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Abstract

Frontier Al systems require governance mechanisms that can verify internal align-
ment, not just behavioral compliance. Private governance mechanisms—audits,
certification, insurance, and procurement are emerging to complement public regu-
lation, but they require technical substrates that generate verifiable causal evidence
about model behavior. This paper argues that mechanistic interpretability provides
this substrate. We frame interpretability not as post-hoc explanation but as a de-
sign constraint embedding auditability, provenance, and bounded transparency
within model architectures. Integrating causal abstraction theory and empirical
benchmarks such as MIB and LoBOX, we outline how interpretability-first models
can underpin private assurance pipelines and role-calibrated transparency frame-
works. This reframing situates interpretability as infrastructure for private Al
governance—bridging the gap between technical reliability and institutional ac-
countability.

1 Introduction

Al systems, particularly large language models, are increasingly deployed in high-stakes set-
tings—healthcare, education, law, and employment. These models generate fluent outputs, but
their internal workings remain opaque, making it difficult to know whether their decisions reflect
sound reasoning or misaligned goals. This concern has put Al alignment at the center of technical
research and public discussion [[1} 12} 3} 14]].

Interpretability has emerged as a key strategy for alignment. If we can understand how a model
makes decisions, we can better assess whether it’s behaving safely. Some work focuses on post-hoc
explanations like LIME or SHAP [5| 6], while mechanistic interpretability attempts to look inside
model architecture—identifying which neurons, attention heads, or circuits contribute to specific
behaviors [[7, 8} 9. However, post-hoc explanations are often inconsistent or manipulable [10} [11]],
while mechanistic work is labor-intensive and doesn’t scale to frontier models. Many interpretability
methods tell us stories about what the model might be doing, without strong evidence that those
stories are true in a causal sense [12]].

Regulatory frameworks and behavioral alignment. The EU Al Act mandates transparency for
high-risk applications, particularly for General Purpose Al (GPAI) systems. Industry has largely
responded with behavioral alignment techniques such as RLHF—methods that improve outputs
but leave internal logic untouched [13]. Our position reframes interpretability as infrastructure
for governance: embedding accountability and auditability into model design rather than applying
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Criterion Post-Hoc Mechanistic

Focus Explains outputs after training ~ Explains internal components/processes
Examples LIME, SHAP, Grad-CAM Circuits, Activation Patching, Tracing

Nature Correlational, approximate Causal, structurally grounded
Scalability Easy to scale, low overhead Resource-intensive, less scalable
Reliability ~ Risk of misleading narratives Closer to true model computation

Table 1: Comparison between post-hoc and mechanistic interpretability approaches.

them post hoc. This represents a fundamental shift from post-hoc transparency to pre-embedded
accountability mechanisms, distinguishing our approach from prior interpretability frameworks that
focus primarily on diagnostic capabilities rather than design constraints.

Beyond public regulation, private governance mechanisms—including third-party audits, compli-
ance certification, risk insurance, and procurement standards—are emerging as complementary
accountability structures [[14,[15]. These mechanisms rely on technical substrates that can generate
verifiable causal evidence about model behavior. Mechanistic interpretability offers such a substrate
by enabling reproducible inspection and provenance tracking at the circuit level. This positions
interpretability-first design as a foundation for private governance infrastructures that bridge technical
reliability and institutional accountability.

This paper argues that internal transparency is not optional but a basic requirement for building
aligned systems. We examine the limits of current methods and consider tools, benchmarks, and
collaborations that might help interpretability become more robust and reliable. Without solid
foundations for understanding how models think, alignment risks becoming a surface-level fix for a
deeper problem.

Contributions. This paper introduces three primary contributions: (1) We introduce a conceptual
bridge linking mechanistic interpretability with private governance mechanisms—framing causal
interpretability as the evidentiary layer for audits, certification, and insurance. (2) We specify a
governance-aware technical blueprint—interpretability-first architectures that embed audit hooks,
provenance tracking, and bounded transparency. (3) We connect emerging benchmarks (MIB,
LoBOX) with private oversight workflows and regulatory compliance frameworks, providing an
implementation roadmap for interpretability-as-governance infrastructure.

