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Abstract
Modern machine learning applications increas-
ingly demand greater computational resources
for training large models. Decentralized train-
ing has emerged as an effective means to democ-
ratize this technology. However, the potential
threats associated with this approach remain inad-
equately discussed, posing a hurdle to the devel-
opment of decentralized training infrastructures.
This paper aims to initiate discussion towards
this end by exploring the robustness of decen-
tralized training from three primary perspectives.
Firstly, we articulate our position on establishing
robust decentralized training by outlining poten-
tial threats and the corresponding countermea-
sures. Secondly, we illustrate a nascent poison-
ing attack targeting decentralized training frame-
works, easily executable by malicious stages. To
mitigate this security threat and ensure efficient
training, we propose a robust training framework,
integrating a 100% detection strategy and effi-
cient training mechanisms. Finally, we demon-
strate the severity of the proposed attack and
the effectiveness of our robust training frame-
work. This position paper emphasizes the ur-
gency of exploring the robustness of decentralized
training and proposes a feasible solution. The
code is available at https://github.com/
dcx001016/pipeline_attack

1. Introduction
Deep neural networks (DNNs), particularly large language
models (LLMs) (Brown et al., 2020; Touvron et al., 2023;
Zhang et al., 2022; Workshop et al., 2022), have demon-
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strated exceptional accuracy in various domains, thus gain-
ing widespread acceptance and usage (Cui et al., 2023; Sing-
hal et al., 2023; Shen et al., 2023). However, for enhanced
accuracy across different domains, DNNs have expanded
aggressively in terms of model scale and pre-train data vol-
umes, resulting in time- and cost-intensive training pro-
cesses (Bommasani et al., 2021; Kaddour et al., 2023; Zhao
et al., 2023). For example, the Falcon-180B (Institute, 2023)
model has 180 billion parameters trained on 3.5 trillion to-
kens. Naturally, due to the intensive computational load,
scaling DNNs training has garnered significant attention
over the past years (Shoeybi et al., 2019; Narayanan et al.,
2021; Lian et al., 2022; Yuan et al., 2022). Among these
strategies, parallel training frameworks have emerged as a
primary approach to addressing this computational inten-
sity (Huang et al., 2019; Li et al., 2020; Narayanan et al.,
2019; 2021; Rajbhandari et al., 2020).

A promising direction to democratize the training of large
DNNs is through decentralized training (Diskin et al., 2021;
Ryabinin et al., 2023b; Yuan et al., 2022), which presents
a substantial solution to alleviate this resource-intensive
challenge. On the other hand, these decentralized training
frameworks are primarily based on model parallelism (e.g,
pipeline parallelism (Huang et al., 2019; Narayanan et al.,
2019)). These parallel paradigms require communication of
activations during forward propagation and corresponding
gradients during backward propagation, which is funda-
mentally different from federated learning (FL) that only
requires synchronization of model gradients in a data par-
allel paradigm. As a result, the potential threats associated
with such decentralized training have not been formally
discussed, which may hinder the democratization of LLMs.

The most relevant technique discussed on resilient parallel
training strategies in the machine learning communities is
secure aggregation in FL, which limits its scope under the
data parallel paradigm (Fang et al., 2022; Karimireddy et al.,
2021b; Farhadkhani et al., 2022; Tao et al., 2023). In such
scenarios, when malicious gradient values arise, the param-
eter server employs resilient gradient aggregation methods,
which mainly employ outlier detection algorithms to mit-
igate the impact of these malicious gradient values on the
global model. Different from the security concerns and re-
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silient methods in FL, the communication of activations and
the corresponding gradients in decentralized training could
lead to distinct safety issues, demanding distinct approaches
for malicious detection and defense.

Therefore, we highlight the pressing issue of addressing
the robustness of decentralized training and advocate for
heightened attention to this matter within the machine learn-
ing communities. In general, this paper aims to explore the
following critical research questions: (RQ1) What are the
potential threats inherent in decentralized training? (RQ2)
How are these vulnerabilities exploited, and what are the re-
sulting adverse consequences? (RQ3) How can we develop
resilient strategies to counteract these threats?

