington, 2000, Kucukelbir et al., 2017],
including the expectation-maximization (EM) [Dempster
et al., 1977]. The computational cost of such methods typ-
ically scales with O(TDNK) operations, where T is the
number of iterations, D is the dimension of data, N is the
number of data, and K is the number of components.

However, deploying these methods is challenging in appli-
cations involving large K, such as in face recognition [Otto
et al., 2017], astronomical imaging [Welton et al., 2013],
natural language processing [Nayak et al., 2014] and DNA
data storage [Rashtchian et al., 2017]. The problem is even
more severe for mixtures with components given by intri-
cate models, including neural networks [Greff et al., 2017,
Monnier et al., 2020], Gaussian processes [Wu and Ma,
2019], normalizing flows [Pires and Figueiredo, 2020]; or
deep mixtures, such as sum-product (transform) networks
[Peharz et al., 2020, Pevný et al., 2020]. In spite of this, a
little attention has been paid to the design of algorithms that
do not evaluate all K components. The notable exceptions
are the sparse EM algorithm [Hughes and Sudderth, 2016]
and the truncated EM algorithm [Forster and Lücke, 2018].
Moreover, the methods are mostly tailored for a fixed class
of mixture models, e.g. Gaussian mixture models (GMMs).

In this paper, we make the following contributions:

• We instantiate the MCMC stochastic approximation EM
(MCMCSAEM) framework [Kuhn and Lavielle, 2004]
in the context of finite mixture models. This may seem
wasteful, since the expectation over the component as-
signments in the EM objective function is analytically
tractable, whereas the MCMCSAEM framework is noto-
riously applied when the expectation is intractable. How-
ever, notwithstanding this standard practice allows us to
evaluate less components in mixture models and thus sub-
stantially reduce the computational cost of their training.

• We design our method to enable the maximization of
generic EM objectives via a gradient-based form of
stochastic approximation, making it suitable for compo-
nents containing nonlinear transformations. This enhances
the MCMCSAEM framework which has been almost ex-
clusively used in cases admitting the maximization under
a closed-form solution.

• We apply our method to mixtures of real-valued non-
volume preserving (real NVP) flows [Dinh et al., 2017],
reaching up-to 350× speed-up compared to the baseline
EM algorithm.

Accepted for the 5th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2022).

mailto:<papezmil@fel.cvut.cz>?Subject=Fitting Large Mixture Models Using Stochastic Component Selection
mailto:<pevnytom@fel.cvut.cz>?Subject=Fitting Large Mixture Models Using Stochastic Component Selection
mailto:<smidlva1@fel.cvut.cz>?Subject=Fitting Large Mixture Models Using Stochastic Component Selection

2 EXPECTATION MAXIMIZATION

2.1 THE EM ALGORITHM

The EM algorithm [Dempster et al., 1977] seeks the un-
known parameters, θ ∈ Θ, maximizing the marginal
(incomplete-data) log-likelihood in latent data models,

L(θ) := log pθ(x) = log

∫
pθ(x, z)dz, (1)

where x := (xi)
N
i=1 are observed (known) variables, x ∈ X;

z := (zi)
N
i=1 are latent (unknown) variables, z ∈ Z; and

pθ(x, z) is the joint (complete-data) likelihood.

The EM algorithm addresses this task indirectly, i.e. by
optimizing the evidence lower bound (ELBO),

L(θ) ≥ Q(θ, θ̂) +H(θ̂) := ELBO(θ̂), (2)

where H(θ̂) := −Epθ̂(z|x)[log pθ̂(z|x)] is the differential
entropy at an estimate, θ̂ ∈ Θ, and

Q(θ, θ̂) := Epθ̂(z|x)[log pθ(z,x)] (3)

is the EM objective function. Here, pθ(z|x) is the posterior
distribution over z. Given an initial value, θ1, the algorithm
produces a sequence of estimates, (θt)Tt=1, by alternating
between the expectation (E) and maximization (M) steps,

E-step: Qt(θ), (4)
M-step: θt+1 := argmax

θ∈Θ
Qt(θ), (5)

where Qt(θ) := Q(θ, θt). The sequence is guaranteed to
monotonically tighten (2), arriving at a local optimum of (1)
under mild regularity assumptions [Wu, 1983].