2 Introduction to Model Interpretability

Interpretability refers to how well humans can understand a model’s internal behavior—how inputs
are processed, decisions are formed, and outputs are produced [[16]. Explainability describes human-
readable justifications for outputs, while transparency concerns access to architecture, training data,
or parameters [17, 118 [19]]. Alignment asks whether models behave in line with human goals and
values [20].

We distinguish between intrinsic interpretability (transparent by design) and post-hoc interpretability
(explaining black-box models after training) [21} [22]. Table [I] summarizes the key differences
between these approaches. Post-hoc methods like LIME, SHAP, and Integrated Gradients dominate
practice but are frequently misleading and manipulable [23}11]]. For example, SHAP can be gamed
to attribute importance to benign features while hiding decisions based on sensitive attributes [[11]].
Newer approaches like DL-Backtrace [24] offer deterministic tracing without baseline selection,
but the fundamental challenge remains: distinguishing genuine mechanistic insight from plausible
storytelling.

Causal abstraction and representation decomposition. Following Geiger et al. [25], we adopt the
causal abstraction perspective, formalizing mechanistic interpretability as discovering structural ho-
momorphisms between model components and human-interpretable causal variables. This theoretical
foundation builds on Pearl’s causal hierarchy [26], enabling intervention-based testing to establish
relationships between high-level interpretations and low-level mechanisms. Sparse Autoencoders
(SAEs) [27] aim to decompose entangled representations into interpretable components, but feature
consistency across training runs and architectures remains challenging [28]]. The MIB benchmark
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Figure 1: A high-level conceptual map of mechanistic interpretability. It contrasts post-hoc approaches
with mechanistic techniques, and illustrates core techniques, applications, limitations, and future
directions.

[29] provides empirical infrastructure for evaluating decomposition methods, showing that attribution
approaches often outperform SAE features in circuit localization tasks.

Having established the theoretical foundations of interpretability, we now examine mechanistic
interpretability as the structural basis for alignment.

3 Mechanistic Interpretability — Paradigm of Model Alignment

Mechanistic interpretability (MI) seeks to identify specific components—neurons, attention heads, or
circuits—that causally contribute to model outputs [7, 8]]. Recent progress in transformers reveals
interpretable substructures: attention heads performing token copying, syntactic tracking, or positional
induction [30} 9], and modular circuits executing string comparison and arithmetic [8]. These findings
suggest that within high-parameter networks, small functional units may correspond to meaningful,
testable computations. This opens the door to detecting internal failures—reward hacking or deceptive
reasoning—that behavioral methods may overlook [[1]]. MI employs activation patching and causal
tracing for controlled interventions, providing empirical insight into internal mechanisms [[7].

However, MI faces significant challenges. Polysemanticity—individual neurons encoding multiple
unrelated features—complicates semantic interpretation and becomes more pronounced at scale [8, 7.
This does not always imply superposition; polysemanticity may arise from non-linear mixtures or
compositional features [31]]. Recent work by Meloux et al. [32] and Sutter et al. [33]] questions the
identifiability of mechanistic interpretations, suggesting that multiple valid explanations may exist
for the same model behavior. SAEs show promise for disentangling features but face consistency
challenges across training runs and architectures [27, 28]]. Scalability remains a bottleneck: MI
requires extensive computational resources and expert labor, and tools like activation patching don’t
yet scale to frontier models [34,35]]. Epistemic concerns include confirmation bias in human pattern
recognition and "explanation theater"—compelling narratives that fail under scrutiny [36} 37, 23]].
This poses particular risks for governance applications, where explanation theater could undermine
audit compliance and verification protocols, leading to false confidence in model safety.

