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ABSTRACT

The proximal algorithm is a powerful tool to minimize nonlinear and nonsmooth
functionals in a general metric space. Motivated by the recent progress in studying
the training dynamics of the noisy gradient descent algorithm on two-layer neural
networks in the mean-field regime, we provide in this paper a simple and self-
contained analysis for the convergence of the general-purpose Wasserstein prox-
imal algorithm without assuming geodesic convexity of the objective functional.
Under a natural Wasserstein analog of the Euclidean Polyak-Łojasiewicz inequal-
ity, we establish that the proximal algorithm achieves an unbiased and linear con-
vergence rate. Our convergence rate improves upon existing rates of the proximal
algorithm for solving Wasserstein gradient flows under strong geodesic convex-
ity. We also extend our analysis to the inexact proximal algorithm for geodesi-
cally semiconvex objectives. In our numerical experiments, proximal training
demonstrates a faster convergence rate than the noisy gradient descent algorithm
on mean-field neural networks.

1 INTRODUCTION

Minimizing a cost functional over the space of probability distributions has recently drawn
widespread statistical and machine learning applications such as variational inference (Lambert
et al., 2022; Ghosh et al., 2022; Yao & Yang, 2023), sampling (Wibisono, 2018; Vempala &
Wibisono, 2022; Chewi et al., 2024), and generative modeling (Xu et al., 2024; Cheng et al., 2024),
among many others. In this work, we consider the following general optimization problem:

min
ρ∈P2(Θ)

F (ρ), (1)

where F is a real-valued target functional defined on the space of probability distributions P2(Θ)
with finite second moments on Θ ⊂ Rd. Our motivation for studying this problem stems from
analyzing training dynamics of the Gaussian noisy gradient descent algorithm on infinitely wide
neural networks, which can be viewed as a forward time-discretization of the mean-field Langevin
dynamics (MFLD) (Mei et al., 2019; Hu et al., 2021). Given the connection between sampling
and optimization, the continuous-time MFLD is an important example of the Wasserstein gradient
flow corresponding to minimizing an entropy-regularized total objective function of large interacting
particle systems (cf. Section 2.1).

On the other hand, the Wasserstein gradient flow is conventionally constructed by the following
proximal algorithm,

ρn+1 = proxF,ξ(ρn) := argmin
ρ̃∈P2(Θ)

{
F (ρ̃) +

1

2ξ
W2

2 (ρ̃, ρn)

}
, (2)

where ξ > 0 is the time-discretization step size. The Wasserstein proximal algorithm (2) is an itera-
tive backward time-discretization procedure for solving (1) and it is also known as the JKO scheme
introduced in a seminal work (Jordan et al., 1998). In contrast to various forward-discretization
methods such as gradient descent over P2(Θ) and the Langevin sampling algorithms (Durmus et al.,
2019; Vempala & Wibisono, 2022; Chewi et al., 2024), proximal algorithms are often unbiased in
the sense that their convergence guarantees do not depend on the dimension-dependent discretiza-
tion error with positive step size and they are often more stable than the forward gradient descent
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algorithms without strong smoothness condition (Yao & Yang, 2023; Yao et al., 2024; Salim et al.,
2021; Cheng et al., 2024). While the proximal algorithms for geodesically convex functionals are
well studied in the literature, it remains an open question whether they can maintain similar unbi-
ased and linear convergence guarantees in discrete time beyond the geodesic convexity. Current
work fills this important gap by establishing linear convergence results without assuming geodesic
convexity on the objective functional F .

Our general quantitative convergence rate for the Wasserstein proximal algorithm offers an alterna-
tive training scheme to the noisy gradient descent for two-layer neural networks in the mean-field
regime. Specifically, a two-layer neural network is parameterized as

f(x;θ) :=
1

m

m∑
j=1

φ(θj ;x) =

∫
Θ

φ(θ;x)dρm(θ), (3)

where θ = (θ1, θ2, ..., θm) ∈ Rd×m and ρm = 1
m

∑m
j=1 δθj is the empirical distribution of the

hidden neuron parameters. The perceptron φ(θj ;x) in (3) can take the form φ(θj ;x) = σ(θ⊤j x)

where σ is some nonlinear activation function. Given a training dataset (xi, yi)
N
i=1 ∼ p(x, y) and a

convex loss function l(·) (such as the squared loss and logistic loss), the L2-regularized training risk
is defined as

R(ρm) =
1

N

N∑
i=1

l(f(xi;θ), yi) +
λ

m

m∑
j=1

∥θj∥2

=
1

N

N∑
i=1

l

(∫
Θ

φ(θ;xi)dρ
m(θ), yi

)
+ λ

∫
Θ

∥θ∥2dρm(θ).

(4)

where λ > 0 is the coefficient of L2-regularization. The Gaussian noisy gradient descent algorithm
on the L2-regularized training risk can be written as the following stochastic recursion

θn+1
j = θnj − ξ∇δR

δρ
(
1

m

m∑
ℓ=1

δθn
ℓ
)(θnj ) +

√
2ξτznj , (5)

where znj are i.i.d. N (0, I) and τ > 0 represents the Gaussian noise variance. In (5), δR
δρ (ρ) is

the first variation of R at ρ (cf. Definition A.2). The limiting dynamics of (5) under m → ∞
and ξ → 0 is called the continuous-time MFLD (Hu et al., 2021). Under a uniform log-Sobolev
inequality (LSI) assumption (cf. Definition C.1), linear convergence of MFLD to the optimal value
of the total objective (L2-training risk plus an entropy term) is established in Nitanda et al. (2022);
Chizat (2022), and the noisy gradient descent algorithm is subject to a dimension-dependent time-
discretization error (Nitanda et al., 2022), which may slow down the convergence.

To remove the time-discretization error, we may instead train the neural network with the Wasser-
stein proximal algorithm (2). Since such neural network architecture satisfies the uniform LSI which
in turn implies a Wasserstein Polyak-Łojasiewicz (PL) inequality (cf. Definition 3.2), our algorithm
can achieve an unbiased linear rate of convergence to a global minimum of total objective.

1.1 CONTRIBUTIONS

In this work, we give a simple and self-contained convergence rate analysis of the Wasserstein
proximal algorithm (2) for minimizing the objective function satisfying a PL-type inequality without
resorting to any geodesic convexity assumption. Below we summarize our main contributions.

• To the best of our knowledge, current work is among the first works to obtain an unbiased and
linear convergence rate of the general-purpose Wasserstein proximal algorithm for optimizing a
functional under merely a PL-type inequality. When restricted to µ-convex (µ > 0) objective
functional, our result yields a sharper linear convergence rate (in function value and minimizer
under W2 distance) than the existing literature (Yao & Yang, 2023; Cheng et al., 2024).

• The linear convergence guarantee provides a new training scheme for two-layer wide neural net-
works in the mean-field regime. Our numeric experiments show a faster training phase (up to
particle discretization error) than the (forward) noisy gradient descent method.

• We also analyze the inexact proximal algorithm for geodesically semiconvex objectives under
PL-type inequality.
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1.2 LITERATURE REVIEW

Recently, various time-discretization methods have been proposed for minimizing a functional over
a single distribution. Different from the proximal algorithm, some explicit forward schemes that
can be seen as gradient descent in Wasserstein space are proposed (Chewi et al., 2020; Liu & Wang,
2016). For example, Chewi et al. (2020) studies a gradient descent algorithm for solving the barycen-
ter problem on the Bures-Wasserstein manifold of Gaussian distributions. The Langevin algorithm,
as another forward discretization of Wasserstein gradient flows via its stochastic differential equation
(SDE) recursion, is widely used in the sampling literature. Numerous works (Durmus et al., 2019;
Vempala & Wibisono, 2022; Chewi et al., 2024) have been devoted to the analysis of the Langevin
algorithm under different settings and its variants (Zhang et al., 2023; Wu et al., 2022). However,
Langevin algorithms are naturally biased for a positive step size. Salim et al. (2021) introduced
a hybridized forward-backward discretization, namely the Wasserstein proximal gradient descent,
and proved convergence guarantees for geodesically convex objective, akin to the proximal gradient
descent algorithm in Euclidean spaces.

