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Abstract
Training and validating models for semantic seg-
mentation require datasets with pixel-wise anno-
tations, which are notoriously labor-intensive. Al-
though useful priors such as foundation models
or crowdsourced datasets are available, they are
error-prone. We hence propose an effective frame-
work of active label correction (ALC) based on
a design of correction query to rectify pseudo
labels of pixels, which in turn is more annotator-
friendly than the standard one inquiring to clas-
sify a pixel directly according to our theoretical
analysis and user study. Specifically, leveraging
foundation models providing useful zero-shot pre-
dictions on pseudo labels and superpixels, our
method comprises two key techniques: (i) an
annotator-friendly design of correction query with
the pseudo labels, and (ii) an acquisition func-
tion looking ahead label expansions based on the
superpixels. Experimental results on PASCAL,
Cityscapes, and Kvasir-SEG datasets demonstrate
the effectiveness of our ALC framework, outper-
forming prior methods for active semantic seg-
mentation and label correction. Notably, utilizing
our method, we obtained a revised dataset of PAS-
CAL by rectifying errors in 2.6 million pixels in
PASCAL dataset1.

1. Introduction
Semantic segmentation has seen remarkable advancements
powered by deep neural networks capable of learning from
huge datasets with dense annotations for all pixels. How-
ever, such pixel-wise annotations are labor-intensive and
error-prone. To address or bypass these challenges, vari-
ous approaches have been studied, including crowdsourcing
systems to collect large-scale human annotations (Crow-
ston, 2012), weakly supervised learning methods to train
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models with image-wise annotations (Ru et al., 2023), and
foundation models capable of useful zero-shot prediction
on superpixels (Kirillov et al., 2023) or even semantic seg-
mentation (Liu et al., 2023). However, those are unreliable
to train and more importantly validate models for exquisite
or domain-specific prediction. For instance, despite recent
advances, the zero-shot prediction with foundation mod-
els (Kirillov et al., 2023; Liu et al., 2023) is considerably
erroneous as demonstrated in Table 7. This can be more
problematic when the semantic segmentation requiring ex-
pertise such as medical knowledge (Ma et al., 2024).

Hence, we consider the problem of active label correction
(ALC) to construct a reliable pixel-wise dataset from an
unreliable or unlabeled dataset with a minimum cost of user
intervention. To this end, we propose an ALC framework
which leverages foundation models and correction queries.
Our correction query is designed to rectify the pseudo labels
of pixels, only if these pseudo labels are incorrect. Unlike
the standard classification query that directly requests a spe-
cific class (Cai et al., 2021; Kim et al., 2023a), our correction
query allows annotators to skip labeling if the pseudo labels
are correct, making it more annotator-friendly. Borrowing
the information-theoretic annotation cost (Hu et al., 2020),
we prove that our correction query is less costly than the
classification query. Moreover, our user study in Section 4.2
reveals that the correction query is faster to complete than
the classification query in practice.

Specifically, we leverage useful zero-shot predictions on
pseudo labels and superpixels from foundation models.
These pseudo labels are employed in our correction query
to designate pixel labels. They also allow us to warm-start,
avoiding the typical cold-start problem that comes from the
absence of a reliable way to evaluate data at the beginning
of active learning (Mahmood et al., 2021; Chen et al., 2023).
Furthermore, we fully enjoy the decent superpixels to solve
the challenges of pixel-wise queries. Although pixel-wise
queries can generate a flawless dataset, they require sub-
stantial time and memory to examine each pixel and lead to
redundancy in the pixels chosen (Shin et al., 2021).

To address the problems, we devise superpixel-aware strate-
gies across our entire framework. Initially, we build a diver-
sified pixel pool consisting of partial key pixels representing

1https://github.com/ml-postech/active-label-correction
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(a) Unlabeled image (b) Grounded-SAM (c) PASCAL (d) PASCAL+ (ours)

Figure 1: Examples of noisy and corrected labels in PASCAL. (a, b) Initial pseudo labels are generated by applying
Grounded-SAM (G-SAM) to unlabeled images. As depicted by the yellow boxes, noisy pseudo labels result in a decline in
performance, as shown in Table 7. (c) PASCAL also contains noisy labels in cyan boxes. (d) By employing the superpixels
from G-SAM, we construct a corrected version of PASCAL, called PASCAL+. For instance, in the first row, we correct the
object labeled as person to tvmonitor, and in the second row, the object labeled as background to tvmonitor. Here, the colors
black, blue, red, green, and pink represent the background, tvmonitor, chair, sofa, and person classes, respectively.

each image. As superpixels cluster pixels with similar fea-
tures (Van den Bergh et al., 2012), we choose one represen-
tative pixel per superpixel and add it to our pixel pool. To
solve the inefficiency of correcting each pixel individually
per query, we extend the corrections from individual pixels
to the entire superpixels they belong to. Accordingly, we
propose a look-ahead acquisition function, which anticipates
the benefits of label expansion beforehand.

The proposed framework is notably cost-efficient in con-
structing clean segmentation datasets. We evaluate it by con-
structing new segmentation datasets from the initial pseudo
labels given by foundation models in different fields, in-
cluding the medical domain. Our ALC framework outper-
forms prior methods for active semantic segmentation and
label correction over a range of budgets. In particular, we
highlight its practical application by enhancing the popular
PASCAL dataset (Everingham et al., 2012). We call our
corrected dataset PASCSAL+, which can be widely used in
the literature of semantic segmentation.

Our main contributions are summarized as follows:

• We provide theoretical and empirical justifications on
the efficacy of the correction query, compared to the
classification query (Section 3.2 and 4.2).

• We propose an active label correction framework, lever-
aging the correction query and foundation models,
where the look-ahead acquisition function enables se-
lecting informative and diverse pixels to be corrected
(Section 3.3 and 3.4).

• To achieve comparable performance with SOTA active
semantic segmentation methods, we only use 33% to
50% of budgets on various datasets (Section 4.2).

• Using the proposed framework, we correct 2.6 million
pixel labels in PASCAL and provide a revised version,
called PASCAL+ (Section 5.2).

