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ABSTRACT

Designing effective action spaces for complex environments is a fundamental
and challenging problem in reinforcement learning (RL). Although various action
shaping and representation learning methods have been proposed to address some
specific action spaces and decision-making requirements (e.g. action constraints),
these methods often are typically customized to fixed scenarios and require ex-
tensive domain knowledge. In this paper, we introduce a general framework that
can apply any common RL algorithms to a class of discrete latent actions learned
from data. This framework unifies a wide range of action spaces, including those
with continuous, hybrid, or constrained actions. Specifically, we propose a novel
algorithm, the General Action Discretization Model (GADM), that can adaptively
discretize raw actions to construct unified and compact latent action spaces. More-
over, GADM also predicts confidence scores of different latent actions, which
can help mitigate the instability of parallel optimization in online RL settings,
and serve as an implicit constraint for offline RL cases. Quantitative experiments
and visualization results demonstrate that our proposed framework can match or
outperform various approaches specifically designed for different environments.

1 INTRODUCTION

Recent advances in Reinforcement Learning (RL) have yielded many promising research achieve-
ments (Vinyals et al., 2019; Berner et al., 2019; Ouyang et al., 2022). However, the complexity of
action spaces still prevent us from directly utilizing advanced RL algorithms to real-world scenar-
ios, such as high-dimensional continuous control in robot manipulation (Lillicrap et al., 2016) and
structured hybrid action decision-making in strategy games (Kanervisto et al., 2022). These issues
lead to extensive challenges in designs of policy optimization (Xiong et al., 2018) and efficiency of
exploration (Seyde et al., 2021). In addition, some new areas like offline RL (Fujimoto et al., 2019)
and safe RL (Liu et al., 2023) are solving training stability and policy behaviour legitimacy problems
under special action constraints, which brings new requirements to the design of action spaces.

To handle these issues, some existing work first elaborately design particular RL methods in raw action
spaces. Specifically, deterministic policy gradient methods (Lillicrap et al., 2016; Fujimoto et al.,
2018) are designed to handle continuous control problems. Xiong et al. (2018) and Fan et al. (2019)
propose some techniques to model the intra-relationship within hybrid actions. Besides, Fujimoto et al.
(2019) and Yang et al. (2021) utilize the property whether candidate actions belong to pre-collected
offline datasets to suppress the over-estimation problem about Q value. Correspondingly, another
idea is to make raw action spaces more suitable for RL training. Action space shaping (Kanervisto
et al., 2020) is a classic way to tackle these problems. Particularly, many RL applications in games
(Kanervisto et al., 2022; Wei et al., 2022) design specific action discretization mechanisms to simplify
the decision-making spaces, leading to the promising performance improvement. Meanwhile, some
works propose to learn an action model that abstracts raw actions into latent actions to boost RL
training. HyAR (Li et al., 2021) designs a special training scheme with VAE (Kingma & Welling,
2014) to map the original hybrid action space to a continuous latent action space. Some other methods
(Shafiullah et al., 2022; Jiang et al., 2022; Dadashi et al., 2022) build prior sets of discrete actions
from pre-collected demonstrations, and then design new RL agents on these fixed actions. However,
these designs are tailored to specific environments, rendering them unsuitable for diverse decision-
making scenarios that encompass arbitrary action spaces. Moreover, for a specific environment,
researchers need to invest considerable time and effort in learning related domain knowledge to
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preserve the necessity and minimize the redundancy of actions. Furthermore, previous studies on
action representation learning have primarily focused on offline RL, with fewer instances in the more
commonly used online RL.

In order to address above challenges, we first investigate two important aspects of learning the general
action representation: As illustrated in Figure 1, we revisit the potential redundancy of raw action
spaces, including semantically repeated discrete action choices in some specific states, unnecessary
fine-grained continuous control, and invalid intra-action relationships in hybrid action space. By
reducing these invalid, useless and semantically similar actions and remapping the raw action space
into a more efficient latent representation, RL agents can focus more on the necessary subset of actions,
enhancing both exploration and exploitation (Chandak et al., 2019). In addition, offline datasets can
be considered as important priors for action representation learning. For offline RL settings, the
well-trained action model can become an implicit constraint for action selection (Fujimoto et al.,
2019), thereby effectively alleviating the over-estimation issues in temporal difference (TD) learning.
For online RL, these datasets can be used to pretrain the action model, providing an advantageous
starting point for subsequent training.