(Contribution 1) To explore the vulnerability of decentral-
ized training, we initially introduce a threat model specific
to this scenario. Guided by this threat model, we have
examined two classic potential threats: privacy inference
attacks and poisoning attacks. Then we analyze the methods
through which a malicious stage can execute these attacks
easily. Subsequently, in order to elucidate the distinct nature
of security issues in decentralized training, we delineate
two key disparities between decentralized training and FL,
highlighting the structural differences between pipeline par-
allelism and data parallelism. Therefore, defense algorithms
designed specifically for FL cannot be directly employed.
Finally, we concentrate on the robustness of the algorithm
and the efficiency of the system training, analyzing the
necessary components of a robust decentralized training
framework from both an algorithm view and a system view.

(Contribution 2) To substantiate the validity and severity
of the presented threat model, we implement a poisoning
attack in decentralized training. Targeting the forward and
backward propagation processes between stages in decen-
tralized training, we design forward attack and backward
attack using activation value poisoning and gradient poi-
soning, respectively. Through symbol flipping and noise
injection, these two attack methods tamper with the original
transmission values. Our experiments demonstrate that our
attack method can impede the LLM from converging, even
after a significant number of training iterations.

(Contribution 3) Based on the above threat model, we have
formulated a robust training framework under decentralized
training, which mainly includes the detection strategy and
efficient training. The detection strategy can identify the
presence of a malicious poisoning attacker with a 100%
probability within the current training iteration, notwith-
standing the assumption that the attacker possesses suffi-
cient capability. The efficient training methodology replaces
the traditional restart training technique. By skipping the
malicious stage during training, a reduction in the number of
training iterations is achieved, concurrently ensuring model
convergence. Furthermore, we demonstrate the efficiency
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Figure 1. A comparison of model layer segmentation in data paral-
lelism and pipeline parallelism.

of our robust training framework through empirical study.

This position paper aims to scrutinize the potential
threats in decentralized training and propose possible
robust methods. We hope our position on exploring the
robustness of decentralized training will attract wide
attention from the machine learning communities.

2. Background
Parallel training for LLMs. To distribute the training
computation of LLMs over thousands of compute devices
(usually GPUs), different categories of parallel strategies
have been proposed. Data parallelism partitions the mini-
batch by training samples to distribute the computation load,
where each GPU holds a local model replica for forward
and backward propagations and communicates the gradients
for synchronization, usually by a parameter server or an
AllReduce operation (Li et al., 2020). FL (McMahan
et al., 2017; Konečnỳ et al., 2016; Bonawitz et al., 2019) is
mainly based on data parallelism. Figure 1(a) illustrates an
example of data parallelism with 4 workers. They send gra-
dients computed from their local datasets to the parameter
server and receive aggregated gradients to update their local
models (Zhang et al., 2015; Reddi et al., 2016). Pipeline
parallelism partitions the training computation into multiple
stages as a pipeline, where each GPU handles one stage.
Figure 1(b) provides an illustration of pipeline parallelism,
in which the model is partitioned into distinct sub-models,
and each computational device handles a specific subset of
model layers (Huang et al., 2019; Narayanan et al., 2019;
Yang et al., 2021). In contrast to data parallelism, pipeline
parallelism optimizes the utilization of computational re-
sources (Shoeybi et al., 2019; Rasley et al., 2020; Baines
et al., 2021), and has become the main technique for decen-
tralized training to train larger DNNs (e.g, LLMs).

Decentralized training. Decentralized training strategies
have emerged as practical means to facilitate collaborative
training of LLMs among multiple contributors, thereby en-
hancing the democratization of the training process. (Yuan
et al., 2022) initially investigates the decentralized training
for large foundation models using model parallelism. Sub-
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sequently, some studies (Ryabinin et al., 2023a; Wang et al.,
2023) accomplish billion-scale training on heterogeneous
devices with slow interconnect. Similarly, (Tang et al., 2023)
aims to leverage vast untapped consumer-level GPUs.

Robustness of the decentralized training. While the secu-
rity problems in decentralized training have been mentioned
in previous works (Tang et al., 2023; Borzunov et al., 2022),
no systematic research has studied this issue extensively. Ex-
isting research focuses mainly on ensuring seamless pipeline
operations (Athlur et al., 2022; Thorpe et al., 2023; Jang
et al., 2023). However, they only discuss machine failures,
neglecting the vulnerability of decentralized training to vari-
ous imperceptible security risks.