2. Related Work
Active Learning for Segmentation. Active Learning
(AL) (Kim et al., 2023b; Saran et al., 2023; Yang et al., 2023)
aims at increasing labeling efficiency by selectively annotat-
ing informative subsets of data. In semantic segmentation,
previous work focuses on two aspects: the design of labeling
units and acquisition functions. In terms of labeling unit de-
sign, classical approaches explore image-based (Yang et al.,
2017; Sinha et al., 2019) and patch-based (Mackowiak et al.,
2018; Casanova et al., 2019) selection. Recently, superpixel-
based approaches (Siddiqui et al., 2020; Cai et al., 2021;
Hwang et al., 2023; Kim et al., 2023a), are gaining atten-
tion as they only require one click for labeling each region.
In terms of acquisition functions, they generally focus on
selecting uncertain regions, measured with entropy (Mack-
owiak et al., 2018; Kasarla et al., 2019), the gap between
the top-1 and the top-2 predictions (Joshi et al., 2009; Wang
et al., 2016; Cai et al., 2021; Hwang et al., 2023; Kim et al.,
2023a). While conventional AL methods collect labels from
scratch, the proposed method starts from the initial pseudo
labels from foundation models, correcting erroneous labels.
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Noisy Label Detection. The studies in noisy label detec-
tion (NLD) aim to identify incorrect labels efficiently by
selecting error-like samples. In computer vision, methods
for robust training toward label noise often include NLD
components (Natarajan et al., 2013; Xiao et al., 2015; Patrini
et al., 2017; Han et al., 2018; Ren et al., 2018; Song et al.,
2022), and recently, there is an increase in studies focusing
solely on NLD (Müller & Markert, 2019; Northcutt et al.,
2021b). NLD methods for semantic segmentation aggregate
pixel-wise error scores into labeling units, like an image or
superpixel. Lad & Mueller (2023) aggregate per-pixel error
scores from Confident Learning (Northcutt et al., 2021a)
into per-image scores, while Rottmann & Reese (2023) aver-
age error scores from locally connected components sharing
the same pseudo label. Recently, the Active Label Correc-
tion (ALC) (Bernhardt et al., 2022; Kim, 2022) methods
identify noisy labels and correct them in a classification task.
Our work is the first ALC method for semantic segmenta-
tion, correcting pixel labels and expanding them to their
corresponding superpixels.

Efficient Query Design. Designing a practical and cost-
effective annotation query is crucial, as it directly impacts
annotation budgets. In semantic segmentation, various
approaches have been explored, including classification
queries asking for a specific class (Cai et al., 2021; Kim
et al., 2023a), one-bit queries requesting yes or no re-
sponses (Hu et al., 2020), and multi-class queries obtaining
all classes in a superpixel (Hwang et al., 2023). Recently,
there have been studies on efficiently constructing datasets
using foundation models. For instance, Wang et al. (2023)
leverages these models for automated labeling in remote
sensing imagery, and Qu et al. (2023) focuses on building
large medical datasets with them. However, its query form
is stagnant in previous query types. By employing the initial
pseudo labels from foundation models, we suggest correc-
tion queries that only request the correct label when the
given pseudo label is incorrect.

3. Active Label Correction Framework
Given an initial noisy dataset D0, we consider an active
label correction (ALC) scenario operating with pixel-wise
labeling. Each query to an oracle annotator requests the
accurate label y ∈ C := {1, 2, ..., C} for an associated pixel
x. In contrast to active learning (AL), which commences
with an unlabeled image set, ALC focuses on progressively
refining a labeled dataset D0 which may include noisy labels.
For each round t, we issue a batch Bt of B queries from
a pixel pool Xt and train a model θt with the corrected
annotations obtained so far.

In the following, we first prepare an initial dataset for cor-
rection (Section 3.1). After that, we present a correction
query that requests for rectifying pseudo labels of pixels

Algorithm 1 Proposed Framework

Require: Batch size B, and final round T .
1: Prepare initial dataset D0 requiring label correction
2: Obtain model θ0 training with D0 via (1)
3: for t = 1, 2, . . . , T do
4: Construct diversified pixel pool X d

t via (4)
5: Correct labels of selected B pixels Bt ⊂ X d

t via (9)
6: Expand corrected labels to corresponding superpixels
7: Obtain model θt training with corrected Dt via (11)
8: end for
9: return DT and θT

(Section 3.2). To fully enjoy the corrections, we introduce
a look-ahead acquisition function, which selects from a di-
versified pixel pool (Section 3.3), considering the effect
of label expansion (Section 3.4). The overall procedure is
summarized in Algorithm 1.

3.1. Initial Dataset Preparation

For ALC, an initial segmentation dataset is essential, and we
can start with well-known datasets like Cityscapes (Cordts
et al., 2016) or PASCAL VOC (PASCAL) (Everingham
et al., 2012). However, the presence of labeled datasets
may be impractical in many domains. Employing AL is one
method for preparing labeled datasets. However, AL typi-
cally builds datasets through random pixel (Shin et al., 2021)
or superpixel labeling (Cai et al., 2021) leading to lots of
budgets and rounds, as it starts from unlabeled images, com-
monly known as the cold-start problem (Mahmood et al.,
2021). Away from conventional AL methods, we utilize re-
cent foundation models to construct segmentation datasets.

Recently, foundation models for zero-shot segmentation
have been emerged. For example, Grounded-SAM, a fusion
of Grounding DINO (Liu et al., 2023) and Segment Any-
thing Model (Kirillov et al., 2023) is capable of detecting
and segmenting objects based on text prompts. Each class
is identified with its own text prompt, and we can obtain the
initial pseudo labels by using a series of |C| text prompts,
one for each class. We solve the problem of multi-classes in
object detection by giving each object the most likely class
as a pseudo-label. Figures 1a and 1b display examples of
the unlabeled images in PASCAL and corresponding initial
pseudo labels generated by Grounded-SAM.