Drawing on these insights, we propose a general framework that partitions the decision-making
problem into two components: action representation learning and discrete reinforcement learning, as
illustrated in Figure 2. A key element of this framework is our novel General Action Discretization
Model (GADM), which includes a diversity-aware codetable, a state-dependent action encoder and
decoder, along with a latent action confidence predictor. Because of its simplicity and scalability,
GADM effectively reduces action redundancy and accommodates both offline and online training
regimes. For the offline case, we first train GADM on the offline dataset, then apply any standard
discrete RL algorithm like DQN (Mnih et al., 2015) (model-free) or MuZero (Schrittwieser et al.,
2019) (model-based) to the learned discrete action space. For the online case, due to continual online
interactions and dynamically changing data distributions, it is necessary to train the action model
and RL models together. However, given that the quantity of latent actions remains fixed, while
the effective actions fluctuate considerably across different states, it’s inevitable that some latent
actions become ineffective in certain scenarios. This situation gives rise to a new issue termed as the
latent action out-of-distribution problem (Figure 3). To mitigate this, GADM generates confidence
scores for latent actions, wherein higher scores reflect more reliable actions. These scores can be
converted into a latent action mask, which can then be incorporated into Temporal-Difference (TD)
learning and policy gradient as supplementary guidance. Finally, we assess the effectiveness of
this framework in both online and offline RL environments, spanning various action spaces such
as Gym Hybrid (thomashirtz, 2021), HardMove from HyAR Li et al. (2021), GoBigger (Zhang,
2021), MuJoCo Todorov et al. (2012), and D4RL (Fu et al., 2020a). Results show that GADM with
naive DQN outperforms previous algorithms specifically designed for corresponding action spaces in
both efficiency and performance. Further validation is provided through a series of ablation study
experiments and visualizations.

To summarize, the core contributions of this paper can be summarized as follows:

• We propose a novel representation algorithm GADM that can learn unified and compact discrete
latent actions for different environments with continuous or hybrid action spaces.

• Our proposed framework, GADM with arbitrary common discrete reinforcement learning algo-
rithms, is the first decoupling paradigm capable of both online and offline RL training.

• Through quantitative experiments and visualizations, we demonstrate the scalability and efficiency
of our method, showing its potential as a foundational design for general decision-making models.

2 BACKGROUND

Markov Decision Process In RL, we model a decision-making problem as a Markov Decision
Process (MDP) M=(S,A,P,R, γ, ρ0), where S and A represent the state space and the action
space. And the transition function P assigns to each state-action pair (s, a) ∈ S ×A a probability
measure over S , which we shall denote by P(· | s, a); the expected reward functionR assigns to each
state-action pair (s, a) ∈ S ×A a probability measure over R, which we shall denote byR(· | s, a).
γ ∈ [0, 1) is the discounted factor, and ρ0 is the initial state distribution. A policy π is a mapping
from states to distributions over the action space. The objective of RL is to learn an optimal policy π
to maximize the expected discounted return J(π) = Eπ,ρ0,P,R[

∑∞
t=0 γ

trt], where the expectation is
taken with respect to the trajectory distribution induced by π and environment dynamics.
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Figure 1 Left: Example of a reduction of an MDP’s state-action space under an transformation
operator T . Actions with the same impact in raw MDP will be mapped to the same latent action. The
agent pushing up boxes has similar effect with right push so they have the same latent semantics. The
other two state-action pairs would transfer into close locations therefore they have more close latent
semantics. Right: Figure (a) shows a snapshot of LunarLander, and Figures (b, c, e, f) show the Q
value estimated by the neural network in different training stages of the TD3 algorithm in this state. It
can be seen that the curved surfaces at different training stages are relatively smooth (i.e. the possible
action space redundancy), and the difference between each specific action and nearby actions is not
very large. Figure (d) shows the performance changes of TD3 with the iterative training.

