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Abstract

Many important phenomena in scientific fields
like climate, neuroscience, and epidemiology are
naturally represented as spatiotemporal gridded
data with complex interactions. Inferring causal
relationships from these data is a challenging
problem compounded by the high dimensionality
of such data and the correlations between spa-
tially proximate points. We present SPACY (SPA-
tiotemporal Causal discoverY), a novel frame-
work based on variational inference, designed to
model latent time series and their causal relation-
ships from spatiotemporal data. SPACY alleviates
the high-dimensional challenge by discovering
causal structures in the latent space. To aggregate
spatially proximate, correlated grid points, we
use spatial factors, parametrized by spatial kernel
functions, to map observational time series to la-
tent representations. Theoretically, we generalize
the problem to a continuous spatial domain and es-
tablish identifiability when the observations arise
from a nonlinear, invertible function of the prod-
uct of latent series and spatial factors. Using this
approach, we avoid assumptions that are often un-
verifiable, including those about instantaneous ef-
fects or sufficient variability. Empirically, SPACY
outperforms state-of-the-art baselines on synthetic
data, even in challenging settings where existing
methods struggle, while remaining scalable for
large grids. SPACY also identifies key known
phenomena from real-world climate data. An im-
plementation of SPACY is available at https:
//github.com/Rose-STL-Lab/SPACY/
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Figure 1: SPACY jointly infers latent time series and the
underlying causal graph from gridded time-series data by
identifying spatial modes of variability.

1. Introduction
In many scientific domains such as climate science, neu-
rology, and epidemiology, low-level sensor measurements
generate high-dimensional observational data. These data
are naturally represented as gridded time series, with inter-
actions that evolve over both space and time. Discovering
causal relationships from spatiotemporal data is of great
scientific importance. It allows researchers to predict future
states, intervene in harmful trends, and develop new insights
into the underlying mechanisms. For example, in climate
science, the study of teleconnections (Liu et al., 2023), the
interactions between regions thousands of kilometers away,
is important to understanding how climate events in one part
of the world may affect weather patterns in distant locations.

Despite the plethora of work on causal structure learning
from time series data (Granger, 1969; Hyvärinen et al.,
2010; Runge, 2020a; Tank et al., 2021; Gong et al., 2023;
Cheng et al., 2023), they face significant challenges for
high-dimensional spatiotemporal data. A primary reason is
scalability. The high dimensionality of gridded data makes
it difficult for many of these techniques, especially those re-
lying on conditional independence tests, to scale effectively
(Glymour et al., 2019). Additionally, spatially proximate
points often exhibit redundant and highly correlated time se-
ries. Conditioning on nearby correlated points can obscure
true causal relationships between distant locations, reducing
the statistical power of conditional independence tests and
leading to inaccurate results (Tibau et al., 2022).

Recent advances in spatiotemporal causal discovery typi-
cally follow a two-stage process: first, dimensionality re-
duction is applied to extract a small number of latent time
series from the original grid of time series; then, causal dis-
covery is performed on these low-dimensional representa-
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Methods Non-linear
SCM

Non-linear mapping
from latents to
observations

Instantaneous
Links

Allows multiple
latent parents

Mapped-PCMCI (Tibau et al., 2022) ✗ ✗ ✗ ✗
Linear-Response (Falasca et al., 2024) ✗ ✗ ✗ ✗
LEAP (Yao et al., 2022b) ✓ ✓ ✗ ✓
TDRL (Zhao et al., 2023a) ✓ ✓ ✗ ✓
CDSD (Brouillard et al., 2024) ✓ ✓ ✗ ✗
SPACY (ours) ✓ ✓∗ ✓ ✓

Table 1: Assumptions of various spatiotemporal causal discovery algorithms. SPACY supports a non-linear mapping from
latent variables to observations via an invertible transformation of the product between latent time series and spatial factors
(denoted by ∗).

tions. Examples of this approach include Tibau et al. (2022)
and Falasca et al. (2024). However, these two-stage ap-
proaches perform dimensionality reduction independent of
the causal structure, potentially leading to latent representa-
tions that obscure the relationships among causally relevant
entities. Another important line of research is causal repre-
sentation learning from time series data (Schölkopf et al.,
2021). While approaches like Yao et al. (2022b;a); Chen
et al. (2024) infer latent time series from high-dimensional
data, they do not incorporate spatial priors, making them
less suitable for spatiotemporal causal discovery. Brouillard
et al. (2024) learn to map each time series to a latent variable
under the single-parent assumption, that is, each observed
variable is influenced by only one latent variable. However,
this assumption can be overly restrictive in spatiotemporal
systems where observed variables are often influenced by
multiple interacting latent factors (e.g., atmospheric patterns,
ocean currents) that jointly drive their behavior.

We present SPAtiotemporal Causal DiscoverY (SPACY),
a novel causal representation learning framework for spa-
tiaotemporal data, to address these limitations (Figure 1).
To model spatial variability on the grid, we introduce spa-
tial factors, parametrized by spatial kernel functions such
as Radial Basis Functions (RBFs). These spatial factors
aggregate proximate grid points and map the observed vari-
ables to their corresponding latent time series. Since SPACY
performs causal discovery on these lower-dimensional rep-
resentations, SPACY is naturally scalable. We derive an
evidence lower bound to learn the spatial factors, latent time
series as well as the causal graph. Our approach jointly
infers both the latent time series and the underlying causal
graph in an end-to-end manner.

We also prove the identifiability of our framework for a
continuous spatial domain with an infinite resolution. We
show that when the observations are a nonlinear, invertible
function of the product of latent series and spatial factors,
we can leverage the overdetermined structure of the system
to recover spatial factors and latent time series (up to permu-
tation and scaling). Notably, compared to previous works,

our framework can handle instantaneous edges while also
allowing observed variables to be associated with multiple
latent parents.

Our main contributions can be summarized as follows.

1. We introduce SPACY, a novel variational inference-
based spatiotemporal causal discovery framework that
jointly infers latent time series and the underlying
causal graph.

2. Theoretically, we analyze the identifiability of our sys-
tem for continuous spatial domains. We show that the
latent factors are identifiable up to permutation and
scaling under both linear and nonlinear invertible map-
pings between the latent and observed variables.

3. Experimentally, we demonstrate the strong perfor-
mance of our method on both synthetic and real-world
datasets. SPACY accurately recovers causal links in
scenarios involving both linear and nonlinear interac-
tions, including settings where existing methods fail.
SPACY is also highly scalable, and can infer causal
links from high-dimensional grids (upto 250× 250).

2. Related Work
Causal Discovery from Time Series data. A prominent
approach to time series causal discovery is based on Granger
causality (Granger, 1969), and its extension using neural net-
works (Khanna & Tan, 2020; Tank et al., 2021; Löwe et al.,
2022; Cheng et al., 2023; 2024). However, Granger causality
only captures predictive relationships and ignores instan-
taneous effects, latent confounders, and history-dependent
noise (Peters et al., 2017). The Structural Causal Model
(SCM) framework, as implemented in Hyvärinen et al.
(2010); Pamfil et al. (2020); Gong et al. (2023); Wang
et al. (2024), can theoretically overcome these limitations
by explicitly modeling causal relationships between vari-
ables. Another line of work (Runge et al., 2019; Runge,
2020a) extends the conditional independence testing-based
PC (Spirtes et al., 2000) to time series. However, these meth-
ods face scaling and accuracy challenges when applied to
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spatiotemporal data due to high dimensionality and spatial
correlation effects that can mask true causal relationships
between distant locations (Tibau et al., 2022).

Causal Representation Learning. The primary objective
of causal representation learning is to extract high-level
causal variables and their relationships from temporal data.
Lippe et al. (2022; 2023) explore this topic specifically in the
context of interventional time series data. Meanwhile, Yao
et al. (2022b;a); Chen et al. (2024); Morioka & Hyvarinen
(2024); Li et al. (2024); Lachapelle et al. (2024) establish
identifiability conditions for reconstructing latent time series
from observational data. However, their theorems rely on
various assumptions about the underlying latent dynamics
such as no instantaneous effects, sufficient variability or
sparsity. These conditions can be challenging to validate
in practice. They also do not consider the spatial structure
critical to spatiotemporal causal discovery. Another line of
research is Dynamic Causal Modeling (Friston et al., 2003;
Stephan et al., 2010; Friston et al., 2013; 2022), which
infers causal relationships in dynamical systems and has
been applied to neuroscience. However, DCM assumes that
the parameters of the forward model (i.e., the relationship
between the latent and observed variables) are known a
priori. In contrast, SPACY guarantees identifiability of
latent time series from spatiotemporal data with minimal
assumptions about the latent-generating process.

Spatiotemporal Causal Discovery. Numerous studies have
extended Granger causality to spatiotemporal settings, par-
ticularly in climate science (Mosedale et al., 2006; Lozano
et al., 2009; Kodra et al., 2011). Another approach to spa-
tiotemporal causal discovery is to perform dimensionality
reduction to obtain a smaller number of latent time series
and then infer a causal graph among the latent variables
(Tibau et al., 2022; Falasca et al., 2024). A key limitation of
these methods is that dimensionality reduction occurs inde-
pendently of the causal structure in the data. Consequently,
the latent variables may not correspond to causally relevant
entities. Some studies like Sheth et al. (2022) address spe-
cific spatial dependencies relevant to the considered domain.
Zhao et al. (2023b) extend Yao et al. (2022a) by incorporat-
ing spatial structures using graph convolutional networks.
Brouillard et al. (2024); Boussard et al. (2023) adopt the
single-parent assumption, where each observed variable is
influenced by only one latent variable. On the other hand,
SPACY allows multiple latent parents per observed variable.

3. SPACY: Spatiotemporal Causal Discovery
Preliminaries. A Structural Causal Model (Pearl, 2009)
(SCM) defines the causal relationships between variables in
the form of functional equations. Formally, an SCM over D
variables in a time-varying system, with time denoted by t ∈
[T ], consists of a 5-tuple ⟨X (1:T ), ε(1:T ),G,F , p

ε
(1:T )
i

(·)⟩:

1. Observed variables X (t) = {X(t)
1 , . . . ,X

(t)
D };

2. Noise variables ε(t) = {ε(t)1 , . . . , ε
(t)
D } which influence

the observed variables;
3. A Directed Acyclic Graph (DAG) G, which denotes

the causal links among the members of X (1:T ) upto a
maximum time-lag of τ .

4. A set of D functions F = {f1, . . . , fD} which deter-
mines X (t) through the equations X(t)

i = fi(PaiG(≤
t), ε

(t)
i ), where PaiG(≤ t) ⊂ X (t−τ :t) denotes the par-

ents of node i in G;
5. p

ε
(t)
i

, which describes a distribution over noise ε(t)i .

Problem Setting. We are given N samples of L-
dimensional time series with T timesteps each. These L
time series are arranged in a K-dimensional grid of shape
L1 × . . . × LK such that L =

∏K
k=1 Lk, with the spatial

coordinates scaled to lie in G = [0, 1]K . In our setting, we
consider K = 2. We denote the observational time series
as
{
X

(1:T ),n
1:L

}N
n=1

. We assume that the dynamics of the
observed data are driven by interactions in a smaller number
of latent time series. We denote the D-dimensional latent
time series for each of the N samples as

{
Z

(1:T ),n
1:D

}N
n=1

,
with D << L. The latent time series is stationary with a
maximum time lag of τ , meaning the present is influenced
by up to τ past timesteps. Interactions in the latent time
series follow an SCM represented by a DAG G. Our goal is

to infer the latent time series
{
Z

(1:T ),n
1:D

}N
n=1

and the causal
graph G in an unsupervised manner.

3.1. Forward Model

Figure 3: Probabilis-
tic graphical model for
SPACY. Shaded circles
are observed and hollow
circles are latent.

We formalize our assump-
tions about the data genera-
tion process using a proba-
bilistic graphical model (Fig-
ure 3). We assume that the
latent time series Z is gener-
ated by an SCM with causal
graph G. The number of la-
tent variables D is a hyperpa-
rameter. The spatial correla-
tions between grid points are
captured by the spatial factors
F ∈ RL×D, which map the latent time series Z

(1:T )
1:D ∈

RD×T to the observed time series X(1:T )
1:L ∈ RL×T . Specifi-

cally, the observational time series is generated by applying
a grid point-wise non-linearity gℓ, to the product of the spa-
tial factors and latent time series, with additive Gaussian
noise. ℓ denotes the index of the grid points.
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Figure 2: Overview of the ELBO calculation for SPACY. The model processes spatiotemporal data
{
X

(1:T ),n
1:L

}N
n=1

to infer

latent time series
{
Z

(1:T ),n
1:D

}N
n=1

, where D ≪ L. Causal relationships are modeled using a DAG G sampled from qϕ(G).