Warm-start. In contrast to the cold-start problem in AL,
our ALC benefits from warm-start thanks to the initial labels
provided by foundation models. In Appendix A, detailed
descriptions of text prompts for warm-start are provided.
To obtain θ0, we initialize θ to a model pre-trained on Im-
ageNet (Deng et al., 2009). We then train it to reduce the
following cross-entropy (CE) loss:

Ê(x,y)∼D0
[CE(y, fθ(x))] , (1)
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Is this pixel a boat? Give the correct label only if the pseudo label is incorrect.
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Figure 2: An example of correction query. Correction query
presents an instruction requesting a label for a representative
pixel (green star), an image displaying an object within a
bounding box (green rectangle), and possible class options.

where fθ(x) ∈ R|C| represents the estimated class proba-
bility for pixel x by the model θ. Here, the difference lies
in D0: AL uses only partial y, while ALC can access all
y for each pixel x. However, compared to ground-truth in
Figure 1c, the initial pseudo-labels in Figure 1b contain
noisy labels. This results in negative impacts on the model’s
performance, as shown in Table 7. Therefore, active label
correction is essential for rectifying these noisy labels.

3.2. Correction Query

Once we prepare the initial dataset for correction, we use
our correction query to rectify the pseudo labels of pixels.
As the number of classes increases, the classification query
asking for the precise label of a pixel can become more time-
consuming (Zhang et al., 2022). In contrast, our correction
query lowers the overall cost by reducing the number of
classification queries needed, allowing annotators to bypass
labeling when the pseudo label is already correct. Specifi-
cally, we use the instruction with a pseudo label on a pixel,
written as follows:

Give the correct label only if the pseudo label is incorrect.

Figure 2 and Appendix B provide detailed descriptions of
our correction query. In the following, we information-
theoretically compare the expected costs of classification
and correction queries, denoted by Ccls and Ccor, respec-
tively.

Theorem 3.1. Assume the information-theoretic annotation
cost (Hu et al., 2020) of selecting one out of L possible
options to be log2 L. Let L ≥ 2 be the number of classes,
and p be the probability that the pseudo label is correct.
Then, Ccls(L) = log2 L and Ccor(L, p) = p+(1−p) log2 L.
Thus, for any p ∈ [0, 1] and L ≥ 2,

1− Ccor(L, p)

Ccls(L)
=

(
1− 1

log2 L

)
p ≥ 0 . (2)

Proof. The correction query can be interpreted as a binary

question if the pseudo label is correct, and a L-ary one
otherwise. Recalling the definition of p and Ccls(L) =
log2 L, we have Ccor(L, p) = p log2 2+(1−p) log2 L.

The costs of both correction and classification queries are
the same if L = 2. Indeed, those are logically identical
when L = 2. In (2), the cost-saving rate using the cor-
rection query instead on the classification one is computed
as

(
1− 1

log2 L

)
p, which is increasing in p and L. Hence,

using the correction query is particularly beneficial when
the number of classes is large or the pseudo labels can be
obtained accurately. In addition, a user study on correction
queries experimentally confirms their practical effectiveness
in Section 4.2.

3.3. Diversified Pixel Pool

Employing pixel-wise queries is instrumental in construct-
ing error-free segmentation datasets. However, examining
each pixel with an acquisition function requires substantial
time and memory. Furthermore, as adjacent pixels often
share similar acquisition values, there exists a risk of lacking
diversity in the selected pixels, i.e., pixels in a certain area
of the image with high acquisition values may be picked
simultaneously. To tackle these challenges at once, we pro-
pose a diversified pixel pool X d, which is a subset of the
total pixel set X , as follows:

X d := {x1, x2, . . . , x|S|} , (3)

where each xi represents a key pixel from the superpixel si
within the set of superpixels S.

Specifically, starting with a model θt−1 trained on the
dataset Dt−1 from the previous round, we construct a diver-
sified pixel pool X d

t := {xt1, xt2, . . . , xt|S|} for the current
round t. For ease of explanation, we refer to θt−1 simply
as θ, xti as xi and X d

t as X d. We select a representative
pixel xi from each superpixel si based on the highest cosine
similarity as:

xi := argmax
x∈si

fθ(x) · fθ(s′i)
∥fθ(x)∥∥fθ(s′i)∥

, (4)

where fθ(s) :=
∑

x∈s fθ(x)

|{x:x∈s|} represents the averaged class
prediction for superpixel s. To address the flaws in superpix-
els and ensure more uniformity of pixel labels within them,
we employ a subset s′ rather than the complete set s. We
start by defining the pseudo dominant label Dθ(s), which
serves as the representative label for superpixel s according
to model θ, as follows:

Dθ(s) := argmax
c∈C

|{x ∈ s : yθ(x) = c}| , (5)

where yθ(x) := argmaxc∈C fθ(c;x) is the estimated label
for pixel x using model θ. Subsequently, we form the subset

4



Active Label Correction for Semantic Segmentation with Foundation Models

s′, consisting of pixels that align with the pseudo dominant
label Dθ(s), as follows:

s′ := {x ∈ s : yθ(x) = Dθ(s)} . (6)

After that, we select the pixel that best represents s′ for each
superpixel based on (4), contributing to the formation of a
diverse pixel pool in (3). We highlight that the proposed
diversified pixel pool reduces time and memory usage and
lessens the redundancy issue in the chosen pixels.

Remarks. While various superpixel generation algo-
rithms (Achanta et al., 2012; Van den Bergh et al., 2012)
can be used for S in (3), these standard algorithms typically
group neighboring pixels based on similar inherent proper-
ties like color and maintain nearly uniform sizes. Recent
research indicates that semantically considered superpixels
from a model are effective for AL in segmentation (Kim
et al., 2023a). Therefore, we opt to organize superpixels
based on the objects identified by Grounded-SAM.

3.4. Look-Ahead Acquisition Function

Once the set of pixels X d
t for examination through an ac-

quisition function is established, we select a pixel batch
Bt ⊂ X d

t of size B to be corrected. In each round t, we
iteratively select the most informative pixel, guided by the
acquisition a(x; θt−1):

x∗ := argmax
x∈Xd

t

a(x; θt−1) . (7)

For simplicity, we refer to θt−1 as θ. Recently, Lad &
Mueller (2023) propose a confidence in label (CIL), which
evaluates the confidence of a given label y for a pixel x,
using the predictions of the model θ as follows:

aCIL(x; θ) := 1− fθ(y;x) . (8)

The underlying assumption is that a pixel is likely misla-
beled if the model demonstrates insufficient learning about
that pixel’s label. However, correcting only a single pixel
with each query is not only inefficient but also has minimal
impact on the learning process. To enhance the efficiency of
pixel-wise query, we introduce a label expansion technique,
which involves extending the corrected label of a pixel x
into pixels in the same superpixel s.