2.2 THE MCMCSAEM ALGORITHM

The E-step (4) is analytically intractable in many applica-
tions. The MCEM algorithm [Wei and Tanner, 1990] ad-
dresses this problem by approximating (3) via the MC av-
erage, Q̄t(θ) :=

1
M

∑M
j=1 log pθ(x, z

j
t), where the samples,

(zjt)
M
j=1, are drawn from pθt(z|x). However, this algorithm

requires high values of M to converge [Fort and Moulines,
2003], and the samples are wastefully discarded at each
iteration, t. The stochastic approximation resolves this issue
by reusing the samples in Q̄t over the iterations as follows:

Q̂t(θ) := Q̂t−1(θ) + γt
(
Q̄t − Q̂t−1(θ)

)
, (6)

where the step-size, γt, satisfies the constraints [Robbins and
Monro, 1951], γt ∈ [0, 1],

∑
t≥1 γt = ∞,

∑
t≥1 γ

2
t < ∞.

The normalizing factor of pθ(z|x) is often intractable, pre-
venting direct sampling from this posterior. MCMC obviates
this difficulty by simulating a Markov chain, (zt)Tt=1, from

a transition kernel, zt ∼ Pθ(zt−1, ·), which leaves pθ(z|x)
as its unique stationary distribution, given a fixed θ.

The MCMCSAEM algorithm [Delyon et al., 1999, Kuhn
and Lavielle, 2004] approximates the E-step (4) by combin-
ing the MCMC simulation (S) and the stochastic approxi-
mation (SA) in (6),

S-step: zjt ∼ Pθt(z
j−1
t , ·), j ∈ (1, . . . ,M), (7)

SA-step: Q̂t(θ), (8)

M-step: θt+1 := argmax
θ∈Θ

Q̂t(θ). (9)

This algorithm sets z0t := zMt−1 at each t and produces the
chain (z11, . . . , z

M
1 , . . . , z1T , . . . , z

M
T) of length MT , initial-

izing (7) with z01. The samples generated during the initial
iterations are usually discarded due to their high correlation,
which is often referred to as the burn-in [Robert and Casella,
2013]. In the MCMCSAEM algorithm, the initial samples
do not have to be discarded, since they are sequentially for-
gotten via the step-size, γt, (forgetting factor) in (6), i.e. a
specific form of the sequence, (γt)Tt=1, handles the burn-in.

3 PROBLEM FORMULATION

A finite mixture model characterizes the relation between
x ∈ X ⊆ RD and z ∈ Z := {1, . . . ,K} as follows:

pθ(x) =

K∑
k=1

pηk
(x|z = k)pπk

(z = k), (10)

where θ := (π1, η1, . . . , πK , ηK) are unknown parameters.
ηz are the parameters of the conditional likelihood, pηz

(x|z),
and πz is the weight parameterizing the prior, pπz

(z) = πz ,
such that 0 ≤ πk ≤ 1 for each k ∈ Z and

∑K
k=1 πk = 1.

Given independent and identically distributed data, x, our
aim is to find the parameters maximizing (1) given by

L(θ) =
N∑
i=1

log

K∑
k=1

pηk
(xi|zi = k)pπk

(zi = k). (11)

For (10), the integration in (1) becomes the summation,
which is analytically tractable for all forms of pηz (x|z).
However, for high K, this summation in (11) is computation-
ally costly, rendering the optimization objective presumably
intractable. We would like to design an algorithm requiring
only M < K evaluations of pηz

(x|z) at each iteration, t.

4 THE GENERALIZED MHSAEM
ALGORITHM

The application of the MCMCSAEM framework is noto-
riously motivated by analytical intractability of the E-step.

2

We go against this convention, and use it to reduce the com-
putational cost of the EM algorithm in the context of finite
mixture models, where the E-step—the finite sum expected
value—is always tractable. Moreover, the MCMCSAEM
algorithm involves a closed-form solution of the M-step. We
release this assumption by allowing direct, gradient-based
optimization of the EM objective.