Latent time-series are mapped to grid locations via spatial factors F sampled from qϕ(F). Arrows in G are labeled with
edge time-lags.

X
(t)
ℓ = gℓ

(
[FZ]

(t)
ℓ

)
+ ε

(t)
ℓ , ε

(t)
ℓ ∼ N (0, σ2

ℓ )

gℓ(x) = Ξ ([x,Eℓ]) , Eℓ ∈ Rf (1)

We implement the nonlinearity gℓ as an MLP (multilayer
perceptron) Ξ shared across all grid-points, with concate-
nated embeddings E ∈ RL×f of dimension f .

Latent SCM. We model the latent SCM describing Z(t) as
an additive noise model (Hoyer et al., 2008):

Z
(t)
d = fd

(
PadG(< t),PadG(t)

)
+ η

(t)
d ,

Note that η(t)d is distinct from the additive Gaussian noise
ε
(t)
ℓ at the grid-level. The causal graph G specifies the

causal parents of each node, represented by a temporal
adjacency matrix with shape (τ + 1)×D ×D. The parent
nodes from previous and current time steps are denoted
by PadG(< t) and PadG(t) respectively. We assume that
Z

(t)
d is influenced by at most τ preceding time steps, i.e.,

PaG(< t) ⊆ {Z(t−1), . . . ,Z(t−τ)}. G(1:τ) represents the
lagged relationships and G(0) represents the instantaneous
edges. The time-lag τ is treated as a hyperparameter.

In principle, SPACY is compatible with any differentiable
temporal causal discovery algorithm. In this work, we
choose Rhino (Gong et al., 2023) to model the functional re-
lationships because of its flexibility. It is an identifiable
framework that captures both instantaneous effects and
history-dependent noise. We parameterize the structural
equations fd using MLPs ξf and λf shared across all nodes.
We use trainable embeddings E ∈ R(τ+1)×D×D with em-

bedding dimension e to distinguish between nodes. fd is
defined as:

fd (PaG(≤ t)) = ξf

(∑τ
k=0

∑D
j=1 G

(k)
j,d × λf

([
Z

(t−k)
j , Ekj

]
, Ed0
))
,

(2)
where G(k)

j,d denotes the presence of an edge from node j to d
at the kth time-lag. The noise model is based on conditional
spline flows (Durkan et al., 2019), with the parameters of
the spline flow predicted by MLPs ξη and λη , which share a
similar architecture to ξf and λf .

Spatial Factors. The low-dimensional latent time series are
mapped to the high-dimensional grid by the spatial factors
F ∈ RL×D, where the dth column represents the influence
of the dth latent variable on each grid location. To effec-
tively capture the correlation between spatially proximate
locations under a single latent variable, we model the spatial
factors using kernel functions. In theory, any linearly inde-
pendent, real analytic family of functions would work (see
Section 4). In practice, we find that radial basis functions
(RBFs) work quite well, following Manning et al. (2014);
Sennesh et al. (2020); Farnoosh & Ostadabbas (2021) (see
Appendix D.3 for an ablation study). RBFs not only ensure
locality, they are also smooth functions that are parameter-
efficient. We assume a uniform prior over the grid G for
the center parameter ρd of each kernel, and that the scale
parameter γd comes from a standard normal distribution.
Mathematically,

ρd ∼ U [0, 1]K ,γd ∼ N (0, I) ,

Fℓd = RBFd(xℓ;ρd,γd) = exp

(
−||xℓ − ρd||2

exp(γd)

)
, (3)
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where xℓ denotes the spatial coordinates of the ℓth grid point.

3.2. Variational Inference

Let θ denote the parameters of the forward model. The
likelihood pθ (X) is intractable due to the presence of latent
variables Z, G and F. We propose using variational infer-
ence, optimizing an evidence lower bound (ELBO) instead.
Proposition 1. The data generation model described in Fig-
ure 3 admits the following evidence lower bound (ELBO):

log pθ
(
X(1:T ),1:N

)
≥

N∑
n=1

{
Eqϕ(Z(1:T ),n|X(1:T ),n)qϕ(G)qϕ(F)[

log pθ
(
X(1:T ),n|Z(1:T ),n,F

)
+

[
log pθ

(
Z(1:T ),n|G

)
− log qϕ

(
Z(1:T ),n|X(1:T ),n

) ]]}
− KL (qϕ(G) || p(G))

− KL (qϕ(F) || p(F)) = ELBO(θ, ϕ) (4)

See Section A.1 for the derivation. We outline the compu-
tation of the ELBO in Figure 2. qϕ represents the vari-
ational distribution parameterized by ϕ. The first term
log pθ(X

(1:T ),n|Z(1:T ),n,F) in equation 4 represents the
conditional likelihood of the observed data X(1:T ),n condi-
tioned on Z(1:T ),n and F. The remaining terms represent
the KL divergences of the variational distributions from
their prior distributions. Next, we describe the design of
the variational distributions, with the full implementation
details in Appendix B.

Causal graph qϕ(G). The variational distribution of
the causal graph is modeled as a product of independent
Bernoulli distributions, indicating the presence or absence
of an edge.

qϕ (G) =

τ∏
k=0

D∏
i,j=1

Bernoulli
(
Wk
i,j

)
,

where W ∈ R(τ+1)×D×D is a learned parameter. To es-
timate the expectation over qϕ(G), we use Monte Carlo
sampling by drawing a single graph sample, employing the
Gumbel-Softmax trick (Jang et al., 2017). We ensure that
the learned graph G is a DAG using the acyclicity constraint
from Zheng et al. (2018), which is added to the prior p(G).

Spatial Factor qϕ(F). We model the variational distri-
butions of the center ρd and scale γd as normal distri-
butions with learnable mean and log-variance parameters
(µρd , vρd), (µγd , vγd). To sample from qϕ(F), we first sam-
ple ρd and γd using the reparameterization trick (Kingma
& Welling, 2014), and then compute the RBF kernel using
these parameters. We ensure that the coordinates of the
center lie in [0, 1]K by applying the sigmoid function.

ρd ∼ N (µρd , exp (vρd
) I) ,γd ∼ N (µγd

, exp (vγd) I)

Fℓd = RBFd(xℓ;ρd,γd) = exp
(
− ||xℓ−sigmoid(ρd)||2

exp(γd)

)
Latent Time Series qϕ(Z(1:T ),n|X(1:T ),n). To obtain la-
tents from the observations, we use a neural network en-
coder. Specifically, we assume qϕ(Z(1:T ),n|X(1:T ),n) to
be a normal distribution whose mean and log-variance are
parameterized by MLPs ζµ and ζσ2 .

qϕ
(
Z(1:T ),n|X(1:T ),n

)
= N

(
ζµ(X

(t),n), exp
(
ζσ2(X(t),n)

))
.

We sample the latents Z from the variational distribution
using the reparameterization trick.

3.3. Multivariate Extension

In many applications, it is important to model interactions
between different variates on the same grid. For instance,
understanding how global temperature patterns influence
precipitation requires analyzing multivariate relationships.
We extend SPACY to handle such multivariate time series
data, where the observational time series X ∈ RV×L×T

consists of V ≥ 1 variates. We modify SPACY to learn
variate-specific spatial factors F(v) by specifying the num-
ber of nodes Dv for each variate v. We then combine latent
representations from all variates and perform causal discov-
ery with them. For more implementation details, refer to
Appendix B.4.

4. Identifiability Analysis
We analyze the identifiability of the spatiotemporal gener-
ative model from Section 3.1. Identifiability ensures that
the latent variables can be uniquely recovered from obser-
vations, up to permutation and scaling. Prior work, such as
(Yao et al., 2022b;a; Lachapelle et al., 2024), establishes
identifiability in temporal settings with nonlinear invertible
mixing but uses restrictive assumptions about the latent pro-
cess, like the absence of instantaneous effects, sparsity of the
causal graph, or sufficient variability. In contrast, we demon-
strate identifiability in our spatiotemporal setting, where the
observations are a nonlinear function of the product of la-
tent time series and spatial factors, without relying on such
assumptions, by explicitly leveraging spatial correlations.
This is made possible by the overdetermined nature of the
problem, where the number of spatial locations exceeds the
latent dimension, allowing for identifiability with minimal
assumptions about the latent process.

Specifically, we generalize the discrete grid G to a contin-
uous spatial domain with infinite spatial resolution. This
generalization allows us to the prove identifiability condi-
tion using tools from real analysis. Specifically, for every
point ℓ in the K-dimensional spatial domain G = (0, 1)K ,
we observe a corresponding time series X(ℓ), representing
a T -dimensional random variable. We model the spatial
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factors as function evaluations of a family of linearly inde-
pendent functions. Notably, the family of RBF functions is
one such family of functions (Smola & Schölkopf, 1998).
We introduce the notion of a spatial factor process (SFP),
and mathematically describe the identifiability of SFPs.

Definition 1 (Spatial Factor Process). Let G = (0, 1)K be
a K−dimensional spatial domain, and let {Z(t)}Tt=1 denote
the latent causal process, where Z(t) ∈ RD. Let F =
{Fψ1 , ..., FψD

} be a finite linearly independent family of
functions defined on G, and G =

{
gℓ : R → R

∣∣ ℓ ∈ G
}

be
a family of functions defined for each point ℓ on the grid
G. Let p

ε
(t)
ℓ

be a zero-mean noise distribution. The Spatial

Factor Process SFP
({

Z(t)
}T
t=1

,F ,G , p
ε
(t)
ℓ

)
, denoted by

X, is defined as follows: For each location ℓ ∈ G on the
grid and t ∈ [T ],

X(t)(ℓ) = gℓ

(
F⊤
ℓ Z

(t)
)
+ ε

(t)
ℓ , (5)

where
Fℓ =

[
Fψ1

(ℓ), . . . , FψD
(ℓ)
]⊤
.

We can define the identifiability of such SFPs as below:

Definition 2 (Identifiability of SFPs). Let X
denote the true generative SFP, specified by({

Z(t)
}T
t=1

, {Fψi
}Di=1 , {gℓ | ℓ ∈ G}, p

ε
(t)
ℓ

)
with ob-

servational distribution p(X(t)|Z(t);F), where

X(t)(ℓ) = gℓ

(
F⊤
ℓ Z

(t)
)
+ ε

(t)
ℓ , (6)

with ε
(t)
ℓ ∼ p

ε
(t)
ℓ

for some zero-mean noise distribu-

tion p
ε
(t)
ℓ

. Suppose we have a learned SFP X̂, specified

by
({

Ẑ(t)
}T
t=1

,
{
Fψ̂i

}D
i=1

, {ĝℓ | ℓ ∈ G}, p(t)εℓ

)
with ob-

servational distribution p(X̂(t)|Ẑ(t); F̂), where

X̂(t)(ℓ) = ĝℓ

(
F̂⊤
ℓ Ẑ

(t)
)
+ ε̂

(t)
ℓ , (7)

with ε̂(t)ℓ ∼ p
ε
(t)
ℓ

. The latent process {Z(t)} is said to be
identifiable upto permutation and scaling, if:

p
(
X(t)(ℓ)|Z(t);Fℓ

)
= p

(
X̂(t)(ℓ)|Ẑ(t); F̂ℓ

)
,∀ℓ ∈ G, t ∈ [T ]

=⇒ Ẑt = PSZ(t), and {Fψi
}Di=1 =

{
Fψ̂i

}D
i=1

,

for some permutation matrix P and scaling matrix S.

We first prove the identifiability of SFPs in the absence of
nonlinearity, (gℓ = Id) by leveraging the linear indepen-
dence of the spatial factors F . We then extend the proof to
the general setting with nonlinear, invertible mapping, with
real analytic spatial factor functions.

Theorem 1 (Identifiability of Linear SFPs). Suppose we are
given two SFPs X = SFP

(
Z,F , {gℓ | ℓ ∈ G} , p

ε
(t)
ℓ

)
and

X̂ = SFP
(
Ẑ, F̂ , {ĝℓ | ℓ ∈ G} , p

ε
(t)
ℓ

)
specified by Equa-

tions 6 and 7 respectively, such that both F and F̂ belong to
the same (potentially infinite) family of linearly independent
functions. Further, suppose that the following conditions
are satisfied:

1. Linearity: For all ℓ ∈ G, gℓ = ĝℓ = Id, where Id is the
identity function.

2. Non-degenerate latent processes: For all d ∈ [D],
∃ t0 ∈ [T ] such that Z(t0)

d ̸= 0, that is, none of the time
series is trivially zero. A similar condition holds for Ẑ.

3. Characteristic function of the noise: For all ℓ ∈ G and
t ∈ [T ], the set

{
x ∈ R | φ

ε
(t)
ℓ

(x) = 0
}

has measure
zero where φ

ε
(t)
ℓ

represents the characteristic function
of the density p

ε
(t)
ℓ

.