Accordingly, we suggest a look-ahead acquisition function
that not only assesses the unreliability of a pixel x as de-
scribed in (8), but also takes into account the effect of label
expansion into the superpixel s. Here, we rename x to xr as
it serves as a representative pixel for s. For a representative
pixel xr of s, our acquisition function is defined as follows:

aSIM(xr; s, θ) :=
∑
x∈s

fθ(xr) · fθ(x)
∥fθ(xr)∥∥fθ(x)∥

aCIL(x; θ) , (9)

where the cosine similarity between two feature vectors is
related to the likelihood of correctly expanding the correct
label of pixel xr to another pixel x.

We note that previous acquisitions including CIL in (8)
can be transformed easily to its look-ahead counterparts.
For instance, the look-ahead CIL (LCIL) acquisition can
be defined by adjusting the weight of each pixel from the
cosine similarity to the inverse of the superpixel size as:

aLCIL(xr; s, θ) :=
∑
x∈s

1

|s|
aCIL(x; θ) . (10)

Finally, in round t, we select the B most informative pixels
from the diversified pixel pool X d

t in order of SIM acquisi-
tion to form query batch Bt.

After obtaining the clean labels of selected B pixels, we
expand them to the associated superpixels. We finally con-
struct the dataset Dt for round t by combining the previous
dataset Dt−1 with the updated annotations. Analogously to
the warm-start, we initialize θt to a model pre-trained on
ImageNet, minimizing the following CE loss:

Ê(x,y)∼Dt
[CE(y, fθ(x))] . (11)

4. Experiments
4.1. Experimental Setup

Datasets. We use three semantic segmentation datasets:
Cityscapes (Cordts et al., 2016), PASCAL VOC 2012 (PAS-
CAL) (Everingham et al., 2012), and Kvasir-SEG (Jha et al.,
2020). Cityscapes comprises 2,975 training and 500 vali-
dation images with 19 classes, while PASCAL consists of
1,464 training and 1,449 validation images with 20 classes.
Kvasir-SEG is a medical dataset for polyp segmentation
consists of 880 training and 120 validation images with 2
classes.

Implementation Details. We adopt DeepLab-v3+ archi-
tecture (Chen et al., 2018) with Resnet101 pre-trained on
ImageNet (Deng et al., 2009) as our segmentation model.
During training, we use the SGD optimizer with a momen-
tum of 0.9 and set a base learning rate of 0.1. We decay
the learning rate by polynomial decay with a power of 0.9.
For Cityscapes, we resize training images to 768 × 768 and
train a model for 30K iterations with a mini-batch size 16.
For PASCAL, we resize training images to 513 × 513 and
train a model for 30K iterations with a mini-batch size 16.
For Kvasir-SEG, we resize training images to 352 × 352
and train a model for 6.3K iterations with a mini-batch size
32. For the initial dataset generated with Grounded-SAM,
we use the box threshold of 0.2 for Cityscapes and PASCAL,
and 0.05 for Kvasir-SEG.
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Figure 3: Effect of active label correction. ALC shows
comparable results on both datasets with much fewer clicks.
ALC (normalized) reflects the reduced budget of correction
queries with normalization by Theorem 3.1.

Table 1: User study for different queries. Our correction
query Ccor proves to be more cost-effective compared to
classification query Ccls.

Query Total time (s) Time per query (s) Accuracy (%)

Ccls 126.1±19.8 6.31±0.99 95.0±3.3

Ccor 95.1±9.0 4.76±0.45 95.0±4.0

4.2. Main Experiments

Baselines. Our Active Label Correction (ALC) method
is compared with the state-of-the-art (SOTA) superpixel-
based active learning (AL) methods: Spx (Cai et al., 2021),
MerSpx (Kim et al., 2023a), and MulSpx (Hwang et al.,
2023). They are chosen for two reasons: (1) Their measure
of labeling cost is the same as ours, i.e., the number of label
clicks. (2) They are SOTA methods in AL for segmentation.
Following conventional AL methods (Cai et al., 2021), we
highlight the amount of annotation used to achieve 95%
performance of the fully supervised baseline, where 95%.
denotes performance.

Evaluation Protocol. Given a limited budget, we identify
and fix noisy pixel labels, and expand them to the related
superpixels to construct the corrected dataset. Then, we
develop a model using the dataset and evaluate its effec-
tiveness with mean Intersection over Union (mIoU). In all
experiments, we report the average results from three trials,
with graph shading indicating the standard deviation. We
access the model not only on the test dataset but also on the
training dataset to calculate the quality of the dataset itself.

Active Label Correction vs. Active Learning. In Figure 3,
we show the effectiveness of our framework, named ALC,
compared with current AL methods over various budget lev-
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Figure 4: Precision and recall comparisons. Our SIM acqui-
sition shows a high recall, indicating it corrects many noisy
pixels with limited budgets.

Table 2: Quality of corrected datasets. The labels of 5K
pixels from the initial datasets are corrected using different
acquisition functions in the ALC framework.

Acquisition function Data mIoU (%) Model mIoU (%)

LCIL 56.59±0.07 56.82±0.05

SoftMin 59.28±0.59 58.66±0.89

AIoU 59.95±0.57 59.04±0.27

SIM (ours) 83.04±0.62 68.72±0.10

els, represented by the number of clicks, for both PASCAL
and Cityscapes datasets. Due to variations in models and
hyperparameters used in previous methods, we ensure a fair
comparison by evaluating the percentage of fully supervised
mIoU, where additional comparisons with absolute mIoU
is reported in Appendix C. The results illustrate that our
ALC substantially reduces the necessary budgets to achieve
95% target performance. Specifically, ALC achieves 95%
of the fully supervised baseline performance with just 6K
clicks for PASCAL and 150K clicks for Cityscapes. This is
only 30% and 75% of the budget required by the previous
SOTA methods, respectively. Even when considering the
efficient labeling cost of correction queries in Theorem 3.1,
the cost of our proposed method reduces to 68% of its orig-
inal version, where p in (2) is 0.27 and 0.5 in PASCAL
and Cityscapes, respectively. This result is denoted as ALC
(normalized) in Figure 3.