Hybrid Action Space and Action Transformed MDP (Masson et al., 2016) presents the idea of a
parameterized action space, characterized by a hierarchical structure with two layers. Specifically,
Ad symbolizes a finite collection of discrete actions, while Xa represents the related continuous
parameter space for each action a ∈ Ad. The action selection process initiates with the choice
of a discrete action a from Ad, subsequently followed by the selection of a parameter x from the
corresponding space Xa. In order to accommodate a broader hybrid action space as seen in complex
video games like StarCraft II (Vinyals et al., 2017), Dota 2 (OpenAI, 2018) and many real-world
tasks, we expand this parameterized action space into a general N-layered hybrid action space. To
facilitate a more comprehensive understanding of the MDP associated with both the original action
space and the discretized action space, we present a detailed math definition in the appendix A.1.

3 GENERAL ACTION DISCRETIZATION MODEL

We begin this section by introducing a detailed overview of the entire framework and its corresponding
training pipeline in Section 3.1. Subsequently, we dissect the specific components of the General
Action Discretization Model (GADM) in Section 3.2, including network structures and loss functions.
Based on the entire framework, we describe practical algorithms (e.g. GADM+DQN) in Section 3.2.
We also discuss some underpinning motivations and insights that inspired GADM to Appendix A.2.

3.1 FRAMEWORK OVERVIEW

Framework. Motivated by the analysis about decoupling action representation learning and reduc-
ing action space redundancy (Figure 1 and Appendix A.2), we propose a unified framework leveraging
standard RL on a learned discrete action space, designed to accommodate diverse decision-making
scenarios with intricate action spaces (refer to Figure 2). The framework operates as a meta-algorithm,
providing a universal solution for various decision-making problems. The significant challenge of
crafting suitable action spaces is resolved through a two-part decoupled design: a representation
learning component GADM, which maps the raw action space to a new discrete action space, and a
discrete RL component built on these learned discrete action representations. Significantly, this design
incorporates two types of models, each with their unique optimization objectives—the action model
and the RL model. Under this framework, both action representation learning and RL methods based
on discrete action spaces can be optimized in a relatively decoupled manner. This greatly simplifies
the previous process of handling complex action spaces (Bester et al., 2019; Fan et al., 2019).
Dual training pipelines for GADM: offline and online RL. The training pipeline for our action
models accommodates two distinct scenarios, those being the GADM for offline RL and the GADM
for online RL settings. In offline RL setting, as delineated in Algorithm 2, the action model is initially
trained on offline datasets, and then utilized for RL training. However, when directly applied to
tasks, this approach may encounter a unique issue referred to as the pathological latent action space,
characterized by redundant and shifted latent actions. We explore this issue in depth in Section 3.2.
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Figure 2 The unified decision-making framework for various action spaces. It is divided into a
two-part decoupled design: first, an action representation learning component, GADM, followed by
a discrete RL component that is built upon these learned discrete action representations.

As illustrated in Algorithm 1, the GADM for online RL setting facilitates concurrent training of the
action and RL models. In this scenario, during RL training, the agent selects a discrete latent action
kt based on the current state st. This latent action is decoded into a raw action at by the action model.
It is then possibly integrated with some exploration mechanisms (refer to A.5.3) before being applied
to the environment. The ensuing reward rt and subsequent state st+1 form a transition sequence
{st, kt, at, rt, dt, st+1}, which is stored in the replay buffer. However, this online approach could
face unique challenges. With the simultaneous optimization of the GADM and RL models, transitions
in the replay buffer, gathered across various training iterations via the older action model, could lead
to the same latent action mapping to different raw actions.

To tackle this, we introduce a latent action remapping technique, akin to the reanalyze operation in
MuZero Schrittwieser et al. (2019). In this process, the latent action, determined by the older version
of GADM in the collected mini-batch {st, at, koldt , rt, dt, st+1}, is remapped to the corresponding
latent action using the current action encoder eϕ: knewt = eϕ(st, at). The RL training is then executed
on the remapped samples {st, sg[knewt ], rt, st+1} (where sg denotes the stop gradient operation).
Additionally, the GADM for online RL setting’s training pipeline can benefit from an optional warm-
up phase. During the warmup stage, data can accumulated via a random or expert policy, or from a
pre-collected dataset. This data is used to train the action model, providing a solid foundation for the
subsequent online stage, as shown in Section 4.1.3.

3.2 GENERAL ACTION DISCRETIZATION MODEL

In this section, we delve into the fundamental design of GADM, a modified discrete autoencoder
(van den Oord et al., 2017) comprising several key components: a diversity-aware codetable, a
state-conditioned action encoder and decoder, and a latent action confidence predictor.

