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Abstract

Despite the ubiquitous high-dimensionalities brought about by the increasing sizes
of models and data, low intrinsic dimensions are commonly found in many high-
dimensional learning problems (e.g. finetuning). To explore sample efficient
learning that leverages such low intrinsic dimensions, we introduce randomly piv-
oted V-optimal design (RPVopt), a fast data selection algorithm that combines
dimension reduction via sketching and optimal experimental design. Given a large
dataset with N samples in a high dimension d, RPVopt first reduces the dimen-
sionality from d to m≪ d by embedding the data to a random low-dimensional
subspace via sketching. Then a coreset of size n > m is selected based on the
low-dimensional sketched data through an efficient two-stage random pivoting
algorithm. With a fast embedding matrix for sketching, RPVopt achieves an asymp-
totic complexity of O(Nd +Nnm), linear in the full data size, data dimension,
and coreset size. With extensive experiments in both regression and classification
settings, we demonstrate the empirical effectiveness of RPVopt in data selection
for finetuning vision tasks.

1 Introduction

Deep learning models have achieved remarkable success across various domains, including vision
[1, 2] and languages [3, 4]. These large models typically require training on astronomical-scale
datasets [5, 6]. However, the computational costs and data storage demands associated with such
datasets pose substantial challenges. Consequently, there is increasing interest in enhancing data
efficiency and reducing dataset sizes without sacrificing performance. Prominent strategies such as
coreset selection and data condensation have emerged. By identifying and retaining a condensed
yet representative sample set from larger datasets, these techniques allow the training of models on
smaller, yet representative, datasets that aim to mirror the learning potential of the full dataset.

Despite the increasing dimensionalities in modern machine learning, low intrinsic dimensions can
often be found in many high-dimensional learning problems like finetuning [7, 8]. Inspired by this
seminal work, there are follow-up works [9, 10] employing a low-dimensional reparameterization for
parameter-efficient finetuning. Such low intrinsic dimensions suggest that, under suitable regular-
ization, learning with a small subset of the huge original dataset should be sufficient to mimic the
performance of full-size training. Recent work also shows that compressing the model via intrinsic

∗Alphabetical order.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



dimension yields better results than standard pruning and uses them to derive compression-based
generalization bounds [11].

For statistical models, data selection is often formulated as an optimal experimental design (OED)
problem [12, 13, 14, 15]. In the classical overdetermined setting for OED (where the problem
dimension d is lower than the data size n), V(ariance)-optimality is a design criterion tailored to
control the generalization gap. Inspired by the recent progress [16] on extending the notion of
V-optimality to overparametrized data selection with low intrinsic dimension via sketching, we
introduce Randomly Pivoted V-optimal Design (RPVopt), a fast data selection method for learning
under low intrinsic dimension.

Concretely, RPVopt first explores the low intrinsic dimension by embedding the high-dimensional
problem to a random low-dimensional subspace via sketching [16]. After reducing to the classical
low-dimensional (overdetermined) setting, in contrast to the common practice of solving an expensive
continuous relaxation of the discrete optimization problem posed by V-optimality [17, 18, 16], we
introduce a more efficient two-stage random pivoting algorithm that samples the coreset adaptively.
For the full data size N , problem dimension d, coreset size n, and embedding dimension m, RPVopt
runs in O(Nd + Nnm) time with a fast embedding for sketching. Via extensive experiments on
fine-tuning vision models, we empirically validate the performance of RPVopt in both regression and
classification settings, where it outperforms existing data selection methods across various settings,
especially for small coresets.

1.1 Related Works
Due to the space limit, we focus on OED here and defer further discussions regarding the more
general data selection problem to Appendix A.1.

Optimal experimental design. While standard OED focuses on the overdetermined scenario with
n ≥ d, efforts have been made to extend the notion of V-optimality to overparametrized setting,
d > n [19, 20, 16]. Specifically, [19, 20] proposes design criteria for ridge regression in the general
overparametrized setting. More recently, [16] considers overparametrized ridge regression with low
intrinsic dimension in the context of finetuning and provides a selection criterion based on sketching
that brings a sample complexity independent of d.

Fast algorithms for V-optimality. Despite the long history of OED, progress in provable algorithms
for V-optimality [18, 17, 21] has taken place more recently and remains surprisingly sparse. In
particular, [17, 21] introduced an optimization-based framework for a broad variety of optimality
criteria, including the V-optimality, which provably finds a nearly optimal coreset in polynomial
time. The framework consists of two stages: (i) solving a continuous relaxation of the original
discrete optimization problem and (ii) rounding the continuous solution via regret minimization.
However, solving the continuous relaxation can be prohibitively expensive despite its polynomial
complexity [21]. Related to V-optimality, A(verage)-optimality is a more studied design criterion.
Specifically, [22] shows that under mild conditioning assumptions, the classical Fedorov’s exchange
method [14] finds a nearly optimal coreset in polynomial time. Beyond computational tractability,
[23] investigates and improves a set of fast algorithms for the A-optimal experimental design,
including greedy removal [24], volume sampling [24], leverage score sampling [25], and dual set
sparsification [26].

2 Data Selection under Low Intrinsic Dimension

Notations. Given any n ∈ Z+, let [n] = {1, · · · , n}. Let en be the n-th canonical basis of the
conformable dimension.For any set U , we denote |U | as the cardinality of U . Additionally, for
any n ∈ [|U |], let C(U, n) = {S ⊆ U | |S| = n}. We adapt the standard asymptotic notations:
for any functions f, g : R+ → R+, we write f = O (g) or f ≲ g if there exists some constant
C > 0 such that f(x) ≤ Cg(x) for all x ∈ R+; f = Ω(g) or f ≳ g if g = O (f); f ≍ g if
f = O (g) and f = Ω(g). For any matrix A, let σ1(A) ≥ · · · ≥ σrank(A)(A) ≥ 0 be the singular
values; and denote A† as the Moore-Penrose pseudoinverse. Additionally for any k ≤ rank (A), let
⟨A⟩k = argminB: rank(B)≤k ∥A−B∥F be the optimal rank-k approximation of A (characterized
by the rank-k truncated SVD). For any symmetric matrices A,B ∈ Rd×d, we write A ≽ B or
A−B ≽ 0 if A−B is positive semidefinite.