Verification of Labeling Costs with User Study. In The-
orem 3.1, we prove that the labeling cost of the correction
query Ccor is lower than the classification query Ccls. In
Table 1, we empirically show its effectiveness with a user
study conducted by 20 annotators, where they are given 20
queries with p = 0.5 scenarios. Theoretically, as L = 20
in PASCAL, the cost ratio between the two queries is about
0.62. In Table 1, we observe that Ccor requires 0.75 times
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Figure 5: Kvasir-SEG experiments. The proposed SIM ac-
quisition operate robustly on medical dataset across different
budgets.

the cost of Ccls, in practice. More details about user study
are in the Appendix B.

4.3. Effectiveness of Proposed Acquisition Function

Baselines. In our ALC framework, we compare our SIM
acquisition with previous ones for detecting noisy labels
in segmentation datasets, such as LCIL, SoftMin (Lad &
Mueller, 2023), and AIoU (Rottmann & Reese, 2023). For a
fair comparison, we keep all other methodologies constant,
including a diversified pixel pool, lookahead strategy, and
label expansion, varying only the acquisition function.

Evaluation Protocol. Given a limited budget, we select
unreliable pixels, correct their labels, and expand them to
the corresponding superpixels. We first evaluate the effi-
ciency of the acquisition functions in terms of precision and
recall at the pixel level. Specifically, precision refers to the
proportion of pixels correctly identified as mislabeled out
of the selected pixels, while recall represents the fraction of
pixels chosen correctly from the total number of mislabeled
pixels. Then, we access models trained with each corrected
dataset from different acquisitions with mIoU. The ablation
experiments on acquisition are conducted in PASCAL.

Precision and Recall of Acquisition Functions. In Fig-
ure 4, we compare SIM to baseline acquisitions by calculat-
ing the precision and recall for detecting incorrect pixels.
SIM outperforms the baseline acquisition functions in terms
of recall while showing a comparably low precision rate.
This is attributed to SIM considering the effect of label
expansion as in (9), which favors large superpixels. We
consider this design choice to be effective for ALC for two
reasons. First, as demonstrated in Theorem 3.1, the labeling
cost of reconfirming false positives, i.e., correct pseudo la-
bels, is significantly low. Second, correcting the labels of as
many pixels as possible, which is related to high recall, leads
to greater improvements in data and model performance as
shown in Table 2.
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Figure 6: Advantages of foundation models. Our ALC is
called G-SAM, as it depends on Grounded-SAM. The effect
of superpixels is larger than that of initial pseudo-labels.

Quality of Corrected Datasets. In Table 2, we compare
SIM to baseline acquisition functions in terms of the quality
of the corrected dataset when using 5K clicks. The quality
of the corrected dataset is evaluated by the accuracy of
corrected labels (Data mIoU), and the performance of a
model trained with them (Model mIoU). For both metrics,
the dataset corrected by SIM shows the best quality. This
shows that the performance of the model is more correlated
to the recall in Figure 4b, as high recall indicates fewer
incorrect labels in the dataset.

4.4. Further Analyses

Applicability to Medical Dataset. In Figure 5, we apply
the ALC framework to the Kvasir-SEG dataset to verify
the generalization ability of our framework to challenging
medical domain. Here, the initial dataset shows 20% mIoU,
as shown in 0K of Figure 5b. Even under such challeng-
ing initial conditions, the ALC combined with SIM reaches
93% performance of the fully supervised model only us-
ing 6K clicks. This performance can be attributed to SIM
acquisition function, which consistently achieves the high-
est recall among baselines over various numbers of clicks,
as shown in Figure 5a. We note that our approach intro-
duces superpixel-wise sampling to Kvasir-SEG for the first
time, diverging from the traditional image-wise sampling
methods (Smailagic et al., 2018; Wu et al., 2021).

Decomposing the Advantages of Foundation Models. In
Figure 6, we analyze the effect of the foundation model for
ALC in two aspects: initial pseudo-labels and superpixels,
in PASCAL. We denote the proposed method using both
aspects as G-SAM. For the baseline, we initially train a
model with a 3K budget through random sampling and
then employ this model as the pseudo-label generator in
subsequent rounds, which is denoted as R-SAM. We note
that the distinction between G-SAM and R-SAM lies in the
method of obtaining initial pseudo-labels, rather than in

7
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Table 3: Synergy of proposed components. We conduct an
ablation study, when correcting the initial dataset using 5K
budgets in PASCAL.

Acquisition Expansion Data mIoU Model mIoUDiversity Look-ahead

✗ ✗ ✗ 55.03±0.25 56.30±0.56

✗ ✓ ✓ 55.38±0.08 56.01±0.58

✓ ✗ ✓ 56.59±0.07 56.82±0.05

✓ ✓ ✗ 55.61±0.00 56.69±0.35

✓ ✓ ✓ 83.04±0.62 68.72±0.10

the acquisition itself. In subsequent rounds, namely for
budgets of 6K and 9K, both R-SAM and G-SAM adhere
to the same experimental settings, including the same SIM
acquisition function. Another baseline is to use superpixels
from SEEDS (Van den Bergh et al., 2012) instead of the
ones from SAM, which is denoted as G-SEEDS. We denote
R-SEEDS as a baseline combining both random sampling in
the initial round and superpixels from SEEDS. As shown in
Figure 6, both aspects improve both Data mIoU and Model
mIoU. In particular, utilizing the superpixels from SAM
shows significant performance improvement.

