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ABSTRACT

In this paper, we consider the regression problem of predicting thermodynamic
quantities – specifically the average energy ⟨E⟩ – as a function of temperature T
for spin glasses on a square lattice. The spin glass is represented as a weighted
graph, where exchange interactions define the edge weights. We investigate how
the spatial distribution of these interactions relates to ⟨E⟩, leveraging several ma-
chine learning approaches that we specifically developed for this task. While ⟨E⟩
is used to demonstrate the approach, our framework is general and can be appli-
cable to the prediction of other thermodynamic characteristics.

The nature of the low-temperature phase in frustrated spin systems, especially in nearest-neighbor
models remains an open question even after many years of active research. The analysis of the
partition function, which contains information about all states of the system, is crucial for accurately
determining the features of interacting spin systems in thermodynamic equilibrium. However, due
to the exponentially large number of states and the complexity of specifying the generating function,
it is frequently impossible to compute the partition function exactly. Long relaxation times, rough
energy landscapes, and macroscopic degeneracy of the ground states in frustrated systems further
complicate this problem Altieri & Baity-Jesi (2024).

A spin glass is a set of interacting magnetic moments, originating from spins, in which the mag-
netic interactions are randomly distributed in sign. Two important characteristics that distinguish
spin glasses from other lattice models are disorder brought on by the freezing of spins at low tem-
peratures and frustration, where competing magnetic interactions prohibit all interactions in the
system from being satisfied simultaneously. No simple symmetric configuration of the set of spins
corresponds to an equilibrium state Vincent (2024). These problems belong to the class of nonde-
terministic polynomial problems (NP-class) Lucas (2014). For these reasons, the development of
efficient algorithms is one of the relevant goals in the theory of frustrated magnetism for studying
the low-temperature phase of spin glass models.

Our research presents a broader approach to this fundamental challenge: we demonstrate how ma-
chine learning techniques can be applied to predict thermodynamic properties of a spin glass on
a square lattice in the frame of two-dimensional Edwards - Anderson (EA) model with periodic
boundary conditions (PBC) on an Ising square lattice N = L × L, where N is a total number of
spins and L is a linear size of the system Edwards & Anderson (1975). Specifically, we focus on
modeling how the mean energy ⟨E⟩ varies with temperature T , though our method can be extended
to other physical observables of the system.
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In order to do this, we consider the spin glass model as a weighted graph,where the graph architecture
corresponds to the lattice and the values of the edges indicate the values of the exchange interactions.
Thus, we are looking for a functional relationship between the spatial distribution of the exchange
integrals Jk = fJ(xk, yk) and ⟨E⟩. Here, xk and yk represent the bond coordinates for bond k, Jk
is the bond value, and fJ is the function of the spatial distribution of spin glass bond values.

For a lattice of size N = L × L, there are 22N possible configurations of the exchange integrals.
These configurations range from the fully antiferromagnetic to the fully ferromagnetic state. In the
first case, all exchange interactions Jk = −1,∀k leading to

∑2N
k=1 Jk = −2N . For the second case,

all interactions are Jk = 1,∀k and
∑2N

k=1 Jk = 2N .

We study N = 6 × 6 and 10 × 10 systems of spins. Using the complete enumeration method, we
calculated datasets with all possible distributions of

∑2N
k=1 Jk for each system size. Since we used

several types of neural networks, described in detail below, we had to slightly modify the input data
format to fit the input layer of the neural networks – for example, for the fully connected neural
networks, each bond configuration was fed to the input as a one-dimensional structure, while for
convolutional neural networks we fed the bonds by dividing them into two channels – horizontal and
vertical (by analogy with the classical example of dividing an RGB image into three channels). Also,
we utilized data proportions of 0.8 : 0.15 : 0.05 for training, validation, and testing, respectively.

To capture a relation between Jk and ⟨E⟩, a model can be trained to recognize patterns in the ar-
rangement of exchange interaction values on the lattice and their impact on macroscopic parameters.
In particular, the spin glass configuration defined by the set {J1, J2, J3, . . . , J2N} and temperature
T should be provided to the network, that then can be trained to predict the average energy ⟨E⟩.
We use several different types of machine learning algorithms to conduct a comparative analysis of
their predictive ability to solve this class of problems:

1. Fully connected (FC) network architectures with different numbers and sizes of hidden
layers. We used fully connected neural networks as a baseline solution. After training
NN’s, we selected a pair of architectures with the lowest RMSE on the test sample and
applied these architectures further to evaluate the effectiveness of our proposed approaches.

