
Published as a conference paper at ICLR 2024

DIFFUSIONNAG: PREDICTOR-GUIDED NEURAL ARCHI-
TECTURE GENERATION WITH DIFFUSION MODELS

Sohyun An1∗, Hayeon Lee1∗, Jaehyeong Jo1, Seanie Lee1, Sung Ju Hwang1,2
KAIST1, DeepAuto.ai2, Seoul, South Korea
{sohyunan, hayeon926, harryjo97, lsnfamily02, sjhwang82}@kaist.ac.kr

ABSTRACT

Existing NAS methods suffer from either an excessive amount of time for repet-
itive sampling and training of many task-irrelevant architectures. To tackle such
limitations of existing NAS methods, we propose a paradigm shift from NAS
to a novel conditional Neural Architecture Generation (NAG) framework based
on diffusion models, dubbed DiffusionNAG. Specifically, we consider the neural
architectures as directed graphs and propose a graph diffusion model for generating
them. Moreover, with the guidance of parameterized predictors, DiffusionNAG
can flexibly generate task-optimal architectures with the desired properties for
diverse tasks, by sampling from a region that is more likely to satisfy the proper-
ties. This conditional NAG scheme is significantly more efficient than previous
NAS schemes which sample the architectures and filter them using the property
predictors. We validate the effectiveness of DiffusionNAG through extensive ex-
periments in two predictor-based NAS scenarios: Transferable NAS and Bayesian
Optimization (BO)-based NAS. DiffusionNAG achieves superior performance with
speedups of up to 20× when compared to the baselines on Transferable NAS
benchmarks. Furthermore, when integrated into a BO-based algorithm, Diffusion-
NAG outperforms existing BO-based NAS approaches, particularly in the large
MobileNetV3 search space on the ImageNet 1K dataset. Code is available at
https://github.com/CownowAn/DiffusionNAG.

1 INTRODUCTION

While Neural Architecture Search (NAS) approaches automate neural architecture design, eliminating
the need for manual design process with trial-and-error (Zoph & Le, 2017; Liu et al., 2019; Cai et al.,
2019; Luo et al., 2018; Real et al., 2019; White et al., 2020), they mostly suffer from the high search
cost, which often includes the full training with the searched architectures. To address this issue,
many previous works have proposed to utilize parameterized property predictors (Luo et al., 2018;
White et al., 2021a;b; 2023; Ning et al., 2020; 2021; Dudziak et al., 2020; Lee et al., 2021a;b) that
can predict the performance of an architecture without training. However, existing NAS approaches
still result in large waste of time as they need to explore an extensive search space and the property
predictors mostly play a passive role such as the evaluators that rank architecture candidates provided
by a search strategy to simply filter them out during the search process.

To overcome such limitations, we propose a paradigm shift from NAS (Neural Architecture Search)
to a novel conditional NAG (Neural Architecture Generation) framework that enables the generation
of desired neural architectures. Specifically, we introduce a novel predictor-guided Diffusion-based
Neural Architecture Generative framework called DiffusionNAG, which explicitly incorporates the
predictors into generating architectures that satisfy the objectives (e.g., high accuracy or robustness
against attack). To achieve this goal, we employ the diffusion generative models (Ho et al., 2020; Song
et al., 2021b), which generate data by gradually injecting noise into the data and learning to reverse this
process. They have demonstrated remarkable generative performance across a wide range of domains.
Especially, we are inspired by their parameterized model-guidance mechanism (Sohl-Dickstein
et al., 2015; Vignac et al., 2022) that allows the diffusion generative models to excel in conditional
generation over diverse domains such as generating images that match specific labels (Ramesh et al.,
2021) or discovering new drugs meeting particular property criteria (Lee et al., 2023).

∗These authors contributed equally to this work.

1

https://github.com/CownowAn/DiffusionNAG

Published as a conference paper at ICLR 2024

In this framework, we begin by training the base diffusion generative model to generate architectures
that follow the distribution of a search space without requiring expensive label information, e.g.,
accuracy. Then, to achieve our primary goal of generating architectures that meet the specified target
condition, we deploy the trained diffusion model to diverse downstream tasks, while controlling the
generation process with property predictors. Specifically, we leverage the gradients of parameterized
predictors to guide the generative model toward the space of the architectures with desired properties.
The proposed conditional NAG framework offers the key advantages compared with the conventional
NAS methods as follows: Firstly, our approach facilitates efficient search by generating architectures
that follow the specific distribution of interest within the search space, minimizing the time wasted
exploring architectures that are less likely to have the desired properties. Secondly, DiffusionNAG,
which utilizes the predictor for both NAG and evaluation purposes, shows superior performance
compared to the traditional approach, where the same predictor is solely limited to the evaluation
role. Lastly, DiffusionNAG is easily applicable to various types of NAS tasks (e.g., latency or
robustness-constrained NAS) as we can swap out the predictors in a plug-and-play manner without
retraining the base generative model, making it practical for diverse NAS scenarios.