Synergy of Proposed Components. Table 3 quantifies
the contribution of each component in our method: (1) the
diversified pixel pool (Diversity) in Section 3.3, (2) the
look-ahead acquisition (Look-ahead), and (3) the label ex-
pansion technique (Expansion) in Section. 3.4. The ablation
study is conducted by correcting the initial dataset using 5K
budgets in PASCAL, and evaluated with both the accuracy
of corrected labels (Data mIoU) and the performance of a
model trained with them (Model mIoU). The results show
that all components improve both Data mIoU and Model
mIoU. In particular, the synergy of proposed components is
pronounced. Since correcting numerous pixels across vari-
ous regions simultaneously is significant, omitting even one
component results in significant performance degradation.

Fair Comparison with Baselines. We provide additional
experiments and discussions to clarify the advantages of our
method called ALC, compared to adopting Grounded-SAM
(G-SAM) to Spx baseline. In turn, only our method fully
leverages G-SAM mainly thanks to our acquisition function,
SIM. Table 4 presents an ablation study on the advantages of
G-SAM, which are two-fold: warm-start with initial pseudo-
labels and SAM superpixels. The gap between the first and
second rows quantifies the advantage of warm-start with
G-SAM when using Spx. This is not substantial since the
pseudo labels from G-SAM contain considerable noises, as
shown in Figure 1b, i.e., Data mIoU 55.32% in PASCAL.
In addition, comparing the second and third rows, the ad-
vantage of using SAM superpixels for Spx is negligible.
The gain of our method in the fourth row is clear. This is

Table 4: Fair comparison between Spx and ALC. For a
fair comparison, we integrate two advantages of foundation
models into Spx. We refine the initial dataset using 3K
budgets in PASCAL.

Methods Initial stage Superpixels Model mIoU (%)

Spx Cold-start SEEDS 52.34±0.85

Spx Warm-start SEEDS 57.77±0.70

Spx Warm-start SAM 57.79±0.66

ALC Warm-start SAM 65.30±0.21

mainly thanks to the proposed acquisition function, SIM,
with the look-ahead ability. We note that MerSpx (Kim et al.,
2023a) based on ClassBal of Spx has no such look-ahead.
MulSpx (Hwang et al., 2023) proposes a multi-class query,
which requests labeling all classes within a superpixel, mak-
ing it difficult to conduct a fair comparison.

5. PASCAL+ corrected from PASCAL
To demonstrate the practicality of the proposed frame-
work, we apply corrections to the widely-used PASCAL
dataset (Everingham et al., 2012), resulting in an enhanced
version named PASCAL+ dataset (Section 5.1). Figures 1c
and 1d illustrate the change in labels between PASCAL
and PASCAL+ datasets, respectively. We demonstrate the
enhanced model performance when using PASCAL+ com-
pared to PASCAL and verify the cost-effectiveness of our
SIM acquisition function (Section 5.2).

5.1. Construction Process

We apply our active label correction to construct the refined
version of the PASCAL dataset. We first generate 81K
superpixels using Grounded-SAM, where we use 0.1 as the
box threshold. Considering that PASCAL has 1,464 images
for training and 1,449 for validation, the average number
of superpixels per image is around 29. Then we correct the
pseudo label of each superpixel by annotating the true label
to the corresponding representative pixel and expanding the
label to the superpixel. The relabeling tasks are conducted
by two annotators, each spending around 60 hours over two
weeks. When labels from two annotators are different, the
final annotation is determined by discussion. The qualitative
result of PASCAL+ compared to PASCAL is illustrated in
Figures 1 and 9. Additionally, in Figure 10, we report few
failure cases for label correction due to the imperfection of
superpixels, budget constraints, and human error.

5.2. Analysis of PASCAL+

Effect of PASCAL+. In PASCAL+, we make 743 super-
pixel label corrections in total, with 375 in the training set
and 368 in the validation set. Approximately 0.5% of the
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Figure 7: PASCAL+ statistics. (a) The IoU gain is calculated by averaging the improvements in the train and valid datasets
in Table 5. The orange line (- - -) denotes the average gain. (b) Certain classes are corrected a lot. Notably, the pottedplant,
sofa, chair, and diningtable classes get many corrections, leading to a noticeable increase in IoU gain.

Table 5: Effect of PASCAL+. P denotes PASCAL, while P+
denotes PASCAL+. The refined train set increases model
performance on both the original and refined validation sets.

Train Valid Data mIoU (%) Model mIoU (%)

P P 99.1 75.36±0.07

P+ P 100.0 75.78±0.12

P P+ 99.1 76.18±0.08

P+ P+ 100.0 76.42±0.03

pixel labels, equivalent to 2.6 million pixels, are altered,
resulting in a 0.9% improvement in the mean Intersection
over Union (mIoU) for the training set, as shown in Table 5.
Regardless of whether the valid set is PASCAL or PAS-
CAL+, corrections to the training data enhance the mIoU
by around 0.3%. In particular, Figure 7a represents that IoU
scores for the pottedplant and sofa classes are increased by
more than 2%. This trend is related to the distribution of the
corrected classes in Figure 7b. Excepting the background
and person classes, which already achieve high IoU scores
with PASCAL in Figure 12, the IoU scores tend to improve
in line with the number of corrections applied to classes that
initially have more errors. PASCAL+ not only enhances
the reliability of segmentation model evaluations but also
has the potential to reduce both false negatives and false
positives in the literature of detecting noisy labels for seg-
mentation tasks, thereby contributing to more reliable and
precise outcomes in this field.

Various Acquisitions for PASCAL+. Since it is possible
to access both the noisy PASCAL and clean PASCAL+
datasets at the same time, we analyze which acquisition
function is effective in real-world. Table 6 indicates that
our SIM acquisition achieves nearly 100% Data mIoU, i.e.,
almost similar to PASCAL+, with selecting 10K pixels for
correction. As the training dataset’s quality improves, there
is a corresponding slight increase in model performance.

Table 6: Performance of corrected dataset. With 10K bud-
gets, we correct PASCAL to PASCAL+ with different ac-
quisitions.

Acquisition function Data mIoU (%) Model mIoU (%)

LCIL 99.16±0.00 75.68±0.25

SoftMin 99.38±0.01 75.76±0.23

AIoU 99.28±0.02 75.61±0.22

SIM (ours) 99.78±0.11 75.87±0.22

6. Conclusion
In this work, we propose a framework for active label cor-
rection in semantic segmentation operating with foundation
models. Our framework includes cost-efficient correction
queries, which are verified theoretically and empirically,
that ask for a pixel label to be corrected if needed. We
fully enjoy the benefits of foundation models, namely initial
pseudo-labels and decent superpixels, resulting in signifi-
cant budget reduction across various datasets in different
domains. In addition, we demonstrate the practicality of our
framework by constructing PASCAL+, a corrected version
of the PASCAL dataset.