3. Position: Decentralized Training Robustness
In this section, we address RQ1 by presenting a compre-
hensive perspective on the urgency of robust decentralized
training. Our primary focus is on the potential threats, the
limitations of existing defense methods migrating to this
scenario, and concerns regarding the balance between ro-
bustness and efficiency.

3.1. Potential Threat Model and Attacks

This subsection primarily discusses the potential threats in
decentralized training. Initially, We introduce a threat model
tailored to this context. Based on this threat model, we
examine two potential threats: privacy inference attacks and
poisoning attacks, and their consequences. We observe that
these two classic attack forms indicate different capabilities
of two types of attackers. A less sophisticated attacker can
stealthily pilfer the training data through transmission value
without being perceived. A more sophisticated attacker can
manipulate the transmission value, resulting in a significant
reduction in global model training accuracy.

3.1.1. THREAT MODEL

Following the initial problem setting of the Byzantine prob-
lem in FL (Blanchard et al., 2017), we propose a decentral-
ized training framework with K computation stages, where
Mi denotes the sub-layer of the i-th stage. In contrast to
the previous works that aim to study the fault tolerance
problem, we consider a decentralized training framework
whose stages are not trustworthy. Given the openness of the
training process and the uncertainty of the attending stages,
we assume each stage in this pipeline could be a malicious
stage, denoted as A. Specifically, as the owner of the train-
ing data and the corresponding labels, we assume that the
initiate and the final stage are absolutely trustworthy. To
enhance realism without sacrificing generality, we presume
that it is like a white box for A, who has the knowledge of
the entire framework and most training details.

3.1.2. POTENTIAL ATTACKS

Based on the above threat models, many potential attacks
are derived. We mainly describe the realizability of privacy
inference attacks and poisoning attacks under the framework
of decentralized training and their new attack paradigms.

Privacy inference attacks. DNNs, especially LLMs, have
found widespread application in various domains, such as
healthcare (Xiong et al., 2023; Singhal et al., 2022) and law
(Cui et al., 2023; Huang et al., 2023). Data privacy concerns
in these domains make the fine-tuning process of LLMs vul-
nerable to privacy inference attacks. Decentralized training
frameworks are particularly susceptible to privacy inference
attacks due to the frequent exchange of data and the in-
herent openness of distributed environments. For instance,
gradient values enable an adversary to obtain training in-
puts with only a few iterations, as highlighted in (Zhu et al.,
2019; Aono et al., 2017a). Certain study (Zhao et al., 2020)
even introduces an approach that achieves 100% accuracy
in extracting ground-truth labels from the gradients.

Furthermore, in addition to directly accessing the original
data, some studies (Ateniese et al., 2015; Hitaj et al., 2017)
focus on properties unrelated to the characteristic features
of the class. In such a scenario, an attacker, armed with
auxiliary training data labeled with the desired property, can
deduce valuable information that was previously unknown.
Whether through direct or indirect means, privacy inference
attacks pose a risk in decentralized training frameworks, po-
tentially exposing sensitive content in the training datasets.

Poisoning attacks. In contrast to the act of stealing in-
formation in privacy inference attacks, poisoning attacks
enable attackers to manipulate data transmission between
stages. Depending on the attacker’s objectives, poisoning
attacks can be categorized as targeted attacks or untargeted
attacks. Untargeted attacks hinder the model’s convergence
by freely manipulating transmitting values, whereas targeted
attacks aim to inject backdoors into the global model.

Previous studies (Cao et al., 2019; Tolpegin et al., 2020)
thoroughly investigate the detrimental impact of untargeted
attacks on the convergence of the global model in distributed
systems. They were either limited to FL scenarios or only
involved poisoning datasets by tampering with the corre-
sponding labels. However, the frequent data exchange of
decentralized training provides a new form of poisoning
attacks, that is tampering with the activation values or gradi-
ent values. We also show the possible consequences of this
new untargeted poisoning attack form in Section 4.

In the case of targeted attacks, a significant distinction arises
from the inherent assumption of absolute security regarding
the data providers in decentralized training. Nevertheless,
several studies (Li et al., 2021; Hong et al., 2022) demon-
strate the feasibility of implanting backdoors without access
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to the original data. Since the decentralized training frame-
work involves frequent transfer and update of gradients,
these attacks can be applied to decentralized training as
well. We evaluate the vulnerability of decentralized training
to poisoning attacks in Section 3.2, providing an explanation
for why decentralized training is more susceptible to such
attacks compared to FL.