Additionally, to ensure the generation of valid architectures, we design a novel score network for
neural architectures. In previous works on NAS, neural architectures have been typically represented
as directed acyclic graphs (Zhang et al., 2019) to model their computational flow where the input data
sequentially passes through the multiple layers of the network to produce an output. However, existing
graph diffusion models (Niu et al., 2020a; Jo et al., 2022) have primarily focused on undirected
graphs, which represent structure information of graphs while completely ignoring the directional
relationships between nodes, and thus cannot capture the computational flow in architectures. To
address this issue, we introduce a score network that encodes the positional information of nodes to
capture their order connected by directed edges.

We demonstrate the effectiveness of DiffusionNAG with extensive experiments under two key
predictor-based NAS scenarios: 1) Transferable NAS and 2) Bayesian Optimization (BO)-based NAS.
For Transferable NAS using transferable dataset-aware predictors, DiffusionNAG achieves superior
or comparable performance with the speedup of up to 20× on four datasets from Transferable NAS
benchmarks, including the large MobileNetV3 (MBv3) search space and NAS-Bench-201. Notably,
DiffusionNAG demonstrates superior generation quality compared to MetaD2A (Lee et al., 2021a),
a closely related unconditional generation-based method. For BO-based NAS with task-specific
predictors, DiffusionNAG outperforms existing BO-based NAS approaches that rely on heuristic
acquisition optimization strategies, such as random architecture sampling or architecture mutation,
across four acquisition functions. This is because DiffusionNAG overcomes the limitation of existing
BO-based NAS, which samples low-quality architectures during the initial phase, by sampling from
the space of the architectures that satisfy the given properties. DiffusionNAG obtains especially
large performance gains on the large MBv3 search space on the ImageNet 1K dataset, demonstrating
its effectiveness in restricting the solution space when the search space is large. Furthermore, we
verify that our score network generates 100% valid architectures by successfully capturing their
computational flow, whereas the diffusion model for undirected graphs (Jo et al., 2022) almost fails.

Our contributions can be summarized as follows:

• We propose a paradigm shift from conventional NAS approaches to a novel conditional Neural
Architecture Generation (NAG) scheme, by proposing a framework called DiffusionNAG. With
the guidance of the property predictors, DiffusionNAG can generate task-optimal architectures for
diverse tasks.

• DiffusionNAG offers several advantages compared with conventional NAS methods, including
efficient and effective search, superior utilization of predictors for both NAG and evaluation
purposes, and easy adaptability across diverse tasks.

• Furthermore, to ensure the generation of valid architectures by accurately capturing the compu-
tational flow, we introduce a novel score network for neural architectures that encodes positional
information in directed acyclic graphs representing architectures.

• We have demonstrated the effectiveness of DiffusionNAG in Transferable NAS and BO-NAS scenar-
ios, achieving significant acceleration and improved search performance in extensive experimental
settings. DiffusionNAG significantly outperforms existing NAS methods in such experiments.

2

Published as a conference paper at ICLR 2024

Latency (s)

A
cc

u
ra

cy

Deploy

Transfer

A
cc
u
ra
cy

Training Dataset-aware Predictor over

Acc.

Ta
sk

One-time Score Network Training Search Space

Predictor-guided
Diffusion

Unseen Task 2

Predictor-guided
Diffusion

Forward SDE (Arch → Noise)

Reverse SDE (Noise → Arch)

Score Network

...

Task 1

Task N

Ta
sk

 D
is

t.

fo
r

Tr
a

in
in

g

Task 2

Architecture

Unseen Task 1

Latency (s)

𝒔𝜽

𝑫𝝉𝟐

Noise

𝑨𝒕

𝑫𝝉

𝑨𝒕

𝑨𝟎 𝑨𝑻

𝑨𝑻𝑨𝟎

A
cc

u
ra

cy

𝒑 𝝉

𝑨𝒕𝑫𝝉𝟐

Noise

…> 0.5?

0 1… 0.1 0.9… 3.4 -2.6…

3.4 -2.6…

Figure 1: Illustration of DiffusionNAG in Transferable NAS Scenarios. DiffusionNAG generates desired
neural architectures for a given unseen task by guiding the generation process with the transferable dataset-aware
performance predictor fϕ∗(yτ |Dτ ,At).

2 METHOD

In Section 2.1, we first formulate the diffusion process for the generation of the architectures that
follow the distribution of the search space. In Section 2.2, we propose a conditional diffusion
framework for NAG that leverages a predictor for guiding the generation process. Finally, we extend
the architecture generation framework for Transferable NAS in Section 2.3.

Representation of Neural Architectures A neural architecture A in the search spaceA is typically
considered as a directed acyclic graph (DAG) (Dong & Yang, 2020b). Specifically, the architecture A
withN nodes is defined by its operator type matrix V ∈ RN×F and upper triangular adjacency matrix
E ∈ RN×N , as A = (V ,E) ∈ RN×F × RN×N , where F is the number of predefined operator sets.
In the MobileNetV3 search space (Cai et al., 2020), N represents the maximum possible number of
layers, and the operation sets denote a set of combinations of the kernel size and width.

