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Abstract

Traditional methods for unsupervised learning of
finite mixture models require to evaluate the like-
lihood of all components of the mixture. This
quickly becomes prohibitive when the components
are abundant or expensive to compute. Therefore,
we propose to apply a combination of the expecta-
tion maximization and the Metropolis-Hastings
algorithm to evaluate only a small number of,
stochastically sampled, components, thus substan-
tially reducing the computational cost. The Markov
chain of component assignments is sequentially
generated across the algorithm’s iterations, having
a non-stationary target distribution whose param-
eters vary via a gradient-ascent scheme. We put
emphasis on generality of our method, equipping
it with the ability to train mixture models which in-
volve complex, and possibly nonlinear, transforma-
tions. The performance of our method is illustrated
on mixtures of normalizing flows.

1 INTRODUCTION

Finite mixture models [McLachlan et al., 2019] constitute a
fundamental class of density estimation models. They are
formed by a weighted sum of probability distributions—here
referred to as components—and their training is commonly
undertaken via the maximum likelihood estimation. This
approach maximizes either (i) the marginal likelihood via
gradient-ascent [Redner and Walker, 1984] or (ii) the evi-
dence lower bound via variational methods [Blei et al., 2017,
Humphreys and Titterington, 2000, Kucukelbir et al., 2017],
including the expectation-maximization (EM) [Dempster
et al., 1977]. The computational cost of such methods typ-
ically scales with O(TDNK) operations, where T is the
number of iterations, D is the dimension of data, N is the
number of data, and K is the number of components.

However, deploying these methods is challenging in appli-
cations involving large K, such as in face recognition [Otto
et al., 2017], astronomical imaging [Welton et al., 2013],
natural language processing [Nayak et al., 2014] and DNA
data storage [Rashtchian et al., 2017]. The problem is even
more severe for mixtures with components given by intri-
cate models, including neural networks [Greff et al., 2017,
Monnier et al., 2020], Gaussian processes [Wu and Ma,
2019], normalizing flows [Pires and Figueiredo, 2020]; or
deep mixtures, such as sum-product (transform) networks
[Peharz et al., 2020, Pevný et al., 2020]. In spite of this, a
little attention has been paid to the design of algorithms that
do not evaluate all K components. The notable exceptions
are the sparse EM algorithm [Hughes and Sudderth, 2016]
and the truncated EM algorithm [Forster and Lücke, 2018].
Moreover, the methods are mostly tailored for a fixed class
of mixture models, e.g. Gaussian mixture models (GMMs).

In this paper, we make the following contributions:

• We instantiate the MCMC stochastic approximation EM
(MCMCSAEM) framework [Kuhn and Lavielle, 2004]
in the context of finite mixture models. This may seem
wasteful, since the expectation over the component as-
signments in the EM objective function is analytically
tractable, whereas the MCMCSAEM framework is noto-
riously applied when the expectation is intractable. How-
ever, notwithstanding this standard practice allows us to
evaluate less components in mixture models and thus sub-
stantially reduce the computational cost of their training.

• We design our method to enable the maximization of
generic EM objectives via a gradient-based form of
stochastic approximation, making it suitable for compo-
nents containing nonlinear transformations. This enhances
the MCMCSAEM framework which has been almost ex-
clusively used in cases admitting the maximization under
a closed-form solution.

• We apply our method to mixtures of real-valued non-
volume preserving (real NVP) flows [Dinh et al., 2017],
reaching up-to 350× speed-up compared to the baseline
EM algorithm.
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2 EXPECTATION MAXIMIZATION

2.1 THE EM ALGORITHM

The EM algorithm [Dempster et al., 1977] seeks the un-
known parameters, θ ∈ Θ, maximizing the marginal
(incomplete-data) log-likelihood in latent data models,

L(θ) := log pθ(x) = log

∫
pθ(x, z)dz, (1)

where x := (xi)
N
i=1 are observed (known) variables, x ∈ X;

z := (zi)
N
i=1 are latent (unknown) variables, z ∈ Z; and

pθ(x, z) is the joint (complete-data) likelihood.