If p(X(t)(ℓ)|Z(t);Fℓ) = p
(
X̂(t)(ℓ)|Ẑ(t); F̂ℓ

)
for every

ℓ ∈ G and t ∈ [T ], then Z = P Z̃ and F = F̂ for some
permutation matrix P .

We now consider the general case where the functions gℓ
may be nonlinear. When the spatial factors are analytic-
meaning they can be represented by power series every-
where— we can construct invertible maps between Z(t) and
Ẑ(t). Notably, these maps can be shown to have Jacobian
matrices that are permutation and scaling matrices.

Theorem 2 (Identifiability of General SFPs). Suppose we
are given two SFPs X = SFP

(
Z,F , {gℓ | ℓ ∈ G} , p

ε
(t)
ℓ

)
and X̂ = SFP

(
Ẑ, F̂ , {ĝℓ | ℓ ∈ G} , p

ε
(t)
ℓ

)
specified by

Equations 6 and 7 respectively, such that both F and F̂
belong to the same (potentially infinite) family of linearly
independent functions. Further, suppose that the following
conditions are satisfied:

1. Diffeomorphisms: For all ℓ ∈ G, gℓ, ĝℓ are diffeomor-
phisms, that is, gℓ, ĝℓ are invertible and continuously
differentiable, and their inverses are also continuously
differentiable.

2. Real analytic functions: All the functions Fψi
∈

F , Fψ̂i
∈ F̂ are real analytic.

3. Non-degenerate latent processes: For all d ∈ [D],
∃ t0 ∈ [T ] such that Z(t0)

d ̸= 0, that is, none of the time
series is trivially zero. A similar condition holds for Ẑ.

4. Characteristic function of the noise: For all ℓ ∈ G and
t ∈ [T ], the set

{
x ∈ R | φ

ε
(t)
ℓ

(x) = 0
}

has measure
zero where φ

ε
(t)
ℓ

represents the characteristic function
of the density p

ε
(t)
ℓ

.

6



Discovering Latent Causal Graphs from Spatiotemporal Data

If p(X(t)(ℓ)|Z(t);Fℓ) = p
(
X̂(t)(ℓ)|Ẑ(t); F̂ℓ

)
for every

ℓ ∈ G and t ∈ [T ], then Z = PSZ̃ and F = F̂ for
some permutation matrix P and scaling matrix S.

The detailed mathematical statements and proofs for these
results are provided in Appendix A.2.

Applicability to finite grids. While our identifiability the-
ory assumes a continuous spatial domain, the key insights
apply to finite grids if the discretization is dense, that is, the
number of grid points is sufficiently high. If the number of
grid points L >> D, the system is overdetermined, and the
redundancy can be used to uniquely identify the latent fac-
tors. Measure-zero pathologies which prevent identifiability
in the continuous case, remain probabilistically unlikely in
finite grids. Our experiments confirm these insights, show-
ing accurate recovery of latent factors in practice.

Recovery of the causal graph. Theorems 1 and 2 estab-
lish the identifiability of the latent variables from observa-
tional data, up to permutation and scaling. Once these latent
processes are recovered, we can apply causal discovery al-
gorithms with identifiability guarantees—such as Rhino,
which we use in this work—to infer the causal graph among
the latent variables, provided that the algorithm’s identifia-
bility conditions are met. This is possible because the causal
relationships are encoded in the conditional independence
relationships of the latent time series. For completeness, we
list the assumptions of Rhino in Appendix A.3.

5. Experiments
We assess SPACY’s ability to capture causal relationships
across various spatiotemporal settings using both synthetic
datasets with known ground truth and simulated climate
datasets. Our results demonstrate that SPACY consistently
uncovers accurate causal relationships while generating in-
terpretable outputs.

Baselines. We compare SPACY with state-of-the-art base-
lines. We include the two-step algorithms Mapped PCMCI
(Varimax-PCA + PCMCI+ with Partial Correlation test)
(Tibau et al., 2022; Runge, 2020b) and the Linear Response
method (Falasca et al., 2024). We also evaluate against the
causal representation learning approaches, LEAP (Yao et al.,
2022b), TDRL (Yao et al., 2022a), and CDSD (Boussard
et al., 2023; Brouillard et al., 2024)

5.1. Synthetic Data

Setup. Since real-world datasets lack ground truth causal
graphs, we generate synthetic datasets with known causal
relationships to benchmark SPACY’s causal discovery per-
formance. These are generated from randomly constructed
ground-truth graphs and follow the forward model described

in Figure 3. We experiment with several configurations of
synthetic data. The latent time series are generated using
either (1) a linear structural causal model (SCM) with ran-
domly initialized weights and additive Gaussian noise, or (2)
a nonlinear SCM, where the structural equations are mod-
eled by randomly initialized MLPs, combined with additive
history-dependent conditional-spline noise. The mapping
function gℓ is set as (1) linear, where the identity function is
used, or (2) nonlinear, where an MLP is used. The spatial
factors are constructed using RBF kernels with randomly
initialized center and scale parameters, and the Euclidean
distance is used as the underlying metric. For each con-
figuration, we generate N = 100 samples, each with time
length T = 100 and a grid of size 100 × 100 (L = 104).
Datasets are generated with D = 10, 20 and 30 nodes in
each setting. For more details on dataset generation, refer
to Appendix C.1.1.

We assess the performance of SPACY and the baselines
using two metrics: the orientation F1 score of the inferred
causal graph, and the mean correlation coefficient (MCC)
between the learned and ground-truth latents. More details
on evaluation are presented in Appendix B.6.

Results. The results of the synthetic experiments are shown
in Figure 4. SPACY consistently outperforms all other
methods across all settings of D in terms of F1 score. On
the linear SCM datasets, SPACY remains slightly ahead
of CDSD and Mapped PCMCI, while LEAP, TDRL, and
Linear-Response exhibit weaker performance. However,
SPACY significantly outperforms the baselines in the non-
linear settings. A pronounced performance drop is observed
for LEAP, TDRL, and Linear-Response, whose F1 scores de-
cline sharply as D increases. SPACY’s performance scales
more effectively with increasing D, further widening the
gap in performance.

The recovery of the latent variables, measured by the MCC
score, follows a similar pattern. SPACY achieves similar or
better MCC scores compared to CDSD and Mapped PCMCI,
while LEAP, TDRL, and Linear-Response consistently show
lower MCC scores across all configurations. Figure 8 pro-
vides a visual illustration of the recovered spatial factors.

Scalability. We also measure the scalability of SPACY
with increasing grid-size. For this experiment, we used the
dataset with linear SCM and nonlinear spatial mapping gℓ,
and varied the grid size from L = 30×30 to L = 250×250.
Figure 5 demonstrates the scalability and performance of
SPACY compared to the baseline methods as the grid size L
increases. The runtime plot indicates that, while all methods
experience an increase in runtime with increasing grid size,
SPACY strikes a good balance, exhibiting moderate growth
in computational time while maintaining strong causal dis-
covery performance. Although Mapped-PCMCI is the most
efficient in terms of runtime, it underperforms in causal
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Linear SCM, 
Linear Mapping 

Linear SCM, 
Non-linear Mapping 

Non-linear SCM, 
Linear Mapping 

Non-linear SCM, 
Non-linear Mapping 

Figure 4: Results on different configurations of the synthetic datasets. We report the F1 and MCC scores for each method
across different latent dimensions D. Average over 5 runs reported

discovery. LEAP, TDRL, and CDSD show similar or higher
computational costs than SPACY but fail to match its per-
formance. Linear-Response, in particular, scales poorly
in terms of runtime with increasing grid size. Additional
results and ablation studies are in Appendix D.

Figure 5: Runtime (in minutes) (top) and F1 score (bottom)
across different grid sizes. Average over 5 runs reported.

5.2. Climate Dataset

The Global Climate Dataset (Baker et al., 2019) is a mixed
real-simulated dataset containly monthly global temperature
and precipitation from 1999 to 2001. For more details about
the dataset and preprocessing steps, refer to Appendix D.4.
In our experiments, we use the RBF kernel with the Haver-
sine distance as the metric, as detailed in Appendix B.3.1

Results. In the absence of a ground truth causal graph, we
qualitatively evaluate the spatial factors and causal graph
inferred by SPACY. We highlight several spatial modes
identified by SPACY that correspond to critical regions that
significantly influence global climate patterns, including
coastlines of major land masses (e.g., East Asia, Northern
Europe) and key ocean areas (e.g., Central Pacific, South
Atlantic). We refer the interested reader to Figure 15 in
Appendix C.4 for the full visualization of the spatial factors
and causal graphs inferred by SPACY from this dataset.

Figure 6 highlights three subgraphs of the inferred graph,
corresponding to the Madden-Julian Oscillation (MJO)
(Madden & Julian, 1971; 1972), Northern Atlantic Oscil-
lation (NAO) (Hurrell et al., 2003; Hurrell, 1995; Chen &
den Dool, 2003), and Antarctic Oscillation (AAO) (Thomp-
son & Solomon, 2002; Mo, 2000). SPACY discovers
causal links consistent with known teleconnection mech-
anisms: short-lagged connections (1–2 months) between
mid-Pacific (nodes 0 and 17) and Southeast Asian precip-
itation/temperature nodes (nodes 2 and 11) align with the
MJO’s eastward-propagating convection and 30–60 day cy-
cle. Similarly, simultaneous precipitation links between
Northeast America (nodes 8) and Western Europe (node 1),
alongside dipole-like connections in Europe/North Africa
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Figure 6: Visualization of discovered causal relationships in climate datasets. Subgraph among regions associated with
the (top) Madden-Julian Oscillation, (middle) Northern Atlantic Oscillation, (bottom) Antarctic Oscillation. Causal links are
shown for (left) Precipitation, (middle) Temperature, and (right) cross-variate interactions. Numbers on the edges indicate
time-lag, while the numbers on the nodes indicate the node indices.

(nodes 15 and 18), mirror the NAO’s temperature and pre-
cipitation dipole. The AAO subgraph captures Antarctic-
centered teleconnections, including causal ties among Aus-
tralia (nodes 2 and 19), Antarctica (nodes 4, 7 and 12), and
South America (node 23), reflecting the AAO’s hemispheric
influence on Southern Ocean dynamics. In all these cases,
SPACY infers nodes that are spatially confined with clear
boundaries. In contrast, Mapped PCMCI (Figure 16) pro-
duces broadly distributed components that are challenging
to interpret.

It is important to note that while the isotropic RBF kernel
represents a modeling simplification, key atmospheric pro-
cesses—such as the Walker circulation, monsoonal systems,
and ENSO teleconnections—are inherently localized due to
heterogeneous boundary conditions (e.g., land-sea contrast,
topography) and regional forcings. Crucially, SPACY suc-
cessfully resolves these localized relationships despite its
kernel assumptions, achieving greater physical interpretabil-
ity than traditional methods. Approaches relying on prin-
cipal components, for instance, often obscure spatial co-
herence through domain-wide averaging, whereas SPACY
preserves geographically anchored causal links tied to iden-
tifiable mechanisms. This localization advantage allows

the framework to avoid diffuse, unphysical spatial factors
common in conventional teleconnection analyses.

6. Conclusion
In this work, we tackled the challenge of inferring causal re-
lationships from high-dimensional spatiotemporal data. We
introduced SPACY, an end-to-end framework based on vari-
ational inference, designed to learn latent causal represen-
tations and the underlying structural causal model. SPACY
addressed the issue of high dimensionality by identifying
causal structures in a low-dimensional latent space. It ag-
gregated spatially correlated grid points through kernels,
mapping observed time series into these latent representa-
tions. We also established a novel identifiability result for
the model at infinite spatial resolution, leveraging tools from
real analysis. On synthetic datasets, SPACY outperformed
baselines and successfully recovered causal links in chal-
lenging settings where existing approaches failed. Applied
to real-world climate data, SPACY uncovered established
patterns from climate science, identifying teleconnections
linked to phenomena such as the Madden-Julian Oscillation,
the North Atlantic Oscillation, and the Antarctic Oscillation.
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Appendix to

“Discovering Latent Causal Graph from Spatiotemporal Data”
A. Theory
A.1. ELBO Derivation

Z
(t)
d = fd

(
PadG(< t),PadG(t)

)
+ η

(t)
d

ρd ∼ U [0, 1]K ,γd ∼ N (0, I)

Fd = [RBFd(xℓ;ρd,γd)]
L
ℓ=1 , xℓ ∈ G

Xℓ = gℓ ([FZ]ℓ) + εℓ

εℓ ∼ N (0, σ2
ℓ I)

Figure 7: Probabilistic graphical model for SPACY and the generative equations. Shaded circles are observed and hollow
circles are latent.