2.1 NEURAL ARCHITECTURE DIFFUSION PROCESS

As a first step, we formulate an unconditional neural architecture diffusion process. Following Song
et al. (2021b), we define a forward diffusion process that describes the perturbation of neural archi-
tecture distribution (search space) to a known prior distribution (e.g., Gaussian normal distribution)
modeled by a stochastic differential equation (SDE), and then learn to reverse the perturbation process
to sample the architectures from the search space starting from noise.

Forward process We define the forward diffusion process that maps the neural architecture distri-
bution p(A0) to the known prior distribution p(AT) as the following Itô SDE:

dAt = ft(At)dt+ gtdw, (1)

where t-subscript represents a function of time (Ft(·) := F (·,t)), ft(·) : A → A is the linear drift
coefficient, gt : A → R is the scalar diffusion coefficient, and w is the standard Wiener process.
Following Jo et al. (2022), we adopt a similar approach where architectures are regarded as entities
embedded in a continuous space. Subsequently, during the forward diffusion process, the architecture
is perturbed with Gaussian noise at each step.

Reverse process The reverse-time diffusion process corresponding to the forward process is
modeled by the following SDE (Anderson, 1982; Song et al., 2021b):

dAt =
[
ft(At)− g2t∇At

log pt(At)
]
dt+ gtdw̄, (2)

where pt denotes the marginal distribution under the forward diffusion process, dt represents an
infinitesimal negative time step and w̄ is the reverse-time standard Wiener process.

In order to use the reverse process as a generative model, the score network sθ is trained to approxi-
mate the score function ∇At log pt(At) with the following score matching (Hyvärinen, 2005; Song

3

Published as a conference paper at ICLR 2024

et al., 2021a) objective, where λ(t) is a given positive weighting function:
θ∗ = argmin

θ
Et
{
λ(t)EA0EAt|A0

∥sθ(At, t)−∇At log pt(At)∥22
}
. (3)

Once the score network has been trained, we can generate neural architectures that follow the original
distribution p(A0) using the reverse process of Equation (2). To be specific, we start from noise
sampled from the known prior distribution and simulate the reverse process, where the score function
is approximated by the score network sθ∗(At, t). Following various continuous graph diffusion
models (Niu et al., 2020a; Jo et al., 2022), we discretize the entries of the architecture matrices using
the operator 1>0.5 to obtain discrete 0-1 matrices after generating samples by simulating the reverse
diffusion process. Empirically, we observed that the entries of the generated samples after simulating
the diffusion process do not significantly deviate from integer values of 0 and 1.

Score Network for Neural Architectures To generate valid neural architectures, the score network
should capture 1) the dependency between nodes, reflecting the computational flow (Dong & Yang,
2020a; Zhang et al., 2019), and 2) the accurate position of each layer within the overall architecture
to comply with the rules of a specific search space. Inspired by Yan et al. (2021a) on architecture
encoding, we use L transformer blocks (T) with an attention mask M ∈ RN×N that indicates the
dependency between nodes, i.e., an upper triangular matrix of DAG representation (Dong & Yang,
2020a; Zhang et al., 2019), to parameterize the score network. (See Appendix B for more detailed
descriptions) Furthermore, we introduce positional embedding Embpos(vi) to more accurately
capture the topological ordering of layers in architectures, which leads to the generation of valid
architectures adhering to specific rules within the given search space as follows:

Embi = Embops (vi) +Embpos (vi) +Embtime (t) , where vi : i-th row of V for i ∈ [N], (4)

sθ (At, t) = MLP (HL) , where H0
i = Embi,H

l = T
(
H l−1,M

)
and H l = [H l

1 · · ·H l
N], (5)

where Embops(vi) and Embtime(t) are embeddings of each node vi and time t, respectively.

While simulating Equation (2) backward in time can generate random architectures within the entire
search space, random generation is insufficient for the main goal of DiffusionNAG. Therefore, we
introduce a conditional NAG framework to achieve this goal in the following section.

2.2 CONDITIONAL NEURAL ARCHITECTURE GENERATION

Inspired by the parameterized model-guidance scheme (Sohl-Dickstein et al., 2015; Vignac et al.,
2022; Dhariwal & Nichol, 2021), we incorporate a parameterized predictor in our framework to
actively guide the generation toward architectures that satisfy specific objectives. Let y be the desired
property (e.g., high accuracy or robustness against attacks) we want the neural architectures to
satisfy. Then, we include the information of y into the score function. To be specific, we generate
neural architectures from the conditional distribution pt(At|y) by solving the following conditional
reverse-time SDE (Song et al., 2021b):

dAt =
[
ft(At)− g2t∇At log pt(At|y)

]
dt+ gtdw̄. (6)