Existing rate analysis for proximal algorithm. Though convergence rate analysis for Langevin al-
gorithms under strong convexity is well-developed, it is until recently that the convergence rate of the
proximal algorithm on geodesically convex objectives is obtained. One advantage of the proximal
algorithm is that it ensures a dimension-independent convergence guarantee directly for any starting
distribution. Yao & Yang (2023); Cheng et al. (2024) proved an unbiased linear convergence result
for the µ-strongly convex objective. The condition is relaxed to geodesic convexity and quadratic
growth of functional in (Yao et al., 2024). However, convergence analysis for non-geodesically
convex objective functionals is missing.

Convergence rate of different time-discretizations under PL-type inequality. Vempala &
Wibisono (2022) obtained a biased linear convergence result for Langevin dynamics under the log-
Sobolev inequality (LSI) and smoothness condition. Nitanda et al. (2022) extended this result to
MFLD with similar techniques. Proximal Langevin algorithm proposed by Wibisono (2019), attains
a biased linear convergence rate under the LSI, while an extra smoothness condition of the second
derivative of the sampling function is required. Proximal sampling algorithm (Chen et al., 2022),
assuming access to samples from an oracle distribution, achieves an unbiased linear convergence for
sampling from Langevin dynamics under the LSI, while the analysis requires geodesic semiconvex-
ity (cf. Definition A.3). Fan et al. (2023); Liang & Chen (2024) improved the results, however, they
still concentrate on sampling on a fixed function and cannot be applied to MFLD.

To highlight the distinction between our contributions and existing results from the literature, we
make the following comparison between explicit convergence guarantees of the Wasserstein prox-
imal algorithm (our result) and Langevin algorithms for optimizing the KL divergence in Table
1. Similar comparison on the convergence rates can be made between our result and the forward
time-discretization of MFLD under further assumptions (Nitanda et al., 2022; Chizat, 2022).

Table 1: Comparison between Langevin and Wasserstein proximal algorithms for KL divergence.

Algorithm Assumptions Step size Convergence guarantee at n-th iteration

Langevin µ-LSI
L-smooth (on Θ) 0 < ξ <

µ

4L2

e−nµξDKL(ρ0∥ν) +
8ξdL2

µ
Vempala & Wibisono (2022)

Proximal µ-LSI
semiconvex (on Θ) ξ > 0

1

(1 + µξ)2n
DKL(ρ0∥ν)

Ours

Proximal µ-strongly convex
(on Θ) ξ > 0

1
(1+µξ)nDKL(ρ0∥ν)
Yao & Yang (2023)

→ 1
(1+µξ)2nDKL(ρ0∥ν)

Ours

The remainder of this paper is organized as follows. In Section 2, we provide some background
knowledge for the connection between Wasserstein gradient flows and associated Langevin dynam-
ics. In Section 3, we present our main convergence results. In Section 4, we discuss how to apply
the proximal algorithm for MFLD of a two-layer neural network and provide numerical experiments
exploring the behavior of the proximal algorithm.
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Notations. We assume Θ = Rd (by default) unless explicitly indicating that it is a compact subset
of Rd. Let P2(Θ) be the collection of all probability measures with finite second moment and
Pa
2 (Θ) ⊂ P2(Θ) be the absolutely continuous measures. For a measurable map T : Θ → Θ, let

T# : P2(Θ) → P2(Θ) be the corresponding pushforward operator. For probability measures µ
and ν, we shall use T ν

µ to denote the optimal transport (OT) map from µ to ν and id to denote the
identity map. We use W2(·, ·) to denote the Wasserstein-2 distance. We denote ∂F (ρ) to be the
Fréchet subdifferential at ρ ∈ Pa

2 (Θ) if exists, D(F ) := {ρ ∈ P2(Θ) | F (ρ) < ∞} to be the
domain of F that has finite functional value, and D(|∂F |) to be the domain of F that has finite
metric slope, see [Lemma 10.1.5, Ambrosio et al. (2005)]. We refer to Appendix A for more notions
and definitions.

2 PRELIMINARIES

In this section, we review the connection between Wasserstein gradient flows and the associated
Langevin dynamics.

2.1 WASSERSTEIN GRADIENT FLOWS AND CONTINUOUS-TIME LANGEVIN DYNAMICS

Gradient flows in the Wasserstein space of probability distributions provide a powerful means to
understand and develop practical algorithms for solving diffusion-type equations (Ambrosio et al.,
2005). For a smooth Wasserstein gradient flow, noisy gradient descent algorithms over relative en-
tropy functionals are often used for space-time discretization via the stochastic differential equation
(SDE). Below we illustrate two main Wasserstein gradient flow examples involving the linear and
nonlinear Fokker-Planck equations, which model the diffusion behavior of probability distributions.

Langevin dynamics via the Fokker-Planck equation. The Langevin dynamics for the target dis-
tribution ν = e−f is defined as an SDE,

dθt = −∇f(θt)dt+
√
2dWt (6)

where Wt is the standard Brownian motion in Θ with zero initialization. It is well-known that,
see e.g., Chapter 8 of (Santambrogio, 2015), if the process (θt) evolves according to the Langevin
dynamics in (6), then their marginal probability density distributions ρt(θ) satisfy the Fokker-Planck
equation

∂tρt −∆ρt −∇ · (ρt∇f) = 0,

which is the Wasserstein gradient flow for minimizing the KL divergence

DKL(ρ∥ν) :=
∫
Θ

ρ(θ) log
ρ(θ)

ν(θ)
dθ =

∫
Θ

f(θ)ρ(θ)dθ +

∫
Θ

ρ(θ) log ρ(θ)dθ.

If ν satisfies a log-Sobolev inequality (LSI) with constant µ > 0, i.e., if for all ρ ∈ Pa
2 (Θ), we have

DKL(ρ∥ν) ≤
1

2µ
J(ρ∥ν), (7)

where J(ρ∥ν) =
∫
Θ
∥∇ log ρ

ν ∥
2dρ is the relative Fisher information, then the continuous-time

Langevin ρt convergences to ν exponentially fast.

Mean-field Langevin dynamics (MFLD) via the McKean-Vlasov equation. In an interacting
m-particle system, the potential energy contains a nonlinear interaction term in addition to

∫
Θ
fdρ.

More generally, in the mean-field limit as m → ∞, the nonlinear Langevin dynamics can be de-
scribed as

dθt = −∇δR

δθ
(θt)dt+

√
2τdWt, (8)

where R : P2(Θ) → R is a cost functional such as the L2-regularized training risk of mean-field
neural networks in (4) and τ > 0 is a temperature parameter. For a convex loss l, the risk R has
the linear convexity in (4). Process evolving according to (8) solves the following McKean-Vlasov
equation (Yao et al., 2022),

∂tρt − τ∆ρt −∇ · (ρt∇
δR

δρ
(ρt)) = 0,

4
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which is the Wasserstein gradient flow of the entropy-regularized total objective,

Fτ (ρ) = R(ρ) + τ

∫
Θ

ρ log ρ. (9)

Similarly, as in the linear Langevin case if the proximal Gibbs distribution of ρ (cf. Definition C.1)
satisfies a uniform LSI (cf. Definition C.1), then MFLD converges to the optimal value exponen-
tially fast in continuous time (Chizat, 2022; Nitanda et al., 2022) and, in the case of infinite-width
neural networks in mean-field regime, it subjects to a dimension-dependent time-discretization er-
ror (Nitanda et al., 2022).

3 CONVERGENCE RATE ANALYSIS

In this section, we first introduce a natural PL inequality in the Wasserstein space and then provide
the convergence rate analysis for the Wasserstein proximal algorithm under such a weak assumption.
Then, we shall extend our analysis to the inexact proximal algorithm setting. In the whole section,
we make the following regularity assumption,

Assumption 1 (Regularity assumption). The functional F : P2(Θ) → (−∞,+∞] is proper,
weakly lower semicontinuous with D(F ) ⊂ Pa

2 (Θ).

Assumption 1 ensures that the proximal operator (2) admits a minimizer (cf. Lemma B.2) and all
minimizers belong to Pa

2 (Θ). We refer the reader to Lemma B.3 and Remark B.4 for conditions that
guarantee weakly lower semicontinuity.
Definition 3.1 (Hopf-Lax formula). Let ξ > 0. The Hopf-Lax formula u(ρ, ξ) of a functional
F : P2(Θ) → R is defined as

u(ρ, ξ) := F (ρξ) +
1

2ξ
W2

2 (ρξ, ρ) = min
ρ̃∈P2(Θ)

{
F (ρ̃) +

1

2ξ
W2

2 (ρ̃, ρ)

}
, (10)

where ρξ = proxF,ξ(ρ).