The EM algorithm addresses this task indirectly, i.e. by
optimizing the evidence lower bound (ELBO),

L(θ) ≥ Q(θ, θ̂) +H(θ̂) := ELBO(θ̂), (2)

where H(θ̂) := −Epθ̂(z|x)[log pθ̂(z|x)] is the differential
entropy at an estimate, θ̂ ∈ Θ, and

Q(θ, θ̂) := Epθ̂(z|x)[log pθ(z,x)] (3)

is the EM objective function. Here, pθ(z|x) is the posterior
distribution over z. Given an initial value, θ1, the algorithm
produces a sequence of estimates, (θt)Tt=1, by alternating
between the expectation (E) and maximization (M) steps,

E-step: Qt(θ), (4)
M-step: θt+1 := argmax

θ∈Θ
Qt(θ), (5)

where Qt(θ) := Q(θ, θt). The sequence is guaranteed to
monotonically tighten (2), arriving at a local optimum of (1)
under mild regularity assumptions [Wu, 1983].

2.2 THE MCMCSAEM ALGORITHM

The E-step (4) is analytically intractable in many applica-
tions. The MCEM algorithm [Wei and Tanner, 1990] ad-
dresses this problem by approximating (3) via the MC av-
erage, Q̄t(θ) :=

1
M

∑M
j=1 log pθ(x, z

j
t ), where the samples,

(zjt )
M
j=1, are drawn from pθt(z|x). However, this algorithm

requires high values of M to converge [Fort and Moulines,
2003], and the samples are wastefully discarded at each
iteration, t. The stochastic approximation resolves this issue
by reusing the samples in Q̄t over the iterations as follows:

Q̂t(θ) := Q̂t−1(θ) + γt
(
Q̄t − Q̂t−1(θ)

)
, (6)

where the step-size, γt, satisfies the constraints [Robbins and
Monro, 1951], γt ∈ [0, 1],

∑
t≥1 γt = ∞,

∑
t≥1 γ

2
t < ∞.

The normalizing factor of pθ(z|x) is often intractable, pre-
venting direct sampling from this posterior. MCMC obviates
this difficulty by simulating a Markov chain, (zt)Tt=1, from

a transition kernel, zt ∼ Pθ(zt−1, ·), which leaves pθ(z|x)
as its unique stationary distribution, given a fixed θ.

The MCMCSAEM algorithm [Delyon et al., 1999, Kuhn
and Lavielle, 2004] approximates the E-step (4) by combin-
ing the MCMC simulation (S) and the stochastic approxi-
mation (SA) in (6),

S-step: zjt ∼ Pθt(z
j−1
t , ·), j ∈ (1, . . . ,M), (7)

SA-step: Q̂t(θ), (8)

M-step: θt+1 := argmax
θ∈Θ

Q̂t(θ). (9)

This algorithm sets z0t := zMt−1 at each t and produces the
chain (z11, . . . , z

M
1 , . . . , z1T , . . . , z

M
T ) of length MT , initial-

izing (7) with z01. The samples generated during the initial
iterations are usually discarded due to their high correlation,
which is often referred to as the burn-in [Robert and Casella,
2013]. In the MCMCSAEM algorithm, the initial samples
do not have to be discarded, since they are sequentially for-
gotten via the step-size, γt, (forgetting factor) in (6), i.e. a
specific form of the sequence, (γt)Tt=1, handles the burn-in.

3 PROBLEM FORMULATION

A finite mixture model characterizes the relation between
x ∈ X ⊆ RD and z ∈ Z := {1, . . . ,K} as follows:

pθ(x) =

K∑
k=1

pηk
(x|z = k)pπk

(z = k), (10)

where θ := (π1, η1, . . . , πK , ηK) are unknown parameters.
ηz are the parameters of the conditional likelihood, pηz

(x|z),
and πz is the weight parameterizing the prior, pπz

(z) = πz ,
such that 0 ≤ πk ≤ 1 for each k ∈ Z and

∑K
k=1 πk = 1.

Given independent and identically distributed data, x, our
aim is to find the parameters maximizing (1) given by

L(θ) =
N∑
i=1

log

K∑
k=1

pηk
(xi|zi = k)pπk

(zi = k). (11)

For (10), the integration in (1) becomes the summation,
which is analytically tractable for all forms of pηz (x|z).
However, for high K, this summation in (11) is computation-
ally costly, rendering the optimization objective presumably
intractable. We would like to design an algorithm requiring
only M < K evaluations of pηz

(x|z) at each iteration, t.

4 THE GENERALIZED MHSAEM
ALGORITHM

The application of the MCMCSAEM framework is noto-
riously motivated by analytical intractability of the E-step.
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We go against this convention, and use it to reduce the com-
putational cost of the EM algorithm in the context of finite
mixture models, where the E-step—the finite sum expected
value—is always tractable. Moreover, the MCMCSAEM
algorithm involves a closed-form solution of the M-step. We
release this assumption by allowing direct, gradient-based
optimization of the EM objective.