Nonetheless, MI offers unique capabilities for alignment. Figure[T] provides a conceptual overview of
mechanistic interpretability approaches and their applications. Behavioral methods like RLHF focus
on outputs without addressing internal reasoning, potentially leaving unsafe or deceptive processes
intact [3]]. MI provides tools for interrogating and modifying internal processes, enabling alignment at
the reasoning level rather than just performance. This positions MI as essential for building auditable,
verifiable Al systems [38[20]. By exposing causal pathways and enabling targeted interventions, MI
supports governance frameworks like the EU AI Act while respecting bounded-opacity principles
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Figure 2: Interpretability-Alignment-Governance Triangle: Bidirectional relationships between
mechanistic design principles, regulatory audit capabilities, and governance frameworks. Each
component constrains and enables the others, creating a feedback loop for interpretability-first AI
development.

[39]. Future progress depends on scalable toolchains, robust benchmarks, and hybrid approaches
combining mechanistic insights with behavioral fine-tuning [40, 37].

The capabilities discussed above point toward a broader vision: interpretability as a design principle
for alignment rather than a post-hoc diagnostic tool.

4 Interpretability as a Design Principle for Private Governance

Interpretability should be viewed not only as a mechanism for aligning Al systems with human
intent, but as the technical substrate enabling private governance mechanisms that complement
public regulation. By exposing and intervening on internal representations, interpretability enables
verifiable causal evidence for third-party audits, certification bodies, and risk assessment frameworks
(41} 211 3].

Architectural desiderata. Interpretability-first design requires modularity for component-level
inspection, sparsity to reduce polysemanticity, controlled polysemanticity bounding features per
unit, audit hooks for immutable state records, intervention-friendliness supporting surgical edits,
and provenance tracking maintaining representation lineage. These constraints represent constraints
during model training and architecture design, not post-hoc adaptations. For example, a model
with traceable modular circuits could allow a regulator to confirm that decision rules comply with
anti-discrimination norms without retraining, demonstrating how interpretability-guided alignment
serves as proof-of-concept for General Purpose Al (GPAI) governance requirements. Recent work
on interpretability-aware pruning [42] shows how architectural constraints can be embedded during
training rather than applied post-hoc. These constraints trade off against raw capacity but enable
governance integration by default.

Intervention and targeted modification. Mechanistic interpretability employs activation patching
and causal tracing to experimentally manipulate intermediate activations, determining which compo-
nents causally contribute to specific behaviors [[7, |9, [8]. For example, by copying activations from a
"clean" run into a corrupted context, one can isolate circuits or attention heads that restore correct out-
puts [9,18]]. This provides a falsifiable framework for testing internal hypotheses [4]]. Beyond analysis,
interpretability enables targeted intervention through circuit editing, head ablation, or representation
reweighting to suppress undesired behaviors while preserving functionality [43} 44, 145]. Mechanistic
insights can guide behavioral methods like RLHF, creating hybrid approaches that combine scalable
alignment with causal guarantees [40, 37].

Detecting deceptive alignment and global reasoning. Interpretability provides defense against
deceptive alignment by tracing goal-directed circuits and identifying reward hacking mechanisms
[46,47]. Toy models trained on mathematical tasks reveal symbolic operations, providing blueprints



Category Limitation Governance Impact

Representation  Polysemantic neurons, entangled features Unclear regulatory compliance
Methodology Post-hoc methods unstable/manipulable Risk of “explanation theater”
Evaluation Lack of standardized benchmarks Weak causal validation for audits
Conceptual Explanations diverge from human categories ~ Symbolic vs. subsymbolic mismatch
Practical Compute- and expert-intensive Limited accessibility and scalability
Risk Factors Bias amplification, security leaks Explanation laundering concerns

Table 2: Key limitations of interpretability methods and their governance implications.

for regulating reasoning in larger systems [48, 9} [8]. Causal mediation analysis extends interpretability
from isolated units to entire pathways, offering global views of model reasoning [26] 44].

Governance integration. These capabilities support regulatory compliance: audit hooks enable
regulators to trace decisions to internal circuits, circuit editing allows targeted mitigation of bias or
toxicity without model redeployment, and provenance tracking satisfies documentation requirements
under frameworks like the EU Al Act. By embedding interpretability as a design constraint rather
than retrofitting it post-deployment, systems become auditable and governable by construction. This
positions interpretability as a governance prerequisite for compliance with emerging regulatory
frameworks.