Here, we can decompose the conditional score function∇At log pt(At|y) in Equation (6) as the sum
of two gradients that is derived from the Bayes’ theorem p(At|y) ∝ p(At) p(y|At):

∇At log pt(At|y) = ∇At log pt(At) +∇At log pt(y|At). (7)

By approximating the score function ∇At
log pt(At) with the score network sθ∗ , the conditional

generative process of Equation (6) can be simulated if the term∇At log pt(y|At) could be estimated.
Since log pt(y|At) represents the log-likelihood that the neural architecture At satisfies the target
property y, we propose to model log pt(y|At) using a pre-trained predictor fϕ(y|At) parameterized
by ϕ, which predicts the desired property y given a perturbed neural architecture At:

∇At log pt(y|At) ≈ ∇At log fϕ(y|At). (8)
As a result, we construct the guidance scheme with the predictor as follows, where kt is a constant
that determines the scale of the guidance of the predictor:

dAt =
{
ft(At)− g2t

[
sθ∗(At, t) + kt∇At log fϕ(y|At)

]}
dt+ gtdw̄. (9)

Intuitively, the predictor guides the generative process by modifying the unconditional score function
which is estimated by sθ∗ at each sampling step. The key advantage of this framework is that we only
need to train the score network once and can generate architectures with various target properties
by simply changing the predictor. Our approach can reduce significant computational overhead for
the conditional NAG compared to the classifier-free guidance scheme (Hoogeboom et al., 2022) that
requires retraining the diffusion model every time the conditioning properties change.

4

Published as a conference paper at ICLR 2024

Table 1: Comparison with Transferable NAS on MBv3 Search Space. The accuracies are reported with 95%
confidence intervals over 3 runs. The p-value represents the result of a t-test conducted on the accuracies of 30
architecture samples obtained by our method and each baseline method.

Transferable NAS

Stats. MetaD2A TNAS DiffusionNAG(Lee et al., 2021a) (Shala et al., 2023)

CIFAR-10

Max 97.45±0.07 97.48±0.14 97.52±0.07
Mean 97.28±0.01 97.22±0.00 97.39±0.01
Min 97.09±0.13 95.62±0.09 97.23±0.06

p-value 0.00000191 0.0024 -

CIFAR-100

Max 86.00±0.19 85.95±0.29 86.07±0.16
Mean 85.56±0.02 85.30±0.04 85.74±0.04
Min 84.74±0.13 81.30±0.18 85.42±0.08

p-value 0.0037 0.0037 -

Aircraft

Max 82.18±0.70 82.31±0.31 82.28±0.29
Mean 81.19±0.11 80.86±0.15 81.47±0.05
Min 79.71±0.54 74.99±0.65 80.88±0.54

p-value 0.0169 0.0052 -

Oxford-IIIT Pets

Max 95.28±0.50 95.04±0.44 95.34±0.29
Mean 94.55±0.03 94.47±0.10 94.75±0.10
Min 93.68±0.16 92.39±0.04 94.28±0.17

p-value 0.0025 0.0031 -

2.3 TRANSFERABLE CONDITIONAL NEURAL ARCHITECTURE GENERATION

Transferable NAS (Lee et al., 2021a; Shala et al., 2023) offers practical NAS capabilities for diverse
real-world tasks, by simulating human learning. They acquire a knowledge from past NAS tasks to
improve search performance on new tasks. In this section, to achieve highly efficient Transferable
NAS, we extend the conditional NAG framework discussed earlier into a diffusion-based transferable
NAG method by combining our framework with the transferable dataset-aware predictors from Trans-
ferable NAS methods (Lee et al., 2021a; Shala et al., 2023). A dataset-aware predictor fϕ(D,At) is
conditioned on a dataset D. In other words, even for the same architecture, if datasets are different,
the predictor can predict accuracy differently. The predictor is meta-learned with Equation (21) over
the task distribution p(T) utilizing a meta-dataset S := {(A(i), yi,Di)}Ki=1 with K tasks consisting
of (dataset, architecture, accuracy) triplets for each task. We use the meta-dataset collected by Lee
et al. (2021a). The key advantage is that by exploiting the knowledge learned from the task distribu-
tion, we can conduct fast and accurate predictions for unseen datasets without additional predictor
training. We integrate the meta-learned dataset-aware predictor fϕ(D,At) into the conditional neural
architecture generative process (Equation (9)) for an unseen dataset D̃ as follows:

dAt =
{
ft(At)− g2t

[
sθ∗(At, t) + kt∇At log fϕ(y|D̃,At)

]}
dt+ gtdw̄. (10)

3 EXPERIMENT

We validate the effectiveness of DiffusionNAG on two predictor-based NAS scenarios: Transferable
NAS (Section 3.1) and BO-based NAS (Section 3.2). In Section 3.3, we demonstrate the effectiveness
of the proposed score network.