Diversity-aware codetable. Codetable maintains K latent action candidates {zk}K−1
k=0 . Each of them

is a vector of length N . We first tried to update the codetable using the exponential moving average
trick proposed in VQ-VAE, but we found that different vectors gradually were updated to similar
values so that most of them were homogeneous, which limited the number of available actions for
RL. To solve it, we design a diveristy-aware codetable, which is initialized by a series of one-hot
vectors or bisection points and remains fixed through the entire training process.

State-conditioned action encoder and decoder. The standalone values of actions, whether cate-
gorical, continuous or hybrid, are inadequate for comprehensive action representation learning. To
overcome this, we integrate states as an additional condition in both the encoder and decoder. One
significant benefit of state-conditioning is its ability to substantially reduce the number of required
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embeddings, or the shape of latent action, in the embedding table. The mathematical definitions
for the state-conditioned encoder and decoder are presented below (for detailed network structures,
please refer to Appendix A.4.2):

Encoder(eϕ) : ze = eϕ(st, at),Decoder(dψ) : ât = dψ(st, z
k), k = argminj

∥∥ze − zj∥∥
2

(1)
In this framework, ϕ and ψ represent the network parameters for the encoder and decoder, respectively.
The encoder’s output embedding is matched in the codetable using the nearest neighbour rule, with
the index of the located vector serving as the corresponding latent action k. We propose the following
objective function for joint learning of the encoder and decoder:

L = w(st, at)Lrec(ât, at) + λ ∥ze − sg [eϕ(x)]∥22 (2)

Here, sg(·) denotes the stop gradient function, the first term represents the action reconstruction
loss regulated by a weight factor w(st, at), and the second term is the commitment loss used to
regularize the encoder to output vectors close to the embedding vector in in the codetable, λ is a
factor determines the relative weight, set as 0.25 in our experiments. We do not include an embedding
loss, given our employment of a fixed diversity-aware codetable.

Latent action confidence predictor. During training, the total number of possible latent actions K
in the codetable remains fixed, but the valuable actions can vary across different states. Consequently,

Figure 3 The pathological latent action space
with redundant and shifted latent actions. The
raw actions corresponding to k are encapsu-
lated in the squares. Upper: the latent action
exhibits redundancy under different states in
an episode. Lower: the latent action may
shift during training iterations, resulting in
wrong Q-value and argmax results.

we need to set K sufficiently large to encompass all
potential actions, which results in redundant latent
actions for some states. Furthermore, in the online
setting, the action model is dynamically trained. This
could potentially lead to substantial fluctuations in the
corresponding raw action for the same latent action
k, resulting in inaccurate estimations of the corre-
sponding Q-values or policy logits outputting by RL
agents, often leading to overestimation and subse-
quent instability issues for both offline and online
RL. As depicted in Figure 3, in the offline RL, there
may exist some redundant actions for different states
that don’t belong to offline datasets in LunarLander
envrionment. While for online RL, the raw action
corresponding to the second latent action changes
from A to Z at iteration t2. The real Q-value for Z
is 1.2, which is not optimal. However, due to the lag
in updating the estimated Q-value, the second latent
action, which maximizes the estimated Q-value, is
selected for training if we just use the normal DQN.
This shift of actions that maximizes Q-value can lead
to extra over-optimization problems.

To address these challenges, we propose the learning of a Latent Action Confidence Predictor, denoted
as Cζ . This predictor is designed to discern whether each latent action is out-of-distribution (OOD).
It takes a state as input and returns a K-dimensional confidence score vector for each latent action
specific to that state, i.e., C = Cζ(s), where ζ represents its trainable parameters. Training occurs
on the transformed dataset {st, kt} using the action encoder of GADM. However, direct training of
this predictor using simple cross-entropy loss confronts a data imbalance issue due to the uneven
distribution of data across different states and latent actions. To address this issue, we employ Focal
Loss Lin et al. (2017), designed to enhance learning from minority class samples, and initialize the
weight bias of the predictor’s final layer to be nearly uniform at the start of training. As training
progresses, the confidence for the (st, kt) pairs in the dataset steadily increases, while the confidence
for out-of-distribution latent actions diminishes. This allows us to set 1

K as the confidence threshold
β for identifying OOD actions – actions with confidence less than this threshold are considered OOD.
Note that in subsequent discussions with clear context, we often omit the term "latent" from "OOD
latent actions". The Loss for training Cζ is defined as follows:

Lfocal = −(1− sg[pt])γ log(pt) (3)
where, pt represents the confidence assigned by the predictor Cζ to the true class (the latent action
corresponding to the raw action), i.e., pt = Cζ(s)[kt], γ serves as the focusing parameter, as described
in Lin et al. (2017).
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Latent action mask. After training Cζ , we can compute the confidence score for each latent action
C. Given the confidence scores C and a confidence threshold β, we introduce a latent action mask
M.