Interpretability as a Private Oversight Mechanism. Interpretability-first architectures can underpin
third-party audits, compliance certifications, and risk insurance models [14}|15]]. Recent frameworks
for private governance of frontier Al [[14] and markets for Al governance [15] highlight the need for
technical substrates that generate verifiable causal evidence. Accountability in algorithmic supply
chains [49] requires mechanisms for tracing decisions across distributed systems. Mechanistic
interpretability provides the technical substrate for private assurance—enabling certifiers to verify
causal alignment claims through reproducible audits, much as insurers verify risk portfolios through
actuarial evidence. This connects causal abstraction to "assurance evidence pipelines” where LoBOX
and MIB benchmarks feed into private audit dashboards, enabling third-party oversight bodies to
validate model behavior through intervention-based testing.

Technical implementation for private oversight. Private governance mechanisms require specific
technical capabilities beyond conceptual frameworks. Audit hooks must generate immutable logs of
model decisions with circuit-level attribution, enabling third-party auditors to trace specific outputs
to internal computational pathways. For example, a model with modular attention heads could
allow auditors to verify that bias detection circuits activate appropriately across demographic groups,
providing evidence for anti-discrimination compliance. Certification bodies need reproducible
testing protocols that validate alignment claims across model versions—mechanistic interpretability
enables this through standardized intervention tests that confirm circuit behavior remains consistent.
Insurance frameworks require risk assessment metrics based on mechanistic understanding of failure
modes: insurers could analyze the robustness of safety-critical circuits, quantify polysemanticity in
decision-making layers, and assess the presence of known deceptive alignment patterns. Procurement
governance can specify auditable transparency requirements in vendor contracts, requiring models
to demonstrate circuit-level traceability for high-stakes decisions. These capabilities transform
interpretability from a research tool into operational infrastructure for private governance.

While the potential of interpretability-as-design is significant, it is important to acknowledge the
substantial limitations and challenges that the field currently faces.

5 Limitations and Critiques of Interpretability

While interpretability is essential for AI safety and transparency, it faces significant limita-
tions—technical, conceptual, and practical. These challenges impact both method reliability and
broader epistemic claims, as in Table 2]

Representational and methodological challenges. Polysemanticity—individual neurons encoding
multiple unrelated features—complicates semantic interpretation and becomes more pronounced at
scale [8,[7]]. This should be distinguished from superposition, which refers to basis non-orthogonality
in representation spaces. Polysemanticity (representational entanglement) creates a scale mismatch



Table 3: Comparison of Al Alignment Approaches. MI = Mechanistic Interpretability, RLHF =
Reinforcement Learning from Human Feedback, Const. Al = Constitutional Al.

Criterion MI RLHF Red Teaming Const. AI
Transparency High (internal) Low (outputs) Low (failures only) Medium (principles)
Human Supervision Low (experts) High (raters) High (testers) Medium (curation)
Scalability Medium Low Low High

Causal Understanding Yes No No No

Risk Coverage Inner failures Behavioral Exploits Norms

between human cognition and model reasoning, as interpretability tools are poorly equipped to track
long-range dependencies or emergent behavior across thousands of layers [45]. Recent work by
Meloux et al. [32] questions whether mechanistic interpretations are even identifiable, while Sutter et
al. [33] argue that causal abstraction alone may be insufficient for mechanistic interpretability. Post-
hoc methods rely on surrogate explanations rather than causal mechanisms, are easily manipulated,
and often lack theoretical guarantees [17, 21} 23]. Without rigorous validation through counterfactual
testing or causal probing, these methods risk offering illusions of understanding [45) 26].