2



2.1 Low-dimensional Data Selection and V-optimal Design

Data distribution. Consider a data distribution P overX×R (X ⊂ Rd) characterized by the ground
truth θ∗ ∈ Rd and level of noise σ > 0: (i) E(x,y)∼P [y | x] = x⊤θ∗, and (ii) V(x,y)∼P [y | x] ≤ σ2.
Let X = [x1, · · · ,xN ]⊤ ∈ RN×d be the data matrix associated with a huge set of N unlabeled
samples

{
xi ∈ Rd

∣∣ i ∈ [N ]
}

drawn i.i.d. from P . For simplicity, we assume rank(X) = d and
consider the fixed design setting with X = X and a uniform marginal distribution P (xi) = 1/N for
all i ∈ [N ]. Each xi is associated with an unknown label yi = x⊤

i θ∗+zi that can be queried with non-
negligible cost, where zi is an independent and zero-mean random variable with V[zi] ≤ σ2.

Learning problem. For any S = {i1, · · · , in} ∈ C([N ], n) = {S ⊂ [N ] | |S| = n}, let
XS = [xi1 , · · · ,xin ]

⊤ ∈ Rn×d be the data submatrix selected by S. Denote Σ = 1
NX⊤X and

ΣS = 1
nX

⊤
SXS as the d× d second moments. Given a target coreset size n < N , the goal of data

selection is to find a nearly optimal data subset indexed by S ∈ C([N ], n) such that by querying
only n labels yS ∈ Rn associated with XS , one can learn a “good” approximation θS of θ∗ from
(XS ,yS). Consider a regression problem with ℓ2 population loss, L(θ) = E(x,y)∼P [(x

⊤θ − y)2].
In the context of statistical learning, a “good” approximation of θ∗ generally refers to a θ ∈ Rd with
low excess risk, ER(θ) = L(θ)− L(θ∗) = ∥θ − θ∗∥2Σ, where Σ ≻ 0 as rank(X) = d.

Low- v.s. high-dimensional data selection. We refer to “low-dimensional” data selection as
the case where the data dimension is lower than the coreset size, d ≤ n (or more precisely, d =
rank(XS)), and therefore, θS is uniquely identified by an overdetermined system:

Low-dimensional : d = rank(XS), θS = argmin
θ∈Rd

1

n
∥XSθ − yS∥22 (1)

In contrast, “high-dimensional” data selection refer to an overparametrized problem with d > n (or
more precisely, d > rank(XS)), where θS is learned through ridge regression with a suitable choice
of regularization hyperparameter α > 0:

High-dimensional : d > rank(XS), θS = argmin
θ∈Rd

1

n
∥XSθ − yS∥22 + α ∥θ∥22 . (2)

V-optimal design. Classical OED studies the low-dimensional data selection problem where various
optimality criteria [13] are introduced to characterize different notions of “distance” between θS
and θ∗. For example, the A(verage)-optimality tr(Σ†

S) is associated with the Euclidean distance
∥θS − θ∗∥22; whereas the V(ariance)-optimality tr(ΣΣ†

S) is arguably the most relevant criterion that
directly controls the excess risk (e.g. see [15, Section 7.5.2] or [16, (1)]):

E [ER(θS)] = E
[
∥θS − θ∗∥2Σ

]
≤ σ2

n
tr(ΣΣ†

S). (3)

2.2 High-dimensional Data Selection under Low Intrinsic Dimension
For data selection, a common and intriguing high-dimensional setting is learning problems with low
intrinsic dimensions [7, 8] (e.g. finetuning). Specifically, [8] unveils the possibility of finetuning
high-dimensional models with sample complexities proportional to their low intrinsic dimensions,
which is impossible in general high-dimensional settings.

For high-dimensional data selection under low intrinsic dimension, [16] proposes to (i) find a low-
dimensional subspace that encapsulates crucial information in data via sketching [27, 28, 29], and
then (ii) select data by solving the OED problem in the resulting low-dimensional subspace. In this
context, [16] introduces a data selection criterion that generalizes the notion of V-optimality:
Remark 2.1 ([16, Theorem 3.1]). Let r = min{t ∈ [r] | ∥⟨X⟩t∥2F ≥ (1− 1

N )∥X∥2F } be the intrinsic
dimension of the dataset X. Assume X has a low intrinsic dimension: r ≪ min {N, d}. Sketch X via
a Gaussian embedding Γ ∈ Rd×m with i.i.d. entries Γij ∼ N (0, 1/m) and embedding dimension
m ≥ 11r such that Σ̃ = 1

N (XΓ)⊤(XΓ) and Σ̃S = 1
n (XSΓ)

⊤(XSΓ) for any S ∈ C([N ], n).
If σ⌈1.1r⌉(Σ̃S) ≥ γS for some γS > 0, then with probability at least 0.9 over Γ, there exists a
regularization hyperparameter α > 0 such that (2) satisfies

E [ER (θS)] ≲
σ2

n
tr(Σ̃(Σ̃S)

†)︸ ︷︷ ︸
variance

+
σ2

n

1

mγS
∥Σ̃(Σ̃S)

†∥2 tr(Σ)︸ ︷︷ ︸
sketching error

+
1

n
∥Σ̃(Σ̃S)

†∥2 tr(Σ)∥θ∗∥22︸ ︷︷ ︸
bias

. (4)
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In particular, when ∥Σ̃(Σ̃S)
†∥2 ≤ cS , under mild regularity assumptions σ2 = O(1), ∥θ∗∥22 = O(1),

and tr(Σ) = O(r), taking m = max{
√
tr(Σ)/γS , 11r} leads to E [ER (θS)] ≲ cSr/n, i.e. a

sample complexity proportional to the low intrinsic dimension r.

3 Randomly Pivoted V-optimal Design

Observing that the generalization of data selection in (4) is governed by tr(Σ̃(Σ̃S)
†) ≥ ∥Σ̃(Σ̃S)

†∥2,
in this section, we introduce a fast and effective data selection algorithm based on sketching and
random pivoting that adaptively samples data to optimize tr(Σ̃(Σ̃S)

†) locally.

Dimension reduction via sketching. Algorithm 3.1 starts by embedding the high-dimensional data
to a random low-dimensional subspace via sketching: X̃ = XΓ ∈ RN×m, where a common choice
of Γ is a Gaussian random matrix (vide [27, 28] for a comprehensive overview of sketching).