3.2. Decentralized Training vs. Federated Learning

In this subsection, we posit that the direct application of
current security methods in FL to decentralized training
encounters significant challenges for the following reasons
by illustrating the structural differences between them.

3.2.1. INHERENT SERIAL CHARACTERISTIC

Decentralized training frameworks primarily rely on
pipeline parallelism as the main training technique. How-
ever, due to limited computational resources, a majority of
training initiators only deploy one pipeline. This constraint
results in an inherent serial characteristic within decentral-
ized training frameworks, impeding the direct application
of existing methods in two critical aspects.

Lack of comparable values. In traditional FL, each worker
possesses a complete copy of the global model. Privacy-
preserving techniques, such as secure multiparty computa-
tion (Bonawitz et al., 2017) or secret-sharing-based methods
(Bonawitz et al., 2017), are used to prevent privacy inference
attacks. To mitigate poisoning attacks, outlier detection al-
gorithms, like the voting mechanism (Melnyk et al., 2018;
Datar et al., 2022; Wang & Guo, 2019) and bucketing mech-
anism (Karimireddy et al., 2021a; Zhu et al., 2023; Allouah
et al., 2023) can be employed to filter the Byzantine workers.

However, during decentralized training, each stage in the
pipeline can solely receive activation values or gradient val-
ues from the preceding stage. Due to the lack of comparable
values, directly applying outlier detection algorithms or
other privacy-preserving methods is not feasible. Although
some training initiators try to solve this problem by adding
more pipelines (Li & Hoefler, 2021; Narayanan et al., 2021;
Jang et al., 2023), striking a balance between computing
resource utilization and obtaining an adequate number of
comparable values is challenging.

Heavy dependence on the predecessor stage. Each stage
in decentralized training relies exclusively on the preceding
stage due to the absence of a central server. In the context
of poisoning attacks, if a stage becomes malicious, the re-
maining stages will remain unaware and mistakenly treat the
malicious stage as honest. Furthermore, once a malicious
stage manipulates the transmitting values, the subsequent
stage cannot detect this malicious behavior and can only
propagate the tampered data.

To illustrate, we consider the scenario where a malicious
stage transmits an all-zero vector to the next stage. The
honest stage is unable to determine if the value has been
maliciously tampered with by the available algorithm and
must rely on the preceding stage. In Subsection 3.1.2, we
extensively discuss the dangers associated with poisoning
attacks. However, in real training scenarios, such malicious
alterations to the transmitting values will be considerably
less apparent, but the resulting harm can still be substantial.

3.2.2. CHANGE OF TRANSMITTING MECHANISM

Compared to the data transmitting mechanism in FL, the
exchange of objects and the frequency have changed a lot
in decentralized training. In terms of the exchange object,
stages should additionally transmit activation values in the
forward propagation. Compared to gradient values, activa-
tion values vary more with the training data. As a result, the
average-value-based resilient aggregation method cannot
ensure the training accuracy. On the other hand, the param-
eter server only exchanges with the workers once during
each iteration. However, the number of data exchanges in
the decentralized training relies on the number of stages.
The unknown target of the attacker requires a robust algo-
rithm in every data exchange, which undoubtedly extends
the training time and greatly reduces the training efficiency.

3.3. Robustness or Efficiency

In this subsection, we outline essential components for a
robust and efficient decentralized training framework from
two perspectives. From an algorithm view, we analyze the
necessary modules required to secure the decentralized train-
ing process against the aforementioned two attack forms.
On the other hand, from a system view, we elaborate on
the key technologies that sustain the decentralized system
throughput. Upon examining the associated challenges, we
conclude that achieving robustness, efficiency, and accuracy
is akin to an impossible trinity. Therefore, ensuring global
model convergence through robust measures invariably re-
sults in decreased system throughput.