Limitations. Our framework depends on foundation mod-
els, particularly Grounded-SAM (Liu et al., 2023), and
shares the same inherent limitations as these models, like
generating incomplete superpixels for minor domains. How-
ever, we demonstrate the effectiveness of our framework in
the medical field, and we expect these issues to be resolved
as foundation models continue to improve over time.
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A. Text Prompts for Warm-start
In Section 3.1, for the warm-start process, we generate initial
pseudo labels through a sequence of text prompts described.
For example, we employ “Road. Sidewalk. Building. . . .
Bicycle.” prompts for Cityscapes and “Aeroplane. Bicycle.
Bird. . . . Tvmonitor.” for PASCAL, where each word aligns
with the respective target class. However, each prompt, such
as “Diningtable”, can be segmented into multiple tokens,
such as “Dining” and “table”. Therefore, we assign each
token to its corresponding class to derive the initial labels
for the warm-start process.

B. User Study with Different Queries
To verify the efficiency of the proposed correction query
Ccor in Active Label Correction (ALC) compared to classi-
fication query Ccls in conventional Active Learning (AL),
we conduct a user study focusing on actual labeling costs,
specifically annotation time. The example of the correction
query questionnaire is illustrated in Figure 2, and the re-
sults are summarized in Table 1. Each question presents the
user with instructions, an image with an object highlighted,
and options for classifying the object. For the correction
query scenario, the instructions include the pseudo label
of the foundation model, and users only need to correct if
the pseudo label is incorrect. The detailed instruction for
correction query is given as follows:

Is this pixel a TV?
Give the correct label only if the pseudo label is incorrect.

On the other hand, the example instruction for classification
query is given as follows:

Give the correct label of the pixel.

Based on the ground-truth, we collect 20 images consisting
of 10 images with correct pseudo labels, and 10 images with
incorrect pseudo labels counterparts, i.e., p = 0.5. We ask
for labels of these images in both correction queries and
classification queries. A total of 20 volunteers participates
in the survey. To prevent the user from memorizing images,
we only ask one type of query per user, which means we
ask the correction queries to 10 users and the classification
queries to the others. The responses from annotators are
evaluated by calculating the accuracy of the classification
prediction. As shown in Table 1, the correction query only
requires 75% labeling time of that of the classification query.
In terms of accuracy, both queries show the same 95%.

C. Absolute Performance of ALC vs. AL
While conventional AL for semantic segmentation methods
use the same DeepLab-v3+ (Chen et al., 2018) segmentation
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Figure 8: Effect of active label correction. Our ALC shows
comparable results on both datasets with much fewer clicks.
Our ALC (normalized) reflects the reduced budget of correc-
tion queries in Theorem 3.1.

decoder combined with backbone pre-trained with the Ima-
geNet (Deng et al., 2009) dataset, the architecture of their
backbones are slightly different. ALC (ours) utilize plain
ResNet101, MulSpx (Hwang et al., 2023) use ResNet101
combined with deepstem tricks (He et al., 2019), and Mer-
Spx (Kim et al., 2023a) and Spx (Cai et al., 2021) employ
Xception-65 (Chollet, 2017). Figure 3 presents the perfor-
mance in terms of recovery rate relative to a fully supervised
model, calculated as the ratio of our model’s performance
to that of the fully supervised model.

Here, we additionally report the comparison with absolute
mIoU in Figure 8 over various budget levels, represented
by the number of clicks, for both PASCAL and Cityscapes
datasets. The 95% performance of each baseline’s fully
supervised model is illustrated with a dashed line labeled
as 95% (·). Our proposed ALC method consistently demon-
strate the most efficient performance.

D. Ablation Studies
D.1. Initial Pseudo Labels

Table 7: Performance of initial pseudo labels from
Grounded-SAM. Noisy pseudo labels cause the data and
model mIoU to worsen.

Box-thresohld # of objects Data mIoU (%) Model mIoU (%)

0.2 11,257 55.32 59.04
0.3 5,995 65.14 66.15
0.4 3,890 66.71 65.30
0.5 2,798 60.87 59.50

To evaluate the quality of pseudo labels generated by
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(a) Unlabeled image (b) Grounded-SAM (c) PASCAL (d) PASCAL+ (ours)

Figure 9: Additional examples of noisy and corrected labels in PASCAL. We correct PASCAL into PASCAL+ utilizing the
superpixels of Grounded-SAM.

Grounded-SAM (Liu et al., 2023) on the PASCAL dataset,
we measure the data and model mIoU while adjusting a
hyperparameter. Grounded-SAM operates with two hyper-
parameters: box-threshold and text-threshold. The text-
threshold aims to identify all potential classes with a poten-
tial value exceeding the threshold. As we only focus on a
specific class per a object, we employ the argmax function
on the potential classes. The box-threshold determines the
confidence level in the bounding box of the identified object.
With a lower box-threshold, the foundation model can detect
more objects, as demonstrated in Table 7. However, this
often leads to numerous incorrectly labeled objects, result-
ing in decreased mIoU for both data and model. Yet, the
benefit of detecting lots of objects lies in the potential for
enhanced performance when correcting the pseudo labels
of all detected objects, resulting in model mIoU of 72.59%,
70.90%, and 66.97% for box-thresholds of 0.2, 0.3, and 0.4,
respectively.

D.2. Similarity Threshold for Label Expansion

During the label expansion phase detailed in Section 3.4,
a challenge can emerge when superpixels contain pixels
belonging to various classes, potentially diminishing the
dataset’s overall quality. To this end, we propose expanding
the clean label of a pixel xi only to similar pixels within its

Table 8: Similarity threshold. For correction, we select 5K
pixels from the initial labels and adjust the extent of label
expansion.