M = I(C > β) (4)

Here, I is the indicator function that returns 1 when the condition is true, and 0 otherwise. This
means that the mask assigns a value of 1 to the latent actions with confidence scores exceeding β, and
0 to the remaining actions. This mask can then be seamlessly integrated into standard RL algorithms,
enabling the exclusion of unstable, redundant latent actions during training.

3.3 PRACTICAL ALGORITHMS

In this section, we demonstrate the versatility of the GADM framework by incorporating it into
a model-free method DQN Mnih et al. (2015), and MuZero Schrittwieser et al. (2019), a method
rooted in model-based planning. As a result, we derive two instances of our framework, namely,
GADM+DQN and GADM+MuZero, showcasing the adaptability of our framework in varied contexts.

We incorporate the aforementioned latent action mask technique into the DQN and MuZero training
pipelines to alleviate instability issues. This is the only change required for standard RL algorithms.
And it can be easily implemented in the original algorithm pipeline. For example, during the
computation of the target Q in DQN, we only consider the latent actions that are not masked by the
latent action mask, as these are the latent actions present in the dataset/replay buffer, thus ensuring
their Q-values are relatively accurate and meaningful. Specifically, in GADM+DQN, the latent action
mask TD loss Lmask is formulated as follows:

Lmask =
[
Q(st, kt; θ)− [rt + γQ(st+1, kt+1; θ̂)]

]2
(5)

kt+1 = argmax
k∈M(st+1)

Q(st+1, k; θ) (6)

where θ is the parameters of current Q netowrk and θ̂ is the parameters of target Q netowrk, kt+1

denotes the latent action at the next time step, chosen from the set of unmasked latent actions
M(st+1), which is derived from the latent action mask M,

In the case of MuZero, the latent action mask is directly applied as the legal action set at each decision
node, which means the MCTS process only considers valid latent actions, enhancing stability.

It is worth highlighting that we do not resort to additional techniques commonly used in offline RL,
such as conservative value estimation (Kumar et al., 2020) or policy constraints (Fujimoto et al., 2019).
Significantly, we are able to address prevalent pathological latent action space issues exclusively
through the application of the latent action mask technique just in standard RL algorithms like DQN.

4 EXPERIMENTS

In this section, we will conduct a thorough evaluation and analysis of the efficiency and scalability of
our proposed framework. Our experimental evaluation focuses on the following questions:

• How does GADM+DQN compare to baseline algorithms across various action spaces in both
online and offline RL benchmark environments? (Section 4.1.1 and Section 4.1.2)

• How does the performance of GADM demonstrate when integrated with other decision-making
techniques for discrete actions, such as the powerful model-based planning algorithm MuZero
Schrittwieser et al. (2019)? (Section 4.1.3)

• What are the influences of various algorithm techniques (e.g. latent action confidence predictor) we
proposed in Section 3.2 and Section 3.1? And how do key hyper-parameters and design choices
influence the results? (Section 4.1.3)

• What characteristics does the learned latent action space exhibit, and does it encapsulate meaningful
high-level semantic information? (Appendix A.6.2 and A.6.1)

For detailed information on benchmark environments, neural network model structures, and hyper-
parameter settings, please refer to Appendices A.3, 8, and A.4.3, respectively.
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Dataset Environment BC BCQ CQL ICQ DT TT GADM+DQN

Medium-Expert HalfCheetah 55.2 64.7 91.6 110.3 86.8 95.0 96.4
Medium-Expert Hopper 52.5 110.9 105.4 109.0 107.6 110.0 111.4
Medium-Expert Walker2d 107.5 57.5 108.8 98.9 108.1 101.9 109.5