3.3.1. AN ALGORITHM VIEW

Privacy preservation. Privacy-preserving methods, par-
ticularly in FL, can be categorized into two main ap-
proaches: encryption-based and perturbation-based meth-
ods. Encryption-based methods encompass homomorphic
encryption (Aono et al., 2017b; Zhang et al., 2020), secret
sharing (Shamir, 1979), and secure multiparty computation
methods (Mohassel & Zhang, 2017). These approaches fo-
cus on safeguarding data privacy during transmission and
preventing unauthorized access to the original data by em-
ploying encryption and decryption in each data exchange
process. However, the frequent encryption and decryp-
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tion operations reduce the decentralized training efficiency
greatly. A promising direction is homomorphic encryption
which allows computation on ciphertext and retrieval of the
computed plaintext with a single decryption operation. How-
ever, it imposes stringent requirements on the calculation
method and the time it occupies cannot be overlooked.

Perturbation-based methods, such as differential privacy
(Geyer et al., 2017; Hao et al., 2019; McMahan et al., 2018)
and additive perturbation (Chamikara et al., 2021; Hu et al.,
2020; Liu et al., 2020) are utilized in studies to prevent
attackers from inferring data privacy. These methods involve
adding noise directly to gradient values or training datasets.
Although these methods are straightforward and require
minimal additional training time, weak noise can be easily
mitigated by noise reduction algorithms (Kargupta et al.,
2003), while strong noise significantly reduces the training
efficiency of the global model.

In summary, both types of privacy-preserving algorithms
face a specific challenge when implemented in decentralized
training frameworks: how to control the decline of training
accuracy within an acceptable range while ensuring the
efficiency of encryption.

Stage-level detection for malicious behaviors. As stated
in Section 3, attackers engaging in poisoning attacks and
privacy inference attacks demonstrate distinct motivations,
capabilities, and malicious behaviors, thereby resulting in
substantial divergences in the security algorithms applied to
these scenarios. Prior studies have elucidated the practical-
ity of defense mechanisms against targeted attacks, such as
eliminating backdoors from trained models. However, this
strategy proves inadequately effective against untargeted
attacks. Nonetheless, it is evident that both poisoning at-
tacks pursue a shared goal: tampering with activation values
or gradient values. Consequently, conventional iteration-
level defense methods, for instance, resilient aggregation
techniques tackling Byzantine problems in FL, cannot be di-
rectly utilized in decentralized training frameworks. There-
fore, a direct and efficient defense approach involves detect-
ing malicious behaviors at the stage level.

Regrettably, this issue has not received adequate attention in
the existing literature. To address this problem, we propose
employing redundant computation to detect any malicious
tampering between stages. In Section 5, we present a com-
prehensive case study to illustrate the effectiveness of this
detection methodology. Despite the additional training time,
our approach’s defense capability convincingly validates its
potential for future research.

3.3.2. A SYSTEM VIEW

In the event of a hardware failure or a detected attack, it
is crucial for the decentralized system to keep the pipeline

seamless and recover promptly. This matter has garnered
significant attention as a problem of fault tolerance and
frequent interruptions in decentralized training. Relevant
research focuses on maintaining model throughput while
enabling automatic recovery from this malfunction (Athlur
et al., 2022; Thorpe et al., 2023; Jang et al., 2023). How-
ever, several challenges remain unsolved. For example, the
aforementioned approaches experience additional overhead
of loading the checkpoint when restarting the training pro-
cess. On the other hand, some strategies even require extra
computing resources as a backup, which contradicts the
original objective of decentralized training. Furthermore,
these strategies tend to emphasize the reliability of each
stage on the pipeline, while ignoring their potential to create
malicious behaviors.

Another straightforward approach is to use a combination of
malicious behavior detection and restarting the training iter-
ation from updating the wrong gradients. However, leaving
aside the time consumption caused by the detection algo-
rithm, the restart method wastes the results obtained in the
current training iteration and leads to prolonged idle time.
Consequently, the subsequent computing resources have
to remain underutilized for an extended period. Therefore,
ensuring robustness in a decentralized training framework
while maintaining high system throughput is a rather tricky
problem. In Section 5, we present alternative solutions to
minimize computing resource consumption while achieving
swift recovery from failures or attacks.

4. Forward Attacks and Backward Attacks

This section addresses RQ2 by introducing our attack meth-
ods: forward attack and backward attack. In contrast to
Section 3, which provides a general overview of the decen-
tralized training robustness, this section focuses on a specific
security scenario: We consider a scenario where an attacker
can only compromise one stage in either forward activation
value propagation or backward gradient value propagation.
To maintain generality, we assume the attacker’s index can
vary while keeping other assumptions constant.