4.1 E-STEP

The computational cost of the EM algorithm scales with
O(TDNK). This is seen from (3) which, in the context of
(10), factorizes as follows:

Qt(θ) =

N∑
i=1

K∑
k=1

pθt(zi = k|xi) log pθ(zi = k, xi), (12)

where we need to compute KN , D-dependent, summands
at each t ∈ (1, . . . , T). Indeed, the marginal factor, pπz

(z),
of pθ(x, z) is just the cheap categorical distribution; how-
ever, the conditional factor, pηz (x|z), typically involves
high-dimensional operations (e.g. the inversion of D×D-
dimensional covariance matrices in the GMMs).

To reduce the computational cost, we sample only M � K
random samples from pθ(zi|xi), for each i ∈ (1, . . . , N),
enabling us to obtain the Monte Carlo average, Q̄t, in (6).
Note that direct sampling from pθ(zi|xi) would not lead to
any substantial decrease in the number of operations, since
we have to first compute the normalizing factor, pθ(xi). This
requires K expensive evaluations of pθ(zi, xi), which is pre-
cisely what we want to avoid. The MCMC sampling in (7)
facilitates sampling from pθ(zi|xi) with the cost decreasing
to just M � K evaluations of pθ(zi, xi) per iteration.

A concrete form of Pθ in (7) determines a resulting MCMC
procedure. We chose the Metropolis-Hastings (MH) sam-
pler (hence MHSAEM) which represents Pθt(z

j−1
i,t , zji,t) as

follows: given z̄ := zj−1
i,t , draw a sample from the proposal

distribution, z ∼ q(·|z̄), compute the acceptance ratio,

α(z̄, z) := min

{
1,

pηz,t(xi|z)πz,tq(z̄|z)
pηz̄,t

(xi|z̄)πz̄,tq(z|z̄)

}
, (13)

and, if u < α(z̄, z)—where u is drawn from the uni-
form distribution, Uniform(0, 1)—accept the sample and set
zji,t = z; otherwise, set zji,t = z̄. We repeat this process for
each j ∈ (1, . . . ,M), construing a set zi,t = (z1i,t, . . . , z

M
i,t).

Recall that we set z0i,t := zMi,t−1 at each iteration, i.e. the
chain has the length MT (Section 2.2). The samples, zi,t,
are then used to obtain the following MC average:

Q̄t(θ) =
1

M

N∑
i=1

∑
z∈zi,t

log pηz (xi|z)πz. (14)

Using (14) to directly approximate (4) is inefficient and
impractical (Section 2.2). Therefore, we utilize (14) in a
type of stochastic approximation, as detailed in Section 4.2.

Algorithm 1: The generalized MHSAEM algorithm

Input: θ1, (zMi,0)
N
i=1, (xi)

N
i=1 Output: (θt)Tt=1

for t ∈ (1, . . . , T) or until convergence do
for i ∈ (1, . . . , N) do

set z0i,t := zMi,t−1
for j ∈ (1, . . . ,M) do

set z̄ := zj−1
i,t

sample z ∼ q(z|z̄)
sample u ∼ Uniform(0, 1)

compute α(z̄, z) in (13)
if u < α(z̄, z) then

set zji,t := z and z̄ := z

else
set zji,t := z̄

end if
end for
set zi,t := (z1i,t, . . . , z

M
i,t)

end for
compute (14)
compute (15) for k ∈ unique(zi,t)
compute πk,t := softmax(νt)k for k ∈ Z

end for

4.2 M-STEP

If the M-step (5) cannot be computed under a closed-form
solution, one can resort to direct gradient-based optimization
of Q(θ), where argmax is replaced by one (or more) step(s)
of a gradient-ascent technique. The EM algorithm is then
referred to as the generalized EM algorithm [Wu, 1983]. To
the best of our knowledge, this extension has not yet been
applied in the MCMCSAEM framework.

We replace (6) by a stochastic gradient-ascent method, θt =
θt−1 + γt∇θQ̄t(θ), where ∇θ is the gradient w.r.t. θ. This
is also a form of the stochastic approximation [Robbins and
Monro, 1951], where the computations made in ∇θQ̄ are
accumulated via θt and reused over the iterations.

The parameters ηz have a different form based on a spe-
cific case of pηz

(x|z), whereas the parameters πz of pπz
(z)

form a fixed structure in (10). Therefore, without loss of
generality, we split (9) into a generic part and a fixed part,

ηk,t = ηk,t−1 + γt∇ηk
Q̄t(θ), (15a)

νk,t = νk,t−1 + γt∇νk
Q̄t(θ), (15b)

where—to ensure that the probabilities, (πk,t)
K
k=1, satisfy

the constraints (Section 3)—we transform ∇πk
Q̄ via νk =

log πk and optimize w.r.t. νk. Then, to obtain (πk,t)
K
k=1

from νt := (νk,t)
K
k=1, we use the softmax function, i.e.