Randomly pivoted QR. With X̃, Algorithm 3.1 selects the first m samples via randomly pivoted
QR [30]: Initializing X̃(0) = [x̃

(0)
1 , · · · , x̃(0)

N ]⊤ = X̃ ∈ RN×m and S0 = ∅, for t ∈ [m]:

(i) Sample it from [N ]\St−1 with probability pi = ∥x̃(t−1)
i ∥22/∥X̃(t−1)∥2F for all i ∈ [N ]\St−1;

(ii) Update St = St−1 ∪ {it} and X̃(t) = X̃(t−1) − X̃(t−1)x̃
(t−1)
it

(x̃
(t−1)
it

)⊤/∥x̃(t−1)
it

∥22.2

When rank(X) = d, sketching via a Gaussian embedding with m ≤ d provides rank(X̃) = m with
probability one. Then, the Gram-Schmidt process ensures that randomly pivoted QR selects m linearly
independent samples, i.e. rank(X̃Sm

) = m. It is worth noticing that random pivoted QR is effectively
replacing the greedy pivoting in the classical row pivoted QR [32] with adaptive square norm sampling,
which achieves better accuracy and robustness in both theory and practice [30].

Adaptive V-optimal design via random pivoting. With the first m linearly independent samples,
Algorithm 3.1 continues by adaptively sampling the remaining n − m data according to the V-
optimality over X̃. In particular, since rank(X̃Sm

) = m, for any subsequent S ⊃ Sm, rank(X̃S) =
m. Then, the Woodbury matrix identity [33] implies that for any S ⊃ Sm and i ∈ [N ] \ S,

(X̃⊤
S X̃S + x̃ix̃

⊤
i )

−1 = (X̃⊤
S X̃S)

−1 − (X̃⊤
S X̃S)

−1x̃ix̃
⊤
i (X̃

⊤
S X̃S)

−1

1 + x̃⊤
i (X̃

⊤
S X̃S)−1x̃i

, (5)

and therefore, tr(X̃⊤X̃(X̃⊤
S∪{i}X̃S∪{i})

−1) = tr(X̃⊤X̃(X̃⊤
S X̃S)

−1)−∆S(x̃i) where ∆S(x̃i) =

∥X̃(X̃⊤
S X̃S)

−1x̃i∥22/(1 + x̃⊤
i (X̃

⊤
S X̃S)

−1x̃i). Since tr(Σ̃Σ̃−1
Sn

) = n
N tr(X̃⊤X̃(X̃⊤

Sn
X̃Sn

)−1), for
given S ⊃ Sm, picking i ∈ [N ] \ S with the maximum ∆S(x̃i) brings the optimal reduction in
tr(Σ̃Σ̃−1

Sn
) locally, leading to a natural greedy algorithm.

To alleviate the potential suboptimality caused by the local optimality, instead of greedy selection, we
inject randomness by sampling proportional to exp(∆St−1

(x̃i)/τ), with the randomness controlled
by a temperature hyperparameter τ .

Notice that the overall asymptotic complexity of Algorithm 3.1 is O(Ndm+Nnm) with the Gaussian
embedding, whereas leveraging more efficient sparse embeddings [34, 35, 36] can further bring down
the complexity to O(nnz(X) +Nnm) in practice [37], where nnz(X) ≤ Nd denotes the number of
nonzero entries in X. This matches the complexity of ridge leverage score sampling with fast leverage
score approximation [38, 39, 40], which (to the best of our knowledge) is one of the most efficient
provable algorithms for A-optimality [23] and data selection [39]. In Section 4.1, we empirically
demonstrate that RPVopt outperforms ridge leverage score sampling in data selection for regression,
especially when the coreset size is small. The theoretical guarantee for RPVopt that matches its
empirical performance remains an exciting open problem.

4 Experiments
In this section, we evaluate the performance of RPVopt in Algorithm 3.1 on different settings. We
first show the effectiveness of our proposed method on regression tasks then extend the experimental

2This Gram-Schmidt process is numerically unstable with floating point arithmetic. In practice, a stable
implementation like [31, Algorithm 3.1] is used.
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Algorithm 3.1 Randomly Pivoted V-optimal Design (RPVopt)

Input: X ∈ RN×d, coreset size n, temperature τ > 0, embedding dimension m < n.
1: (Draw a Gaussian embedding Γ ∈ Rd×m with i.i.d. entries Γij ∼ (0, 1/m).)
2: (Compute the sketching X̃ = XΓ = [x̃1, · · · , x̃N ]

⊤ ∈ RN×m.) ▷ O(Ndm)

3: Select Sm ∈ C([N ],m) from X̃ via randomly pivoted QR. ▷ O(Nm2)

4: Y(m) ← X̃(X̃⊤
Sm

X̃Sm
)−1 ∈ RN×m. ▷ O(Nm2 +m3)

5: for t = m+ 1, · · · , n do
6: ∆St−1

(x̃i)← ∥Y(t−1)x̃i∥22/(1 + e⊤i Y(t−1)x̃i) ∀ i ∈ St−1. ▷ O(Nm)

7: p = (p1, · · · , pN )← 0[N ], pi ← exp(∆St−1
(x̃i)/τ) ∀ i ∈ St−1.

8: Sample it ∼ p/ ∥p∥1
9: St ← St−1 ∪ {it}.

10: Y(t) ← Y(t−1) − (Y(t−1)x̃it)(e
⊤
it
Y(t−1))/(1 + e⊤itY(t−1)x̃it). ▷ O(Nm)

return Sn ∈ C([N ], n).

protocol to include classification tasks. Due to the limit constraint, the detailed configurations are
provided in Appendix B.

4.1 Regression
Datasets and network architectures. We conduct regression experiments on UTKFace [41], which
is a dataset for age estimation, with CLIP [1] and ResNet18 [42] backbones. While we examine
linear probing on CLIP (ViT-B/32), we fine-tune the projections layer and the classifier of ResNet18
to represent the low- and high-dimensional settings, respectively. For both experiments, we utilize
the Adam optimizer [43] with a batch size of 128 and an initial learning rate of 0.1.

Baselines. We evaluate our method by comparing it against notable unsupervised data selection
methods for regression: (1) Uniform Sampling randomly all samples with equal probability, (2)
Adaptive Sampling [44, 30] progressively sampling data based on their squared norms and adaptively
eliminating the spanning subspace of the selected samples, (3) Ridge Leverage Score Sampling
[38, 39, 40] extending classical leverage score sampling [45] to high dimensions, measuring of the
influence that individual data points have on linear regression models, (4) Greedy [46] choosing
a subset such that the bound between an average loss over any given subset of the dataset and the
remaining data points is minimized, (5) Herding [47] greedily selects samples to minimize the
selection set center and full dataset center in the feature space.

Table 1: Mean Absolute Error (the lower the better) on UTKFace with a linear regressor trained on
top of frozen features from a pre-trained CLIP (ViT-B/32). We use the bold font to indicate the best
method for each coreset size.

