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Abstract

Traditional methods for unsupervised learning of
finite mixture models require to evaluate the like-
lihood of all components of the mixture. This
quickly becomes prohibitive when the components
are abundant or expensive to compute. Therefore,
we propose to apply a combination of the expecta-
tion maximization and the Metropolis-Hastings
algorithm to evaluate only a small number of,
stochastically sampled, components, thus substan-
tially reducing the computational cost. The Markov
chain of component assignments is sequentially
generated across the algorithm’s iterations, having
a non-stationary target distribution whose param-
eters vary via a gradient-ascent scheme. We put
emphasis on generality of our method, equipping
it with the ability to train mixture models which in-
volve complex, and possibly nonlinear, transforma-
tions. The performance of our method is illustrated
on mixtures of normalizing flows.

1 INTRODUCTION

Finite mixture models [McLachlan et al., 2019] constitute a
fundamental class of density estimation models. They are
formed by a weighted sum of probability distributions—here
referred to as components—and their training is commonly
undertaken via the maximum likelihood estimation. This
approach maximizes either (i) the marginal likelihood via
gradient-ascent [Redner and Walker, 1984] or (ii) the evi-
dence lower bound via variational methods [Blei et al., 2017,
Humphreys and Titterington, 2000, Kucukelbir et al., 2017],
including the expectation-maximization (EM) [Dempster
et al., 1977]. The computational cost of such methods typ-
ically scales with O(T' DN K) operations, where T is the
number of iterations, D is the dimension of data, /N is the
number of data, and K is the number of components.

However, deploying these methods is challenging in appli-
cations involving large K, such as in face recognition [Otto
et al., 2017], astronomical imaging [Welton et al., 2013],
natural language processing [Nayak et al., 2014] and DNA
data storage [Rashtchian et al., 2017]. The problem is even
more severe for mixtures with components given by intri-
cate models, including neural networks [Greff et al., 2017,
Monnier et al., 2020], Gaussian processes [Wu and Ma,
2019], normalizing flows [Pires and Figueiredo, 2020]; or
deep mixtures, such as sum-product (transform) networks
[Peharz et al., 2020, Pevny et al., 2020]. In spite of this, a
little attention has been paid to the design of algorithms that
do not evaluate all K components. The notable exceptions
are the sparse EM algorithm [Hughes and Sudderth, 2016]
and the truncated EM algorithm [Forster and Liicke, 2018].
Moreover, the methods are mostly tailored for a fixed class
of mixture models, e.g. Gaussian mixture models (GMMs).

In this paper, we make the following contributions:

* We instantiate the MCMC stochastic approximation EM
(MCMCSAEM) framework [Kuhn and Lavielle, 2004]
in the context of finite mixture models. This may seem
wasteful, since the expectation over the component as-
signments in the EM objective function is analytically
tractable, whereas the MCMCSAEM framework is noto-
riously applied when the expectation is intractable. How-
ever, notwithstanding this standard practice allows us to
evaluate less components in mixture models and thus sub-
stantially reduce the computational cost of their training.

* We design our method to enable the maximization of
generic EM objectives via a gradient-based form of
stochastic approximation, making it suitable for compo-
nents containing nonlinear transformations. This enhances
the MCMCSAEM framework which has been almost ex-
clusively used in cases admitting the maximization under
a closed-form solution.

* We apply our method to mixtures of real-valued non-
volume preserving (real NVP) flows [Dinh et al., 2017],
reaching up-to 350 x speed-up compared to the baseline
EM algorithm.
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2 EXPECTATION MAXIMIZATION

2.1 THE EM ALGORITHM

The EM algorithm [Dempster et al., 1977] seeks the un-
known parameters, § € ©, maximizing the marginal
(incomplete-data) log-likelihood in latent data models,

L(0) = logps(x) = log/pg()gz)dz, ¢))

where x := (x;)~_; are observed (known) variables, z € X;
z = (z;)X, are latent (unknown) variables, z € Z; and
po (X, z) is the joint (complete-data) likelihood.

The EM algorithm addresses this task indirectly, i.e. by
optimizing the evidence lower bound (ELBO),

L(0) > O(6,0) + H(0) = ELBO(6), 2)

where H() =

entropy at an estimate, 0 cO,and

—Ep, (z/x) [log p4(z[x)] is the differential

Q(6.0) = Ep, (a1x)[log po (2, X)] 3)

is the EM objective function. Here, py(z|x) is the posterior
distribution over z. Given an initial value, 67, the algorithm
produces a sequence of estimates, (6;)7_;, by alternating
between the expectation (E) and maximization (M) steps,

E-step: Q.(0), )

M-step: 611 = argmax Q,(0), 5)
0co

where Q;(6) := Q(0,6;). The sequence is guaranteed to
monotonically tighten (2), arriving at a local optimum of (1)
under mild regularity assumptions [Wu, 1983].