4.1 E-STEP

The computational cost of the EM algorithm scales with
O(TDNK). This is seen from (3) which, in the context of
(10), factorizes as follows:

Qt(θ) =

N∑
i=1

K∑
k=1

pθt(zi = k|xi) log pθ(zi = k, xi), (12)

where we need to compute KN , D-dependent, summands
at each t ∈ (1, . . . , T ). Indeed, the marginal factor, pπz

(z),
of pθ(x, z) is just the cheap categorical distribution; how-
ever, the conditional factor, pηz (x|z), typically involves
high-dimensional operations (e.g. the inversion of D×D-
dimensional covariance matrices in the GMMs).

To reduce the computational cost, we sample only M � K
random samples from pθ(zi|xi), for each i ∈ (1, . . . , N),
enabling us to obtain the Monte Carlo average, Q̄t, in (6).
Note that direct sampling from pθ(zi|xi) would not lead to
any substantial decrease in the number of operations, since
we have to first compute the normalizing factor, pθ(xi). This
requires K expensive evaluations of pθ(zi, xi), which is pre-
cisely what we want to avoid. The MCMC sampling in (7)
facilitates sampling from pθ(zi|xi) with the cost decreasing
to just M � K evaluations of pθ(zi, xi) per iteration.

A concrete form of Pθ in (7) determines a resulting MCMC
procedure. We chose the Metropolis-Hastings (MH) sam-
pler (hence MHSAEM) which represents Pθt(z

j−1
i,t , zji,t) as

follows: given z̄ := zj−1
i,t , draw a sample from the proposal

distribution, z ∼ q(·|z̄), compute the acceptance ratio,

α(z̄, z) := min

{
1,

pηz,t(xi|z)πz,tq(z̄|z)
pηz̄,t

(xi|z̄)πz̄,tq(z|z̄)

}
, (13)

and, if u < α(z̄, z)—where u is drawn from the uni-
form distribution, Uniform(0, 1)—accept the sample and set
zji,t = z; otherwise, set zji,t = z̄. We repeat this process for
each j ∈ (1, . . . ,M), construing a set zi,t = (z1i,t, . . . , z

M
i,t).

Recall that we set z0i,t := zMi,t−1 at each iteration, i.e. the
chain has the length MT (Section 2.2). The samples, zi,t,
are then used to obtain the following MC average:

Q̄t(θ) =
1

M

N∑
i=1

∑
z∈zi,t

log pηz (xi|z)πz. (14)

Using (14) to directly approximate (4) is inefficient and
impractical (Section 2.2). Therefore, we utilize (14) in a
type of stochastic approximation, as detailed in Section 4.2.

Algorithm 1: The generalized MHSAEM algorithm

Input: θ1, (zMi,0)
N
i=1, (xi)

N
i=1 Output: (θt)Tt=1

for t ∈ (1, . . . , T ) or until convergence do
for i ∈ (1, . . . , N) do

set z0i,t := zMi,t−1
for j ∈ (1, . . . ,M) do

set z̄ := zj−1
i,t

sample z ∼ q(z|z̄)
sample u ∼ Uniform(0, 1)

compute α(z̄, z) in (13)
if u < α(z̄, z) then

set zji,t := z and z̄ := z

else
set zji,t := z̄

end if
end for
set zi,t := (z1i,t, . . . , z

M
i,t)

end for
compute (14)
compute (15) for k ∈ unique(zi,t)
compute πk,t := softmax(νt)k for k ∈ Z

end for

4.2 M-STEP

If the M-step (5) cannot be computed under a closed-form
solution, one can resort to direct gradient-based optimization
of Q(θ), where argmax is replaced by one (or more) step(s)
of a gradient-ascent technique. The EM algorithm is then
referred to as the generalized EM algorithm [Wu, 1983]. To
the best of our knowledge, this extension has not yet been
applied in the MCMCSAEM framework.

We replace (6) by a stochastic gradient-ascent method, θt =
θt−1 + γt∇θQ̄t(θ), where ∇θ is the gradient w.r.t. θ. This
is also a form of the stochastic approximation [Robbins and
Monro, 1951], where the computations made in ∇θQ̄ are
accumulated via θt and reused over the iterations.