Method 100 200 500 1000 2000 3000

Uniform Sampling 10.55± 3.09 8.94± 3.48 6.09± 0.42 4.70± 0.23 3.92 ±0.16 3.68± 0.15
Adaptive 6.02± 0.53 4.75± 0.14 4.40± 0.14 N/A N/A N/A
Greedy 10.40± 1.21 7.56± 0.18 6.43± 0.09 5.51± 0.19 4.87± 0.03 4.37± 0.08
Herding 17.57± 0.01 13.41± 0.01 8.47± 0.01 5.79± 0.01 4.19± 0.01 3.53± 0.01
R-leverage 5.44± 0.01 4.79± 0.02 4.36± 0.01 3.86± 0.01 3.61± 0.01 3.53± 0.04
RPVopt 5.14± 0.30 4.43± 0.12 4.13± 0.24 3.82± 0.07 3.67± 0.05 3.47± 0.14

The results for linear probing are provided in Table 1, where our method remarkably outperforms
comparative baselines on UTKFace, especially for smaller coreset sizes n. For n = 100, 200, 500,
RPVopt exceeds the performance of the second-best method, R-leverage, by approximately 0.3 MAE,
and achieves a Mean Absolute Error reduction of 30− 50% compared to Uniform Sampling.

Table 2: Mean Absolute Error on UTK in fine-tuning the last two layers of ResNet18.
Method 100 200 500 1000 2000 3000

Uniform Sampling 8.43± 1.54 8.13± 0.52 6.62± 0.38 5.44± 0.53 5.02± 0.67 4.40± 0.49
Adaptive 9.60± 0.10 8.29± 0.91 6.28± 0.77 N/A N/A N/A
Greedy 10.82± 1.29 9.83± 0.51 6.98± 0.71 5.95± 0.22 5.33± 0.74 4.60± 0.19
Herding 23.08± 2.11 22.33± 1.49 19.68± 0.02 20.24± 0.13 6.31± 1.49 5.39± 0.58
R-leverage 12.20± 0.19 10.68± 0.37 7.71± 0.33 5.50± 0.44 5.25± 0.42 4.20± 0.44
RPVopt 8.39± 0.19 7.33± 0.61 5.74± 0.31 4.74± 0.16 4.58± 0.33 4.32± 0.27

In Table 2, we finetune the last two layers of ResNet18 [42] using the same optimization setting with
the above linear probing experiment. Similarly, RPVopt consistently achieves the best performance
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among all baselines. It is worth noting that while some selected comparative underperform relative to
the uniform sampling baseline, particularly at higher pruning rates, our method consistently surpasses
this baseline across various coreset sizes. For the UTKFace experiments, the computational cost
associated with the Adaptive method is prohibitively expensive, rendering it impractical for large
core sizes, i.e., greater than 500.

4.2 Classification
To evaluate the performance of our methods beyond the regression task, we conduct experiments
on the CIFAR10 [48] and StanfordCars [49] datasets in the classification setting. Apart from those
baselines described in the above experiments, we compare our methods with the following methods
based on the DeepCore benchmark [50]. Contextual Diversity [51] proposes using contextual
diversity to select diverse samples. Glister [52] uses bi-level optimization to optimize the selection
set. GraNd [53] uses the gradient norm of warmup trained model to select samples. Forgetting [54]
uses the forgetting events (correctly classified samples that are later misclassified during the training
process) as the selection criterion. DeepFool [55] uses the adversarial attacking strength to identify the
samples that are close to the decision boundary and select them. Uncertainty-Based Methods [56]
use the model’s uncertainty metric (entropy, margin, confidence) to construct the selection set.

Table 3: Linear Probing performance of CLIP on StanfordCars with different data pruning methods.
Method Metric 500 1000 1500 2000 2500 3000 3500 4000

Uniform Sampling Acc 38.90 ± 0.46 54.60 ± 0.46 62.60 ± 0.23 67.63 ± 0.17 70.59 ± 0.19 72.49 ± 0.19 74.16 ± 0.22 75.40 ± 0.16
F1 32.30 ± 0.43 49.94 ± 0.56 58.99 ± 0.23 64.54 ± 0.18 67.79 ± 0.23 70.00 ± 0.20 71.77 ± 0.23 73.14 ± 0.12

Herding [47] Acc 38.86 ± 0.40 54.95 ± 0.33 63.44 ± 0.31 67.22 ± 0.16 71.02 ± 0.13 73.17 ± 0.22 74.64 ± 0.18 75.71 ± 0.29
F1 31.80 ± 0.32 50.14 ± 0.51 59.75 ± 0.32 64.07 ± 0.23 68.28 ± 0.15 70.64 ± 0.28 72.22 ± 0.26 73.26 ± 0.39

Contextual Diversity [51] Acc 38.05 ± 0.39 53.87 ± 0.38 62.36 ± 0.18 67.64 ± 0.13 70.82 ± 0.23 72.66 ± 0.12 74.46 ± 0.17 75.77 ± 0.12
F1 31.25 ± 0.50 48.99 ± 0.29 58.77 ± 0.24 64.51 ± 0.17 68.18 ± 0.25 70.05 ± 0.11 72.13 ± 0.15 73.35 ± 0.07

Glister [52] Acc 39.15 ± 0.23 54.57 ± 0.39 62.67 ± 0.19 67.60 ± 0.24 70.85 ± 0.27 73.07 ± 0.26 74.63 ± 0.21 76.00 ± 0.20
F1 32.32 ± 0.31 49.72 ± 0.53 58.80 ± 0.32 64.50 ± 0.34 68.07 ± 0.38 70.47 ± 0.35 72.18 ± 0.25 73.69 ± 0.24

GraNd [53] Acc 38.52 ± 0.06 54.65 ± 0.12 62.96 ± 0.10 67.27 ± 0.07 70.38 ± 0.07 72.56 ± 0.05 74.67 ± 0.06 75.77 ± 0.12
F1 32.34 ± 0.10 49.89 ± 0.14 59.09 ± 0.13 64.04 ± 0.09 67.48 ± 0.09 69.81 ± 0.08 72.13 ± 0.05 73.44 ± 0.13

Forgetting [54] Acc 38.18 ± 0.43 54.84 ± 0.23 62.55 ± 0.15 67.59 ± 0.10 70.99 ± 0.05 72.54 ± 0.07 74.81 ± 0.05 75.74 ± 0.01
F1 31.67 ± 0.39 50.02 ± 0.20 58.64 ± 0.16 64.85 ± 0.13 68.53 ± 0.07 70.30 ± 0.05 72.59 ± 0.04 73.74 ± 0.02