Search Space We validate our framework on two Transferable NAS benchmark search spaces (Lee
et al., 2021a): MobileNetV3 (MBv3) (Cai et al., 2020) and NAS-Bench-201 (NB201) (Dong & Yang,
2020b). Especially, MBv3 is a large search space, with approximately 1019 architectures. (Please
see Appendix C.1 for detailed explanations.)
Training Score Network The score network is trained only once for all experiments conducted
within each search space. Note that training the score network only requires architectures (graph)
without the need for accuracy which is expensive information. The training process required 21.33
GPU hours (MBv3) and 3.43 GPU hours (NB201) on Tesla V100-SXM2, respectively.

3.1 COMPARISON WITH TRANSFERABLE NAS METHODS

Experimental Setup Transferable NAS methods (Shala et al., 2023; Lee et al., 2021a) are designed
to leverage prior knowledge learned from previous NAS tasks, making NAS more practical on an

5

Published as a conference paper at ICLR 2024

Table 2: Comparison with Transferable NAS on NB201 Serach Space. We present the accuracy achieved
on four unseen datasets. Additionally, we provide the number of neural architectures (Trained Archs) that are
actually trained to achieve accuracy. The accuracies are reported with 95% confidence intervals over 3 runs.

Type Method
CIFAR-10 CIFAR-100 Aircraft Oxford-IIIT Pets

Accuracy Trained Accuracy Trained Accuracy Trained Accuracy Trained
(%) Archs (%) Archs (%) Archs (%) Archs

ResNet (He et al., 2016) 93.97±0.00 N/A 70.86±0.00 N/A 47.01±1.16 N/A 25.58±3.43 N/A
RS (Bergstra & Bengio, 2012) 93.70±0.36 > 500 71.04±1.07 > 500 - - - -
REA (Real et al., 2019) 93.92±0.30 > 500 71.84±0.99 > 500 - - - -
REINFORCE (Williams, 1992) 93.85±0.37 > 500 71.71±1.09 > 500 - - - -

One-shot NAS∗

RSPS (Li & Talwalkar, 2019) 84.07±3.61 N/A 52.31±5.77 N/A 42.19±3.88 N/A 22.91±1.65 N/A
SETN (Dong & Yang, 2019a) 87.64±0.00 N/A 59.09±0.24 N/A 44.84±3.96 N/A 25.17±1.68 N/A
GDAS (Dong & Yang, 2019b) 93.61±0.09 N/A 70.70±0.30 N/A 53.52±0.48 N/A 24.02±2.75 N/A
PC-DARTS (Xu et al., 2020) 93.66±0.17 N/A 66.64±2.34 N/A 26.33±3.40 N/A 25.31±1.38 N/A
DrNAS (Chen et al., 2021) 94.36±0.00 N/A 73.51±0.00 N/A 46.08±7.00 N/A 26.73±2.61 N/A

BO-based NAS

BOHB (Falkner et al., 2018) 93.61±0.52 > 500 70.85±1.28 > 500 - - - -
GP-UCB 94.37±0.00 58 73.14±0.00 100 41.72±0.00 40 40.60±1.10 11
BANANAS (White et al., 2021a) 94.37±0.00 46 73.51±0.00 88 41.72±0.00 40 40.15±1.59 17
NASBOWL (Ru et al., 2021) 94.34±0.00 100 73.51±0.00 87 53.73±0.83 40 41.29±1.10 17
HEBO (Cowen-Rivers et al., 2022) 94.34±0.00 100 72.62±0.20 100 49.32±6.10 40 40.55±1.15 18

TNAS (Shala et al., 2023) 94.37±0.00 29 73.51±0.00 59 59.15±0.58 26 40.00±0.00 6
Transferable NAS MetaD2A (Lee et al., 2021a) 94.37±0.00 100 73.34±0.04 100 57.71±0.20 40 39.04±0.20 40

DiffusionNAG (Ours) 94.37±0.00 1 73.51±0.00 2 58.83±3.75 3 41.80±3.82 2
∗ We report the search time of one-shot NAS methods in Appendix C.3.

Table 3: Statistics of the generated architec-
tures. Each method generates 1,000 architectures.

Target Stats. Oracle Random MetaD2A Uncond. Cond.
Dataset Top-1,000 + Sorting (Ours)

CIFAR10
Max 94.37 94.37 94.37 94.37 94.37
Mean 93.50 87.12 91.52 90.77 93.13
Min 93.18 10.00 10.00 10.00 86.44

CIFAR100
Max 73.51 72.74 73.51 73.16 73.51
Mean 70.62 61.59 67.14 66.37 70.34
Min 69.91 1.00 1.00 1.00 58.09

Figure 2: The distribution of generated architectures.