πk,t := softmax(νt)k := exp(νk,t)/
∑K

l=1 exp(νl,t).

The M-step (5) is also computationally costly for large K.
This holds even when it can be reduced to closed-form
updates of expected sufficient statistics with pηz

(x|z) be-
longing to the exponential family [Nguyen et al., 2020]
(again, due to high D). Note that computing the gradi-
ents for all pairs in (νk, ηk)

K
k=1 would be inefficient, es-

3

pecially since zi,t contains only a small number of unique
values of Z for M � K. Therefore, we further reduce the
computational cost by computing ∇ηk

Q̄ and ∇νk
Q̄ only

for k ∈ unique(zi,t). By this last step, we achieved the
sought decrease in the complexity of the EM algorithm
from O(TDNK) to O(TDNM), where M � K. We
summarize the proposed approach in Algorithm 1.

5 EXPERIMENTS

To demonstrate the key features of our algorithm—i.e. its
low computational cost, competitive learning performance,
and generality—we use it to train mixtures of flow models
[Pires and Figueiredo, 2020]. Specifically, we transform
each pηz

(x|z) in (10) via the real NVP flow [Dinh et al.,
2017], relying on deep neural networks to flexibly adjust
the learning capacity of each component. All experiments
have been performed on a Slurm cluster equipped with Intel
Xeon Scalable Gold 6146 with 384GB of RAM.

Experiment settings: We use 19 real datasets from the UCI
database [Dua and Graff, 2017, Mangasarian and Wolberg,
1990, Little et al., 2007, Siebert, 1987], preprocessed in the
same way as in [Pevný, 2016]. For each experiment, we
randomly split the data into 64%, 16% and 20% for training,
validation and testing, respectively. We calculate the average
log-likelihood on the test set and measure the time to reach
95% of the maximal training log-likelihood. We change the
number of components as follows: K ∈ (2, 4, 8, 16). Each
real NVP-based component in the mixture model relies
on (i) the translation function parameterized via the multi-
layer perceptron with a single hidden layer of 10 neurons,
choosing the hyperbolic tangent activation function; and (ii)
the scale function parameterized via the same network. We
use the batch normalization [Dinh et al., 2017], and we stack
two layers of the translation-scale transformation. We adopt
the real NVP implementation from [Franců, 2020].

Algorithms: We compare the MHSAEM algorithm to the
standard EM algorithm. The former computes only one com-
ponent of the mixture (M = 1) per iteration, whereas the
latter computes all the components, i.e. we expect a speed-
up of the computations. The EM and MHSAEM methods
optimize the EM objective functions (12) and (14), respec-
tively. We use the automatic differentiation and the ADAM
optimizer with the default settings [Kingma and Ba, 2014],
finding T = 1000 as a sufficient amount of iterations.

Results: The results are presented in Table 1. Since each
dataset may benefit from a different K, we show the test
log-likelihood of the mixtures—selected via the best log-
likelihood measured on the validation set—and the associ-
ated speed-up. It can be seen that the MHSAEM algorithm
outperforms the EM algorithm on all but one dataset, and it
provides a substantial speed-up on all datasets except one.

Table 1: The speed-up and test log-likelihood, Ltest, for the EM and
MHSAEM algorithms. The test log-likelihood (higher is better) is
computed for the best model, with the corresponding K, which is
selected based on the validation log-likelihood. The speed-up is
computed as the ratio of EM to MHSAEM, i.e. their time to reach
95% of the training log-likelihood. The results are averaged over
five repetitions with different initial conditions. The likelihood is
shown with its standard deviation. The higher test log-likelihood
is highlighted with bold blue, and no speed-up is highlighted with
red. The average rank is computed as the standard competition
(“1224”) ranking [Demšar, 2006] on each dataset (lower is better).