If A gains control of a stage or a certain stage intends to
exhibit malicious behaviors, it transmits the tampered value
a′out to the subsequent stage, instead of the intended output
aout, upon receiving a value ain. The malicious behavior
during the model training process can be categorized as
either a forward attack or a backward attack depending on
the context, as demonstrated in Figure 2 by orange and blue
arrows, respectively. Notably, according to the threat model,
we assume that the initial and the final stages, functioning
as data providers, remain immune to attacks.

We employ two straightforward untargeted poisoning attack
methods to simulate the actions of A. In forward attack,
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Figure 2. Illustration of the threat model in decentralized training
with K stages, depicting forward attack and backward attack. The
orange arrows and blue arrows represent the transmission process
of activation values during the forward propagation and gradient
values during the backward propagation, respectively. The red
arrows indicate the location malicious behaviors occur.

the malicious stage simply flips the sign of aout resulting
in a′out = −aout. In backward attack, the malicious stage
generates a Gaussian random variable ϕ ∼ N(0, 1) with
the shape as aout and sets a′out = ϕ to modify the malicious
behavior of random noise injection. Then the malicious
stage sends a′out to the next stage.

5. Our Robust Training Framework
This section addresses RQ3 by introducing our robust train-
ing framework consisting of two main components: attack
detection and efficient training, as depicted in Figure 3. If
our robust training framework does not detect malicious
attacks, the training process continues as usual. However,
in cases where malicious attacks are detected, the pipeline
adopts the efficient training component to eliminate the bad
consequences and ensure training efficiency. Since the back-
ward propagation mirrors the forward propagation but with
the reversed data transmission direction, we take the forward
propagation as an example and analyze our robust training
framework in detail in this section.

5.1. Detection Strategy

Aiming to equip each stage with the capability to verify
the accuracy of received values and naturally drawing the
inspiration of redundant computation (Patterson et al., 1988;
Bogatyrev & Bogatyrev, 2015) and Bamboo (Thorpe et al.,
2023), we propose the duplicated block which takes the
place of the original sub-layers in each stage and serves
as a crucial component of our detection strategy. Taking
the i-th stage as an example, it consists of the redundant

layers M ′
i−1, duplicated from Mi−1 of the (i−1)-th stage,

and the original layers Mi of the i-th stage. To ensure
the detection accuracy, the parameters of Mi−1 and M ′

i−1

remain identical throughout the entire training process.

During the detection part, the i-th stage sends its input
a
(i−1)
out as a

(i)
dup and its output a(i)out to the next stage. Upon

receiving data from the previous stage, the i-th stage first
uses M ′

i−1 to verify the compatibility between a
(i−1)
dup and

a
(i−1)
out . Only after this verification, the subsequent training

process is performed.

To defend a more knowledgeable attacker and ensure the
consistency of a(i−1)

dup and a
(i−2)
out , we introduce the jumping

connection. During each iteration, in addition to the afore-
mentioned operations, the i-th stage transmits its output a(i)out

to the (i+2)-th stage and receives a(i−2)
out from the (i−2)-th

stage. This verification invalidates a more experienced at-
tacker who leverages an arbitrary input a′in and sends the
corresponding a′out to the next stage.

To sum up, the i-th stage needs to verify two conditions:
i) check if a(i−1)

dup is equal to a
(i−2)
out , and ii) confirm if the

pair [a(i−1)
dup ,a

(i−1)
out ] matches on M ′

i−1. If either of these
two conditions is not met, the i-th stage triggers an alert
and notifies the training initiator. Then the training initiator
could take measures such as restarting this iteration and
reusing the data sample.

5.2. Efficient Training

Although our detection strategy successfully identifies all
malicious activities carried out by A, accurately pinpoint-
ing the exact stage of malicious behavior poses a challenge.
Now we present a detailed logical analysis specifically ad-
dressing the errors encountered with the (i+1)-th stage:

• The (i+1)-th stage itself is malicious and intentionally
reports an error whatever it receives.

• The i-th stage is malicious and transmits tampered
value pair [a(i)dup,a

(i)
out] to the (i+1)-th stage.

• The (i−1)-th stage is malicious. It sends normal values
to the i-th stage, but transmits a manipulated a

(i−1)
out to

the (i+1)-th stage.