Proposition 1. The data generation model described in Figure 3 admits the following evidence lower bound (ELBO):

log pθ
(
X(1:T ),1:N

)
≥

N∑
n=1

{
Eqϕ(Z(1:T ),n|X(1:T ),n)qϕ(G)qϕ(F)

[
log pθ

(
X(1:T ),n|Z(1:T ),n,F

)
+

[
log pθ

(
Z(1:T ),n|G

)
− log qϕ(Z

(1:T ),n|X(1:T ),n)
] ]}

+ Eqϕ(G)[log p(G)− log qϕ(G)]

+ Eqϕ(F)[log p(F)− log qϕ(F)] = ELBO(θ, ϕ)

Proof. We begin with the log-likelihood of the observed data:

log pθ

(
X(1:T ),1:N

)
= log

∫
pθ

(
X(1:T ),1:N ,Z(1:T ),1:N ,G,F

)
dZ dG dF

We multiply and divide by the variational distribution qϕ
(
Z(1:T ),1:N |X(1:T ),1:N

)
qϕ (G) qϕ (F) to create an evidence lower

bound (ELBO) using Jensen’s inequality:

log pθ

(
X(1:T ),1:N

)
= log

∫
qϕ
(
Z(1:T ),1:N |X(1:T ),1:N

)
qϕ (G) qϕ (F)

qϕ
(
Z(1:T ),1:N |X(1:T ),1:N

)
qϕ (G) qϕ (F)

pθ

(
X(1:T ),1:N ,Z(1:T ),1:N ,G,F

)
dZ dG dF

≥ Eqϕ(Z(1:T ),1:N |X(1:T ),1:N)qϕ(G)qϕ(F)

[
log

pθ
(
X(1:T ),1:N ,Z(1:T ),1:N ,G,F

)
qϕ
(
Z(1:T ),1:N |X(1:T ),1:N

)
qϕ (G) qϕ (F)

]
. (8)

By the assumptions of the data generative process,

pθ

(
X(1:T ),1:N ,Z(1:T ),1:N ,G,F

)
= pθ

(
X(1:T ),1:N |Z(1:T ),1:N ,F

)
pθ

(
Z(1:T ),1:N |G

)
p (F) p (G)

Further, note that X(1:T ),1:N are conditionally independent given F,Z(1:T ),1:N . Also, X(1:T ),n is conditionally independent
of Z(1:T ),m given Z(1:T ),n,F for m ̸= n. This implies that:

pθ

(
X(1:T ),1:N |Z(1:T ),1:N ,F

)
=

N∏
n=1

pθ

(
X(1:T ),n|Z(1:T ),n,F

)
.
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Similarly, Z(1:T ),1:N are conditionally independent given G, which implies

pθ

(
Z(1:T ),1:N |G

)
=

N∏
n=1

pθ

(
Z(1:T ),n|G

)
.

Substituting these terms back into equation 8 and grouping terms according to the variables Z,G,F yields the ELBO.

log pθ

(
X(1:T ),1:N

)
≥

N∑
n=1

{
Eqϕ(Z(1:T ),n|X(1:T ),n)qϕ(G)qϕ(F)

[
log pθ

(
X(1:T ),n|Z(1:T ),n,G,F

)
+
(
log pθ

(
Z(1:T ),n|G

)
− log qϕ

(
Z(1:T ),n|X(1:T ),n

))]}
+ Eqϕ(G) [log p(G)− log qϕ(G)]

+ Eqϕ(F) [log p(F)− log qϕ(F)] ≡ ELBO(θ, ϕ).

A.2. Identifiability

In this work, we extend the notion of identifiability in latent variable models to the spatiotemporal setting considered in
this paper. Informally, a latent variable model is said to be identifiable if the underlying latent variables can be uniquely
recovered from observations up to permissible ambiguities such as permutation or scaling.

We begin by formalizing the notion of a spatiotemporal process over a continuous spatial domain, which can be thought
about as a gridded time series in a grid with infinite resolution. This abstraction enables us to reason about these systems
using tools from real analysis. Although our theory assumes a continuous domain, the insights extend to discrete grids with
dense discretization, that is, L >> D.

Definition 0 (Linearly Independent Family of Functions). Let F be a family of real-valued, parametric functions F ={
fψ | RK → R

}
. F is said to be a linearly independent family if, for any finite set {ψ1, ..., ψn}, we have

n∑
k=1

αkfψk
= 0 =⇒ αk = 0 ∀k ∈ [n]. (9)

Definition 1 (Spatial Factor Process). Let G = (0, 1)K be a K−dimensional spatial domain, and F = {Fψ1 , ..., FψD
} be a

finite linearly independent family of functions defined on G. Denote G =
{
gℓ : R → R

∣∣ ℓ ∈ G
}

as a family of functions
defined for each point ℓ on the grid G. Let {Z(t)}Tt=1,Z

(t) ∈ RD denote the latent causal process and p
ε
(t)
ℓ

be a zero-mean
noise distribution. For each location ℓ ∈ G and time t ∈ [T ], we assume the observation X follows the Spatial Factor

Process SFP
({

Z(t)
}T
t=1

,F ,G , p
ε
(t)
ℓ

)
defined below:

X(t)(ℓ) = gℓ

(
F⊤
ℓ Z

(t)
)
+ ε

(t)
ℓ , (10)

where

Fℓ =

Fψ1
(ℓ)

...
FψD

(ℓ)

 .
A Spatial Factor Process (SFP) generalizes gridded time series to a continuous spatial domain G = (0, 1)K , where
observations are modeled at all points in the grid. The dynamics are driven by a latent process {Z(t)}, while spatial structure
is captured through factors Fℓ = [Fψ1

(ℓ), . . . , FψD
(ℓ)]⊤, composed of linearly independent functions evaluated at each

ℓ ∈ G. Location-specific nonlinearities are modeled using mappings gℓ(·), which transform the latent factors Z(t) into
observations at each point.

The identifiability question of SFP is: given the observational distribution p
(
X(t)|Z(t);F

)
generated from a latent causal

process {Z(t)}Tt=1, can we uniquely recover the latents (Yao et al., 2022b;a; Moran et al., 2022)? In other words, if we learn
a generative model p

(
X̂(t)|Ẑ(t); F̂

)
such that p(X|Z(t);F) = p(X̂(t)|Ẑ(t); F̂), can we infer that Z(t) = Ẑ(t)? In practice,
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we seek recovery of the latents up to trivial transformations like permutation or scaling. We formalize this notion with the
following definition.

Definition 2 (Identifiability of SFPs). Let X denote the true generative SFP, specified by({
Z(t)

}T
t=1

, {Fψi
}Di=1 , {gℓ | ℓ ∈ G}, p

ε
(t)
ℓ

)
(as described in Definition 1) with observational distribution p(X(t)|Z(t);F),

where
X(t)(ℓ) = gℓ

(
F⊤
ℓ Z

(t)
)
+ ε

(t)
ℓ , (11)

with ε
(t)
ℓ ∼ p

ε
(t)
ℓ

for some zero-mean noise distribution pεℓ . Suppose we have a learned SFP X̂, specified by({
Ẑ(t)

}T
t=1

,
{
F
ψ̂i

}D
i=1

, {ĝℓ | ℓ ∈ G}, p
ε
(t)
ℓ

)
with observational distribution p(X̂(t)|Ẑ(t); F̂), where

X̂(t)(ℓ) = ĝℓ

(
F̂⊤
ℓ Ẑ

(t)
)
+ ε̂

(t)
ℓ , (12)

with ε̂(t)ℓ ∼ p
ε
(t)
ℓ

. The latent process {Z(t)} is said to be identifiable upto permutation and scaling, if:

p(X(t)(ℓ)|Z(t);Fℓ) = p(X̂(t)(ℓ)|Ẑ(t); F̂ℓ), ∀ℓ ∈ G, t ∈ [T ]

=⇒ Ẑt = PSZ(t), and {Fψi}
D
i=1 =

{
F
ψ̂i

}D
i=1

,

for some permutation matrix P and scaling matrix S.

We first show a useful result that allows us to “denoise” the observation space and enables the point-wise equality of the
transformed latent time series.

Lemma 1 (Denoising Lemma). Suppose X =

({
Z(t)

}T
t=1

, {Fψi
}Di=1 , {gℓ | ℓ ∈ G}, p

ε
(t)
ℓ

)
and X̂ =({

Ẑ(t)
}T
t=1

,
{
F
ψ̂i

}D
i=1

, {ĝℓ | ℓ ∈ G}, p
ε
(t)
ℓ

)
are two SFPs with observational distributions p(X(t)|Z(t);F) and

p(X̂(t)|Ẑ(t); F̂) respectively, such that

X(t)(ℓ) = gℓ

(
F⊤
ℓ Z

(t)
)
+ ε

(t)
ℓ ,

and
X̂(t)(ℓ) = ĝℓ

(
F̂⊤
ℓ Ẑ

(t)
)
+ ε̂

(t)
ℓ ,

where ε(t)ℓ , ε̂ℓ
(t) ∼ p

ε
(t)
ℓ

. Assume that for all ℓ ∈ G and t ∈ [T ], the set
{
x ∈ R | φ

ε
(t)
ℓ

(x) = 0
}

has measure zero where
φ
ε
(t)
ℓ

represents the characteristic function of the density p
ε
(t)
ℓ

. If

p(X(t)(ℓ) = x|Z(t);Fℓ) = p(X̂(t)(ℓ) = x|Ẑ(t); F̂ℓ) ∀ℓ ∈ G, t ∈ [T ]. (13)

Then we have that
gℓ

(
F⊤
ℓ Z

(t)
)
= ĝℓ

(
F̂⊤
ℓ Ẑ

(t)
)

∀ℓ ∈ G, t ∈ [T ].

Proof. Our argument is similar to Step I of Appendix B.2.2 in Khemakhem et al. (2020).

Note that we can write

p(X(t)(ℓ) = x|Z(t);Fℓ) = p
ε
(t)
ℓ

(x− x̄) =

∫
R
δx̄ (z) pε(t)ℓ

(x− z)dz = δx̄ ∗ pε(t)ℓ

(x), (14)

where x̄ = gℓ
(
F⊤
ℓ Z

(t)
)
, δx̄ denotes the Dirac-delta distribution centered at x̄ and ∗ denotes the convolution operator.

Similarly,

p(X̂(t)(ℓ) = x|Ẑ(t); F̂ℓ) = p
ε
(t)
ℓ

(x− x̃) = δx̃ ∗ pε(t)ℓ

(x), (15)

where x̃ = ĝℓ

(
F̂⊤
ℓ Ẑ

(t)
)

.

From equation 13 and the equations 14 and 15, we obtain
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δx̄ ∗ pε(t)ℓ

(x) = δx̃ ∗ pε(t)ℓ

(x).

Taking the Fourier Transform on both sides of the equation, we obtain,
eisx̄φ

ε
(t)
ℓ

(s) = eisx̃φ
ε
(t)
ℓ

(s).

Since φ
ε
(t)
ℓ

̸= 0 almost everywhere, we have that eisx̄ = eisx̃ for almost all values of s. This implies that

x̄ = x̃, i.e., gℓ
(
F⊤
ℓ Z

(t)
)
= ĝℓ

(
F̂⊤
ℓ Ẑ

(t)
)
∀ℓ ∈ G, t ∈ [T ].

A.2.1. LINEAR IDENTIFIABILITY

Our first result shows that for the case with no nonlinearity, that is gℓ(y) = y for all ℓ ∈ G, the latents and spatial factors are
identifiable.

Theorem 1 (Identifiability of Linear SFPs). Suppose we are given two SFPs X = SFP
(
Z,F , {gℓ | ℓ ∈ G} , p

ε
(t)
ℓ

)
and

X̂ = SFP
(
Ẑ, F̂ , {ĝℓ | ℓ ∈ G} , p

ε
(t)
ℓ

)
specified by Equations 11 and 12 respectively, such that both F and F̂ belong to

the same (potentially infinite) family of linearly independent functions. Further, suppose that the following conditions are
satisfied:

1. Linearity: For all ℓ ∈ G, gℓ = ĝℓ = Id, where Id is the identity function.

2. Non-degenerate latent processes: For all d ∈ [D], ∃ t0 ∈ [T ] such that Z(t0)
d ̸= 0, that is, none of the time series is

trivially zero. A similar condition holds for Ẑ.

3. Characteristic function of the noise: For all ℓ ∈ G and t ∈ [T ], the set
{
x ∈ R | φ

ε
(t)
ℓ

(x) = 0
}

has measure zero
where φ

ε
(t)
ℓ

represents the characteristic function of the density p
ε
(t)
ℓ

.

If p(X(t)(ℓ)|Z(t);Fℓ) = p
(
X̂(t)(ℓ)|Ẑ(t); F̂ℓ

)
for every ℓ ∈ G and t ∈ [T ], then Z = P Z̃ and F = F̂ for some permutation

matrix P .