Mixtures of real NVP flows
EM MHSAEM

dataset speed-up Ltest K Ltest K

breast-cancer 75.69 17.72±2.59 16 21.42±1.34 16
cardio 31.87 -33.57±3.39 4 -33.42±8.38 4

ecoli 26.48 9.95±1.06 8 17.62±0.80 16
ionosphere 86.19 12.26±3.93 16 15.91±2.16 8

iris 340.63 -3.64±1.03 16 -1.59±0.74 2
telescope 94.61 -28.62±0.19 16 -26.14±0.06 16

blocks 45.68 -38.70±0.85 16 -31.47±0.36 16
parkinsons 354.77 30.86±2.17 16 31.27±1.16 16

pendigits 58.86 -67.00±0.17 16 -59.87±0.96 16
pima-indians 0.09 -27.95±0.25 16 -20.62±1.27 16

sonar 139.20 66.85±4.37 16 66.09±4.74 4
segment 71.96 -45.48±2.88 16 -35.37±4.82 16
vehicle 98.01 -59.27±0.41 16 -56.28±0.44 8

robot 47.89 -28.80±0.39 16 -20.61±1.26 16
waveform-1 143.91 -33.47±0.09 16 -31.92±0.18 16
waveform-2 162.95 -33.65±0.10 16 -31.96±0.09 8

wine 182.06 -17.99±1.29 8 -16.37±0.86 2
yeast 120.85 9.49±1.47 8 21.92±0.35 16
rank 1.95 1.05

6 CONCLUSION

This paper has presented a method to decrease compu-
tational cost of fitting mixture models. The speed-up is
achieved by using the MH sampling to evaluate only a sin-
gle component per iteration. The experiments confirmed that
the method significantly speeds-up the fitting time, and, im-
portantly, it does not undermine the quality of the fit. In fact,
the likelihood was better than that of the models fitted by
the EM algorithm in more than 90% of cases. We attribute
this to the stochastic sampling, which helps to escape from
poor local optima. The proposed method has used a uniform
proposal distribution. Despite outperforming the baseline
EM algorithm, we conjecture that this limits the speed of
convergence. Therefore, we believe that there is still a room
for improvement. We will address this in future work.

Acknowledgements

The authors acknowledge the support of the GAČR grant
no. GA22-32620S and the OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for
Informatics”.

4

References

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Vari-
ational inference: A review for statisticians. Journal of
the American statistical Association, 112(518):859–877,
2017.

Bernard Delyon, Marc Lavielle, Eric Moulines, et al. Con-
vergence of a stochastic approximation version of the EM
algorithm. The Annals of Statistics, 27(1):94–128, 1999.

Arthur P Dempster, Nan M Laird, and Donald B Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society: Series
B (Methodological), 39(1):1–22, 1977.

Janez Demšar. Statistical comparisons of classifiers over
multiple data sets. The Journal of Machine Learning
Research, 7:1–30, 2006.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using real NVP. In 5th International
Conference on Learning Representations, ICLR 2017,
2017.

Dheeru Dua and Casey Graff. UCI machine learning
repository, 2017. URL http://archive.ics.uci.
edu/ml.

Dennis Forster and Jörg Lücke. Can clustering scale sublin-
early with its clusters? A variational EM acceleration of
GMMs and k-means. In International Conference on Ar-
tificial Intelligence and Statistics, pages 124–132. PMLR,
2018.

Gersende Fort and Eric Moulines. Convergence of the
Monte Carlo expectation maximization for curved ex-
ponential families. Annals of Statistics, 31(4):1220–1259,
2003.

Jan Franců. Continuousflows.jl. https://github.
com/janfrancu/ContinuousFlows.jl, 2020.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhu-
ber. Neural expectation maximization. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, pages 6694–6704, 2017.

Michael C Hughes and Erik B Sudderth. Fast learning of
clusters and topics via sparse posteriors. arXiv preprint
arXiv:1609.07521, 2016.

K Humphreys and DM Titterington. Approximate Bayesian
inference for simple mixtures. In COMPSTAT, pages
331–336. Springer, 2000.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew
Gelman, and David M Blei. Automatic differentiation
variational inference. The Journal of Machine Learning
Research, 18(1):430–474, 2017.

Estelle Kuhn and Marc Lavielle. Coupling a stochastic
approximation version of EM with an MCMC procedure.
ESAIM: Probability and Statistics, 8:115–131, 2004.