unseen task. To achieve this, all Transferable NAS methods, including our DiffusionNAG, utilize
a transferable dataset-aware accuracy predictor, as described in Section 2.3. The dataset-aware
predictor is meta-trained on the meta-dataset provided by Lee et al. (2021a), which consists of
153,408/4,230 meta-training tasks for MBv3/NB201, respectively. For more details, please refer
to Lee et al. (2021a). MetaD2A (Lee et al., 2021a), which is the most closely related to our work,
includes an unconditional architecture generative model that explicitly excludes the dataset-aware
predictor during the generation process. Instead, MetaD2A needs to search for optimal architectures
across multiple tasks, train these architectures to obtain their accuracy data, and use this costly
accuracy collection to train its generative model. Besides, it uses the dataset-aware predictor only
during the subsequent evaluation stage to rank the generated architectures. During the test phase,
it first objective-unconditionally generates architectures and then evaluates the top architectures
using its predictor. TNAS (Shala et al., 2023) enhances the meta-learned dataset-aware predictor’s
adaptability to unseen datasets by utilizing BO with the deep-kernel GP strategy without involving
any generation process (Please see Appendix C.2 for details of the baselines.). DiffusionNAG
conditionally generates architectures with the diffusion model guided by the dataset-aware predictor.
Our generation process, with a sampling batch size of 256, takes up to 2.02 GPU minutes on Tesla
V100-SXM2 to sample one batch. Finally, we select the top architectures sorted by the predictor
among the generated candidates. We conduct experiments on Transferable NAS benchmarks (Lee
et al., 2021a) such as four unseen datasets - CIFAR-10, CIFAR-100, Aircraft (Maji et al., 2013), and
Oxford IIT Pets (Parkhi et al., 2012) from large search space MBv3 (Table 1) and, NB201 (Table 2).

Results on MBv3 Search Space In Table 1, MetaD2A, TNAS, and DiffusionNAG obtain the
top 30 neural architectures for each datasets, following the descriptions in the Experimental Setup
section. Subsequently, we train these architectures on the datasets following the training pipeline
described in Appendix C.5. Once the architectures are trained, we analyze the accuracy statistics
for each method’s group of architectures. Additionally, we calculate p-value to assess the statistical
significance of performance differences between the architecture groups obtained via DiffusionNAG
and each method. A p-value of 0.05 or lower denotes that a statistically meaningful difference exists
in the performances of the generated architectures between the two groups.

The results demonstrate that, except for the Aircraft dataset, DiffusionNAG consistently provides
architectures with superior maximum accuracy (max) compared to other methods across three

6

Published as a conference paper at ICLR 2024

Figure 3: Comparison Results on Existing AO Strategies. Guided Gen (Ours) strategy provides a pool of
candidate architectures, guiding them toward a high-performance distribution using the current population with
DiffusionNAG. We report the results of multiple experiments with 10 different random seeds.

(a) EI (b) ITS (c) UCB

Figure 4: Experimental Results on Various Acquisition Functions. Ours consistently outperforms the
heuristic approaches on various acquisition functions. We run experiments with 10 different random seeds.

datasets. Additionally, the mean accuracy and minimum accuracy (min) of architectures within
the DiffusionNAG group are higher across all datasets. In particular, the p-values obtained from
comparing the groups of architectures suggested by DiffusionNAG and those from other baselines are
consistently below the 0.05 threshold across all datasets. This indicates that the architectures generated
by DiffusionNAG have shown statistically significant performance improvements compared to those
provided by the baseline methods when using transferable dataset-aware predictors. Furthermore,
the results clearly support the superiority of the proposed predictor-guided conditional architecture
generation method compared with either excluding predictors during generation (MetaD2A) or
relying solely on predictors without generating architectures (TNAS).

Results on NB201 Search Space We highlight two key aspects from the results of Table 2. Firstly,
the architectures generated by DiffusionNAG attain oracle accuracies of 94.37% and 73.51% on
CIFAR-10 and CIFAR-100 datasets, respectively, and outperform architectures obtained by the
baseline methods on Aircraft and Oxford-IIIT Pets datasets. While MetaD2A and TNAS achieve
accuracies of 59.15%/57.71% and 40.00%/39.04% on Aircraft and Oxford-IIIT Pets datasets,
respectively, DiffusionNAG achieves comparable or better accuracies of 58.83% and 41.80%,
demonstrating its superiority. Secondly, DiffusionNAG significantly improves the search efficiency
by minimizing the number of architectures that require full training (Trained Archs) to obtain a
final accuracy (For CIFAR-10 and CIFAR-100, an accuracy is retrieved from NB201 benchmarks)
compared to all baselines. Specifically, when considering the Aircraft and Oxford-IIIT Pets datasets,
DiffusionNAG only needs to train 3/2 architectures for each dataset to complete the search process
while MetaD2A and TNAS require 40/26 and 6/40 architectures, respectively. This results in a
remarkable speedup of at least 8.4× and up to 20× on average.