The Hopf-Lax formulation in (10) is also known as the Moreau-Yoshida approximation (Ambrosio
et al., 2005). Below, we present a key connection between the time-derivative of the Hopf-Lax
semigroup and the squared Wasserstein distance between the proximal and the initial point.
Lemma 3.1. Let ρ ∈ D(F ). Under Assumption 1, we have

∂ξu(ρ, ξ) = − 1

2ξ2
W2

2 (ρξ, ρ) (11)

holds for ξ ∈ (0,+∞) with at most countable exceptions.

Proof of Lemma 3.1 is provided in Appendix C. The proof essentially follows from Proposition 3.1
and Proposition 3.3 in (Ambrosio et al., 2013), which are summarized together in Lemma B.1 for
completeness.
Remark 3.2 (Computation of the proximal operator). To compute ρn+1 in (2), we can reformulate
the proximal algorithm into an optimization problem in functional space. Finding ρn+1 is equivalent
to finding an optimal transport (OT) map T such that T#ρn minimizes (2),

T ρn+1
ρn

= arg min
T :Θ→Θ

F (T#ρn) +
1

2ξ

∫
Θ

∥T (θ)− θ∥2dρn. (12)

3.1 CONVERGENCE RATES OF EXACT PROXIMAL ALGORITHM

In this subsection, we establish the convergence rate for the Wasserstein proximal algorithm (2).
First, we define the PL inequality in Wasserstein space as in (Boufadène & Vialard, 2023).
Definition 3.2 (Polyak-Łojasiewicz inequality). For any ρ ∈ D(F ), the objective functional F
satisfies the following inequality with µ > 0,∫

Θ

∥∇δF

δρ
(ρ)∥2dρ ≥ 2µ(F (ρ)− F (ρ∗)), (13)

5
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where ρ∗ is any global minimizer of F . Denote F ∗ = F (ρ∗). The Wasserstein PL inequality
generalizes the classical PL inequality in Euclidean space ∥∇f(θ)∥2 ≥ 2µ(f(θ) − f(θ∗)) where
f : Θ → R (Karimi et al., 2016).

For KL divergence, the Wasserstein analog of the Euclidean PL inequality is the LSI. Proving the
LSI (7) is often difficult since it is almost exclusively used to study the linear convergence for
KL divergence-type objective functionals. We remark that with a convex function f , the quadratic
growth of f implies the PL inequality in Euclidean space (Karimi et al., 2016) and the quadratic
growth of its KL objective implies LSI (Yao et al., 2024). Previous works (Boufadène & Vialard,
2023; Kondratyev et al., 2016; Chizat, 2022) show that under certain regularity conditions, the
continuous-time dynamics exhibit linear convergence under the Wasserstein PL inequality. Our pa-
per considers the problem of minimizing a general functional in (1), where the convergence analysis
of the proximal algorithm is directly based on Wasserstein PL inequality (13).

Assumption 2 (Proximal trajectory). For every ρ ∈ D(F ) and every ρξ = proxF,ξ(ρ),

∥∇δF

δρ
(ρξ)∥L2(ρξ) ≤ ∥

T ρ
ρξ

− id

ξ
∥L2(ρξ)

Remark 3.3. By Lemma 10.1.2 in (Ambrosio et al., 2005), ρξ ∈ D(|∂F |) and (T ρ
ρξ

− id)/ξ is a
strong subdifferential of F at ρξ. If Θ is a compact set in Rd, we have ∇ δF

δρ (ρξ) = (T ρ
ρξ

− id)/ξ due
to the existence of the first variation of W2(·, ρ) distance for any fixed ρ ∈ P2(Θ) (cf. Lemma B.5),
and thus Assumption 2 automatically holds. Moreover, MFLD under the conditions of Corollary 3.5
and Langevin dynamics under the conditions of Corollary 3.6 satisfy Assumption 2 since ∇ δF

δρ (ρξ)

is guaranteed to be the strong subdifferential at ρξ with minimal L2(ρξ)-norm.

Now we are ready to state the main theorem of this paper.
Theorem 3.4 (Convergence rate of the exact proximal algorithm under PL inequality). Under As-
sumptions 1 and 2, if the objective functional F in (1) satisfies the PL inequality (13), then for any
ξ > 0, the Wasserstein proximal algorithm (2) satisfies

F (ρn)− F ∗ ≤ 1

(1 + ξµ)2n
(F (ρ0)− F ∗).

Proof of Theorem 3.4. It suffices to prove one-step contraction. We begin with

∂ξ(u(ρ, ξ)− F ∗) = − µ

2ξ(1 + µξ)
W2

2 (ρξ, ρ)−
1

2(1 + µξ)ξ2
W2

2 (ρξ, ρ) (by Lemma 3.1)

= − µ

2ξ(1 + µξ)
W2

2 (ρξ, ρ)−
1

2(1 + µξ)ξ2

∫
Θ

∥T ρ
ρξ

− id∥2dρξ (by Brenier’s theorem)

≤ − µ

2ξ(1 + µξ)
W2

2 (ρξ, ρ)−
1

2(1 + µξ)

∫
Θ

∥∇δF

δρ
(ρξ)∥2dρξ (by Assumption 2)

≤ − µ

2ξ(1 + µξ)
W2

2 (ρξ, ρ)−
µ

(1 + µξ)
(F (ρξ)− F ∗) (by PL (13))

= − µ

1 + µξ
(u(ρ, ξ)− F ∗). (by Def 3.1)

Using Lemma B.6 to deal with the technique issue of almost everywhere differentiability, we have

u(ρ, ξ)− F ∗ ≤ (u(ρ, 0)− F ∗) exp

(∫ ξ

0

− µ

1 + µt
dt

)
= (F (ρ)− F ∗)

1

1 + µξ
.

Invoking the PL inequality (13) once again, we obtain that

(F (ρ)− F ∗)
1

1 + µξ
≥ u(ρ, ξ)− F ∗ = F (ρξ)− F ∗ +

1

2ξ
W2

2 (ρξ, ρ)

≥ F (ρξ)− F ∗ +
ξ

2

∫
Θ

∥∇δF

δρ
(ρξ)∥2dρξ ≥ (1 + µξ)(F (ρξ)− F ∗).

6
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Next, we specialize our general-purpose convergence guarantee for the Wasserstein proximal algo-
rithm to MFLD induced from training a two-layer neural network (3) in the mean-field regime, and
Langevin dynamics, which is a special case of MFLD.
Corollary 3.5 (Wasserstein proximal algorithm on MFLD). Let Fτ be the total objective functional
in (9). Suppose that the loss function l(·) is either squared loss or logistic loss. If the perceptron
φ(θ;x) is bounded by K and supθ,x∥∇θφ(θ;x)∥ is finite, then Fτ satisfies Assumptions 1, 2 and the
PL inequality (13). Consequently, the Wasserstein proximal algorithm (2) satisfies for any ξ > 0,

Fτ (ρn)− F ∗
τ ≤ 1

(1 + ξτµτ )2n
(Fτ (ρ0)− F ∗

τ ), (14)

W2(ρ
∗, ρn) ≤

√
2

µττ
(Fτ (ρ0)− F ∗

τ )

(
1

1 + ξµττ

)n

. (15)

Our Theorem 3.4 can also be applied to derive the convergence rate for backward time-discretized
KL divergence (i.e., linear Langevin dynamics).
Corollary 3.6 (Wasserstein proximal algorithm on Langevin dynamics). If f : Θ → R is semi-
convex, lower semicontinuous, and ν = exp(−f) satisfies the µ-LSI condition (7), Assumptions 1,
2 and the PL inequality (13) are satisfied. Consequently, the Wasserstein proximal algorithm (2)
satisfies for any ξ > 0,

DKL(ρn∥ν) ≤
1

(1 + µξ)2n
DKL(ρ0∥ν) and W2(ρn, ν) ≤

√
2

µ
DKL(ρ0∥ν)

1

(1 + µξ)n
.