The parameters ηz have a different form based on a spe-
cific case of pηz

(x|z), whereas the parameters πz of pπz
(z)

form a fixed structure in (10). Therefore, without loss of
generality, we split (9) into a generic part and a fixed part,

ηk,t = ηk,t−1 + γt∇ηk
Q̄t(θ), (15a)

νk,t = νk,t−1 + γt∇νk
Q̄t(θ), (15b)

where—to ensure that the probabilities, (πk,t)
K
k=1, satisfy

the constraints (Section 3)—we transform ∇πk
Q̄ via νk =

log πk and optimize w.r.t. νk. Then, to obtain (πk,t)
K
k=1

from νt := (νk,t)
K
k=1, we use the softmax function, i.e.

πk,t := softmax(νt)k := exp(νk,t)/
∑K

l=1 exp(νl,t).

The M-step (5) is also computationally costly for large K.
This holds even when it can be reduced to closed-form
updates of expected sufficient statistics with pηz

(x|z) be-
longing to the exponential family [Nguyen et al., 2020]
(again, due to high D). Note that computing the gradi-
ents for all pairs in (νk, ηk)

K
k=1 would be inefficient, es-
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pecially since zi,t contains only a small number of unique
values of Z for M � K. Therefore, we further reduce the
computational cost by computing ∇ηk

Q̄ and ∇νk
Q̄ only

for k ∈ unique(zi,t). By this last step, we achieved the
sought decrease in the complexity of the EM algorithm
from O(TDNK) to O(TDNM), where M � K. We
summarize the proposed approach in Algorithm 1.

5 EXPERIMENTS

To demonstrate the key features of our algorithm—i.e. its
low computational cost, competitive learning performance,
and generality—we use it to train mixtures of flow models
[Pires and Figueiredo, 2020]. Specifically, we transform
each pηz

(x|z) in (10) via the real NVP flow [Dinh et al.,
2017], relying on deep neural networks to flexibly adjust
the learning capacity of each component. All experiments
have been performed on a Slurm cluster equipped with Intel
Xeon Scalable Gold 6146 with 384GB of RAM.

Experiment settings: We use 19 real datasets from the UCI
database [Dua and Graff, 2017, Mangasarian and Wolberg,
1990, Little et al., 2007, Siebert, 1987], preprocessed in the
same way as in [Pevný, 2016]. For each experiment, we
randomly split the data into 64%, 16% and 20% for training,
validation and testing, respectively. We calculate the average
log-likelihood on the test set and measure the time to reach
95% of the maximal training log-likelihood. We change the
number of components as follows: K ∈ (2, 4, 8, 16). Each
real NVP-based component in the mixture model relies
on (i) the translation function parameterized via the multi-
layer perceptron with a single hidden layer of 10 neurons,
choosing the hyperbolic tangent activation function; and (ii)
the scale function parameterized via the same network. We
use the batch normalization [Dinh et al., 2017], and we stack
two layers of the translation-scale transformation. We adopt
the real NVP implementation from [Franců, 2020].

Algorithms: We compare the MHSAEM algorithm to the
standard EM algorithm. The former computes only one com-
ponent of the mixture (M = 1) per iteration, whereas the
latter computes all the components, i.e. we expect a speed-
up of the computations. The EM and MHSAEM methods
optimize the EM objective functions (12) and (14), respec-
tively. We use the automatic differentiation and the ADAM
optimizer with the default settings [Kingma and Ba, 2014],
finding T = 1000 as a sufficient amount of iterations.

Results: The results are presented in Table 1. Since each
dataset may benefit from a different K, we show the test
log-likelihood of the mixtures—selected via the best log-
likelihood measured on the validation set—and the associ-
ated speed-up. It can be seen that the MHSAEM algorithm
outperforms the EM algorithm on all but one dataset, and it
provides a substantial speed-up on all datasets except one.

Table 1: The speed-up and test log-likelihood, Ltest, for the EM and
MHSAEM algorithms. The test log-likelihood (higher is better) is
computed for the best model, with the corresponding K, which is
selected based on the validation log-likelihood. The speed-up is
computed as the ratio of EM to MHSAEM, i.e. their time to reach
95% of the training log-likelihood. The results are averaged over
five repetitions with different initial conditions. The likelihood is
shown with its standard deviation. The higher test log-likelihood
is highlighted with bold blue, and no speed-up is highlighted with
red. The average rank is computed as the standard competition
(“1224”) ranking [Demšar, 2006] on each dataset (lower is better).