2.2 THE MCMCSAEM ALGORITHM

The E-step (4) is analytically intractable in many applica-
tions. The MCEM algorithm [Wei and Tanner, 1990] ad-
dresses this problem bje/ approximating (3) via the MC av-
erage, Q;(0) = +; =1 log pg(x, 21 ), where the samples,

(z )jle, are drawn from py, (z|x). However, this algorithm
requires high values of M to converge [Fort and Moulines,
2003], and the samples are wastefully discarded at each
iteration, t. The stochastic approximation resolves this issue
by reusing the samples in Q, over the iterations as follows:

0u(0) = Qr—1(0) + % (Qr — Q-1 (0)), (6
where the step-size, v;, satisfies the constraints [Robbins and
Monro, 19511, 7; € [0,1], 32,51 7 = 00, Y_y5q 77 < 0.

The normalizing factor of py(z|x) is often intractable, pre-
venting direct sampling from this posterior. MCMC obviates
this difficulty by simulating a Markov chain, (z;)7_;, from

a transition kernel, z; ~ Py(z;_1, -), which leaves py(z|x)
as its unique stationary distribution, given a fixed 6.

The MCMCSAEM algorithm [Delyon et al., 1999, Kuhn
and Lavielle, 2004] approximates the E-step (4) by combin-
ing the MCMC simulation (S) and the stochastic approxi-
mation (SA) in (6),

S-step: z] ~ Py, (z]"',), je(l,...,M), (7
SA-step: O, (6), 3
M-step: 6;11 := argmax @t(ﬂ). ©)]

0co

This algorithm sets z! := z} at each ¢ and produces the
chain (z1, .. z{”, . le, ..., z2) of length M T, initial-
izing (7) w1th z9. The samples generated during the initial
iterations are usually discarded due to their high correlation,
which is often referred to as the burn-in [Robert and Casella,
2013]. In the MCMCSAEM algorithm, the initial samples
do not have to be discarded, since they are sequentially for-
gotten via the step-size, 4, (forgetting factor) in (6), i.e. a
specific form of the sequence, (7;)Z_;, handles the burn-in.

3 PROBLEM FORMULATION

A finite mixture model characterizes the relation between
r€XCRPandzeZ:={1,..., K} as follows:

ank

where 6 := (71,11, ...,7TK, Nk ) are unknown parameters.
7, are the parameters of the conditional likelihood, p,,_ (x|z),
and 7, is the weight parameterizing the prior, p,_(z) = 7.,
such that 0 < 7, < 1 for each k € Z and Zkl,(:l m = 1.

Z = k pﬂ"k (Z = k) (10)

Given independent and identically distributed data, x, our
aim is to find the parameters maximizing (1) given by

ZlogZpr,k (wilzi = k)pa, (z: = k). (11)
=1

For (10), the integration in (1) becomes the summation,
which is analytically tractable for all forms of p,,_ (z|z).
However, for high K, this summation in (11) is computation-
ally costly, rendering the optimization objective presumably
intractable. We would like to design an algorithm requiring
only M < K evaluations of p,_ (z|z) at each iteration, ¢.

4 THE GENERALIZED MHSAEM
ALGORITHM

The application of the MCMCSAEM framework is noto-
riously motivated by analytical intractability of the E-step.



We go against this convention, and use it to reduce the com-
putational cost of the EM algorithm in the context of finite
mixture models, where the E-step—the finite sum expected
value—is always tractable. Moreover, the MCMCSAEM
algorithm involves a closed-form solution of the M-step. We
release this assumption by allowing direct, gradient-based
optimization of the EM objective.

4.1 E-STEP

The computational cost of the EM algorithm scales with
O(TDNK). This is seen from (3) which, in the context of
(10), factorizes as follows:

N K
Qu(0) =D pa, (2 = kla;) logpa(zi = k,x;), (12)
i=1 k=1
where we need to compute K N, D-dependent, summands
ateacht € (1,...,T). Indeed, the marginal factor, p._ (2),
of pp(z, z) is just the cheap categorical distribution; how-
ever, the conditional factor, p,_(z|z), typically involves
high-dimensional operations (e.g. the inversion of D x D-
dimensional covariance matrices in the GMMs).