Remark 3.7. Moreover, if Θ is a compact set, f is lower semicontinuous and bounded from below,
and ν = exp(−f) satisfies µ-LSI condition (7), then Assumptions 1, 2 and the PL inequality (13)
are satisfied. Therefore, for any ξ > 0, the exact Wasserstein proximal algorithm (2) satisfies

DKL(ρn∥ν) ≤
1

(1 + µξ)2n
DKL(ρ0∥ν) and W2(ρn, ν) ≤

√
2

µ
DKL(ρ0∥ν)

1

(1 + µξ)n
.

Applying similar proof techniques to the µ-strongly convex objective functional F (1), we obtain a
faster convergence rate than those in existing literature, see Remark 3.9 below. In particular, we can
avoid evoking Assumption 2 with careful modifications to our proof.
Theorem 3.8 (Sharper convergence rates of the exact proximal algorithm: strongly geodesically
convex objective). Under Assumption 1, if the objective functional F in (1) is µ-strongly convex
along geodesics, then for any ξ > 0, the Wasserstein proximal algorithm (2) satisfies

F (ρn)− F ∗ ≤ 1

(1 + µξ)2n
(F (ρ0)− F ∗) and W2(ρ

∗, ρn) ≤
√

2

µ
(F (ρ0)− F ∗)

1

(1 + µξ)n
.

Remark 3.9. The bound obtained in Corollary 3.8 is sharper than those in (Yao & Yang, 2023)
and (Cheng et al., 2024) for µ-strongly convex objective, where the convergence rate for functional
value (1 + µξ)−n(F (ρ0) − F ∗) is proved. Corollary 3.8 applies to functionals corresponding to
interacting particle systems F (ρ) =

∫
Θ
f(θ)dρ(θ)+

∫
Θ
w(θ1, θ2)dρ(θ1)dρ(θ2)+

∫
Θ
log ρ(θ)dρ(θ),

where both the external force f(·) and interaction potential w(·, ·) are both convex and at least one
of them is strongly convex (Yao et al., 2024).

3.2 CONVERGENCE RATES OF INEXACT PROXIMAL ALGORITHM

This subsection investigates the inexact proximal algorithm where numerical errors are allowed in
each iteration. Let ρn be the inexact solution of the proximal algorithm at iteration n. We need an
additional smoothness assumption on the proximal flow to provide a quantitative analysis for the
proximal algorithm when the OT map at each iteration is allowed to be estimated with errors.

Assumption 3 (Smoothness of inexact proximal flow). If ρn ∈ C1(Θ), then ρn+1 ∈ C1(Θ),
for all n ∈ N.

When the proximal algorithm (2) is initialized with ρ0 ∈ C1(Θ), Assumption 3 ensures that the
inexact proximal flow ρn remains C1(Θ). In practice, to optimize over (12) via T

ρn+1

ρn
, the learned

7
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OT map is typically restricted to a specific class of functionals, such as a normalizing flow (Xu
et al., 2024) or a neural network (Yao & Yang, 2023) with a certain structure. Even though this
assumption is mainly for technical purposes, we provide Lemma B.8 in the Appendix, showing that
restricting the learned OT map to some classes can ensure Assumption 3. Next we define the error
βn+1 : Θ → Θ in estimating the Wasserstein gradient in the (n+ 1)-th iterate as,

βn+1 = T
ρn

ρn+1
− id− ξ∇δF

δρ
(ρn+1). (16)

Under Assumption 3, if ρn+1 is the exact solution of the Wasserstein proximal algorithm (2), then
βn+1 = 0 (cf. Lemma B.10). Therefore, we utilize

∫
Θ
∥βn+1∥2dρn+1 to depict the error induced

by solving (2) inexactly, ∫
Θ

∥βn+1∥2dρn+1 ≤ ϵn+1,

which can be viewed as measuring the norm of strong subdifferential as in Euclidean case. Fur-
thermore, we need the additional geodesic semiconvexity assumption apart from PL inequality to
control the inexact error, which differs from Section 3.1 that only relies on PL inequality. Examples
that satisfy both semiconvexity and PL inequality include the objective of MFLD under the assump-
tions of Corollary 3.5 and KL divergence objective under the assumptions of Corollary 3.6. Now we
are in the position to quantify the impact of numerical errors on the proximal algorithm.

Theorem 3.10 (Convergence rates of the inexact proximal algorithm under PL inequality). Suppose
ρn ∈ D(|∂F |) for every n ∈ N. Under Assumptions 1 and 3, if F is (−L)- geodesically semiconvex,
F satisfies the PL inequality (13), and 0 < ξ ≤ 1

L , then we have the following cases.
(a) If ϵn ≤ Cexpγ

n with γ ∈ (0, 1), then there exists C1 = C1(µ,L, γ, Cexp) such that

F (ρn)− F ∗ ≤
(

1

1 + µξ

)n

(F (ρ0)− F ∗) + C1 max

{
1

1 + µξ
, γ

}n+1

.

(b) If ϵn ≤ Cpolyn
−ζ with ζ > 0, then there exists C2 = C2(µ,L, ζ, Cpoly) such that,

F (ρn)− F ∗ ≤
(

1

1 + µξ

)n

(F (ρ0)− F ∗) +
C2

nζ
.

Remark 3.11. Theorem 3.10 demonstrates how the decay of inexact error impacts the convergence
behavior under PL inequality. If the numerical error decays at an exponential rate, the linear
convergence rate still holds. However, if the numerical error decays at a polynomial rate, the linear
convergence will degrade to a sublinear rate. Under Assumption 1, the inexact proximal algorithm
has been well-studied under strong geodesic convexity in [Section 4.3, Yao et al. (2024)].

4 NUMERICAL EXPERIMENTS

In this section, we first present the application of the exact proximal algorithm on the KL divergence
functional, for which the particle and the distribution updates can be computed explicitly. Then we
show how to apply the proximal algorithm for the regularized training objective of two-layer neural
networks in the mean-field regime.

4.1 LINEAR LANGEVIN DYNAMICS

In this subsection, we apply the proximal algorithm on KL divergence with the target distribution
ν = exp(− 1

2θ
2) where θ ∈ R. Note that DKL(·∥ν) is 1-strongly convex. We provide numerical

experiments to explore the dynamical behavior of the proximal algorithm.

When both initialization and the target distributions are Gaussian, problem (12) can be explicitly
solved and ρn remains Gaussian for every n. In particular, closed forms of the particle and dis-
tribution updates are available in (Wibisono, 2018). Additionally, the W2 distance between two
Gaussian distributions, known as the Bures-Wasserstein distance, can be computed explicitly. In the
experiment, we set the initialization Gaussian distribution to be N (0, 100), step size ξ = 0.1, and
iterations equal to 60.

8
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(a) (b)

(c) (d)

Figure 1: Wasserstein proximal algorithm on the KL divergence with ν = exp(−∥θ∥2/2).
In Figure 1, the distribution of particles, represented by the histogram, approximates ρn and con-
verges to ρ∗ after several iterations (approximately 40 iterations in this experiment). The linear
converge result of DKL(ρn∥ν) in Figure 1d demonstrates a sharper bound holds for µ-convex ob-
jective with respect to (Yao & Yang, 2023; Cheng et al., 2024), as Corollary 3.8 suggests.

4.2 MEAN-FIELD NEURAL NETWORK TRAINING WITH ENTROPY REGULARIZATION

In practice, the optimization problem (12) typically lacks an explicit solution. Therefore, we can use
particle methods to approximate the time-evolving probability distributions, and we can solve an ap-
proximate Tn+1 using functional approximation methods. When applied to our entropy-regularized
total objective of mean-field neural network (9), the functional approximation method can be ex-
pressed as,

Tn+1 = argmin
T

1

N

N∑
i=1

l(
1

m

m∑
j=1

φ(T (θnj ), xi), yi) +
λ

m

m∑
j=1

∥T (θnj )∥2 (17)

− τ

m

m∑
j=1

log |det∇T (θnj )|+
1

2mξ

m∑
j=1

∥T (θnj )− θnj ∥2,

where the change of variable for entropy (Mokrov et al., 2021) is utilized. In our work, we specif-
ically employ a shallow neural network to learn the optimal transport map Tn+1 at each iteration,
using the right-hand side of (17) as the loss function.