Proof. By Lemma 1,

p(X(t)(ℓ)|Z(t);Fℓ) = p
(
X̂(t)(ℓ)|Ẑ(t); F̂ℓ

)
=⇒ F⊤

ℓ Z
(t) = F̂⊤

ℓ Ẑ
(t) ∀ℓ ∈ G, t ∈ [T ]

=⇒
D∑
j=1

Fψj (ℓ)Z
(t)
j =

D∑
j=1

Fψ̂j
(ℓ)Ẑ

(t)
j ∀ℓ ∈ G, t ∈ [T ]

=⇒
D∑
j=1

Fψj (ℓ)Z
(t)
j −

D∑
j=1

Fψ̂j
(ℓ)Ẑ

(t)
j = 0 ∀ℓ ∈ G, t ∈ [T ] (16)

Suppose {ψ1, . . . , ψD} ∩
{
ψ̂1, . . . , ψ̂D

}
= ∅. Then, due to the fact that both F and F̂ are subsets from the same family

of linearly independent functions, this would imply that Z(t)
j = Ẑ

(t)
j = 0 ∀j ∈ [D], t ∈ [T ], which is a contradiction

since we assume that none of the time series are all 0. This implies that {ψ1, . . . , ψD} ∩
{
ψ̂1, . . . , ψ̂D

}
̸= ∅. Assume

V =
{
(i, j) : ψi = ψ̃j

}
and define I = {i : ∃j such that (i, j) ∈ V }, J = {j : ∃ i such that (i, j) ∈ V }. Define the

function V : I → J, V(i) = j such that (i, j) ∈ V . Then equation 16 can be written as:
D∑
j=1
j /∈I

Fψj
(ℓ)Z

(t)
j −

D∑
j=1
j /∈J

Fψ̂j
(ℓ)Ẑ

(t)
j +

D∑
j=1
j∈I

Fψj
(ℓ)
(
Z

(t)
j − Ẑ

(t)
V(j)

)
= 0 ∀ℓ ∈ G, t ∈ [T ].
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If I∁ ̸= ∅, then Z
(t)
j = 0 ∀j ∈ I∁ due to the linear independence of Fψj

, which contradicts our assumption of non-zero time

series. Therefore, we must have that I∁ = ∅, which implies that {ψ1, . . . , ψD} = {ψ̃1, . . . , ψ̃D}, and Z
(t)
j = Z

(t)
V(j) ∀j ∈

[D], t ∈ [T ].

A.2.2. GENERAL IDENTIFIABILITY

We now turn our attention to the general setting where gℓ can be nonlinear. Before proving the identifiability result, we state
several useful lemmas from real analysis. We first recall some useful properties of real analytic functions.

Definition 3 (Real Analytic Functions). Let U be an open set in RK . A function f : U → R is real analytic (or simply
analytic) if at each point x ∈ U , the function f has a convergent power series representation that converges (absolutely) to
f(x) in some neighborhood of x.

In other words, real analytic functions can be written using a power series representation for every point in the domain.
Some examples include polynomial functions and the family of RBF kernels. Next, we recall the following, well-known
identity theorem for real analytic functions.

Lemma 2 (Identity Theorem for Real Analytic Functions (Lebl, 2022)). Suppose f : U → R is a real analytic function
defined on a connected domain U ⊂ RK . If f = 0 on a nonempty, open subset V ⊂ U , then f ≡ 0 on U .

We also recall another important result about real analytic functions which we will use in our proof.

Lemma 3 (Zero sets of analytic functions have zero measure (Mityagin, 2015)). Let f : U → R be a real analytic function
on a connected open domain U ⊂ RK . If f is not identically zero, then its zero set

Λf = {x ∈ U | f(x) = 0}
has a zero Lebesgue measure µ(Λf ) = 0.

Using these results, we prove some useful results about linearly independent families of real analytic functions.

Lemma 4. Suppose F = {f1, . . . , fD} and G = {g1, . . . , gD} are two sets of linearly independent, real analytic functions
defined on G = (0, 1)K . Define the matrices

MF (ℓ1, . . . , ℓD) =

f1(ℓ1) . . . f1(ℓD)
...

...
fD(ℓ1) . . . fD(ℓD)

 MG(ℓ1, . . . , ℓD) =

g1(ℓ1) . . . g1(ℓD)
...

...
gD(ℓ1) . . . gD(ℓD)

 . (17)

Let
ΦF = {ℓ = (ℓ1, . . . , ℓD) | ℓi ∈ G,MF (ℓ) is full rank} (18)

denote the set of D−tuples in RK for which the matrix MF is full rank. Then

1. µ(ΦF ∩ ΦG) = 1. In particular, ΦF ∩ ΦG ̸= ∅.

2. ΦF ∩ ΦG is an open set.

Proof. 1. The complement of the set ΦF is

Φ∁
F = {ℓ = (ℓ1, . . . , ℓD) | ℓi ∈ G,det (MF ) (ℓ) = 0} .

Since det (MF ) (ℓ) is a polynomial in real analytic functions, it is also a real analytic function in RDK .

Note that since F is linearly independent, ΦF is non-empty. 1 Thus, det (MF ) (ℓ) is not identically zero. By Lemma 3,

1See for example:
https://math.stackexchange.com/questions/3516189/prove-existence-of-evaluation-points-suc
h-that-the-matrix-has-nonzero-determinan.

18

https://math.stackexchange.com/questions/3516189/prove-existence-of-evaluation-points-such-that-the-matrix-has-nonzero-determinan
https://math.stackexchange.com/questions/3516189/prove-existence-of-evaluation-points-such-that-the-matrix-has-nonzero-determinan
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µ
(
Φ∁
F

)
= 0. Similarly, µ

(
Φ∁
G

)
= 0, and µ

(
Φ∁
F ∩ Φ∁

G

)
≤ µ

(
Φ∁
F

)
= 0 =⇒ µ

(
Φ∁
F ∩ Φ∁

G

)
= 0. Thus, we obtain that

µ (ΦF ∩ ΦG) = µ (ΦF ) + µ (ΦG)− µ (ΦF ∪ ΦG)

= µ(G)− µ
(
Φ∁
F

)
+ µ(G)− µ

(
Φ∁
G

)
−
(
µ(G)− µ

(
Φ∁
F ∩ Φ∁

G

))
= µ(G)− µ

(
Φ∁
F

)
− µ

(
Φ∁
G

)
+ µ

(
Φ∁
F ∩ Φ∁

G

)
= 1.

2. Since the function det (MF ) (ℓ) is real analytic, it is also continuous. Since the zero set of a continuous function is
closed, Φ∁

F is closed, which implies that ΦF is open. Similarly, ΦG is open. Since the finite intersection of open sets is open,
ΦF ∩ ΦG is open.

Lemma 5. Suppose F = {f1, . . . , fD} is a set of linearly independent real analytic functions defined on G = (0, 1)K .
Then F is linearly independent in every non-empty open set U ⊂ G.

Proof. Suppose there exists a nonempty open set U ⊂ G in which F is linearly dependent. This implies ∃c1, . . . cD ∈ R,
not all zero, such that

D∑
i=1

cifi(ℓ) = 0 ∀ℓ ∈ U.

Then, by Lemma 2, the real analytic function
∑D
i=1 cifi(ℓ) is identically zero everywhere in G, which is a contradiction to

the linear independence of F .

We are now ready to prove the identifiability of the model under general, diffeomorphic non-linearities in the mapping
between the latent and observational space.

Theorem 2 (Identifiability of General SFPs). Suppose we are given two SFPs X = SFP
(
Z,F , {gℓ | ℓ ∈ G} , p

ε
(t)
ℓ

)
and

X̂ = SFP
(
Ẑ, F̂ , {ĝℓ | ℓ ∈ G} , p

ε
(t)
ℓ

)
specified by Equations 11 and 12 respectively, such that both F and F̂ belong to

the same (potentially infinite) family of linearly independent functions. Further, suppose that the following conditions are
satisfied:

1. Diffeomorphisms: For all ℓ ∈ G, gℓ, ĝℓ are diffeomorphisms, that is, gℓ, ĝℓ are invertible and continuously differentiable,
and their inverses are also continuously differentiable.

2. Real analytic functions: All the functions Fψi
∈ F , Fψ̂i

∈ F̂ are real analytic.

3. Non-degenerate latent processes: For all d ∈ [D], ∃ t0 ∈ [T ] such that Z(t0)
d ̸= 0, that is, none of the time series is

trivially zero. A similar condition holds for Ẑ.

4. Characteristic function of the noise: For all ℓ ∈ G and t ∈ [T ], the set
{
x ∈ R | φ

ε
(t)
ℓ

(x) = 0
}

has measure zero
where φ

ε
(t)
ℓ

represents the characteristic function of the density p
ε
(t)
ℓ

.

If p(X(t)(ℓ)|Z(t);Fℓ) = p
(
X̂(t)(ℓ)|Ẑ(t); F̂ℓ

)
for every ℓ ∈ G and t ∈ [T ], then Z = PSZ̃ and F = F̂ for some

permutation matrix P and scaling matrix S.

Proof. By Lemma 1, we obtain that,

p(X(t)(ℓ)|Z(t);Fℓ) = p
(
X̂(t)(ℓ)|Ẑ(t); F̂ℓ

)
=⇒ gℓ

(
F⊤
ℓ Z

(t)
)
= ĝℓ

(
F̂⊤
ℓ Ẑ

(t)
)

∀ℓ ∈ G, t ∈ [T ]

=⇒ F⊤
ℓ Z

(t) = g−1
ℓ ◦ ĝℓ

(
F̂⊤
ℓ Ẑ

(t)
)
= hℓ

(
F̂⊤
ℓ Ẑ

(t)
)

∀ℓ ∈ G, t ∈ [T ] (19)

19



Discovering Latent Causal Graphs from Spatiotemporal Data

where hℓ = g−1
ℓ ◦ ĝℓ. Defining ΦF and ΦF̂ as in equation 17, using Lemma 4, we get that ΦF ∩ΦF̂ ̸= ∅. Pick an arbitrary

point ℓ = (ℓ1, . . . , ℓD) ∈ ΦF ∩ ΦF̂ . Then, the matrices

MF (ℓ) =

Fψ1(ℓ1) . . . Fψ1(ℓD)
...

...
FψD

(ℓ1) . . . FψD
(ℓD)

 MF̂ (ℓ) =

Fψ̂1
(ℓ1) . . . Fψ̂1

(ℓD)
...

...
Fψ̂D

(ℓ1) . . . Fψ̂D
(ℓD)


are invertible. Evaluating equation 19 at the D points ℓ1, . . . , ℓD, we obtain:

MF (ℓ)
⊤Z(t) = Hℓ

(
MF̂ (ℓ)

⊤Ẑ(t)
)

=⇒ Z(t) =
(
MF (ℓ)

⊤)−1
Hℓ

(
MF̂ (ℓ)

⊤Ẑ(t)
)
:= Θℓ

(
Ẑ(t)

)
, (20)

where Hℓ(y) =
[
hℓ1(y1), . . . , hℓD (yD)

]⊤
for y ∈ RD. Since Hℓ is a component-wise invertible function, and

MF (ℓ),MF̂ (ℓ) are invertible matrices, the map Θℓ is an invertible map between Z(t) and Ẑ(t). Furthermore, the

above argument can be repeated for any arbitrary ℓ′ ∈ ΦF ∩ ΦF̂ to obtain Z(t) = Θℓ′

(
Ẑ(t)

)
. Thus, we have that

Z(t) = Θℓ

(
Ẑ(t)

)
= Θℓ′

(
Ẑ(t)

)
for ℓ, ℓ′ ∈ ΦF ∩ ΦF̂ . (21)

Now, consider the Jacobian
∂Z(t)

∂Ẑ(t)
= JΘℓ

(
Ẑ(t)

)
of the transformation Θℓ. Our goal is to prove that JΘℓ

is a permutation

scaling matrix, that is, for each i ∈ [D],
∂Z

(t)
i

∂Ẑ
(t)
j

is non-zero for exactly one value of j ∈ [D]. By the chain rule,

JΘℓ

(
Ẑ(t)

)
=
(
MF (ℓ)

⊤)−1
H ′

ℓ

(
MF̂ (ℓ)

⊤Ẑ(t)
)
MF̂ (ℓ)

⊤ (22)

where H ′
ℓ (y) =

h
′
ℓ1
(y1)

. . .
h′ℓD (yd)

 for y ∈ RD.