DeepFool [55] Acc 38.69 ± 0.64 54.85 ± 0.33 62.90 ± 0.21 67.77 ± 0.29 70.73 ± 0.22 73.24 ± 0.22 74.57 ± 0.23 75.71 ± 0.15
F1 31.67 ± 0.68 49.79 ± 0.53 58.93 ± 0.32 64.42 ± 0.27 67.91 ± 0.15 70.73 ± 0.20 72.19 ± 0.29 73.39 ± 0.20

Entropy [56] Acc 39.68 ± 0.37 54.78 ± 0.22 63.42 ± 0.18 67.95 ± 0.11 71.00 ± 0.10 73.28 ± 0.10 75.02 ± 0.08 75.82 ± 0.06
F1 32.53 ± 0.53 49.57 ± 0.29 59.62 ± 0.25 64.55 ± 0.10 67.95 ± 0.12 70.68 ± 0.12 72.46 ± 0.12 73.29 ± 0.04

Margin [56] Acc 39.33 ± 0.22 54.36 ± 0.17 62.66 ± 0.12 67.53 ± 0.14 71.19 ± 0.09 73.09 ± 0.14 74.66 ± 0.11 75.57 ± 0.13
F1 32.03 ± 0.30 49.00 ± 0.23 58.62 ± 0.21 64.16 ± 0.15 68.33 ± 0.14 70.37 ± 0.17 72.03 ± 0.11 73.14 ± 0.20

Least Confidence [56] Acc 39.00 ± 0.25 54.14 ± 0.30 63.23 ± 0.20 67.68 ± 0.11 70.99 ± 0.14 73.04 ± 0.05 74.65 ± 0.09 75.58 ± 0.08
F1 31.83 ± 0.21 48.90 ± 0.37 59.31 ± 0.29 64.09 ± 0.20 68.03 ± 0.20 70.30 ± 0.07 72.02 ± 0.10 73.15 ± 0.12

RPVopt Acc 40.39 ± 0.35 55.48 ± 0.40 63.47 ± 0.30 68.45 ± 0.15 72.13 ± 0.23 73.72 ± 0.15 75.76 ± 0.24 76.31 ± 0.20
F1 33.40 ± 0.25 50.35 ± 0.57 59.88 ± 0.39 65.35 ± 0.17 69.29 ± 0.31 71.45 ± 0.20 73.50 ± 0.28 73.99 ± 0.24

We use the linear probing and two-layer finetuning as the learning problem to evaluate the performance
of our method on the CIFAR10 [48] as the standard homogenous dataset and the StanfordCars [49]
as the challenging non-homogeneous dataset. While the results of CIFAR10 are deferred to the
appendix, Table 3 shows the results of linear probing on StanfordCars on different coreset sizes,
ranging from 500 to 4000. As can be seen, our method always achieves the best test accuracy and F1
scores in all settings. Notably, for the coreset size of 500, RPVopt exceeds the second-best method by
1.4% accuracy.

Table 4: Baselines performance on StanfordCars when fine-tuning the last two layers of ResNet18.
Method Metric 500 1000 1500 2000 2500 3000 3500 4000

Uniform Sampling Acc 10.69 ± 0.17 18.29 ± 0.34 24.74 ± 0.36 29.19 ± 0.37 32.77 ± 0.31 35.69 ± 0.35 38.02 ± 0.31 40.35 ± 0.26
F1 7.70 ± 0.21 15.29 ± 0.28 21.72 ± 0.34 26.14 ± 0.39 29.83 ± 0.30 32.80 ± 0.37 35.16 ± 0.30 37.51 ± 0.23

Herding [47] Acc 11.11 ± 0.31 18.49 ± 0.45 24.53 ± 0.23 29.19 ± 0.21 32.42 ± 0.16 35.83 ± 0.24 38.30 ± 0.19 40.51 ± 0.19
F1 8.06 ± 0.25 15.46 ± 0.36 21.57 ± 0.30 25.90 ± 0.24 29.48 ± 0.23 32.89 ± 0.27 35.50 ± 0.22 37.56 ± 0.21

Contextual Diversity [51] Acc 10.30 ± 0.19 18.12 ± 0.22 24.47 ± 0.33 28.50 ± 0.34 32.66 ± 0.27 35.67 ± 0.32 38.31 ± 0.15 40.53 ± 0.18
F1 7.66 ± 0.25 15.29 ± 0.23 21.81 ± 0.26 25.65 ± 0.40 29.79 ± 0.29 32.86 ± 0.31 35.55 ± 0.14 37.81 ± 0.23

GraNd [53] Acc 10.72 ± 0.08 18.51 ± 0.21 24.33 ± 0.29 28.59 ± 0.17 32.67 ± 0.20 35.83 ± 0.16 38.58 ± 0.15 40.70 ± 0.11
F1 7.82 ± 0.08 15.51 ± 0.20 21.18 ± 0.28 25.66 ± 0.15 29.70 ± 0.22 32.76 ± 0.16 35.72 ± 0.15 37.83 ± 0.11

Forgetting [54] Acc 10.46 ± 0.26 18.80 ± 0.28 24.16 ± 0.21 28.61 ± 0.31 32.48 ± 0.28 35.18 ± 0.24 37.78 ± 0.22 40.24 ± 0.13
F1 7.46 ± 0.14 15.52 ± 0.20 21.06 ± 0.23 25.64 ± 0.25 29.58 ± 0.30 32.38 ± 0.20 35.16 ± 0.18 37.41 ± 0.14

DeepFool [55] Acc 10.65 ± 0.29 18.52 ± 0.18 24.97 ± 0.20 29.02 ± 0.17 32.60 ± 0.18 35.59 ± 0.24 38.20 ± 0.22 39.98 ± 0.35
F1 7.89 ± 0.18 15.44 ± 0.23 22.11 ± 0.11 26.08 ± 0.29 29.83 ± 0.27 32.92 ± 0.33 35.47 ± 0.22 37.28 ± 0.40

Entropy [56] Acc 10.30 ± 0.07 18.48 ± 0.13 24.25 ± 0.26 28.87 ± 0.13 32.84 ± 0.20 35.64 ± 0.20 37.96 ± 0.11 40.29 ± 0.27
F1 7.69 ± 0.11 15.31 ± 0.23 21.24 ± 0.24 25.95 ± 0.17 30.03 ± 0.17 32.85 ± 0.23 35.19 ± 0.12 37.33 ± 0.34