Experiments. In our experiments, we aim to optimize the MFLD entropy-regularized total ob-
jective (9) with φ(θ, x) = tanh(θTx) for θ, x ∈ Θ. The parameters are set as d = 2,λ = 0.1,
τ = {0.04, 0.1}, with the number of particles m = 100 and a discretized step size of ξ = 0.1. We
generate N = 1000 training data samples using a teacher model y = sin(αTx), where x ∼ N (0, I).
Our goal is to compare the proximal algorithm with the neural network-based functional approxi-
mation (17) with the noisy gradient descent algorithm (5).

9
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We first randomly generated a dataset and then conducted 5 repeated experiments for both τ = 0.04
and τ = 0.1 on the same generated data. For each experiment, a new weight empirical distribution
is generated from standard Gaussian distribution, and both algorithms will use the same weight as
the initial value. For the learning of the optimal transport map, we train a one-hidden layer fully-
connected neural network of the form g(θ) = W2σ(W1θ) for each iteration using Adam optimizer
with learning rate 0.004, where W1 ∈ Rq×d, W2 ∈ Rd×q where σ(·) = ReLU(·) and q = 1000.

(a) (b)

(c) (d)

Figure 2: Wasserstein proximal algorithm on MFLD objective. Note that for Figure 2c and Figure
2d, the y-axis is on log-scale.

In Figure 2a and Figure 2b, we observe that both the L2-regularized loss R and the total objec-
tive F = R + τ

∫
Θ
ρlogρ converge under two algorithms, where the nearest neighbor estimator

(Kozachenko & Leonenko, 1987) is used to estimate
∫
Θ
ρ log ρ. To better depict the convergence

rate of the Wasserstein proximal algorithm and the Langevin algorithm (forward time-discretization
of MFLD), we obtain a reference ρ̃∗τ of ρ∗, by running the noisy gradient descent algorithm with
very small step size 10−3 and m = 1000 particles. In the early training phase of both algorithms,
W2

2 (ρ
m
n , ρ̃∗τ ) is dominated by W2

2 (ρ
m
n , ρ∗) and exhibits a linear convergence above the black dash-

dot line as shown in Figure 2c and Figure 2d. Within this phase, the Wasserstein proximal algorithm
demonstrates a faster linear rate thanks to the unbiased linear convergence nature of W2

2 (ρ
m
n , ρ∗) (cf.

Corollary 3.5). However, both algorithm has similar bias at convergence, for which we conjecture
that the particle discretization error of ρmn dominates W2

2 (ρ
m
n , ρ̃∗τ ) while close to convergence. We

validate our conjecture through further experiments and discussions in Appendix D.1.

5 CONCLUSION

In this work, we provided a convergence analysis of the Wasserstein proximal algorithm without
assuming any geodesic convexity, which improves upon the existing rates when strong geodesic
convexity indeed holds. We also analyzed the inexact gradient variant under an extra geodesic
semiconvexity condition. Applying to the proximal training of mean-field neural networks, linear
convergence of the entropy-regularized total objective is guaranteed, which is faster than the noisy
gradient descent algorithm as observed in our empirical experiments. One future work would be
the study of particle discretization effect of the Wasserstein proximal algorithm in the setting of
MFLD (Kook et al., 2024; Fu & Wilson, 2024).
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spaces and applications to spaces with Ricci bounds from below. Inventiones mathematicae,
195(2):289–391, February 2013. ISSN 1432-1297. doi: 10.1007/s00222-013-0456-1. URL
http://dx.doi.org/10.1007/s00222-013-0456-1.

Siwan Boufadène and François-Xavier Vialard. On the global convergence of Wasserstein gradient
flow of the Coulomb discrepancy. 2023.

Fan Chen, Zhenjie Ren, and Songbo Wang. Uniform-in-time propagation of chaos for mean field
Langevin dynamics, 2023. URL https://arxiv.org/abs/2212.03050.

Yongxin Chen, Sinho Chewi, Adil Salim, and Andre Wibisono. Improved analysis for a proximal
algorithm for sampling. In Po-Ling Loh and Maxim Raginsky (eds.), Proceedings of Thirty Fifth
Conference on Learning Theory, volume 178 of Proceedings of Machine Learning Research, pp.
2984–3014. PMLR, 02–05 Jul 2022. URL https://proceedings.mlr.press/v178/
chen22c.html.

Xiuyuan Cheng, Jianfeng Lu, Yixin Tan, and Yao Xie. Convergence of flow-based generative models
via proximal gradient descent in Wasserstein space. IEEE Transactions on Information Theory,
pp. 1–1, 2024. doi: 10.1109/TIT.2024.3422412.

Sinho Chewi, Tyler Maunu, Philippe Rigollet, and Austin J Stromme. Gradient descent algorithms
for Bures-Wasserstein barycenters. In Conference on Learning Theory, pp. 1276–1304. PMLR,
2020.

Sinho Chewi, Murat A Erdogdu, Mufan Li, Ruoqi Shen, and Matthew S Zhang. Analysis of
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Kaitong Hu, Zhenjie Ren, David Šiška, and Łukasz Szpruch. Mean-field Langevin dynamics and
energy landscape of neural networks. In Annales de l’Institut Henri Poincare (B) Probabilites et
statistiques, volume 57, pp. 2043–2065. Institut Henri Poincaré, 2021.
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A BACKGOUND ON OPTIMAL TRANSPORT AND WASSERSTEIN SPACE

A.1 WASSERSTEIN DISTANCE AND OPTIMAL TRANSPORT

The squared 2-Wasserstein distance is defined as the solution to the Kantorovich problem

W2
2 (ρ, ρ̃) := min

π∈Π(ρ,ρ̃)

∫
Θ×Θ

∥θ − θ̃∥2dπ(θ, θ̃),

where Π(ρ, ρ̃) ⊂ P2(Θ × Θ) is the set of all coupling distributions with marginals ρ and ρ̃. The
optimal solution π∗ is called the optimal transport plan. When ρ ∈ Pa

2 (Θ), it is known from
Brenier’s theorem that the solution T ρ̃

ρ of Monge’s problem exists, and the optimal transport plan is
π∗ = (id, T ρ̃

ρ )#ρ.

A.2 WASSERSTEIN SUBDIFFERENTIAL AND µ-CONVEX FUNCTIONALS

Definition A.1 (Frechet subdifferential, [Definition 10.1.1 Ambrosio et al. (2005)]). Let F :
P2(Θ) → (−∞,+∞] be proper, lower semicontinuous, and let ρ ∈ D(|∂F |) where |∂F |(ρ) de-
notes the metric slope (Ambrosio et al., 2005). We say that v ∈ L2(ρ; Θ) belongs to the Frechet
subdifferential ∂F (ρ) of F , written as v ∈ ∂F (ρ), if

F (ρ̃) ≥ F (ρ) +

∫
Θ

⟨v(θ), T ρ̃
ρ (θ)− θ⟩dρ(θ) + o(W2(ρ, ρ̃)).

And v is called strong subdifferential. Also, v ∈ ∂F (ρ) with minimal ∥ · ∥L2(ρ) norm is denoted as
∂◦F (ρ), and it is unique, see [Lemma 10.1.5, Ambrosio et al. (2005)].

Definition A.2 (First variation). Let F : P2(Θ) → (−∞,+∞] be proper, lower semicontinuous.
Let ρ ∈ P2(Θ), the first variation δF

δρ (ρ) : Θ → R exists if,

d

dε
F (µ+ εχ)

∣∣∣
ε=0

=

∫
δF

δρ
(ρ)dχ

for any perturbation χ = ρ̃− ρ with ρ̃ ∈ P2(Θ).

Definition A.3 (µ-convexity along geodesic, [Section 10.1.1, Ambrosio et al. (2005)]). A proper,
lower semicontinuous functional F is said to be µ-convex along geodesic (µ ∈ R) at ρ ∈ D(F ) ∩
D(|∂F |), if for all ρ̃ ∈ D(F ),

F (ρ̃) ≥ F (ρ) +

∫
Θ

⟨v(θ), T ρ̃
ρ (θ)− θ⟩dρ(θ) + µ

2
W2

2 (ρ, ρ̃), (18)

where v ∈ ∂F (ρ). In particular, if µ ≥ 0, we call F is geodesically convex; If µ < 0, we call
F is geodesically semiconvex. We refer to [Section 9, Ambrosio et al. (2005)] for definitions of
µ-convexity (and semiconvexity) in Euclidean space, which are similar to the definition above.