Further Anaylsis We further analyze the accuracy statistics of the distribution of architectures
generated by each method within the NB201 search space. Specifically, we conduct an in-depth study
by generating 1,000 architectures using each method and analyzing their distribution, as presented
in Table 3 and Figure 2. We compare DiffusionNAG with two other methods: random architecture
sampling (Random) and MetaD2A. Additionally, to assess the advantage of using a predictor in both
the NAG and evaluation phases compared to an approach where the predictor is solely used in the
evaluation phase, we unconditionally generate 10,000 architectures and then employ the predictor
to select the top 1,000 architectures (Uncond. + Sorting). DiffusionNAG (Cond.) leverages the
dataset-aware predictor fϕ(D,At) to guide the generation process following Equation (10).

7

Published as a conference paper at ICLR 2024

The results from Table 3 and Figure 2 highlight three key advantages of our model over the baselines.
Firstly, our model generates a higher proportion of high-performing architectures for each target
dataset, closely following the Oracle Top-1000 distribution within the search space. Secondly, our
model avoids generating extremely low-accuracy architectures, unlike the baseline methods, which
generate architectures with only 10% accuracy. This suggests that our model is capable of focusing
on a target architecture distribution by excluding underperforming architectures. Lastly, as shown in
Figure 2, DiffusionNAG (Cond.) outperforms sorting after the unconditional NAG process (Uncond.
+ Sorting). These results highlight the value of involving the predictor not only in the evaluation
phase but also in the NAG process, emphasizing the necessity of our conditional NAG framework.

3.2 IMPROVING EXISTING BAYESIAN OPTIMIZATION-BASED NAS

In this section, we have demonstrated that DiffusionNAG significantly outperforms existing heuristic
architecture sampling techniques used in Bayesian Optimization (BO)-based NAS approaches, leading
to improved search performance in BO-based NAS.

BO-based NAS The typical BO algorithm for NAS (White et al., 2023) is as follows: 1) Start
with an initial population containing neural architecture-accuracy pairs by uniformly sampling n0
architectures and obtaining their accuracy. 2) Train a predictor using architecture-accuracy pairs in
the population, and 3) Sample c candidate architectures by the Acquisition Optimization strategy
(AO strategy) (White et al., 2021a) and choose the one maximizing an acquisition function based on
the predictions of the predictor. 4) Evaluate the accuracy of the selected architecture after training it
and add the pair of the chosen architecture and its obtained accuracy to the population. 5) Repeat
steps 2) to 4) during N iterations, and finally, select the architecture with the highest accuracy from
the population as the search result. (For more details, refer to Algorithm 1 in the Appendix.)

Our primary focus is on replacing the existing AO strategy in step 3) with DiffusionNAG to improve
the search efficiency of BO-based NAS approaches. Baseline AO Strategy: The simplest AO strategy
is randomly sampling architecture candidates (Random). Another representative AO strategy is
Mutation, where we randomly modify one operation in the architecture with the highest accuracy
in the population. Mutation + Random combines two aforementioned approaches. Guided Gen
(Ours): Instead of relying on these heuristic strategies, we utilize DiffusionNAG to generate the
candidate architectures. Specifically, we train a predictor fϕ(y|At), as described in Equation (8),
using architecture-accuracy pairs in the population. The trained predictor guides the generation
process of our diffusion model to generate architectures. We then provide these generated architecture
candidates to the acquisition function in step 3) (See Algorithm 2 in the Appendix.)

Comparison Results with Existing AO Strategies The left and middle sides in Figure 3 illustrates
our comparison results with existing AO strategies. These results clearly highlight the effectiveness
of DiffusionNAG (Guided Gen (Ours)), as it significantly outperforms existing AO strategies such
as Random, Mutation, and Mutation + Random on the CIFAR100 dataset from NB201 and the
large-scale ImageNet 1K (Deng et al., 2009) dataset within the extensive MBv3 search space. In
particular, BO-based NAS methods employing Random or Mutation strategies often suffer from
the issue of wasting time on sampling low-quality architectures during the initial phase (White et al.,
2020; Zela et al., 2022). In contrast, DiffusionNAG effectively addresses this issue by offering
relatively high-performing architectures right from the start, resulting in a significant reduction in
search times. As a result, as shown in the right side of Figure 3, our approach outperforms existing
BO-based NAS methods, by effectively addressing the search cost challenge of them.

Experimental Results on Various Acquisition Functions In addition to the Probability of Improve-
ment (PI) used in Figure 3, we investigate the benefits of DiffusionNAG across various acquisition
functions, such as Expected Improvement (EI), Independent Thompson sampling (ITS), and Upper
Confidence Bound (UCB) as shown in Figure 4. (Please see Appendix D.2 for more details on
acquisition functions.). The experimental results verify that DiffusionNAG (Ours) consistently out-
performs heuristic approaches, including Mutation, Random, and Mutation + Random approaches,
on four acquisition functions: PI, EI, ITS, and UCB, in the large MBv3 search space.

3.3 THE EFFECTIVENESS OF SCORE NETWORK FOR NEURAL ARCHITECTURES

In this section, we validate the ability of the proposed score network to generate architectures that
follow the distribution of NB201 and MBv3 search spaces. For NB201, we construct the training set

8

Published as a conference paper at ICLR 2024

Table 4: Generation Quality. We generate 1,000 samples with each method for 3 runs of different seeds.