Margin [56] Acc 10.58 ± 0.32 18.37 ± 0.26 24.36 ± 0.19 29.18 ± 0.12 32.73 ± 0.15 35.67 ± 0.30 38.27 ± 0.20 40.58 ± 0.06
F1 7.93 ± 0.22 15.41 ± 0.19 21.33 ± 0.22 26.15 ± 0.12 29.66 ± 0.05 32.86 ± 0.30 35.61 ± 0.17 37.77 ± 0.07

LeastConfidence [56] Acc 10.64 ± 0.23 18.45 ± 0.30 24.72 ± 0.20 29.05 ± 0.07 32.88 ± 0.13 35.66 ± 0.18 38.25 ± 0.20 39.91 ± 0.09
F1 7.80 ± 0.10 15.47 ± 0.37 21.75 ± 0.25 26.18 ± 0.04 30.03 ± 0.14 32.79 ± 0.15 35.42 ± 0.16 37.14 ± 0.12

RPVopt Acc 11.12 ± 0.21 19.11 ± 0.24 24.82 ± 0.15 29.13 ± 0.27 32.70 ± 0.19 36.05 ± 0.27 38.57 ± 0.12 40.56 ± 0.24
F1 8.18 ± 0.16 16.19 ± 0.23 22.09 ± 0.21 26.43 ± 0.31 30.33 ± 0.23 33.32 ± 0.27 35.68 ± 0.15 37.87 ± 0.22

We also evaluate the performance of comparative methods finetuning the last two-layer of
ResNet18 [42]. In Table 4, we showcase the results on StanfordCars, where RPVopt demonstrates
impressive efficiency, boosting the performance of uniform sampling across different setups.
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A Additional Discussions

A.1 Additional Related Works

Data selection. Recent data selection methods identify important samples through training dynam-
ics [54, 53], yielding additional annotation and computational costs, unaligned with the original goal
of selecting data to reduce training costs. Label-free alternatives evaluate the importance of data
via geometric properties in the embedding space [57, 51, 58]. These methods remove redundancy
to form diverse, representative coresets without extensive labeling or (early-stage) training. This
underlying idea of data selection based on geometric information is closely related to various widely
studied problems like coreset selection [59, 28, 39, 60], active learning [61, 62, 63], and matrix
skeletonization [64, 65, 66, 30, 31, 67]. More recent work named Variance Alignment Score (VAS)
[68] and Sketchy Moment Matching [16] aligns some high-level statistics of the selected samples
with that of the original data distribution, and additionally enhances model performance through data
filtering or gradient sketching ideas respectively. These advances highlight the value of selecting
informative and diverse coreset, especially in complex tasks.

A.2 Limitations and Future Directions

In this work, we introduce a fast data selection algorithm, RPVopt, for high-dimensional learning
problems with low intrinsic dimensions. Concretely, RPVopt leverages the data selection criterion
proposed in [16], first exploring the low intrinsic dimension in data via sketching, and then exploiting
the information in the resulting low-dimensional subspace by adaptively sampling data that optimize
the selection criterion locally. The appealing empirical performance of RPVopt is demonstrated in
both regression and classification settings. A natural question regarding the theoretical guarantee for
RPVopt remains open and is a work in progress.

Beyond the theoretical guarantee, the potentials and limitations of RPVopt are not fully understood in
the current stage. First, while RPVopt is inspired by the analysis for regression problems, its compet-
itive performance extends to the classification setting in practice. Second, the strong performance
of RPVopt for unsupervised data selection on imbalanced classification tasks (e.g., StanfordCars)
suggests its potential in the context of distributionally robust data selection [69], beyond the classical
statistical learning setting under the i.i.d. sampling assumption. Understanding the mechanism behind
RPVopt in more comprehensive settings like classification and distributionally robust learning is an
exciting future direction.

B Experiment Details and Additional Results

Due to the space constraint, some details were omitted in the main paper. We here provide the detailed
training configuration in Section B.1 and additional experiment results in Section B.2.

B.1 Hyperparameter Selection and Training Details

We sweep the sketching dimension m ∈ {32, 64, 128, 256, 512}, the block size b ∈ {5, 10, 15, 20}
and temperature τ = e−3 for all experiments. We use the feature before the last linear layer in linear
probing and the last-two layer gradients in two-layer finetuning to perform sketching and selection.
For linear probing, we train the model 50 epochs with Adam optimizer, learning rate 1e-1 and batch
size 512, for two-layer finetuning, we use the learning rate 10−2 and batch size 512.

B.2 Additional Experimental Results

Table 5 showcases the effectiveness of RPVopt on the CIFAR10 dataset with CLIP backbone. Overall,
RPVopt achieves superior performance in terms of F1 and accuracy scores compared to other baselines.
Notably, at the smallest coreset size, our proposed method outperforms other baselines by large
margins. Across all setups, RPVopt either achieves the best performance or is comparable to the
top-performing method, further confirming the robustness and effectiveness of RPVopt.
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Table 5: CIFAR10 with CLIP Linear Probing. Best results are highlighted in bold, standard errors
with 5 random seeds. Different columns indicate different core set sizes.

Method Metric 50 100 200 500 1000 1500 2000 2500 3000 3500 4000

Uniform Acc 79.82 ± 2.06 88.51 ± 0.44 90.90 ± 0.13 92.47 ± 0.12 93.00 ± 0.07 93.23 ± 0.08 93.39 ± 0.06 93.57 ± 0.03 93.68 ± 0.05 93.72 ± 0.05 93.80 ± 0.04
F1 78.41 ± 2.72 88.56 ± 0.45 90.92 ± 0.12 92.47 ± 0.12 93.00 ± 0.07 93.24 ± 0.08 93.40 ± 0.06 93.58 ± 0.03 93.69 ± 0.05 93.73 ± 0.05 93.82 ± 0.04

Herding [47] Acc 86.09 ± 0.34 88.21 ± 0.54 90.77 ± 0.15 91.81 ± 0.20 92.73 ± 0.08 93.10 ± 0.06 93.34 ± 0.02 93.34 ± 0.08 93.60 ± 0.07 93.76 ± 0.04 93.67 ± 0.06
F1 86.29 ± 0.33 88.36 ± 0.52 90.81 ± 0.14 91.83 ± 0.19 92.74 ± 0.08 93.11 ± 0.06 93.35 ± 0.02 93.35 ± 0.08 93.61 ± 0.07 93.78 ± 0.04 93.69 ± 0.06