Definition A.4 (Weak Convergence). Let Cb(Θ) be the set of all continuous bounded functions on
Θ and M(Θ) be the set of all finite signed measures on Θ. We say that ρk ∈ M(Θ) converges to
ρ ∈ M(Θ) weakly if for every ϕ ∈ Cb(Θ),

lim
k→∞

∫
Θ

ϕdρk =

∫
Θ

ϕdρ.

The weak convergence is also called narrow convergence in the literature Santambrogio (2015).

B TECHNICAL LEMMAS

Lemma B.1 (Proposition 3.1 and 3.3, Ambrosio et al. (2013)). Let (Z, d) be a general metric space,
z ∈ Z such that f(z) < +∞, the Hopf-Lax semigroup is defined as

u(z, ξ) = inf
z′∈Z

f(z′) +
1

2ξ
d(z′, z)2.
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We define

D+(z, ξ) := sup lim sup
n→∞

d(z, z′n), D−(z, ξ) := inf lim inf
n→∞

d(z, z′n),

where the supremum and the infimum run among all minimizing sequences (z′n). For z ∈ Z such
that f(z) < +∞, we define t∗(z) = sup{t > 0 : u(t, ξ) > −∞}. Then if f(z) < +∞, we have

(a) D+(z, ξ) = D−(z, ξ) holds for ξ ∈ (0, t∗(z)) except for at most countable exceptions;

(b) If and only if D+(z, ξ) = D−(z, ξ), the map ξ → u(z, ξ) is differentiable in (0, t∗(z)) and

d

dξ
u(z, ξ) = −D+(z, ξ)

2ξ2
= −D−(z, ξ)

2ξ2
.

Lemma B.2 (Existence of minimizer). If F : P2(Θ) → (−∞,∞] is weakly lower semicontinuous,
then proximal algorithm (2) admits a minimizer.

Proof. The proof is essentially contained in [Section 10.1, Ambrosio et al. (2005)]. For the sake
of completeness, we provide a proof here. We only need to show Br(ρ) = {ν|W2

2 (ρ, ν) < r} is
weakly-precompact for any fixed r > 0. By Prokhorov’s theorem, it suffices to prove the tightness
of Br(ρ), i.e., there is a sequence of compact sets (Ki)i∈N such that

ν(Θ\Ki) ≤ 1/i, ∀ν ∈ Br(ρ).

We prove for any ε > 0, we can find compact set K such that

ν(Θ\K) ≤ ε,∀ν ∈ Br(ρ).

by contradiction. Assume there exists ε, for any compact K, there exists ν ∈ Br(ρ) such that
ν(Θ\K) > ε. As a singleton {ρ} constitutes a tight family, we can find a compact set Kρ,ε such
that

ρ(Kρ,ε) < ε.

We define a compact set UR = {θ̃|argminθ∈Kρ,ε∥θ − θ̃∥2 ≤ R, }. Then there exists ν such that
ν(Θ\U3r/ε) > ε. However, W2

2 (ρ, ν) ≥ 3r, contradiction. Furthermore, note that since Θ is not
compact, Br(ρ) under the Wasserstein metric is not compact.

Lemma B.3 (Conditions on weakly lower semicontinuity). If F : P2(Θ) :→ (−∞,+∞] is proper,
lower semicontinuous (with respect to W2 topology), and µ-convex (µ ∈ R) along generalized
geodesics , then F is weakly lower semicontinuous.

Proof of Lemma B.3. See Section 10.3 in Ambrosio et al. (2005).

Remark B.4. We give several examples that the functional F satisfies weakly lower continuity.

• If f : Θ → (−∞,+∞] is lower semicontinuous, and µ-convex (µ ∈ R) in Euclidean sense, then
Lemma B.3 implies that F =

∫
Θ
fdρ is weakly lower semicontinuous.

• If f : Θ → (−∞,+∞] is lower semicontinuous and bounded from below, then F =
∫
Θ
fdρ is

weakly lower semicontinuous, [Example 9.3.1, Ambrosio et al. (2005)].

• For conditions that ensure the weakly lower semicontinuity of internal energy, we refer to [Section
9.3, Ambrosio et al. (2005)] for details. Specifically,

∫
Θ
ρlogρ is weakly lower semicontinuous.

Lemma B.5 (Satisfication of Assumption 2 on P2(Θ) with compact set Θ). Under Assumption 1, if
Θ is compact, then Assumption 2 holds.

Proof. By [Proposition 7.17, Santambrogio (2015)], when Θ is compact, for fixed ρ ∈ P2(Θ), the
first variation of W2(·, ρ) is well-defined for all ρ̃ ∈ Pa

2 (Θ). Similar to [Proposition 8.7, Santam-
brogio (2015)], by standard calculus of variation followed by gradient operation, we have

∇δF

δρ
(ρξ) =

T ρ
ρξ

− id

ξ
.

See [Lemma B.1, Yao et al. (2024)] for similar arguments. Therefore, Assumption 2 holds. If Θ is
not compact, the first variation of W2 distance is not well defined.
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Lemma B.6. Assume u : [0, ξ] → (0,+∞) is a decreasing function, ∂tu(t) ≤ −C(t)u(t) almost
everywhere for t ∈ [0, ξ], C(t) > 0 for every t ∈ [0, ξ], then

u(ξ) ≤ u(0) exp

(∫ ξ

0

−C(t)dt

)
.

Remark B.7. Lemma B.6 extends the classical Gronwall lemma, which requires everywhere differ-
entiability, to the case with almost everywhere differentiability and monotonicity.

Proof. By the monotonicity of u(t) we construct a function g(t) = ln(u(t)). It is a decreasing

function and
dg(t)

dt
=

∂tu(t)

u(t)
≤ −C(t) almost everywhere on [0, ξ]. By properties of Lebesgue

integral, we have ∫ ξ

0

dg(t)

dt
dt ≤

∫ ξ

0

−C(t)dt.

Since g is decreasing, by [Proposition 6.6, Komornik (2016)],

g(ξ)− g(0) ≤
∫ ξ

0

dg(t)

dt
dt.

Thus,

u(ξ) ≤ u(0) exp

(∫ ξ

0

−C(t)dt

)
.

Lemma B.8. Assume T
ρn+1

ρn
is C2 diffeomorphism. If ρn ∈ C1(Θ), then ρn+1 ∈ C1(Θ).

Proof. The change variable formula of probability density is,

T#ρ(θ) = ρ(T−1(θ)) · |detD(T−1)(θ)|
where D(T−1) is the Jacobian matrix of T−1. Since T is a C2 diffeomorphism, then T−1 is C2

mapping. Thus, ρ ◦ (T−1) is C1(Θ). Since T−1 is diffeomorphism, then D(T−1) is not singular
and |detD(T−1)| is C1(Θ). And thus T#ρ is C1(Θ).

Remark B.9. We have an example from normalizing flow that can be C2 diffeomorphism. Real NVP
(Dinh et al., 2016) has the following structure,

T (θ1:d̃) = θ1:d̃
T (θd̃+1:d) = θd̃+1:d ∗ exp(s(θ1:d̃) + t(θ1:d̃))

where ∗ refers to the pointwise product. T is naturally reversible (The Jacobian matrix is always
non-singular) and the reverse is,

T−1(θ1:d̃) = θ1:d̃

T−1(θd̃+1:d) = (θd̃+1:d − t(θ1:d̃)) ∗ exp(−s(θ1:d̃))

It is not hard to see that if s(·) : Rd̃ → Rd−d̃ and t(·) : Rd̃ → Rd−d̃ are C2 maps (i.g. represented by
fully neural network with smooth activation function), then T is restricted to be C2 diffeomorphism.
Lemma B.10. Under Assumption 3, if ρn ∈ C1(Θ) and ρn+1 is the exact solution of the Wasserstein
proximal algorithm (2), then βn+1 = 0.