Mixtures of real NVP flows
EM MHSAEM

dataset speed-up Ltest K Ltest K

breast-cancer 75.69 17.72±2.59 16 21.42±1.34 16
cardio 31.87 -33.57±3.39 4 -33.42±8.38 4

ecoli 26.48 9.95±1.06 8 17.62±0.80 16
ionosphere 86.19 12.26±3.93 16 15.91±2.16 8

iris 340.63 -3.64±1.03 16 -1.59±0.74 2
telescope 94.61 -28.62±0.19 16 -26.14±0.06 16

blocks 45.68 -38.70±0.85 16 -31.47±0.36 16
parkinsons 354.77 30.86±2.17 16 31.27±1.16 16

pendigits 58.86 -67.00±0.17 16 -59.87±0.96 16
pima-indians 0.09 -27.95±0.25 16 -20.62±1.27 16

sonar 139.20 66.85±4.37 16 66.09±4.74 4
segment 71.96 -45.48±2.88 16 -35.37±4.82 16
vehicle 98.01 -59.27±0.41 16 -56.28±0.44 8

robot 47.89 -28.80±0.39 16 -20.61±1.26 16
waveform-1 143.91 -33.47±0.09 16 -31.92±0.18 16
waveform-2 162.95 -33.65±0.10 16 -31.96±0.09 8

wine 182.06 -17.99±1.29 8 -16.37±0.86 2
yeast 120.85 9.49±1.47 8 21.92±0.35 16
rank 1.95 1.05

6 CONCLUSION

This paper has presented a method to decrease compu-
tational cost of fitting mixture models. The speed-up is
achieved by using the MH sampling to evaluate only a sin-
gle component per iteration. The experiments confirmed that
the method significantly speeds-up the fitting time, and, im-
portantly, it does not undermine the quality of the fit. In fact,
the likelihood was better than that of the models fitted by
the EM algorithm in more than 90% of cases. We attribute
this to the stochastic sampling, which helps to escape from
poor local optima. The proposed method has used a uniform
proposal distribution. Despite outperforming the baseline
EM algorithm, we conjecture that this limits the speed of
convergence. Therefore, we believe that there is still a room
for improvement. We will address this in future work.
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and Tomáš Oberhuber. Sum-product-transform networks:
Exploiting symmetries using invertible transformations.
arXiv preprint arXiv:2005.01297, 2020.

5

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://github.com/janfrancu/ContinuousFlows.jl
https://github.com/janfrancu/ContinuousFlows.jl


Guilherme GP Pires and Mário AT Figueiredo. Varia-
tional mixture of normalizing flows. arXiv preprint
arXiv:2009.00585, 2020.

Cyrus Rashtchian, Konstantin Makarychev, Miklós Z Rácz,
Siena Ang, Djordje Jevdjic, Sergey Yekhanin, Luis Ceze,
and Karin Strauss. Clustering billions of reads for DNA
data storage. In NIPS, volume 2017, pages 3360–3371,
2017.

Richard A Redner and Homer F Walker. Mixture densities,
maximum likelihood and the EM algorithm. SIAM review,
26(2):195–239, 1984.

Herbert Robbins and Sutton Monro. A stochastic approx-
imation method. The annals of mathematical statistics,
pages 400–407, 1951.

Christian Robert and George Casella. Monte Carlo sta-
tistical methods. Springer Science & Business Media,
2013.

J Paul Siebert. Vehicle recognition using rule based methods.
Technical report, Turing Institute, 1987.

Greg CG Wei and Martin A Tanner. A Monte Carlo im-
plementation of the EM algorithm and the poor man’s
data augmentation algorithms. Journal of the American
statistical Association, 85(411):699–704, 1990.

Benjamin Welton, Evan Samanas, and Barton P Miller. Mr.
scan: Extreme scale density-based clustering using a tree-
based network of GPGPU nodes. In SC’13: Proceedings
of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages
1–11. IEEE, 2013.

C F Jeff Wu. On the convergence properties of the EM
algorithm. The Annals of statistics, pages 95–103, 1983.

Di Wu and Jinwen Ma. An effective EM algorithm for mix-
tures of Gaussian processes via the MCMC sampling and
approximation. Neurocomputing, 331:366–374, 2019.

6


	Introduction
	Expectation maximization
	The EM algorithm
	The MCMCSAEM algorithm

	Problem formulation
	The generalized MHSAEM algorithm
	E-step
	M-step

	Experiments
	Conclusion