Taking the log-determinant of equation 22, we obtain

log
∣∣∣det JΘℓ

(
Ẑ(t)

)∣∣∣ = log
∣∣∣det (MF (ℓ)

⊤)−1
∣∣∣+ log

∣∣det (MF̂ (ℓ)
⊤)∣∣+ D∑

k=1

log
∣∣∣h′ℓk (F̂ℓk Ẑ(t)

)∣∣∣ (23)

Differentiating both sides of equation 23 with respect to Ẑ
(t)
i , we obtain:

∂

∂Ẑ
(t)
i

log
∣∣∣det JΘℓ

(
Ẑ(t)

)∣∣∣ = D∑
k=1

h′′ℓk

(
F̂⊤
ℓk
Ẑ(t)

)
h′ℓk

(
F̂⊤
ℓk
Ẑ(t)

)Fψ̂i
(ℓk). (24)

By the second part of Lemma 4, ΦF ∩ ΦF̂ is open. Thus, ∃r > 0 such that BDK (ℓ, r) ⊂ ΦF ∩ ΦF̂ , where BDK(ℓ, r)
denotes the open ball in RDK centered around ℓ with radius r > 0. Choose an arbitrary unit vector u ∈ RK and consider

the point ℓ′ = (ℓ1 + δu, ℓ2, . . . , ℓD) such that δ < r. Since JΘℓ

(
Ẑ(t)

)
=
∂Z(t)

∂Ẑ(t)
= JΘℓ′

(
Ẑ(t)

)
for ℓ, ℓ′ ∈ ΦF ∩ ΦF̂ ,
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log
∣∣∣det JΘℓ

(
Ẑ(t)

)∣∣∣ = log
∣∣∣det JΘℓ′

(
Ẑ(t)

)∣∣∣. From equation 24, we obtain

∂

∂Ẑ
(t)
i

log
∣∣∣det JΘℓ

(
Ẑ(t)

)∣∣∣ = D∑
k=1

h′′ℓk

(
F̂⊤
ℓk
Ẑ(t)

)
h′ℓk

(
F̂⊤
ℓk
Ẑ(t)

)Fψ̂i
(ℓk)

=
h′′ℓ1+δu

(
F̂⊤
ℓ1+δu

Ẑ(t)
)

h′ℓ1+δu

(
F̂⊤
ℓ1+δu

Ẑ(t)
)Fψ̂i

(ℓ1 + δu) +

D∑
k=2

h′′ℓk

(
F̂⊤
ℓk
Ẑ(t)

)
h′ℓk

(
F̂⊤
ℓk
Ẑ(t)

)Fψ̂i
(ℓk)

=
∂

∂Ẑ
(t)
i

log
∣∣∣det JΘℓ′

(
Ẑ(t)

)∣∣∣
=⇒

h′′ℓ1+δu

(
F̂⊤
ℓ1+δu

Ẑ(t)
)

h′ℓ1+δu

(
F̂⊤
ℓ1+δu

Ẑ(t)
)Fψ̂i

(ℓ1 + δu) =
h′′ℓ1

(
F̂⊤
ℓ1
Ẑ(t)

)
h′ℓ1

(
F̂⊤
ℓ1
Ẑ(t)

)Fψ̂i
(ℓ1) (25)

Since δ < r and u are arbitrary, the function

Γi(Ẑ
(t)) =

h′′ℓ

(
F̂⊤
ℓ Ẑ

(t)
)

h′ℓ

(
F̂⊤
ℓ Ẑ

(t)
)Fψ̂i

(ℓ) (26)

is a constant with respect to ℓ for ℓ ∈ BK(ℓ1, r). Differentiating equation 23 with respect to Ẑ
(t)
j , j ̸= i and repeating the

above argument, we obtain that

Γj(Ẑ
(t)) =

h′′ℓ

(
F̂⊤
ℓ Ẑ

(t)
)

h′ℓ

(
F̂⊤
ℓ Ẑ

(t)
)Fψ̂j

(ℓ) (27)

is constant with respect to ℓ for ℓ ∈ BK(ℓ1, r). From equations 26 and 27,

Fψ̂i
(ℓ)Γj(Ẑ

(t)) = Fψ̂j
(ℓ)Γi(Ẑ

(t)), ℓ ∈ BK(ℓ1, r). (28)

Note that since Fψ̂i
and Fψ̂j

are linearly independent in G, by Lemma 5, they are also linearly independent for ℓ ∈ BK(ℓ1, r),

which implies that Γi(Ẑ(t)) = Γj(Ẑ
(t)) = 0. Since these arguments can be repeated for any distinct indices i, j ∈ [D], we

infer that

Γi(Ẑ
(t)) =

h′′ℓ

(
F̂⊤
ℓ Ẑ

(t)
)

h′ℓ

(
F̂⊤
ℓ Ẑ

(t)
)Fψ̂i

(ℓ) = 0 ∀i ∈ [D], ℓ ∈ BK(ℓ1, r). (29)

Note that equation 29 implies that h′′ℓ
(
F̂⊤
ℓ Ẑ

(t)
)
≡ 0 ∀ℓ ∈ BK(ℓ1, r), Ẑ

(t) ∈ RD, otherwise, if for some ℓ0 and Ẑ(t),

the value of h′′ℓ0
(
F̂⊤
ℓ0
Ẑ(t)

)
̸= 0, then F

ψ̂i
(ℓ0) = 0 ∀i ∈ [D] which would contradict the invertibility of MF̂ (ℓ0) for

ℓ0 ∈ BK(ℓ1, r) ⊂ ΦF ∩ ΦF̂ .

Therefore,

h′ℓ

(
F̂⊤
ℓ Ẑ

(t)
)
= c0 ∀ℓ ∈ BK(ℓ1, r) (30)

for some constant c0 ∈ R.

Now, we differentiate both sides of equation 19 with respect to Ẑ
(t)
i to obtain:

D∑
k=1

Fψk
(ℓ)

∂Z
(t)
k

∂Ẑ
(t)
i

= h′ℓ

(
F̂⊤
ℓ Ẑ

(t)
)
Fψ̂i

(ℓ). (31)

For ℓ ∈ BK(ℓ1, r), the above equation becomes:

D∑
k=1

Fψk
(ℓ)

∂Z
(t)
k

∂Ẑ
(t)
i

= c0Fψ̂i
(ℓ). (32)

Once again, using Lemma 5, F = {Fψ1
, . . . , FψD

} is linearly independent for ℓ ∈ BK(ℓ1, r). If Fψ̂i
̸= Fψk

for some
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k ∈ [D], then due to linear independence,
∂Z

(t)
k

∂Ẑ
(t)
i

= 0 ∀k ∈ [D]. However, this leads to a contradiction, since Z(t) and

Ẑ(t) are related by an invertible map, which means the corresponding Jacobian matrix is full-rank.

Therefore, Fψ̂i
= Fψk

for some k ∈ [D], and
∂Z

(t)
k

∂Ẑ
(t)
i

is non-zero for exactly one k ∈ [D]. Repeating the argument for all

i ∈ [D] yields the result.

A.3. Theoretical assumptions for Rhino

Since our method, SPACY, relies on Rhino for latent causal discovery, we list the theoretical assumptions used in Gong et al.
(2023) for the sake of completeness.

The Rhino model is specified by the following equation:

Z
(t)
i = fi

(
PaiG(< t),PaiG(t)

)
+ gi

(
PaiG(< t), ϵ

(t)
i

)
where fi is a general differentiable non-linear function, and gi is a differentiable transform that models the history-dependent
noise. The model is known to be identifiable when the following assumptions are satisfied:

Assumption 1 (Causal Stationarity). (Runge, 2018) The time series Z with a graph G is called causally stationary over a
time index set T if and only if for all links Z(t−τ)

i → Z
(t)
j in the graph

Z
(t−τ)
i ⊥̸⊥ Z

(t)
j | Z(t)\

{
Z

(t−τ)
i

}
holds for all t ∈ T .

Informally, this assumption states that the causal graph does not change over time, i.e., the resulting time series is stationary.

Assumption 2 (Causal Markov Property). (Peters et al., 2017) Given a DAG G and a probability distribution p, p is said to

satisfy the causal Markov property, if it factorizes according to G, i.e. p(Z) =
D∏
i=1

p
(
Zi | PaiG(Zi)

)
. In other words, each

variable is independent of its non-descendent given its parents.

Assumption 3 (Causal Minimality). Given a DAG G and a probability distribution p, p is said to satisfy the causal
minimality with respect to G, if p is Markovian with respect to G but not to any proper subgraph of G.

Assumption 4 (Causal Sufficiency). A set of observed variables V is said to be causally sufficient for a process Z(t) if, in
the process, every common cause of two or more variables in V is also in V , or is constant for all units in the population. In
other words, causal sufficiency implies the absence of latent confounders in the data.

Assumption 5 (Well-defined Density). The likelihood of Z(t) is absolutely continuous with respect to a Lebesgue or
counting measure and

∣∣log p (Z(0:T );G
)∣∣ <∞ for all possible G.

Assumption 6 (Conditions on f and g). The following conditions are satisfied:

1. All functions fi, gi and induced distributions are third-order differentiable.

2. fi is non-linear and not invertible w.r.t any nodes in PaiG(t).

3. The double derivative
(
log pgi

(
gi

(
ϵ
(t)
i | PaG(< t)

)))′′
w.r.t ϵ(t)i is zero at most on some discrete points.

B. Implementation Details
B.1. Linear variant of SPACY

We also implement a linear variant of SPACY, called SPACY-L. This variant models linear relationships with independent
noise. fd is defined as:

fd
(
PadG(≤ t)

)
=

τ∑
k=0

D∑
d′=1

(G ◦W )kd′,d × Zt−kd′ , (33)
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where ◦ denotes the Hadamard product, and W ∈ R(τ+1)×D×D is a learned weight tensor. We assume that ηtd is isotropic
Gaussian noise.

B.2. Loss Terms

We explain how we implement the various loss terms in equation 4.

The first term log pθ

(
X(1:T ),n|Z(1:T ),n,F

)
in equation 4 represents the conditional likelihood of the observed data X(1:T ),n

conditioned on Z(1:T ),n and F. This is calculated as the mean squared error (MSE) between the recovered and original time
series:

log pθ

(
X(1:T ),n|Z(1:T ),n,F

)
=

L∑
ℓ=1

∥∥∥X(1:T ),n
ℓ − X̂

(1:T ),n
ℓ

∥∥∥2
where X̂

(t),n
ℓ = gℓ

(
[FZ]

(t)
ℓ

)
is the reconstructed time-series from the spatial factor F and latent time series Z sampled

from the variational distributions.

The term log pθ

(
Z(1:T ),n|G

)
denotes the conditional likelihood of the latent time-series given the sampled graph G.

For SPACY-L, this is implemented as follows:

log pθ

(
Z(1:T ),n

∣∣∣G) (34)

=

T∑
t=L

D∑
d=1

log pθ

(
Z

(t),n
d

∣∣∣PadG(≤ t)
)

=

T∑
t=L

D∑
d=1

Z
(t),n
d −

τ∑
k=0

D∑
j=1

(G ◦W )
k
j,d × Z

(t−k),n
j

2

.

In (the nonlinear variant of) SPACY, we use the conditional spline flow model employed in Durkan et al. (2019); Gong et al.
(2023). The conditional spline flow model handles more flexible noise distributions, and can also model history-dependent
noise. The structural equations are modeled as follows:

Z
(t)
d = fd

(
PadG(< t),PadG(t)

)
+ wd

(
PadG(< t)

)
,

where fd
(
PadG(< t),PadG(t)

)
takes the form presented in equation 2. The spline flow model uses a hypernetwork that

predicts parameters for the conditional spline flow model, with embeddings F , and hypernetworks ξη and λη. The only
difference is that the output dimension of ξη is different, being equal to the number of spline parameters.

The noise variables η(t)d are described using a conditional spline flow model,

pwd
(wd(η

(t)
d ) | PadG(< t)) = pη(η

(t)
d )

∣∣∣∣∣∂(wd)−1

∂η
(t)
d

∣∣∣∣∣ , (35)

with η(t)d modeled as independent Gaussian noise.

The marginal likelihood becomes:

log pθ

(
Z(1:T ),n

∣∣∣G) =

T∑
t=τ

D∑
d=1

log pθ

(
Z

(t),n
d

∣∣∣PadG(< t),PadG(t)
)

=

T∑
t=τ

D∑
d=1

log pwd

(
u
(t),n
d

∣∣∣PadG(< t)
)

(36)

where u(t),nd = Z
(t),n
d − fd

(
PadG(< t),PadG(t)

)
.
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The prior distribution p(G) is modeled as follows:

p(G) ∝ exp

(
−α

∥∥∥G(0:T )
∥∥∥2 − σh

(
G(0)

))
. (37)

The first term is a sparsity prior and h
(
G(0)

)
is the acyclicity constraint from Zheng et al. (2018).