To reduce the computational cost, we sample only M < K
random samples from py(z;|z;), for each i € (1,...,N),
enabling us to obtain the Monte Carlo average, 9y, in (6).
Note that direct sampling from pg(2;|x;) would not lead to
any substantial decrease in the number of operations, since
we have to first compute the normalizing factor, pg(x;). This
requires K expensive evaluations of pg(z;, z;), which is pre-
cisely what we want to avoid. The MCMC sampling in (7)
facilitates sampling from py(z;|x;) with the cost decreasing
to just M < K evaluations of py(z;, x;) per iteration.

A concrete form of Py in (7) determines a resulting MCMC
procedure. We chose the Metropolis-Hastings (MH) sam-
pler (hence MHSAEM) which represents Py, (27, ', 2] ,) as
follows: given Z := zle draw a sample from the proposal
distribution, z ~ ¢(-|Z), compute the acceptance ratio,

pnz,t($i|2)7fz,tq(2|z)} (13)
P (@i 2)7z0q(2]2) |7

and, if u < «(z,z)—where u is drawn from the uni-
form distribution, Uniform (0, 1)—accept the sample and set
z] , = z; otherwise, set z] , = z. We repeat this process for

%

a(z,z) = min{L

eachj € (1,..., M), construingasetz; ; = (z},,...,2/7).
Recall that we set z{, := z{_, at each iteration, i.e. the
chain has the length MT" (Section 2.2). The samples, z; ¢,

are then used to obtain the following MC average:

N
Q,(0) = MZ Z log py,, (z;]2) 7. (14)

1=1 2€Z; ¢

Using (14) to directly approximate (4) is inefficient and
impractical (Section 2.2). Therefore, we utilize (14) in a
type of stochastic approximation, as detailed in Section 4.2.

Algorithm 1: The generalized MHSAEM algorithm

Input: 61, (2}, ()X, Output: (6;)7_,
fort € (1,...,T) or until convergence do
forie (1,...,N)do
set Z?,t = Z%,l
for j € (1,...,M)do
setz:= 2] "
sample z ~ q(z|Z)
sample u ~ Uniform(0, 1)
compute «(z, z) in (13)
if u < a(z, z) then
set Zf,t =zand Z := z
else
set qu,t =z
end if
end for
setzi = (2} ,,...,2)})
end for
compute (14)
compute (15) for k& € unique(z; ;)
compute 7y, + ‘= softmax(vy)y, fork € Z
end for

4.2 M-STEP

If the M-step (5) cannot be computed under a closed-form
solution, one can resort to direct gradient-based optimization
of Q(0), where argmax is replaced by one (or more) step(s)
of a gradient-ascent technique. The EM algorithm is then
referred to as the generalized EM algorithm [Wu, 1983]. To
the best of our knowledge, this extension has not yet been
applied in the MCMCSAEM framework.

We replace (6) by a stochastic gradient-ascent method, 6; =
0;_1 + 7 V994 (0), where V is the gradient w.r.t. 6. This
is also a form of the stochastic approximation [Robbins and
Monro, 1951], where the computations made in VO are
accumulated via 6; and reused over the iterations.

The parameters 7, have a different form based on a spe-
cific case of p,,, (x|z), whereas the parameters 7, of p,_ (2)
form a fixed structure in (10). Therefore, without loss of
generality, we split (9) into a generic part and a fixed part,

(15a)
(15b)

Moyt = Mhoyt—1 + Ve Vi 9,(0),
Vit = Vit—1 + % Vi, Qi (),

where—to ensure that the probabilities, (wk’t)szl, satisfy
the constraints (Section 3)—we transform V Oviay, =
log 711, and optimize w.r.t. v;. Then, to obtain ()& |
from vy = (I/kvt)i(:l, we use the softmax function, i.e.

Tt = softmax (v = exp(vg,t)/ Zfil exp(V ¢)-

The M-step (5) is also computationally costly for large K.
This holds even when it can be reduced to closed-form
updates of expected sufficient statistics with p,_(x|z) be-
longing to the exponential family [Nguyen et al., 2020]
(again, due to high D). Note that computing the gradi-
ents for all pairs in (v, ;)X would be inefficient, es-



pecially since z; ; contains only a small number of unique
values of Z for M < K. Therefore, we further reduce the
computational cost by computing V,, Q and V,, O only
for k € unique(z;). By this last step, we achieved the
sought decrease in the complexity of the EM algorithm
from O(TDNK) to O(TDNM), where M < K. We
summarize the proposed approach in Algorithm 1.

S EXPERIMENTS

To demonstrate the key features of our algorithm—i.e. its
low computational cost, competitive learning performance,
and generality—we use it to train mixtures of flow models
[Pires and Figueiredo, 2020]. Specifically, we transform
each p,_(z|z) in (10) via the real NVP flow [Dinh et al.,
2017], relying on deep neural networks to flexibly adjust
the learning capacity of each component. All experiments
have been performed on a Slurm cluster equipped with Intel
Xeon Scalable Gold 6146 with 384GB of RAM.