Proof. Since ρn+1 is the exact solution of (2), then ρn+1 ∈ D(|∂F |) and
T

ρn
ρn+1

−id

ξ ∈ ∂F (ρn+1) by

[Lemma 10.1.2, Ambrosio et al. (2005)]. As ρn+1 ∈ C1(Θ), then ∇δF

δρ
(ρn+1) is the unique strong

subdifferential by [Lemma 10.4.1, Ambrosio et al. (2005)]. Therefore,

T
ρn

ρn+1
− id− ξ∇δF

δρ
(ρn+1) = 0

.
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C PROOFS

Proof of Lemma 3.1. Lemma B.2 guarantees the existence of a minimizer of the JKO scheme or
proximal algorithm. Thus we can define

zξ = arg min
z∈P2(Rd)

u(z, ξ).

Then Lemma B.1 implies that D+(z, ξ) = D−(z, ξ) = d(z, zξ) in (0, t∗(z)) except for at most
countable exceptions, from which we can conclude the desired Lemma 3.1.

Definition C.1 (Uniform log-Sobolev inequality). There is a constant µ > 0 such that for any
ρ ∈ P2(Θ), its Gibbs proximal distribution qρ defined as,

qρ(θ) ∝ exp

(
−1

τ

δR(ρ)

δρ
(θ)

)
satisfies the log-Sobolev inequality (7) with the constant µ.

Proof of Corollary 3.5. We divide our proof into four parts,
(1) Firstly, we prove the satisfaction of Assumption 1 and the geodesic semiconvexity of Fτ ;
(2) Secondly, we prove the PL inequality;
(3) Thirdly, we prove the satisfaction of Assumption 2 by showing that ∇ δFτ

δρ (ρξ) = ∂◦Fτ (ρξ);
(4) With the previous three parts, we can get the linear convergence of function value. The last part
is devoted to obtain a convergence rate of W2 distance using some structure of MFLD.

Our proof is as follows,
(1) The weakly lower semicontinuity of Fτ is verified in [Section 5.1, Chizat (2022)]. The geodesic
semiconvexity follows from [Lemma A.2, Chizat (2022)] and the proof relies on (19) below.

(2) Now we prove PL inequality. Since the training risk R : P2(Θ) → (−∞,+∞] has linear
convexity if the loss function l is convex (in the Euclidean sense). By [Proposition 5.1, (Chizat,
2022)], the L2-regularized training risk R in (4) satisfies the uniform LSI assumption [Assumption
3, Chizat (2022)]. Next, we shall show that these assumptions imply the relaxed PL-inequality
defined in (13). By the entropy sandwich bound [Lemma 3.4, (Chizat, 2022)],

τDKL(ρ∥qρ) ≥ Fτ (ρ)− Fτ (ρ
∗).

Therefore,∫
Θ

∥∇δFτ

δρ
(ρ)∥2dρ =

∫
Θ

∥∇δR

δρ
(ρ) + τ∇ log(ρ)∥2dρ

= τ2Jqρ(ρ) ≥ 2µττ
2DKL(ρ∥qρ) ≥ 2µττ(Fτ (ρ)− Fτ (ρ

∗)),

Thus, the functional Fτ satisfies the Wasserstein PL-inequality with parameter τµτ .

(3) Under Assumption 1, (T ρ
ρξ
−id)/ξ is a strong subdifferential at ρξ ∈ Pa

2 (Θ), and ρξ ∈ D(|∂Fτ |)
by [Lemma 10.1.2, Ambrosio et al. (2005)]. To prove that Assumption 2 holds, we only need to
prove that,

If ρ ∈ D(|∂Fτ |) ∩ Pa
2 (Θ), then ∇ δFτ

δρ (ρ) = ∂◦Fτ (ρ).

Our proof for (3) below highly relies on the proof of [Theorem 10.4.13, Ambrosio et al. (2005)].
Step 1. We first need to derive some conditions similar to [(10.4.58), (10.4.59), Ambrosio et al.
(2005)]. Under the assumptions of Corollary 3.5, R satisfies the following smoothness condition
with L̃ > 0 by [Proposition 5.1, Chizat (2022)].

∀θ, θ̃ ∈ Θ,∀ρ, ρ̃ ∈ P2(Θ), ∥∇δR

δρ
(ρ)(θ)−∇δR

δρ
(ρ̃)(θ̃)∥ ≤ L̃(∥θ − θ̃∥2 +W2(ρ, ρ̃)). (19)

By [Lemma A.2, Chizat (2022)], relying on (19), choosing r = id+ t with t ∈ C∞
c (Θ),

lim
t→0

R((id+ tt)#ρ)−R(ρ)

t
=

∫
Θ

⟨∇δR

δρ
(ρ), r− id⟩dρ. (20)
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(20) is the key condition similar to [(10.4.58), (10.4.59), Ambrosio et al. (2005)] that we want to
obtain.

Furthermore, a by-product is that (20) suggests that ∇ δR
δρ (ρ) is a (unique) strong subdifferential

and ∥∇ δR
δρ (ρ)∥L2(ρ) = |∂R|(ρ) for all ρ ∈ Pa

2 (Θ), see [Lemma A.2, Chizat (2022)]. It is not
hard to verify that ∥∇ δR

δρ (ρ)∥L2(ρ) is finite at any ρ ∈ P2(Θ) because (19) ensures 2-growth of
∥∇ δR

δρ (ρ)(·)∥
2.

In Step 2, we conduct a proof similar to [Theorem 10.4.13, Ambrosio et al. (2005)].

Step 2. By [Lemma 10.4.4, Ambrosio et al. (2005)], (20), and the fact that ρ ∈ Pa
2 (Θ) ∩D(|∂F |),

for t ∈ C∞
c (Θ)

−
∫
Θ

τρ∇ · tdθ +
∫
Θ

⟨∇δR

δρ
(ρ), t⟩dρ ≥ −|∂Fτ (ρ)|∥t∥L2(ρ).

By (21), ∀θ, θ̃ ∈ Θ,∀ρ ∈ P2(Θ),

∥∇δR

δρ
(ρ)(θ)−∇δR

δρ
(ρ)(θ̃)∥ ≤ L̃(∥θ − θ̃∥2). (21)

Therefore, ∇δR

δρ
(ρ)(·) is Lipschitz and locally bounded. Therefore, following the same argument

of [Theorem 10.4.13, Ambrosio et al. (2005)], we obtain that

∇δFτ

δρ
(ρ) = τ

∇ρ

ρ
+∇δR

δρ
(ρ) ∈ L2(ρ) and ∥∇δFτ

δρ
(ρ)∥L2(ρ) ≤ |∂Fτ (ρ)|.

where we define ∇ρ
ρ = 0 if ρ(θ) = 0. Furthermore, it is straightforward to prove ∇δFτ

δρ
(ρ) ∈

∂Fτ (ρ).1 Since ρ ∈ D(|∂Fτ |) and ρ ∈ D(|∂R|), we have ρ ∈ D(|∂Hτ |) where Hτ (ρ) =∫
Θ
τρlogρ. Therefore, τ ∇ρ

ρ ∈ ∂Hτ (ρ) [Theorem 10.4.6, Ambrosio et al. (2005)]. With ∇δR

δρ
(ρ) ∈

∂R(ρ), we have proved that ∇δFτ

δρ
(ρ) ∈ ∂Fτ (ρ). Thus, ∇δFτ

δρ
(ρ) = ∂◦Fτ (ρ).

(4) With the previous three parts, we can get (14) with Theorem 3.4. Next, we prove (15). Using
[Lemma 3.4, (Chizat, 2022)] once again, we get

τDKL(ρ∥ρ∗) ≤ Fτ (ρ)− Fτ (ρ
∗) ≤ τDKL(ρ∥qρ).

Since ρ∗ also satisfies µτ -LSI, by Talagrand’s inequality, we have

W2
2 (ρ

∗, ρn) ≤
2

µτ
DKL(ρn∥ρ∗) ≤

2

µττ
(Fτ (ρn)−Fτ (ρ

∗)) ≤ 2

µττ
(Fτ (ρ0)−Fτ (ρ

∗))(
1

1 + µττξ
)2n.

Proof of Corollary 3.6. Similar to proof of Corollary 3.5, we divide the proof into four parts.

(1) If f is semiconvex and lower-semicontinuous, then
∫
Θ
fdρ is weakly lower semicontinuous by

Remark B.4. In addition,
∫
Θ
log ρdρ is also weakly lower semicontinuous by Remark B.4. Thus, F

is weakly lower continuous, and Assumption 1 satisfies.