2. Custom Connected (CC) network architectures. To reduce the prediction error, we inves-
tigated DNNs whose architecture would convey information about the spatial arrangement
of bonds on a square lattice. We proposed to replace fully connected hidden layers with
layers in which neurons would be connected similarly to spins on a square lattice. The
resulting architectures proposes to consider the first hidden layer h1 as virtual bonds, and
the layers h2 and h3 as virtual spins. The differences in the architectures are in how we
connect the ”spins” between layers, we use both fully connected connections and those that
mimic the bonds between spins in a lattice..

3. Convolutional Neural Networks (CNNs) are well-suited for predicting the average energy
levels in spin glass models because of their capacity to learn from the complex patterns
observed in the bond configurations. Our method takes advantage of the intrinsic structure
of spin glass systems, whose bond interactions have different spatial orientations, by using
different CNN channels for vertical and horizontal interactions. We experimented with var-
ious of configurations, by varying different layers, such as upscaling, amount of FC layers.
In addition, we used a gradient scaling approach, the Landscape Modification (LM) method
Choi (2024), to optimise the CNN. The LM method enhances optimisation by transform-
ing the objective function g(x) into a modified form ĝ(x) managed by parameters a and
threshold c. This can help gradient-based optimizers like Adam to improve the avoidance
of local minima and saddle points, leading to faster convergence to a global or high quality
local optimum. In our case, the scaling procedure is as follows: the gradient ∇gt is scaled
using a transformation function f of the running loss rlt and the parameter ct on a step t:

∇ĝt =
∇gt

af((rlt − ct)+) + 1
, (1)

where ct was set close to the minimum value of the loss function of the default NN model.

2



Published as a workshop paper at ICLR 2025 MLMP

The results of the work of neural networks were scored by root mean squared error (RMSE) of the
average energy ⟨E⟩. The resulting RMSE values depending on NN architecture and system size are
presented in Table 1.

RMSE
FC1 FC2 CC1 CC2 CNN1 CNN2 CNN1LM CNN2LM

6× 6 0.05552 0.05568 0.04126 0.04909 0.01182 0.00249 0.00338 0.00437
10× 10 0.03766 0.038168 0.026071 0.030173 0.00178 0.00187 0.00309 0.00172

Table 1: The root mean squared error (RMSE) metric for the predicted ⟨E⟩(T ) using the proposed
architectures.

A comparative analysis of different neural network architectures for predicting the average energy
〈E〉 of spin glass systems shows that convolutional neural networks (CNNs) significantly outperform
fully connected (FC) and custom connected (CC) networks. The superior performance of CNNs is
due to their ability to effectively capture spatial patterns in connection configurations, a critical as-
pect of spin glass models. Although CC networks outperform FC networks by incorporating spatial
connectivity, they still underperform CNNs. Model performance consistently improves with increas-
ing system size, likely due to a richer data representation that enables better learning. Applying the
landscape modification (LM) method yields mixed results, demonstrating its potential to improve
optimization in certain cases, especially for larger systems. In this study, we tested two hyperparam-
eter selection strategies for LM: with respect to 6× 6 and 10× 10 systems, which may explain the
differences in the obtained results. This outcome could be attributed to suboptimal choices of the
hyperparameters f , a, or c, as identifying the ideal values can be challenging. We plan to study and
improve it in further research.

We demonstrates that several novel architectures of Deep neural networks that we developed, made
it feasible to determine the system’s global features with a high degree of accuracy based on the
microarchitecture (a certain distribution of bonds values) of a specific spin glass configuration.

In the future, we plan to extend our study to significantly larger spin systems. This presents a
considerable challenge, as direct DOS calculations become infeasible for such systems. Therefore, it
is crucial to train the model to extrapolate the identified dependencies from small lattices to systems
with a larger number of particles.

We also plan to use a Reinforcement Learning approach using the Deep Q-Network (DQN) algo-
rithm, which uses a Graph Neural Network (GNN) as an agent. GNNs have several advantages over
other approaches when studying spin glasses, such as being able to capture the spatial structure of
the lattice as well as the interactions between adjacent spins. This may allow researchers to model
more complex spin glass models.
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