Experiment settings: We use 19 real datasets from the UCI
database [Dua and Graff, 2017, Mangasarian and Wolberg,
1990, Little et al., 2007, Siebert, 1987], preprocessed in the
same way as in [Pevny, 2016]. For each experiment, we
randomly split the data into 64%, 16% and 20% for training,
validation and testing, respectively. We calculate the average
log-likelihood on the test set and measure the time to reach
95% of the maximal training log-likelihood. We change the
number of components as follows: K € (2,4, 8,16). Each
real NVP-based component in the mixture model relies
on (i) the translation function parameterized via the multi-
layer perceptron with a single hidden layer of 10 neurons,
choosing the hyperbolic tangent activation function; and (ii)
the scale function parameterized via the same network. We
use the batch normalization [Dinh et al., 2017], and we stack
two layers of the translation-scale transformation. We adopt
the real NVP implementation from [Franct, 2020].

Algorithms: We compare the MHSAEM algorithm to the
standard EM algorithm. The former computes only one com-
ponent of the mixture (M = 1) per iteration, whereas the
latter computes all the components, i.e. we expect a speed-
up of the computations. The EM and MHSAEM methods
optimize the EM objective functions (12) and (14), respec-
tively. We use the automatic differentiation and the ADAM
optimizer with the default settings [Kingma and Ba, 2014],
finding 7" = 1000 as a sufficient amount of iterations.

Results: The results are presented in Table 1. Since each
dataset may benefit from a different K, we show the test
log-likelihood of the mixtures—selected via the best log-
likelihood measured on the validation set—and the associ-
ated speed-up. It can be seen that the MHSAEM algorithm
outperforms the EM algorithm on all but one dataset, and it
provides a substantial speed-up on all datasets except one.

Table 1: The speed-up and test log-likelihood, £'°*, for the EM and
MHSAEM algorithms. The test log-likelihood (higher is better) is
computed for the best model, with the corresponding K, which is
selected based on the validation log-likelihood. The speed-up is
computed as the ratio of EM to MHSAEM, i.e. their time to reach
95% of the training log-likelihood. The results are averaged over
five repetitions with different initial conditions. The likelihood is
shown with its standard deviation. The higher test log-likelihood
is highlighted with bold blue, and no speed-up is highlighted with
red. The average rank is computed as the standard competition
(“1224”) ranking [DemSar, 2006] on each dataset (lower is better).

Mixtures of real NVP flows
EM MHSAEM
ﬁlesl K Etest K

dataset | speed-up

breast-cancer 75.69 17.7242.59 16 21.42+1.34 16
cardio 31.87 -33.57+3.39 4 -33.42+8.38 4

ecoli 2648 9.95+1.06 8 17.62+0.80 16
ionosphere 86.19 12.26+3.93 16 1591+2.16 8
iris| 340.63 -3.64+1.03 16 -1.59+0.74 2

telescope 94.61 -28.62+0.19 16 -26.14+0.06 16
blocks 45.68 -38.70+0.85 16 -31.47+0.36 16
parkinsons | 354.77 30.86+2.17 16 31.27+1.16 16
pendigits 58.86 -67.00£0.17 16 -59.87+0.96 16

pima-indians 0.09 -27.95+0.25 16 -20.62+1.27 16

sonar | 139.20 66.85+4.37 16 66.09+4.74 4
segment 71.96 -45.48+2.88 16 -35.37+4.82 16
vehicle 98.01 -59.27+0.41 16 -56.28+0.44 8

robot 47.89 -28.80£0.39 16 -20.61£1.26 16

waveform-1 14391 -33.47+0.09 16 -31.92+0.18 16
waveform-2 | 162.95 -33.65+0.10 16 -31.96+0.09 8

wine 182.06 -17.99£1.29 8 -16.37+0.86 2
yeast 120.85 9.49+1.47 8 21.924+0.35 16
rank 1.95 1.05

6 CONCLUSION

This paper has presented a method to decrease compu-
tational cost of fitting mixture models. The speed-up is
achieved by using the MH sampling to evaluate only a sin-
gle component per iteration. The experiments confirmed that
the method significantly speeds-up the fitting time, and, im-
portantly, it does not undermine the quality of the fit. In fact,
the likelihood was better than that of the models fitted by
the EM algorithm in more than 90% of cases. We attribute
this to the stochastic sampling, which helps to escape from
poor local optima. The proposed method has used a uniform
proposal distribution. Despite outperforming the baseline
EM algorithm, we conjecture that this limits the speed of
convergence. Therefore, we believe that there is still a room
for improvement. We will address this in future work.
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