ϵ Data mIoU (%) Model mIoU (%)

0.0 83.34 68.71
0.2 82.85 68.48
0.4 82.11 68.58
0.6 81.17 68.48
0.8 80.18 68.32
1.0 55.61 56.05

corresponding superpixel si as follows:

si(xi, ϵ) := {x ∈ si : cos
(
fθ(xi), fθ(x)

)
≥ ϵ)} , (12)

where the degree of expansion is determined by hyperpa-
rameter ϵ. The more incomplete the superpixel, the larger ϵ
is required. For our main experiments in Section 4, we set ϵ
as 0, indicating complete expansion, where si(xi, ϵ) = si.
Here, we investigate how the value of ϵ in (12) affects re-
sults. Since foundation models accurately generate super-
pixel boundaries in PASCAL, we observe that setting ϵ to 0,
thereby allowing the corrected pixel label to cover the entire
superpixel, yields the best performance, as demonstrated in
Table 8.
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(a) Unlabeled image (b) Grounded-SAM (c) PASCAL (d) PASCAL+ (ours)

Figure 10: Uncorrectable examples of noisy and corrected labels in PASCAL. We correct PASCAL into PASCAL+ utilizing
the superpixels of Grounded-SAM, however, due to the inherent limitations of superpixels, some failure cases can be
observed.

D.3. Comparison with Other Diversified Pixel Pool

Table 9: Experiments for diversified pixel pools. With 5K
budgets, we select pixels from different pixel pools and
correct the initial labels to PASCAL.

Methods Data mIoU (%) Model mIoU (%)

PixelPick 66.88 62.59
ALC 83.60 68.71

To solve the issue of picking similar pixels, as described
in Section 3.3, PixelPick employs an acquisition function
to rank all pixels, subsequently uniformly selecting them
from the top 5% ranked pixels in each image (Shin et al.,
2021). Thus, we contrast our diversified pixel pool based
on superpixels with the PixelPick method. For a fair com-
parison, we incorporate all other techniques, including SIM
acqusition equipped with the concept of look-ahead and
label expansion. As shown in Table 9, our ALC performs
better than PixelPick in terms of both data and model mIoU.

D.4. Comparison with Other Acquisitions

In Table 10, our SIM acquisition outperforms other various
acquisitions including Entropy, Best-versus-Second-Best
(BvSB), and Class-Balanced (ClassBal), employed in active

Table 10: Experiments with other acquisitions. With 5K
budgets, we select pixels from different pixel pools and
correct the initial labels to PASCAL.

Methods Model mIoU (%)

Entropy 57.09± 0.40
BvSB 57.58± 0.41

ClassBal 57.51± 0.67
SIM 65.30± 0.21

learning, due to the incorporation of the look-ahead concept.
We concentrate on adjusting the acquisition function, while
simultaneously applying other techniques such as diversified
pixel pool and expansion techniques. We correct the labels
of 3K pixels selected using various acquisition functions,
and expand the labels to their corresponding superpixels.

D.5. Class IoU on PASCSAL

We provide the rationale of IoU gain in Figure 7a. For a
detail, thanks to the corrected PASCAL+, we observe that
the IoU values of pottedplant, sofa, chair, and diningtable
classes increase. This is related to the number of corrections
in Figure 7b, as those class are corrected lots than other
classes. However, in case of background and person classes,
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(a) Image (b) PASCAL (c) PASCAL+

Figure 11: Correction that appears to cause negative IoU gains. Here, the colors black, red, purple, green, and pink
represent the background, chair, bottle, bicycle, and person classes, respectively.

ba
ck

gr
ou

nd
bu

s
ae

ro
pl

an
e

bi
rd ca
t

ca
r

pe
rs

on
m

ot
or

bi
ke

tra
in

co
w

do
g

sh
ee

p
ho

rs
e

bo
at

tv
m

on
ito

r
bo

ttl
e

bi
cy

cl
e

di
ni

ng
ta

bl
e

po
tte

dp
la

nt
so

fa
ch

ai
r

0

20

40

60

80

Io
U

(%
)

Figure 12: Class IoU on PASCAL. The IoU values of din-
ingtable, pottedplant, sofa, and, chair classes are relatively
low when trained with PASCAL.

we cannot obtain IoU gain as those classes already attain
high IoU with PASCAL as depicted in Figure 12.

E. Additional Results of PASCAL+
E.1. Qualitative Results

Additional qualitative results of corrected labels using our
proposed method are depicted in Figure 9. These results
demonstrate that our proposed correction method effectively
identifies objects overlooked in the original labels.

E.2. Uncorrectable Cases

Figure 10 presents examples where corrections made by our
proposed method are not entirely successful. Specifically,

the examples in the first and second rows of Figure 10 il-
lustrate situations where annotators mistakenly assign pixel
clicks to the wrong classes. Such errors can occur under lim-
ited budgets. In the last row of Figure 10, an area mislabeled
as person class is effectively corrected to car class. How-
ever, due to the insufficient granularity of the superpixels,
small areas remain uncorrected. This limitation can be mit-
igated by employing more refined superpixels or utilizing
improved foundational models.

E.3. Negative IoU Gains of PASCAL+

Figure 6a represents negative IoU gains for certain classes
such as person, bottle, and cow. Here, we provide the ratio-
nale for these negative gains. The final IoU gain is deter-
mined by the positive and negative impacts of corrections.
Although corrections generally aim to reduce noisy labels,
yielding positive effects, they can also have negative effects,
especially on challenging objects, as shown in Figure 11.
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(a) Unlabeled image (b) Round 0 (Grounded-SAM)

(c) Round 1 (d) Round 2

Figure 13: Segmentation changes through active label correction. (b) The initial pseudo labels obtained from Grounded-
SAM contain numerous noisy labels, exemplified by instances like tvmonior inside the cyan box. (c) In the first round, the
object labeled as tvmonitor is corrected to background. Nonetheless, many noisy labels exist within the yellow boxes. (c) In
the second round, we rectify all remaining noisy labels. With the help of the proposed look-ahead acquisition function, we
prioritize correcting large objects before addressing small ones. Here, the colors black, blue, red, dark red, purple, and pink
represent the background, tvmonitor, chair, airplane, bottle and person classes, respectively.
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