Evaluation and benchmarking gaps. The field lacks standardized benchmarks for explanation
quality, with quantitative metrics often focusing on proxies like sparsity rather than causal validity
[50, 291 141} 12]. Recent frameworks like xai_evals [51]] provide systematic evaluation of post-hoc
explanation methods, while the MIB benchmark [29] provides causal fidelity evaluation through
circuit localization tasks. Feature consistency [28]—the stability of learned representations across
contexts—emerges as a critical evaluation criterion. Without widespread adoption of such benchmarks
and metrics, the field risks fragmentation and irreproducibility. Calls for "role-calibrated" and context-
sensitive interpretability reflect the need to move beyond shallow heuristics toward explanations that
serve specific epistemic and safety purposes [8 29]].

Ethical and epistemic constraints. Interpretability techniques assume internal features map to
linguistic categories, but evidence suggests this mapping is frequently indirect [[7, 45} 8]]. Research is
susceptible to confirmation bias and "explanation theater"—compelling but unfounded justifications
(36,112, 23 126]]. Security risks include proprietary information exposure, adversarial attacks, and ex-
planation laundering [21} [11}52]]. The LoBOX framework [39] proposes bounded opacity—selective
transparency calibrated to institutional roles—acknowledging that full transparency may be neither
feasible nor desirable.

To better understand interpretability’s role in the broader alignment landscape, we now compare it
with other alignment approaches.

6 Interpretability and Private Oversight Pipelines

Interpretability plays a distinct role in Al alignment, targeting underlying mechanisms of model while
behavioral methods focus on outputs. We compare these approaches to situate interpretability within
the alignment toolkit.

Behavioral alignment methods. RLHF aligns behavior through reward modeling and policy
optimization [2| 53], but primarily addresses surface-level alignment without verifying internal
reasoning safety [54]. Models may exhibit inner misalignment—producing aligned outputs while
pursuing misaligned objectives [55] 146, 38} 156]. Red teaming probes models adversarially to uncover
vulnerabilities [S7], but reveals that failures occur without explaining why [58]. Constitutional Al
aligns models with normative principles through supervised fine-tuning [59} 60|, but operates at the
behavioral level without confirming internal structure. These approaches are often preferred for their
scalability, generalizing across tasks and domains with limited model-specific insight [[1}54]].

We compare major alignment approaches to situate interpretability within the broader landscape
(Table [3).

Interpretability as complement. Interpretability offers tools for probing internal representations and
identifying latent goals, deceptive heuristics, or emergent failure modes that behavioral methods may
overlook [4,45]. It can augment red teaming by analyzing internal mechanisms that make models



susceptible to attacks—reliance on ambiguous embeddings, exploit-prone circuits, or memorized
failure patterns [3} 30, 45]]. Unlike behavioral methods that rely on human-centered assessments,
mechanistic interpretability prioritizes testable, manipulable, and causally valid explanations [61} 14}
62, 145]].

Hybrid approaches and epistemic value. Behavioral methods can shape outputs at scale while
interpretability verifies causal fidelity post hoc. Models tuned with RLHF or Constitutional Al can be
examined with activation patching and mediation to detect reward hacking, deceptive alignment, or
brittle circuits that pass surface tests [43] (7] 143] 44,140, 9]. Unlike behavioral metrics emphasizing
persuasiveness, interpretability evaluates causal correctness, providing the epistemic backbone for
trustworthy alignment. This hybrid approach could complement traditional audits under the EU Al
Act, offering causal guarantees beyond behavioral testing. As models become more powerful and
autonomous, alignment strategies that rely solely on behavioral feedback will become increasingly
insufficient.

Hybrid governance pipelines. Mechanistic audits can be layered atop RLHF training pipelines to
provide both behavioral and causal validation. This approach addresses the concern that alignment
faking and deceptive alignment pose significant risks for regulators, particularly in General Purpose
Al (GPAI) systems. Recent work by Hilton [40] demonstrates how formal verification can be
combined with heuristic explanations, creating hybrid systems that maintain both interpretability and
performance. Such pipelines enable regulators to verify that behavioral improvements correspond to
genuine internal alignment rather than surface-level optimization.

Beyond technical comparison, these approaches differ in their suitability for private governance
mechanisms. Interpretability enables third-party verification through reproducible causal evidence,
while behavioral methods like RLHF face sociotechnical limitations in generating auditable assurance
evidence [63]. This positions interpretability as uniquely suited for private oversight contexts
requiring independent verification, such as certification bodies validating alignment claims, insurers
assessing risk through causal evidence, and procurement standards specifying auditable transparency
requirements.