To narrow down the scope of suspicion, we propose central
server, which is immune to attacks, like the initial and final
stages. Direct data transmission is no longer used across
the stages. Instead, as demonstrated in Figure 3(b), the i-th
stage forwards output a(i)out to the central server. The cen-
tral server subsequently sends the data pair [a(i−1)

out ,a
(i)
out] to

the (i+1)-th stage. All the verification and transmission
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Figure 3. Details about data transmission and structure of our proposed robust training framework. For the detection strategy, the brown
squares and green squares represent the duplicated layers and the original layers, respectively. And they together denote the duplicated
block. Blue arrows represent the jumping connection which is designed to detect a more knowledgeable attacker. For the efficient training
framework, the red arrows represent the updated data transmission while the purple arrow represents the data flow using skip layer.

behaviors inside the duplicated block remain the same. Con-
sequently, if the (i+1)-th stage raises an alert, the malicious
stage is either the i-th or the (i+1)-th stage.

Inspired by stochastic depth (Huang et al., 2016; Orhan
& Pitkow, 2018; Hayou & Ayed, 2021), we propose the
skip layer method to avoid restarting the training iteration
when encountering attacks. Specifically, if the (i+1)-th
stage raises an alert in the forward propagation, the central
server will bypass the i-th and (i+1)-th stage, transmit-
ting data directly between the (i−1)-th and (i+2)-th stage.
To ensure consistency of parameters between the original
and redundant layers, we keep Mi−1 and M ′

i+1 unchanged
while updating model parameters.

6. Experiments
Our experiments aim to validate our attack methods and
robust training framework. Specifically, we demonstrate:
i) Decentralized pipeline parallelism training is vulnerable
to both forward attack and backward attack, which nega-
tively impact the model’s convergence and final metric; ii)
When employing our robust training strategy, the training
effectiveness of LLMs is comparable to the results under
normal conditions and may even perform better; and iii)
Our robust training framework enhances the training pro-
cess of the pipeline parallel strategy compared to the restart
framework. It is important to note that our experiments do
not solely assess the detection strategy, as we have already
logically proven its ability to detect malicious behaviors
with one hundred percent accuracy in Subsection 5.1. How-
ever, its significance as the foundation of the robust training
framework should not be overlooked.

6.1. Experimental Setup

Datasets and benchmarks. Decentralized training frame-
works are commonly utilized in the fine-tuning of LLMs.
Various LLMs, such as GPT-2 (Radford et al., 2019), Bloom

Table 1. Vulnerability of pipeline parallelism in decentralized train-
ing of LLMs on three datasets and two attack rates.

attack methods & attack rates→ clean forward attack backward attack
LLM & datasets↓ 0.3 0.7 0.3 0.7

Opt-350M
wikitext 29.77 24.82 52.37 27.73 2128.31

arxiv 22.61 20.90 1383.81 56.14 1384.22
openwebtext 41.38 38.30 3578.41 355.31 3584.42

GPT2-1.5B
wikitext 40.05 56.43 2503.65 25.454 788.4

arxiv 35.34 28.89 843.38 23.42 275.4
openwebtext 53.41 988.80 3226.01 104.87 2064.69

(Workshop et al., 2022), and Opt (Zhang et al., 2022), are
selected with parameter sizes ranging from 345M to 7B.
Checkpoints for all models above can be obtained from
HuggingFace. We employ text-generation tasks on wiki-
text2, arxiv abstracts, and openwebtext datasets to conduct
our evaluations. All datasets are publicly available and do
not contain sensitive or offensive content. Perplexity serves
as our primary metric for evaluating model performance,
and our experiments are founded on the GPipe (Huang et al.,
2019) framework.

Decentralized computing environment. To simulate het-
erogeneous computing resources in real scenarios and to
train LLMs of varying sizes, we utilize several types of GPU
devices, including A40, V100, RTX 3090, and Quadro RTX
5000. For a single pipeline, we partition a model onto 6
machines.

Baselines. We utilize the clean model as the baseline to
evaluate the vulnerability of the decentralized pipeline par-
allel training, and the attacked model to evaluate our robust
training framework.

Hyperparameter tuning. We set the learning rate to 5e−6
during training, and the batch size and micro-batch size to 4
and 1, respectively.

6.2. Main Results

Vulnerability of decentralized training. We first evaluate
the vulnerability of different LLMs under various malicious
behaviors. We evaluate the impact of forward attack and
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Figure 4. Training loss on different clean iterations under method without defense, robust training framework, and restart method.