Contextual Diversity [51] Acc 82.76 ± 1.00 88.96 ± 0.34 90.98 ± 0.25 92.10 ± 0.19 92.69 ± 0.10 93.09 ± 0.07 93.30 ± 0.06 93.46 ± 0.04 93.58 ± 0.03 93.61 ± 0.03 93.77 ± 0.06
F1 82.68 ± 1.16 89.01 ± 0.34 91.01 ± 0.24 92.12 ± 0.18 92.70 ± 0.10 93.09 ± 0.07 93.30 ± 0.06 93.45 ± 0.04 93.58 ± 0.03 93.61 ± 0.03 93.77 ± 0.06

Glister [52] Acc 82.19 ± 2.00 88.37 ± 0.36 90.96 ± 0.30 92.41 ± 0.20 92.97 ± 0.10 93.30 ± 0.07 93.42 ± 0.09 93.58 ± 0.06 93.66 ± 0.06 93.70 ± 0.03 93.80 ± 0.04
F1 81.79 ± 2.33 88.45 ± 0.37 91.01 ± 0.29 92.41 ± 0.19 92.96 ± 0.10 93.31 ± 0.07 93.42 ± 0.09 93.59 ± 0.07 93.68 ± 0.06 93.71 ± 0.03 93.80 ± 0.05

GraNd [53] Acc 82.44 ± 0.30 88.98 ± 0.04 90.38 ± 0.02 92.50 ± 0.03 92.90 ± 0.02 93.24 ± 0.02 93.38 ± 0.02 93.56 ± 0.02 93.56 ± 0.02 93.70 ± 0.03 93.77 ± 0.03
F1 82.30 ± 0.33 88.87 ± 0.04 90.38 ± 0.03 92.49 ± 0.03 92.92 ± 0.02 93.26 ± 0.02 93.39 ± 0.02 93.57 ± 0.02 93.57 ± 0.02 93.71 ± 0.03 93.79 ± 0.03

Forgetting [54] Acc 82.16 ± 0.80 87.84 ± 0.67 90.28 ± 0.23 91.67 ± 0.16 92.90 ± 0.06 93.09 ± 0.06 93.23 ± 0.05 93.41 ± 0.04 93.50 ± 0.05 93.62 ± 0.02 93.70 ± 0.05
F1 82.02 ± 0.92 87.90 ± 0.65 90.30 ± 0.22 91.67 ± 0.16 92.90 ± 0.06 93.08 ± 0.05 93.23 ± 0.05 93.40 ± 0.04 93.50 ± 0.05 93.62 ± 0.02 93.71 ± 0.05

DeepFool [55] Acc 81.50 ± 1.20 88.15 ± 0.33 90.89 ± 0.16 92.20 ± 0.11 93.07 ± 0.06 93.29 ± 0.06 93.39 ± 0.04 93.61 ± 0.04 93.65 ± 0.03 93.75 ± 0.04 93.79 ± 0.05
F1 80.91 ± 1.48 88.08 ± 0.32 90.87 ± 0.18 92.19 ± 0.11 93.07 ± 0.06 93.29 ± 0.06 93.39 ± 0.04 93.61 ± 0.04 93.65 ± 0.03 93.75 ± 0.05 93.80 ± 0.05

Entropy [56] Acc 76.86 ± 0.26 82.32 ± 0.54 90.02 ± 0.05 92.08 ± 0.09 92.99 ± 0.02 93.09 ± 0.04 93.28 ± 0.04 93.42 ± 0.02 93.51 ± 0.04 93.62 ± 0.03 93.70 ± 0.01
F1 75.19 ± 0.32 81.64 ± 0.67 90.07 ± 0.04 92.10 ± 0.08 92.99 ± 0.02 93.10 ± 0.04 93.28 ± 0.04 93.43 ± 0.02 93.52 ± 0.04 93.63 ± 0.04 93.71 ± 0.01

Margin [56] Acc 77.06 ± 0.52 87.08 ± 0.48 89.35 ± 0.12 92.11 ± 0.04 92.95 ± 0.05 93.13 ± 0.03 93.27 ± 0.03 93.48 ± 0.06 93.47 ± 0.04 93.59 ± 0.03 93.73 ± 0.04
F1 76.05 ± 0.58 87.10 ± 0.52 89.43 ± 0.12 92.13 ± 0.04 92.97 ± 0.05 93.13 ± 0.03 93.28 ± 0.03 93.49 ± 0.06 93.48 ± 0.04 93.60 ± 0.03 93.74 ± 0.04

LeastConfidence [56] Acc 77.35 ± 0.18 84.46 ± 0.15 90.27 ± 0.20 92.09 ± 0.06 92.85 ± 0.04 93.27 ± 0.03 93.44 ± 0.03 93.56 ± 0.04 93.60 ± 0.03 93.57 ± 0.02 93.58 ± 0.04
F1 76.24 ± 0.19 84.42 ± 0.16 90.31 ± 0.19 92.11 ± 0.06 92.86 ± 0.04 93.27 ± 0.03 93.44 ± 0.03 93.58 ± 0.04 93.61 ± 0.03 93.58 ± 0.03 93.59 ± 0.04

RPVopt Acc 86.09 ± 0.34 88.98 ± 0.04 90.96 ± 0.30 92.41 ± 0.20 92.97 ± 0.10 93.24 ± 0.02 93.44 ± 0.03 93.61 ± 0.04 93.66 ± 0.06 93.75 ± 0.04 93.80 ± 0.04
F1 86.29 ± 0.33 88.87 ± 0.04 91.01 ± 0.29 92.41 ± 0.19 92.96 ± 0.10 93.26 ± 0.02 93.44 ± 0.03 93.61 ± 0.04 93.68 ± 0.06 93.75 ± 0.05 93.80 ± 0.05

Table 6: Performance of baselines on CIFAR10 when finetuning the last two layers of ResNet18.
Method Metric 50 100 200 500 1000 1500 2000 2500 3000 3500 4000

Uniform Sampling Acc 44.56 ± 0.85 55.30 ± 0.50 62.90 ± 0.42 70.56 ± 0.24 74.18 ± 0.23 75.90 ± 0.15 76.90 ± 0.21 77.83 ± 0.09 78.39 ± 0.12 78.29 ± 0.20 78.92 ± 0.06
F1 40.82 ± 1.74 53.60 ± 0.69 62.38 ± 0.49 70.44 ± 0.28 74.12 ± 0.25 75.80 ± 0.18 76.83 ± 0.23 77.76 ± 0.10 78.34 ± 0.11 78.25 ± 0.20 78.85 ± 0.05