The terms Eqϕ(Z(1:T ),n|X(1:T ),n)

[
− log qϕ

(
Z(1:T ),n|X(1:T ),n

)]
,Eqϕ(G)[− log qϕ(G)] and Eqϕ(F)[− log qϕ(F)] represent

the entropies of the variational distributions and are evaluated in closed form, since their parameters are modeled as samples
from Gaussian and Bernoulli distributions.

Finally, the prior term p(F) is evaluated based on the assumed generative distribution mentioned in equation 3.

B.3. Spatial Factors

As detailed in the main paper, we use spatial factors with RBF kernels to model the spatial variability in the data. To capture
more complex spatial structures, we model the scale by introducing two additional parameter matrices A and B. The matrix

A =

[
a b
c d

]
and the vector B =

[
e
g

]
together influence the covariance structure of the RBF. Specifically, the covariance

matrix Σ is constructed as:
Σ = AAT + exp(B), (38)

This covariance structure enables the RBF to capture anisotropic scaling in different directions. The matrix AAT provides a
base covariance matrix, while the exponential transformation of B ensures that the resulting matrix is positive definite. As a
result, the RBF kernel, which determines the spatial factor F, is defined as:

Fℓd = exp

(
−1

2
∥xℓ − ρd∥2Σ−1

)
, (39)

where xℓ denotes the spatial coordinates of the ℓth grid point, and ∥xℓ − ρd∥2Σ−1 = (xℓ − ρd)
TΣ−1(xℓ − ρd) represents a

Mahalanobis distance, allowing the RBF to have a more sophisticated shape that depends on the learned covariance Σ.

B.3.1. CHOICE OF METRIC IN THE SPATIAL KERNELS

Spatiotemporal data can originate from various sources, take different forms, and represent a range of phenomena. As a
result, the choice of distance metric depends on the application: for local phenomena, Euclidean distance may suffice, while
global analyses may require metrics that account for the Earth’s curvature. To accommodate this diversity, SPACY allows
for flexible modeling by incorporating different metrics with the spatial kernels in the spatial factors.

In this work, we use the SPACY with the RBF kernel equipped with two different metrics based on the target dataset.

Euclidean Distance. For Cartesian coordinate systems underlying our synthetic datasets, we employ the standard Euclidean
distance:

dEuc(xℓ, xℓ′) = ∥xℓ − xℓ′∥2 =

√√√√ K∑
k=1

(xℓ,k − xℓ′,k)2 (40)

where K is the number of spatial dimensions.

Haversine Distance. For Earth-scale climate observations, we compute great-circle distances using the Haversine formula:

dHav(xℓ, xℓ′) = 2r arcsin

(√
sin2

(
∆ϕ

2

)
+ cosϕi cosϕj sin

2

(
∆λ

2

))
(41)

where (ϕi, λi) are latitude/longitude coordinates, ∆ϕ = ϕj − ϕi, ∆λ = λj − λi, and r is Earth’s radius. This preserves the
inherent spherical geometry of the climate dataset.

B.4. Multivariate Extension

We extend SPACY to address multivariate observational time series, where X ∈ RV×L×T , V ≥ 1 represents variates or
domains. We make the following changes to the model architecture. The observed timeseries

(
X

(1:T )
1:L

)
(1:V )

∈ RV×L×T

now includes observations from multiple variates, with X(v) representing observed data specific to variate v.
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Forward Model. For each variate v, we learn Dv nodes, such that D =
∑V
v=1Dv, where the Dv, v ∈ V are input

as hyperparameters. We learn separate spatial factors F(v) ∈ RL×Dv for each variate v. Let Z(v) ∈ RDv×T denote
the latent variables inferred from the vth variate. We perform causal discovery on the concatenated representations
Z =

[
Z(1), . . . ,Z(V )

]
∈ RD×T . In order to map from the latent representations to the multivariate observational space, we

perform the tensor multiplication, defined below:

X
(t)
ℓ,(v) = g

(v)
ℓ

([
F(v)Z(v)

](t)
ℓ

)
+ ε

(t)
ℓ,(v), ε

(t)
ℓ,(v) ∼ N (0, σ2

ℓ I) (42)

where g(v)ℓ is the variate-specific nonlinearity. We implement g(v)ℓ as:

g
(v)
ℓ (x) = Ξ

(
[x,Eℓ,(v)]

)
with learned embedding E ∈ RV×L×f , where f is the embedding dimension.

Variational Inference. To model the variational distribution of the latent variables, we use a separate multilayer perceptron
(MLP) for each variate. Specifically, ζ(v)µ computes the mean, and ζ(v)σ2 computes the log-variance of the variational
distribution for the vth variate.

qϕ

(
Z

(1:T )
(v) |X(1:T )

(v)

)
= N

(
ζ(v)µ (X

(t)
(v)), exp

(
ζ
(v)
σ2 (X

(t)
(v))
))

.

B.5. Training Details

We use an 80/20 training and validation split to evaluate the validation likelihood during training. We use an augmented
Lagrangian training procedure to enforce the acyclicity constraint in the model (Zheng et al., 2018). We closely follow the
procedure employed by Geffner et al. (2022); Gong et al. (2023) for scheduling the learning rates (LRs) across different
modules of our model.

Freezing Latent Causal Modules. To stabilize the training and ensure accurate causal discovery, we freeze the parameters
of the latent SCM and causal graph, and only train the spatial factors and encoder for the first 200 epochs. This allows the
spatial factor parameters to be learned without interference from incorrect causal relationships in the latent space. Once
these modules are unfrozen after 200 epochs, the complete forward model and variational distribution parameters are trained
jointly for the rest of the training process.

B.6. Evaluation Details

We use the mean correlation coefficient (MCC) as a measure of alignment between the inferred and true latent variables,
widely used in causal representation learning works (Yao et al., 2022b;a). Here, MCC is computed as the mean of the
correlation coefficients between each pair of true and inferred latent variables to measure how well the inferred latent time
series match the true underlying latent time series.

To evaluate the accuracy of inferred causal graphs and representations, we find a permutation to match the nodes of the
inferred graph to the ground truth. Specifically, we apply the Hungarian algorithm to find the optimal permutation of nodes
that aligns the inferred graph’s adjacency matrix with the ground truth, minimizing the discrepancies between them. This
optimal permutation is then used to calculate both the F1 Score and the Mean Correlation Coefficient (MCC).

C. Experimental Details
C.1. Synthetic Datasets

This section provides more details about how we set up and run experiments using SPACY on synthetic datasets.

C.1.1. DATASET GENERATION

The spatial decoder, represented by the function gℓ, is configured to be linear or nonlinear, depending on the experimental
setting. For the linear setting, gℓ is set to the identity function, while for nonlinear scenarios, we use randomly initialized
MLPs. We generate N = 100 samples of data, with T = 100 time length each and represented on a grid of size 100× 100.
We vary the number of nodes (D = 10, 20 and 30) in each setting.
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For the ground-truth latent, we generate two separate sets of synthetic datasets: a linear dataset with independent Gaussian
noise and a nonlinear dataset with history-dependent noise modeled using conditional splines (Durkan et al., 2019). We
generate a random graph (specifically, Erdős-Rényi (ER) graphs) and treat it as the ground-truth causal graph. Specifically,
we sample (directed) temporal adjacency matrices G ∈ R(τ+1)×D×D with 4 ×D edges in the instantaneous adjacency
matrix and 2×D connections in the lagged adjacency matrices. We regenerate the adjacency matrix until the instantaneous
graph is a DAG.

Linear SCM. We model the data as:

Z
(t)
d =

τ∑
k=0

D∑
d′=1

(G ◦W )kd′,d × Zdt−k + ηtd (43)

with ηtd ∈ N (0, 0.5). Each entry of the matrix W is drawn from U [0.1, 0.5] ∪ U [−0.5,−0.1]

Non-linear SCM We model the data as:
Z

(t)
d = fd

(
PadG(< t),PadG(t)

)
+ η

(t)
d

where fd are randomly initialized multi-layer perceptions (MLPs), and the random noise η(t)d is generated using history-
conditioned quadratic spline flow functions (Durkan et al., 2019). The MLPs for the functional relationships are
fully-connected with two hidden layers, 64 units and ReLU activation. The history dependency is modelled as a product of a
scale variable obtained by the transformation of the averaged lagged parental values through a random-sampled quadratic
spline, and Gaussian noise variable. Each sample of the synthetic datasets is generated with a series length of 200 steps with
a burn-in period of 100 steps.

Spatial Factors To generate the spatial factor matrices F, we first sample the centers ρd of the RBF kernels uniformly over
the grid while enforcing a minimum distance constraint to ensure separation between centers. Specifically, the minimum
distance between any two centers is set to be 1

10 of the grid dimension. The scales γd are sampled to define the extent of
each RBF kernel, drawn uniformly from the range U [3, 6]. With these parameters, each entry of the spatial factor matrix Fℓd
is determined by the RBF kernel as follows:

Fℓd = exp

(
−||xℓ − ρd||2

exp(γd)

)
,

where xℓ denotes the spatial coordinates of the ℓth grid point, ρd is the center, and γd is the scale of the dth latent variable.

Spatial Mapping For the generation of Xℓ, we pass the product of the spatial factors and the latent time series through a
non-linearity gℓ:

Xℓ = gℓ ([FZ]ℓ) + εℓ, εℓ ∼ N (0, σ2
ℓ I) (44)

where gℓ is the spatial mapping. It is implemented as a randomly initialized multi-layer perception (MLP) with the
embedding of dimension 1 in the non-linear map setting, or as an identity function in the linear map setting. εℓ is the
grid-wise Gaussian noise added.

Multivariate For the multi-variate experiments, we consider a setting with V = 2 variates to evaluate the performance of
SPACY in capturing inter-variate interactions. The latent dimension is set to D = 10, with each variate-specific spatial
factor contributing independently to the observed data. We generate the datasets with D1 = D2 = 5 nodes, according to the
forward model described in Appendix B.4.

C.2. Baselines

For all baselines, we used the default hyperparameter values. We use the Mapped-PCMCI implementation from (Tibau
et al., 2022)2. For Linear-Response we refer to the implementation from (Falasca et al., 2024)3. For LEAP and TDRL, we
implemented the encoder and decoder using convolution neural networks as this choice best fits our data modality. For
LEAP we used the CNN encoder and decoder architecture from the mass-spring system experiment. 4. For TDRL we used

2Mapped-PCMCI: https://github.com/xtibau/savar
3Linear-Response: https://github.com/FabriFalasca/Linear-Response-and-Causal-Inference
4LEAP: https://github.com/weirayao/leap
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the CNN encoder and decoder architecture from the modified cartpole environment experiment 5. For TensorPCA-PCMCI
we implement a model based on the formulation from (Babii et al., 2023) and PCMCI+ (Runge, 2020b).

For multi-variate experiments (Synthetic, Climate) with Mapped-PCMCI, we run Varimax-PCA on each of the variates
separately to obtain Dv principal components for each v ∈ [V ]. We concatenate the principal components to produce
D =

∑V
v=1Dv nodes and perform causal discovery with PCMCI+.

C.3. Hyperparameters

In this section, we list the hyperparameters choices for SPACY in our experiments.

Dataset Synthetic (D = 10, 20, 30) Synthetic-Multivariate Global Temperature
Hyperparameter
Matrix LR 10−3 10−3 10−3

SCM LR 10−3 10−3 10−3

Spatial Encoder LR 10−3 10−3 10−3

Spatial Factor LR 10−2 10−2 10−2

Spatial Decoder LR 10−3 10−3 10−3

Batch Size 100 100 500
# Outer auglag steps 60 60 60
# Max inner auglag steps 6000 6000 6000
ξf , λf embedding dim 64 64 64
Sparsity factor α 10 10 40
Spline type Quadratic Quadratic Quadratic
gℓ embedding dim 32 32 32

Table 2: Table showing the hyperparameters used with SPACY.

For the Synthetic, Synthetic-Multivariate, and Global Climate datasets, the outer augmented Lagrangian (auglag) steps are
set to 60, with a maximum of 6000 inner auglag steps. For Synthetic datasets we used batch size of 100 samples per training,
and 500 for Global Climate datasets.

We used the rational spline flow model described in (Durkan et al., 2019). We use the quadratic rational spline flow model in
all our experiments, with 8 bins. The MLPs ξf and λf have 2 hidden layers each and LeakyReLU activation functions. We
also use layer normalization and skip connections. Table 2 summarizes the hyperparameters used for training.

C.4. Visualization details

We visualize the spatial factors for both the synthetic and global temperature experiments by identifying regions where
individual nodes exert significant spatial influence. For each node d, we threshold the spatial factors Fd by selecting values
above a specified percentile (e.g., 95%), resulting in a binary mask that highlights areas of dominant activity. These masks
are then aggregated to produce a comprehensive visualization of the spatial influence patterns across all nodes, revealing
both their individual spatial footprints and areas of overlap.