NAS-Bench-201 MobileNetV3

Method Validity (%) ↑ Uniq. (%) ↑ Novelty (%) ↑ Validity (%) ↑ Uniq. (%) ↑ Novelty (%) ↑
GDSS Jo et al. (2022) 4.56±1.44 - - 0.00±0.00 - -
Ours (w/o Pos. Emb.) 100.00±0.00 98.96±0.49 49.08±2.05 42.17±1.80 100.00±0.00 100.00±0.00

Ours (w/ Pos. Emb.) 100.00±0.00 98.70±0.66 49.20±1.96 100.00±0.00 100.00±0.00 100.00±0.00

by randomly selecting 50% of the architectures from the search space, while for MBv3, we randomly
sample 500,000 architectures. We evaluate generated architectures using three metrics (Zhang et al.,
2019): Validity, Uniqueness, and Novelty. Validity measures the proportion of valid architectures
generated by the model, Uniqueness quantifies the proportion of unique architectures among the valid
ones, and Novelty indicates the proportion of valid architectures that are not present in the training
set. As shown in Table 4, our score network generates valid architectures with 100% Validity,
whereas GDSS (Jo et al., 2022), a state-of-the-art graph diffusion model designed for undirected
graphs, fails to generate valid architectures, with the validity of only 4.56% and 0.00% for NB201
and MBv3, respectively. Furthermore, our positional embedding yields significant improvements,
indicating that it successfully captures the topological ordering of nodes within the architectures.
Notably, in the MBv3, Validity improves from 42.17% to 100.00%, highlighting the necessity of
positional embedding for generating architectures with a large number of nodes (a.k.a. "long-range").
Additionally, our framework generates 49.20%/100.00% novel architectures that are not found in the
training set, as well as unique architectures 98.70%/100.00% for NB201 and MBv3, respectively.

4 RELATED WORK

Neural Architecture Search NAS is an automated architecture search process (Ning et al., 2021;
Zoph & Le, 2017) and roughly can be categorized into reinforcement learning-based (Zoph & Le,
2017; Zoph et al., 2018; Pham et al., 2018), evolutionary algorithm-based (Real et al., 2019; Lu et al.,
2020), and gradient-based methods (Luo et al., 2018; Liu et al., 2019; Dong & Yang, 2019b; Xu et al.,
2020; Chen et al., 2021). Recently, Shala et al. (2023); Lee et al. (2021a) have proposed Transferable
NAS to rapidly adapt to unseen tasks by leveraging prior knowledge. However, they still suffer from
the high search cost. DiffusionNAG addresses these limitations by generating architectures satisfying
the objective with a guidance scheme of a meta-learned dataset-aware predictor.

Diffusion Models Diffusion models, as demonstrated in prior work (Song & Ermon, 2019; Ho
et al., 2020; Song et al., 2021b), are designed to reverse the data perturbation process, enabling them
to generate samples from noisy data. They have achieved success in a variety of domains, including
images (Nichol et al., 2022; Rombach et al., 2022), audio (Jeong et al., 2021; Kong et al., 2021), and
graphs (Niu et al., 2020b; Jo et al., 2022). However, existing diffusion models are not well-suited for
Neural Architecture Generation (NAG) because their primary focus is on unconditionally generating
undirected graphs. To overcome this limitation, this study introduces a conditional diffusion-based
generative framework tailored for generating architectures represented as directed acyclic graphs that
meet specified conditions, such as accuracy requirements.

5 CONCLUSION

This study introduced a novel conditional Neural Architecture Generation (NAG) framework called
DiffusionNAG, which is the paradigm shift from existing NAS methods by leveraging diffusion
models. With the guidance of a property predictor for a given task, DiffusionNAG can efficiently
generate task-optimal architectures. Additionally, the introduction of a score network ensures the
generation of valid neural architectures. Extensive experiments under two key predictor-based
NAS scenarios demonstrated that DiffusionNAG outperforms existing NAS methods, especially
effective in the large search space. We believe that our success underscores the potential for further
advancements in NAS methodologies, promising accelerated progress in the development of optimal
neural architectures. For reproducibility, we include “NAS Best Practices Checklist” in Appendix A.
Acknowledge This work was conducted by the Center for Applied Research in Artificial Intelligence
(CARAI), funded by DAPA and ADD (grant number UD190031RD), and further supported by the Institute
of Information & Communications Technology Planning & Evaluation (IITP) under the Korean government
(MSIT) (grant number 2022-0-00713).

9

	Introduction
	Method
	Neural Architecture Diffusion Process
	Conditional Neural Architecture Generation
	Transferable Conditional Neural Architecture Generation

	Experiment
	Comparison with Transferable NAS Methods
	Improving Existing Bayesian Optimization-based NAS
	The Effectiveness of Score Network for Neural Architectures

	Related Work
	Conclusion