The implications of interpretability extend well beyond technical considerations, touching on funda-
mental questions about Al governance, human understanding, and the future of Al development.

7 Private Governance through Interpretability

Interpretability provides causal understanding, internal auditing, and structured intervention [4} 3} 8],
intersecting with governance, philosophy, regulatory design, and public trust [40, 37} 45].

Governance and auditability. Mechanistic interpretability signals a transition from opaque opti-
mization to cognitively structured, editable artifacts. In high-stakes applications—such as healthcare,
legal reasoning, or autonomous systems—transparent reasoning processes enable causal attribution in
failures, making responsibility assignment and due process possible [36, 40\ [1]]. For General Purpose
Al (GPAI) systems, interpretability could reshape legal liability regimes and inform consent standards
by grounding them in internal explanations rather than surface behavior.

Markets for assurance and certification. Private governance mechanisms create markets for Al
assurance, where interpretability provides the technical substrate for verifiable evidence [[15]]. Certifi-
cation bodies can validate alignment claims through reproducible causal evidence, while insurers can
assess risk through mechanistic understanding of model behavior. Procurement governance [[64] can
specify auditable transparency requirements, enabling buyers to verify model capabilities through
interpretability evidence. Data intermediaries [65] can leverage interpretability to provide responsible
data stewardship, while evaluation infrastructure [66] can incorporate mechanistic insights into
assessment frameworks.

Cognitive alignment and architecture trade-offs. Human explanations are symbolic and narratively
coherent; neural explanations are distributed and subsymbolic [26}36]]. This challenges assumptions
that model explanations align with human cognitive categories [3,167]]. Current architectures prioritize
performance, resulting in entangled representations that resist decomposition [9}(68]. Models designed
with interpretability constraints—modularity, sparsity, hierarchical structuring—may yield transparent
representations without sacrificing capability, supporting interpretability-first training paradigms
(4, 148].



Bridging research and practice. Significant gaps remain between research demonstrations and
deployment-ready systems. Real-world governance requires tooling, training, and institutional
capacity that don’t exist at scale. Closing these gaps demands interdisciplinary collaboration treating
interpretability as a governance prerequisite from system conception. In competitive Al development,
actors may resist transparency due to intellectual property concerns, but opacity increases systemic
risk [38, 159, 140, [12]. The development of third-party interpretability audits, publicly maintained
benchmarks, and regulatory mandates could align economic incentives with safety goals—enabling
transparency without requiring complete openness.

8 Conclusion

Interpretability is a foundation for building safe and reliable Al systems, and increasingly, a technical
substrate for private Al governance. As frontier models proliferate, private mechanisms—audits,
certification, insurance, procurement—emerge to complement public regulation [14} [15]. While
behavioral alignment strategies like RLHF, Constitutional Al, and red teaming shape outputs to
human preference [55, 160, 146], they face sociotechnical limitations in generating verifiable assurance
evidence [63]. Interpretability addresses this gap by reaching into hidden computations to understand,
verify, and intervene on model reasoning, providing the causal evidence required for private oversight
[30L 9].

However, neural networks encode features in overlapping, distributed ways that don’t cleanly map to
human concepts. Explanations are challenging to scale, hard to validate, or misleading when they
mirror expectations rather than reality [36} 17,37, [11]. We also lack automated tools that can operate
at the scale of today’s largest models. Interpretability research must face these challenges directly,
including the ethical and epistemological stakes of valid explanation [40} 36} 26]. Explanations must
be grounded in causal evidence and open to scrutiny [611 62} 41]].

Al alignment requires a joint approach: using interpretability as a design principle to shape model
construction [4} 30l 8], and applying behavioral methods to guide external performance [55} 160, 146].
The goal is ensuring models are internally structured in ways that are understandable, inspectable,
and aligned with human intent [38],40, 45]. Interpretability is not a nice-to-have but a requirement for
building systems we can audit, trust, and control [3} 4} [26]]. Without it, alignment becomes a matter of
hope. With it, we have a path to reasoning about Al in terms we can understand and shape [38} 4, [1]].