For spatial factors with complex structure, we further simplify the representation by merging nearby nodes based on the
proximity of their centers. Specifically, we compute pairwise distances between node centers and merge nodes whose
distances fall below a percentile-based threshold (e.g., the lowest 5%), yielding a more interpretable depiction of the global
spatial dynamics.

D. Additional Results
D.1. Qualitative Results

Figure 8 shows a comparison between the ground truth, inferred spatial factors by SPACY, spatial matrix W inferred by
CDSD, and mode weights by Mapped PCMCI on synthetic datasets. Overall, we observe that the inferred spatial factors

5TDRL: https://github.com/weirayao/tdrl
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from SPACY align well with the ground truth nodes in terms of location and scales with minor deviations in shape. In the
non-linear SCM dataset, the model shows some slight errors with at most 1 missing mode (for Non-linear SCM, Nonlinear
Mapping). This is also reflected by the quantitative results as performance falls slightly for this setting.

The spatial matrix W inferred by CDSD demonstrates overall strong performance, achieving competitive accuracy in linear
settings. However, failures begin to emerge in non-linear configurations, where mode collapse occurs. This phenomenon
leads to missing nodes and causes the spatial representations to scatter across the grid rather than localizing distinct modes.

The spatial factors, or mode weights as referred to in Tibau et al. (2022), recovered by Mapped PCMCI, perform competitively
in linear mapping settings. However, similar to CDSD, its accuracy deteriorates when non-linear spatial transformations are
applied, leading to artifacts and errors in node identification. In particular, for the Non-linear SCM and Nonlinear Mapping
cases, Mapped PCMCI misidentifies several latent representations, with some modes being incorrectly placed inside others,
highlighting its limitations in handling complex spatial structures.

D.2. Multivariate Synthetic Dataset

Setting Method F1 MCC

Linear SCM,
Linear gℓ

M-PCMCI 0.334 0.969
T-PCMCI 0.127 0.670
SPACY 0.656±0.0 0.920±0.1

Linear SCM,
Non-linear gℓ

M-PCMCI 0.387 0.924
T-PCMCI 0.115 0.660
SPACY 0.596±0.1 0.834±0.0

Non-linear SCM,
Linear gℓ

M-PCMCI 0.178 0.883
T-PCMCI 0.032 0.644
SPACY 0.461±0.0 0.895±0.1

Non-linear SCM,
Non-linear gℓ

M-PCMCI 0.170 0.807
T-PCMCI 0.039 0.573
SPACY 0.509±0.1 0.825±0.1

Table 3: Results on different configurations of the multi-variate synthetic datasets. M-PCMCI and T-PCMCI are the
respective baselines Mapped-PCMCI (Tibau et al., 2022) and TensorPCA-PCMCI (Babii et al., 2023). We report the F1 and
MCC scores for latent dimension D = 10. Average over 5 runs reported

For multi-variate settings, we include the two-step baseline TensorPCA + PCMCI+ (Babii et al., 2023) in addition to
Mapped PCMCI. The results of multi-variate synthetic experiments are shown in Table 3. SPACY maintains its performance
advantage in the multi-variate setting, where it consistently outperforms the baselines in terms of causal discovery F1 score.
Similar to the univariate case, Mapped-PCMCI performs well in terms of MCC but fails to recover the causal links accurately.
SPACY outperforms Mapped-PCMCI in terms of both MCC and F1 score in the non-linear SCM settings. TPCA-PCMCI
falls short in all settings. Figure 9 provides a visual illustration of the recovered spatial factor for multi-variate setting for
SPACY.

D.3. Ablation Study

Over-specifying D. SPACY requires specifying the number of latent variables D as a hyperparameter. In practice, the
exact number of underlying factors is often unknown. We examine the effect of overspecifying D by setting it to D∗ + 10,
where D∗ represents the true number of nodes used to generate the data. Additionally, we explored the robustness of the
model over different levels of parameterizations with D∗ + n, n ∈ {0, 2, 5, 7, 10} We use the synthetic dataset with grid
dimensions 100× 100, linear SCM and non-linear mapping.

Figure 10 illustrates the results of our experiment. When D∗ = 10, despite over-specifying the number of nodes, the inferred
spatial modes’ general locations align well with the ground truth. The presence of additional modes does not significantly
detract from the accuracy of detecting the primary spatial modes. This suggests that SPACY maintains robust learning
of latent representations even when D exceeds the true number of spatial factors. This observation also holds true when
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comparing the causal discovery performance using the F1 score.

Figure 11 illustrates the results of our exploration on different levels of over-parameterizations. As the latent dimension
increases, the performance does not degrade. This suggests that SPACY maintains robust learning of latent representations
across different levels of over-parameterization, offering flexibility in the choice of the hyperparameter D when there is
uncertainty about the true latent dimensionality.

Different Kernels We experiment with different spatial kernel functions in order to test SPACY’s robustness to the choice
of kernel used in modeling the spatial factors. We use the synthetic dataset with linear SCM and nonlinear spatial mapping,
where the ground truth spatial mapping is generated using RBF kernels.

The Matérn kernel is a generalization of the Radial Basis Function (RBF) kernel and is widely used in spatial statistics and
machine learning due to its flexibility in modeling functions of varying smoothness. The Matérn kernel is defined as:

kMatérn(r) =
21−ν

Γ(ν)

(√
2ν
r

s

)ν
Kν

(√
2ν
r

s

)
,

where:

• r = ∥ℓ− ℓ′∥ is the Euclidean distance between points ℓ and ℓ′,

• s is the length scale,

• ν > 0 controls the smoothness of the function,

• Γ(·) is the gamma function,

• Kν(·) is the modified Bessel function of the second kind.

For specific values of ν, the Matérn kernel simplifies to closed-form expressions:

• When ν = 1.5:
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These formulations allow us to model functions with different degrees of smoothness, providing a more flexible approach
compared to the RBF kernel.

We test SPACY with the Matérn kernel using two settings: ν = 1.5 and ν = 2.5. Figure 12 presents the F1-Score and
MCC for SPACY using the RBF kernel and both Matérn kernel settings. The results show that SPACY achieves similar
performance with the Matérn kernels compared to the RBF kernel, indicating that the variational inference framework
effectively generalizes across different kernel functions. The inferred spatial modes’ general locations and scales align well
with the ground truth across all kernel settings (illustrated in Figure 13). This consistency demonstrates that SPACY’s spatial
representations are robust to the choice of kernel function.

How well do the RBF Kernels approximate anisotropy? While SPACY’s theoretical framework supports fully
anisotropic spatial kernels, we use RBF kernels in our experiments since they parsimoniously capture high-level fea-
tures. In this experiment, we verify SPACY’s robustness when modeling data generated from non-isotropic spatial factors
using only isotropic RBF kernels. To create challenging test conditions, we first generate synthetic data with irregular
anisotropic spatial factors defined as:

Fi((x, y)) = exp

(
− (u(x, y)− x

(i)
0 )2

2(σ
(i)
x )2

− (v(x, y)− y
(i)
0 )2

2(σ
(i)
y )2

)
(45)
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where x0 and y0 denote fixed points corresponding to the ‘center’ of the factors, and the coordinates are warped via
sinusoidal transformations:

u(x, y) = x+A(i) sin(ω(i)(x− x
(i)
0 )) sin(ω(i)(y − y

(i)
0 ))

v(x, y) = y +A(i) cos(ω(i)(x− x
(i)
0 )) cos(ω(i)(y − y

(i)
0 ))

Here, A(i) and ω(i) control the amplitude and frequency of spatial distortion for the i-th latent factor. We test with sampled
warp parameters (A ∈ Uniform([2, 4]), ω ∈ Uniform([0.1, 0.3])) to simulate complex neural response fields. The results
are presented in Figure 14, which demonstrates that SPACY achieves accurate localization and scale estimation for latent
variables, even under irregular and anisotropic spatial factors. The high F1-Score and MCC further validate SPACY’s robust
performance when using RBF-based approximation on irregularly structured data, confirming its ability to reconstruct the
underlying causal graph effectively.

D.4. Global Climate

The Global Climate Dataset is a comprehensive, mixed real-simulated dataset encompassing monthly global temperature
and precipitation data spanning the years 1999 to 2001. It contains 7531 simulated samples, each over a time period of 24
months, covering the entire globe at a fine spatial resolution. The grid size is 145 × 192, which corresponds to a spatial
division of approximately 1.24◦ latitude and 1.875◦ longitude. This spatial resolution allows the dataset to provide detailed
global coverage, capturing temperature and precipitation variations across diverse geographical regions. The resulting
data dimensions are 7531 × 2 × 24 × 145 × 192, representing the total number of samples, variates (temperature and
precipitation), the temporal sequence, and the spatial grid, respectively.

To facilitate causal analysis of complex climate phenomena beyond seasonal patterns, we apply a de-seasonality procedure.
This normalization process involves computing the monthly mean for each month across all years and then subtracting
the mean from the data of the corresponding month (for example, normalizing all January data by the mean of all January
values).

For our analysis, we use the nonlinear variant of the SPACY method to uncover latent representations within the data.
Specifically, we use 50 latent variables (denoted as D = 50) and a maximum lag of six months (τ = 6). We set
D1 = D2 = 25 latent variables. Figure 15 shows the inferred spatial modes across the different nodes, and the causal graph.
We observe that the inferred modes are spatially confined, each with a distinct center and scale, which leads to improved
interpretability.

Figure 16 presents the visualization of the modes and causal graph inferred by Mapped-PCMCI. The recovered spatial
factors capture spatial correlations within each variate, revealing diffuse locality patterns in some regions such as Australia,
Africa, and East Asia. This pattern is most noticeable in the temperature variate, where localized structures emerge. However,
most inferred modes appear dispersed across the map, especially in the precipitation variate, suggesting that the underlying
spatial structure lacks clear partitioning into distinct, interpretable modes.

Figures 17 and 18 show the node-wise visualization of modes inferred by Mapped-PCMCI, with demonstrations of individual
inferred modes for both variates. The visualizations show that many modes recovered by Varimax are diffuse, uninterpretable,
and lack clear physical locations, with clusters (e.g., node 42, 44) suggesting similar underlying components.
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Figure 8: Visualization of the ground-truth and inferred spatial factors for different combinations of linear and nonlinear
functions for SCMs and spatial mappings (top row: ground-truth, second row: inferred by SPACY, third row: inferred by
CDSD (Boussard et al., 2023; Brouillard et al., 2024), bottom row: computed by Mapped-PCMCI (Tibau et al., 2022)). We
demonstrate the visualization when latent dimension D = 10
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Ground truth SPACY
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Figure 9: Example visualization of the ground-truth and inferred spatial factors for multi-variate synthetic dataset(top row:
first variate, bottom row: second variate). We demonstrate the visualization where latent dimension D = 10, Linear SCM
and Non-linear Mapping

.

(a) GT modes (b) Inferred modes

D∗ F1 score F1 score
(D = D∗) (D = D∗ + 10)

10 0.623± 0.06 0.642± 0.07
20 0.752± 0.03 0.549± 0.03
30 0.596± 0.05 0.529± 0.06

(c) Causal discovery performance of SPACY-L

Figure 10: Overview of the results for over-specification ablation study. (a) Visualization of the ground-truth location and
scale of the spatial modes. (b) Visualization of the inferred location and scale when we over-specify the number of nodes.
(c) Causal discovery performance after matching and eliminating nodes. Average over 5 seeds reported

Figure 11: Different levels of over-specification ablation study. Average of 5 seeds reported
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Figure 12: The causal discovery performance (F1 score) of SPACY using different kernel functions as spatial factors.
Average of 5 seeds reported

Figure 13: Overview of the visualization of the spatial factor when using different kernel functions. We compare inferred
spatial factors using RBF, Matern Kernel (ν = 1.5), and Matern Kernel (ν = 2.5) with the ground truth spatial factors
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Ground Truth Isotropic Estimation

Figure 14: Visualization and results of the ground-truth spatial factors with irregular kernels, and the isotropic estimation by
SPACY. Average of 5 seeds reported

Precipitation Temperature Combined

Figure 15: Visualization of the learned spatial factors and causal graph from Global Climate Dataset, after merging based on
proximity and graph links. The spatial factor is demonstrated across precipitation (left), temperature (middle), and combined
(right).
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Precipitation Temperature

Figure 16: Visualization of the spatial factor inferred by Varimax-PCA and causal graph inferred by PCMCI+ from the
climate dataset, following the procedure in Appendix C.4
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Figure 17: Visualization of the individual spatial nodes inferred by Varimax-PCA from the Climate Dataset. Precipitation
variate displayed
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Figure 18: Visualization of the individual spatial nodes inferred by Varimax-PCA from the Climate Dataset. Temperature
variate displayed
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