Table 2. Effectiveness of our robust training framework compared
to clean and attacked model without any defense.

datasets & modes→ arxiv openwebtext
models↓ clean attack ours clean attack ours

Opt-350M 22.61 601.92 19.31 41.38 3563.56 34.85
Bloom-560M 67.15 1682.94 22.54 122.25 3984.84 61.65
GPT2-1.5B 35.34 185.11 19.12 53.41 2435.17 36.56
Bloom-7B 59.06 818.43 27.91 102.94 3077.24 52.62

backward attack on the training outcome. The obtained
results are presented in Table 1. We notice that the two attack
methods perform exceptionally well when the attacking
rate is set to 0.7. Without applying any defense measures
and after sufficient training iterations, the perplexity of the
attacked model usually degrades to at least 10 times or more
of the original model and exceeds 200 times at an attack
rate of 0.7. However, the attack’s effectiveness is not always
as good when the attack rate is set to 0.3. We analyze that
this may be due to the small probability of malicious values
being flipped or added noise, which is offset by the high
probability of normal values, allowing the model to converge
with sufficient training time. The overfitting phenomenon
resulting from the long training iterations may constitute
a prominent factor contributing to the performance of the
normal model to be inferior to that of the attacked model
with the attack rate set to 0.3.

Effectiveness of robust training framework. We show
the effectiveness of our robust training framework in Table
2. We denote the model’s perplexity on the clean model,
the attacked model without any defense, and the attacked
model under our robust training framework by clean, attack,
and ours respectively. In the attack configuration of this
experiment, we select forward attack as the attack criterion
for its greater impact. In all comparisons, we demonstrate
the robust training framework’s ability to resist attacks.

First, when using the robust training framework, the per-
plexity of the model can be at most 74.6 times better than
that of the perplexity of the attacked model. What’s more,
models using this framework even exhibit lower perplexity
than the original clean models without attacks. Even when
testing the perplexity of Bloom-560M on dataset arxiv21,
we find that the models using this robust framework have a

perplexity of only one-third that of the original model. We
speculate that this parallels the anomalous results in Table 1.
Compared with the regular training process, the skip-layer
mechanism serves as an effective regularization technique
and successfully alleviates model overfitting.

6.3. Robust Training Framework vs. Traditional Restart

In order to evaluate the training efficiency of our robust
training framework, we conduct a comparison between the
traditional restart method which simply restarts the current
training iteration once an attack is detected based on the
detection strategy described in section 5.1, and our proposed
robust training framework. We recorded the training loss at
each iteration for the two defense methods across all mod-
els and datasets. To enhance visual clarity, we exclude the
loss corresponding to the iteration under attack and plot a
point every 10 clean iterations, as shown in Figure 4. The
x-axis represents the real step, while the y-axis represents
the selected clean iteration’s training loss. We observe that
our robust training framework consistently exhibits lower
loss than the traditional restart method at most iterations,
indicating that our approach facilitates faster model conver-
gence. Simultaneously, when training without any defensive
measures, the loss remains persistently high, further substan-
tiating the presence of vulnerabilities in the decentralized
pipeline parallelism training process.

7. Conclusion
Through this paper, we focus on investigating the robust-
ness of decentralized training frameworks that implement
pipeline parallelism. Initially, we introduce the threat model
specific to this context, based on which we delineate two
potential attack forms and their consequences. We then
compare the structural differences between decentralized
training and FL. Additionally, we scrutinize the fundamen-
tal reasons why existing security methods cannot be readily
applied to the decentralized training frameworks. In light of
this analysis, we present a vision for a decentralized train-
ing framework with both robustness and training efficiency.
To underscore the pressing nature of security concerns in
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decentralized training, we exemplify two untargeted poi-
soning attacks, named forward attack and backward attack,
using straightforward methodologies. Building on these poi-
soning attacks, we provide our robust training framework,
consisting of the detection strategy and efficient training
mechanism to identify the aforementioned malicious be-
haviors while ensuring training efficiency. Through experi-
ments, we confirm that conventional decentralized training
frameworks are vulnerable to attacks, while our approach
effectively improves their robustness and efficiency. We
anticipate that this position paper can raise awareness of
security concerns and contribute to enhancing the safety and
reliability of decentralized training.
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