The governance triangle (Figure 2) illustrates how interpretability bridges mechanistic design, regula-
tory audits, and governance frameworks. This infrastructure enables private governance mechanisms
to operate effectively: certification bodies can validate alignment claims, insurers can assess risk
through causal evidence, and procurement standards can specify auditable transparency requirements.

Future directions. Realizing interpretability as private governance infrastructure requires developing
auditable interpretability pipelines—end-to-end systems that generate, validate, and communicate
assurance evidence to third-party oversight bodies. We propose pilot projects for interpretability
audits on medium-scale open models as practical stepping stones. Realizing interpretability-as-design
requires extending benchmarks like MIB [29] to governance-relevant tasks, developing prototype
models with modularity and audit hooks, building open-source audit toolchains, piloting circuit-
level audits with regulators, and establishing interdisciplinary teams for co-design. Metrics should
emphasize measurable outcomes including audit coverage, feature consistency [28]], interpretability
stability, causal fidelity, intervention success rates, assurance evidence quality (reproducibility, causal
validity), certification workflow efficiency, and interoperability with governance frameworks. These
frameworks—MIB for empirical validation, LoBOX [39] for role-calibrated transparency—provide
foundations for operationalizing interpretability-as-governance infrastructure.

9 Impact Statement

This position paper argues for interpretability as infrastructure for private Al governance. Poten-
tial benefits include enabling third-party audits through reproducible causal evidence, supporting
certification frameworks with verifiable alignment claims, facilitating risk assessment for insur-
ance mechanisms, and providing technical substrates for procurement governance standards. Risks
include “explanation theater” undermining audit compliance and verification protocols, potential
exposure of proprietary model internals creating competitive disadvantages, and concentration of



interpretability expertise in well-resourced organizations limiting accessibility of private governance
mechanisms. We advocate causal validation, rigorous benchmarks, and integration with private
governance frameworks to mitigate these risks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the central position—that inter-
pretability should be treated as a design principle for alignment—and this is consistently
argued across Sections 1-8 without introducing unsubstantiated claims.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 5 (Limitations and Critiques of Interpretability) systematically dis-
cusses technical, conceptual, and practical limitations, including scalability, polysemanticity,
evaluation gaps, and risks of explanation theater.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This is a conceptual position paper, not a theoretical paper; no new theorems,
proofs, or formal assumptions are introduced.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include new experiments or empirical benchmarks; it
synthesizes and analyzes existing work.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully

might suffice, or if the contribution is a specific model and empirical evaluation, it may

be necessary to either make it possible for others to replicate the model with the same

dataset, or provide access to the model. In general. releasing code and data is often

one good way to accomplish this, but reproducibility can also be provided via detailed

instructions for how to replicate the results, access to a hosted model (e.g., in the case

of a large language model), releasing of a model checkpoint, or other means that are

appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: No new datasets or code are introduced; all discussed methods and toolkits are
cited from prior public work.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not present new experiments or training runs; it discusses
existing techniques at a conceptual and methodological level.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [NA]
Justification: No experiments are performed, hence no statistical testing is applicable.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: No experiments were conducted in this work.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The work is conceptual, does not involve human subjects, and explicitly
addresses ethical concerns such as risks of misuse, explanation theater, and compliance
(Sections 5 and 8).

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The Impact Statement section outlines both positive impacts (auditable Al,
regulatory compliance, trust) and negative risks (bias reinforcement, misuse, adversarial
exploitation).

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No new datasets or models are released; the work is conceptual.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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13.

14.

15.

Justification: All prior methods, toolkits, and datasets referenced are properly cited with
their original sources throughout the paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets; it synthesizes existing literature.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:No crowdsourcing or human-subject research was conducted.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve human participants or personal data.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Large language models were not used as a core methodological component;
they are only discussed as subjects of interpretability research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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