Furthermore,
∫
Θ
fdρ is semiconvex along geodesics and

∫
Θ
log ρdρ is convex along geodesics, see

[Section 9.3, Ambrosio et al. (2005)]. Thus, F is semiconvex along geodesics.

(2) The PL inequality directly follows from LSI condition.

(3) We prove that Assumption 2 is satisfied by showing ∇ δF
δρ (ρξ) = ∂◦F (ρξ). [Theorem 10.4.13,

Ambrosio et al. (2005)] already incorporates KL divergence as a special case: Assume f is

1Here the proof is slightly different from [Theorem 10.4.13, Ambrosio et al. (2005)] for simplicity, as we
already have the finite slope property of R.
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semiconvex and lower semicontinuous, and {θ|V (θ) < ∞} is not empty. Then for F (ρ) =∫
Θ
fdρ +

∫
Θ
ρlogρ (here we assume the interaction energy to be 0), if ρ ∈ D(|∂F |) ∩ Pa

2 (Θ),
then ∇ δF

δρ (ρ) = ∇V +∇ log(ρ) = ∂◦F (ρ), where we assume ∇log(ρ)(θ) = 0 if ρ(θ) = 0. With
Assumption 1 to guarantee ρξ ∈ Pa

2 (Θ) and [Lemma 10.1.2, Ambrosio et al. (2005)] to guarantee
that ρξ ∈ D(|∂F |), Assumption 2 holds.

(4) The convergence rate on W2 distance follows Talagrand inequality.

Proof of Theorem 3.8. In this proof, we will not invoke Assumption 2.
Step 1. We want to prove that µ-geodesic convex implies, for any fixed ρ and for any ξ,

F (ρ∗) ≥ F (ρξ)−
1

2µξ2
W2

2 (ρξ, ρ). (22)

Note
T ρ
ρξ

− I

ξ
is a strong subdifferential at ρξ,

F (ρ̃) ≥ F (ρξ) +

∫
Θ

⟨
T ρ
ρξ
(θ)− θ

ξ
, T ρ̃

ρξ(θ)− θ⟩dρξ(θ) +
µ

2
W2

2 (ρξ, ρ̃)

= F (ρξ) +

∫
Θ

(
⟨
T ρ
ρξ
(θ)− (θ)

ξ
, T ρ̃

ρξ
(θ)− θ⟩+ µ

2
∥T ρ̃

ρξ
(θ)− θ∥2

)
dρξ(θ).

Then, we minimize both sides of Eqn (18) with respect to ρ̃ ∈ Pa
2 (Θ). Clearly, ρ∗ minimizes the

left side. For the integral term on the right-hand side, we define T ρ̃
ρξ

in the following,

T ρ̃
ρξ
(θ)− θ = − 1

µξ

(
T ρ
ρξ
(θ)− θ

)
, ρξ-a.e.

then it minimizes the integral as it minimizes the term inside the integral almost everywhere. There-
fore,

F (ρ∗) ≥ F (ρξ)−
1

2µξ2

∫
Θ

∥T ρ
ρξ
(θ)− θ∥2dρξ(θ) = F (ρξ)−

1

2µξ2
W 2

2 (ρξ, ρ).

Step 2.

∂ξ(u(ρ, ξ)− F ∗) = − µ

2ξ(1 + µξ)
W2

2 (ρξ, ρ)−
1

2(1 + µξ)ξ2
W2

2 (ρξ, ρ) (by (11))

≤ − µ

2ξ(1 + µξ)
W2

2 (ρξ, ρ)−
µ

(1 + µξ)
(F (ρξ)− F ∗) (by (22) in Step 1)

= − µ

1 + µξ
(u(ρ, ξ)− F ∗). (by Def 3.1)

Using Lemma B.6 to deal with the technique issue of almost everywhere differentiability, we have

u(ρ, ξ)− F ∗ ≤ (u(ρ, 0)− F ∗) exp

(∫ ξ

0

− µ

1 + µt
dt

)
= (F (ρ)− F ∗)

1

1 + µξ
.

Invoking (22) once again, we obtain that

(F (ρ)− F ∗)
1

1 + µξ
≥ u(ρ, ξ)− F ∗ = F (ρξ)− F ∗ +

1

2ξ
W2

2 (ρξ, ρ) ≥ (1 + µξ)(F (ρξ)− F ∗).

Step 3. We derive a bound for W2(ρ
∗, ρn) here. Since for any ρ ∈ D(F ),

F (ρ)− F (ρ∗) ≥
∫
Θ

⟨0, T ρ
ρ∗⟩dρ∗(θ).

Therefore, 0 is a strong subdifferential by definition of geodesic convexity. Thus, we have

F (ρ)− F (ρ∗) ≥
∫
Θ

⟨0, T ρ
ρ∗⟩dρ∗(θ) +

µ

2
W2

2 (ρ
∗, ρ) =

µ

2
W2

2 (ρ
∗, ρ).

by definition of µ-convexity along geodesics. Therefore,

W2(ρ
∗, ρn) ≤

√
2

µ
F (ρ0)− F (ρ∗)

1

(1 + µξ)n
.
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Proof of Theorem 3.10. It suffices to prove the case ξ = 1/L because for ξ < 1/L, a functional
that is (−L) geodesically convex is also −(1/ξ) geodesically convex. Under Assumption 3, since
we assume ρn+1 ∈ D(∂F ), then ∇ δF

δρ (ρn+1) is the unique strong subdifferential. Thus,

F (ρn+1)− F (ρn) ≤ −ξ

∫
Θ

⟨∇δF

δρ
(ρn+1),

T
ρn

ρn+1
− id

ξ
⟩dρn+1 +

L

2
W2

2 (ρn+1, ρn)

= −ξ

∫
Θ

⟨∇δF

δρ
(ρn+1),∇

δF

δρ
(ρn+1) +

1

ξ
βn+1⟩dρn+1

+
L

2

∫
Θ

∥ξ∇δF

δρ
(ρn+1) + βn+1∥2dρn+1 (by Eqn 16)

= (− 1

2L
)

∫
Θ

∥∇δF

δρ
(ρn+1)∥2dρn+1 +

L

2

∫
Θ

∥βn+1∥2dρn+1 (let ξ =
1

L
)

≤ −µ

L
(F (ρn+1)− F (ρ∗)) +

L

2
(ϵn+1). (by PL (13))

Thus,

(1 +
µ

L
)(F (ρn+1)− F ∗) ≤ (F (ρn)− F ∗) +

L

2
ϵn+1.

By [Lemma 14, (Yao et al., 2024)], we set A = 1
1+µ/L , B = L/2

1+µ/(L) .

(a) If ϵn ≤ Cexpγ
n with γ ∈ (0, 1),

F (ρn)− F (ρ∗) ≤ An(F (ρ0)− F (ρ∗)) +
BCexp

|A− γ|
max{A, γ}n+1.

(b) If ϵn ≤ Cpolyn
−ζ with ζ > 0, there is a constant C(ζ,A),

F (ρn)− F (ρ∗) ≤ An(F (ρ0)− F (ρ∗)) +
BC(ζ,A)ζ

nζ
.

D FURTHER NUMERICAL EXPERIMENTS AND DISCUSSIONS

D.1 FURTHER DISCUSSIONS ON MFLD EXPERIMENTS

As shown in Figure 3, while m increases, W2(ρ
m
n , ρ̃∗τ ) at convergence decreases for both algorithms.

This experiment supports our conjecture that partial discretization error dominates the bias, if we
assume ρ̃∗τ is a good approximate of ρ∗.

The particle discretization error is well studied for noisy gradient descent and a quantitative uniform-
in-time propagation of chaos result for the MFLD has been established in (Chen et al., 2023). Specif-
ically, the ”distance” between the finite particle dynamics and the mean-field dynamics converges
at rate O(1/m) for all t > 0 under the uniform LSI condition. Note that even though the ”dis-
tance” in theoretical analysis of uniform propagation chaos is not simply defined to be the W2

distance between empirical measure of finite particle dynamics and absolutely continuous measure
of mean-field dynamics, it is empirically observed that the W2 distance also demonstrates simi-
lar propagation-of-chaos property in Figure 3b. The remaining challenge is how to theoretically
characterize the particle discretization error of the proximal algorithm.
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(a) (b)

Figure 3: Particle discretization error with different number of particles. We follow all the experi-
ment settings in Section 4.2.
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