Herding [47] Acc 40.20 ± 1.75 53.06 ± 1.46 62.35 ± 0.35 70.25 ± 0.25 73.96 ± 0.22 75.59 ± 0.10 76.46 ± 0.20 77.40 ± 0.20 77.73 ± 0.13 78.27 ± 0.20 78.57 ± 0.09
F1 35.68 ± 2.39 51.34 ± 1.87 61.79 ± 0.31 69.93 ± 0.40 73.83 ± 0.23 75.46 ± 0.09 76.37 ± 0.21 77.27 ± 0.21 77.67 ± 0.12 78.22 ± 0.18 78.52 ± 0.11

Contextual Diversity [51] Acc 46.09 ± 1.07 54.57 ± 0.78 62.21 ± 0.27 70.54 ± 0.36 74.36 ± 0.29 75.75 ± 0.18 76.79 ± 0.15 77.34 ± 0.15 77.90 ± 0.13 78.48 ± 0.13 78.69 ± 0.17
F1 42.55 ± 1.14 52.99 ± 0.88 61.51 ± 0.48 70.27 ± 0.35 74.24 ± 0.33 75.67 ± 0.19 76.71 ± 0.15 77.19 ± 0.14 77.75 ± 0.14 78.38 ± 0.15 78.57 ± 0.16

Glister [52] Acc 44.33 ± 1.71 53.32 ± 1.13 62.15 ± 0.65 69.77 ± 0.20 74.05 ± 0.20 75.63 ± 0.19 76.60 ± 0.09 77.48 ± 0.14 77.97 ± 0.07 78.22 ± 0.16 78.32 ± 0.15
F1 41.92 ± 2.16 51.81 ± 1.29 61.80 ± 0.61 69.64 ± 0.19 73.95 ± 0.20 75.55 ± 0.20 76.52 ± 0.08 77.40 ± 0.12 77.89 ± 0.08 78.18 ± 0.16 78.21 ± 0.15

GraNd [53] Acc 42.73 ± 0.76 53.58 ± 1.14 63.30 ± 0.54 70.30 ± 0.03 74.03 ± 0.10 75.40 ± 0.03 76.42 ± 0.08 77.32 ± 0.26 77.79 ± 0.13 77.94 ± 0.13 78.50 ± 0.16
F1 39.02 ± 1.15 51.82 ± 1.63 63.04 ± 0.57 70.17 ± 0.07 73.90 ± 0.11 75.30 ± 0.03 76.34 ± 0.08 77.28 ± 0.27 77.74 ± 0.14 77.93 ± 0.10 78.40 ± 0.16

Forgetting [54] Acc 43.16 ± 1.78 53.58 ± 1.48 63.07 ± 0.45 70.75 ± 0.23 73.74 ± 0.16 75.25 ± 0.26 76.24 ± 0.12 77.36 ± 0.10 77.92 ± 0.18 78.07 ± 0.12 78.41 ± 0.12
F1 40.55 ± 1.26 53.06 ± 1.59 62.47 ± 0.38 70.55 ± 0.28 73.60 ± 0.16 75.13 ± 0.26 76.10 ± 0.08 77.26 ± 0.15 77.85 ± 0.17 77.95 ± 0.10 78.31 ± 0.08

DeepFool [55] Acc 43.88 ± 0.46 55.51 ± 0.65 63.05 ± 0.64 70.53 ± 0.27 73.85 ± 0.16 75.60 ± 0.18 76.54 ± 0.17 77.21 ± 0.17 77.77 ± 0.13 77.99 ± 0.13 78.39 ± 0.10
F1 40.64 ± 0.99 54.07 ± 0.13 62.62 ± 0.66 70.33 ± 0.31 73.74 ± 0.19 75.50 ± 0.19 76.41 ± 0.16 77.10 ± 0.17 77.69 ± 0.13 77.91 ± 0.15 78.29 ± 0.11

Entropy [56] Acc 44.49 ± 1.03 54.20 ± 1.47 63.72 ± 0.40 70.61 ± 0.08 74.47 ± 0.14 75.66 ± 0.06 76.66 ± 0.15 77.53 ± 0.32 78.09 ± 0.14 78.22 ± 0.02 78.60 ± 0.13
F1 41.64 ± 1.36 52.14 ± 1.41 63.24 ± 0.44 70.30 ± 0.20 74.34 ± 0.16 75.55 ± 0.05 76.57 ± 0.14 77.47 ± 0.32 78.04 ± 0.15 78.17 ± 0.02 78.52 ± 0.13

Margin [56] Acc 43.67 ± 0.55 53.50 ± 1.70 62.67 ± 0.44 70.80 ± 0.29 74.75 ± 0.16 75.71 ± 0.14 76.58 ± 0.16 77.71 ± 0.17 78.11 ± 0.22 78.25 ± 0.12 78.63 ± 0.22
F1 41.37 ± 1.29 51.50 ± 1.93 62.12 ± 0.34 70.49 ± 0.35 74.64 ± 0.18 75.59 ± 0.13 76.49 ± 0.14 77.67 ± 0.18 78.02 ± 0.23 78.13 ± 0.15 78.56 ± 0.21

LeastConfidence [56] Acc 44.60 ± 1.74 53.94 ± 0.70 62.56 ± 0.53 70.91 ± 0.20 74.55 ± 0.12 76.28 ± 0.10 76.68 ± 0.11 77.54 ± 0.23 78.04 ± 0.19 78.30 ± 0.18 78.78 ± 0.15
F1 40.55 ± 2.19 52.51 ± 1.01 61.97 ± 0.65 70.69 ± 0.18 74.27 ± 0.26 76.13 ± 0.10 76.63 ± 0.09 77.43 ± 0.22 77.98 ± 0.21 78.19 ± 0.19 78.73 ± 0.16

RPVopt Acc 45.92 ± 1.30 55.82 ± 0.92 63.52 ± 0.81 70.75 ± 0.26 74.53 ± 0.16 76.03 ± 0.29 76.92 ± 0.12 77.90 ± 0.17 78.19 ± 0.10 78.58 ± 0.09 78.88 ± 0.14
F1 43.00 ± 1.68 54.33 ± 1.08 63.08 ± 1.02 70.63 ± 0.26 74.38 ± 0.17 75.89 ± 0.30 76.78 ± 0.15 77.76 ± 0.17 78.03 ± 0.11 78.46 ± 0.09 78.80 ± 0.13

Similar to the experiment in the main paper, we finetune ResNet18 by updating the weights of
the last two layers only and provide the obtained scores in Table 6. Throughout our experiments,
RPVopt demonstrates competitive performance, especially with large improvements observed on
non-homogeneous datasets such as StanfordCars. When the sample size is small, e.g. 50 in CIFAR10
and 500 in StanfordCars, our method effectively identifies and selects informative samples that benefit
downstream tasks.
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