Max Little, Patrick McSharry, Stephen Roberts, Declan
Costello, and Irene Moroz. Exploiting nonlinear recur-
rence and fractal scaling properties for voice disorder
detection. Nature Precedings, pages 1–1, 2007.

Olvi L Mangasarian and William H Wolberg. Cancer di-
agnosis via linear programming. Technical report, Uni-
versity of Wisconsin-Madison Department of Computer
Sciences, 1990.

Geoffrey J McLachlan, Sharon X Lee, and Suren I Rath-
nayake. Finite mixture models. Annual review of statistics
and its application, 6:355–378, 2019.

Tom Monnier, Thibault Groueix, and Mathieu Aubry. Deep
transformation-invariant clustering. In Conference on
Neural Information Processing Systems (NeurIPS 2020),
2020.

Richi Nayak, Rachel Mills, Christopher De-Vries, and
Shlomo Geva. Clustering and labeling a web scale docu-
ment collection using Wikipedia clusters. In Proceedings
of the 5th International Workshop on Web-scale Knowl-
edge Representation Retrieval & Reasoning, pages 23–30,
2014.

Hien D Nguyen, Florence Forbes, and Geoffrey J McLach-
lan. Mini-batch learning of exponential family finite
mixture models. Statistics and Computing, pages 1–18,
2020.

Charles Otto, Dayong Wang, and Anil K Jain. Clustering
millions of faces by identity. IEEE transactions on pat-
tern analysis and machine intelligence, 40(2):289–303,
2017.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro
Molina, Xiaoting Shao, Martin Trapp, Kristian Kersting,
and Zoubin Ghahramani. Random sum-product networks:
A simple and effective approach to probabilistic deep
learning. In Uncertainty in Artificial Intelligence, pages
334–344. PMLR, 2020.

Tomáš Pevný. Loda: Lightweight on-line detector of anoma-
lies. Machine Learning, 102(2):275–304, 2016.

Tomáš Pevný, Vašek Šmídl, Martin Trapp, Ondřej Poláček,
and Tomáš Oberhuber. Sum-product-transform networks:
Exploiting symmetries using invertible transformations.
arXiv preprint arXiv:2005.01297, 2020.

5

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://github.com/janfrancu/ContinuousFlows.jl
https://github.com/janfrancu/ContinuousFlows.jl

Guilherme GP Pires and Mário AT Figueiredo. Varia-
tional mixture of normalizing flows. arXiv preprint
arXiv:2009.00585, 2020.

Cyrus Rashtchian, Konstantin Makarychev, Miklós Z Rácz,
Siena Ang, Djordje Jevdjic, Sergey Yekhanin, Luis Ceze,
and Karin Strauss. Clustering billions of reads for DNA
data storage. In NIPS, volume 2017, pages 3360–3371,
2017.

Richard A Redner and Homer F Walker. Mixture densities,
maximum likelihood and the EM algorithm. SIAM review,
26(2):195–239, 1984.

Herbert Robbins and Sutton Monro. A stochastic approx-
imation method. The annals of mathematical statistics,
pages 400–407, 1951.

Christian Robert and George Casella. Monte Carlo sta-
tistical methods. Springer Science & Business Media,
2013.

J Paul Siebert. Vehicle recognition using rule based methods.
Technical report, Turing Institute, 1987.

Greg CG Wei and Martin A Tanner. A Monte Carlo im-
plementation of the EM algorithm and the poor man’s
data augmentation algorithms. Journal of the American
statistical Association, 85(411):699–704, 1990.

Benjamin Welton, Evan Samanas, and Barton P Miller. Mr.
scan: Extreme scale density-based clustering using a tree-
based network of GPGPU nodes. In SC’13: Proceedings
of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages
1–11. IEEE, 2013.

C F Jeff Wu. On the convergence properties of the EM
algorithm. The Annals of statistics, pages 95–103, 1983.

Di Wu and Jinwen Ma. An effective EM algorithm for mix-
tures of Gaussian processes via the MCMC sampling and
approximation. Neurocomputing, 331:366–374, 2019.

6

	Introduction
	Expectation maximization
	The EM algorithm
	The MCMCSAEM algorithm

	Problem formulation
	The generalized MHSAEM algorithm
	E-step
	M-step

	Experiments
	Conclusion