Medium HalfCheetah 43.1 40.7 44.0 42.5 42.5 46.9 63.3
Medium Hopper 52.9 54.5 58.5 55.6 67.6 61.1 58.8
Medium Walker2d 75.3 53.1 72.5 71.8 74.0 79.0 74.4

Table 1 (Offline RL) Benchmark of GADM+DQN on the continuous locomotion suite of D4RL v2.
Competitive performance with various outstanding offline RL algorithms highlight the potential of
GADM. The evaluation metric is the average normalized score over 4 seeds (Fu et al., 2020b).
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Figure 4 (Online RL) Benchmark in four hybrid action environments: Moving, Sliding, HardMove,
and GoBigger. Our method GADM+DQN demonstrates both higher performance and greater stability
over baselines. Curves and shadings denote the mean and standard deviation return over 10 seeds.

4.1 MAIN RESULTS

4.1.1 ONLINE RL RESULTS

Setup Our main purpose involves testing the performance and stability of our framework across
various environments in Online RL setting, and comparing it to algorithms specifically tailored for
such action spaces. We selected several environments with hybrid or continuous action spaces to
validate the effectiveness of GADM+DQN. This subsection primarily showcases the experimental
setup and results in environments with hybrid action space. We select four representative benchmark
environments with hybrid action space: Moving thomashirtz (2021), Sliding, HardMove Li et al.
(2021), and GoBigger Zhang (2021). These environments necessitate the handling of complex
relationships within actions. For instance, in Moving and Sliding, the value of action parameters y is
dependent upon the selection of action types x. Additionally, it is important to mention that we have
chosen HardMove-v0-n10 as our test setting. This environment’s original action space includes both
discrete actions and continuous parameters (x, y). Specifically, x encompasses 210 discrete actions,
and y denotes a ten-dimensional continuous action. This extensive action space presents a significant
challenge to conventional hybrid algorithms. For the baseline algorithm, we select MPDQN Bester
et al. (2019) and HPPO Fan et al. (2019), which are specifically designed for hybrid action spaces
and have demonstrated superior performance within this category. Noted that the line labeled "DQN
w/ manually" in GoBigger result refers to a sophisticated discretization method in Zhang (2021). For
the experimentals within the continuous action space of MuJoCo, please refer to the Appendix A.5.1.

Results As illustrated in Figure 4, our experiments substantiate that GADM+DQN consistently
outperforms baselines MPDQN and HPPO in terms of performance and stability. This underscores
the promising potential of representation learning methods such as GADM in addressing the intricate
relationships within hybrid action spaces. As detailed in Appendix A.2, we attribute the marked
performance of GADM+DQN to its fundamental approach of discretizing the action space. This
strategy simplifies the original action space by eliminating redundant elements. For example, in
the Moving environment, the decision-making process remains unaffected by any value of action
parameters y once the action type x is set to ’break’. This process of streamlining and decoupling
significantly enhances the efficiency and stability of the reinforcement learning stage.

4.1.2 OFFLINE RL RESULTS

Setup To thoroughly assess the performance of GADM under Offline RL settings, we select the
widely used D4RL dataset for investigation. Following previous studies, we focused our experiments
on the locomotion subset, comprising the Walker2D, Hopper, and HalfCheetah environments with
two different dataset settings: Medium-Expert and Medium. We compared our algorithm with several
existing methods, including both model-free and model-based offline RL techniques.
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Dataset Latent Action Shape GADM+DQN
K β=1/K β=1.5/K β=0.5/K w/o latent action mask

Hopper Medium-Expert 4 111.4 76.2 87.3 58.0
8 105.2 76.6 82.7 56.3

Hopper Medium 4 58.8 54.6 57.6 32.4
8 57.6 56.6 53.4 33.5

Table 3 (Offline RL) Ablation results for GADM+DQN in D4RL v2. The results reveals the
significant influence of latent action confidence predictor and its mask threshold β on the final
performance. Neglecting to use the latent action mask leads to a drastic deterioration in performance,
while even slight adjustments to the threshold can yield moderate impact.

Results Experiments in Table 1 reveal that GADM+DQN method not only surpasses several classic
offline RL algorithms but also performs comparably to Trajectory Transformer (TT) method Janner
et al. (2021). It’s worth highlighting that in offline settings, GADM+DQN is able to tackle pathologi-
cal latent action space issues solely through the latent action mask technique and we did not employ
any additional techniques commonly used in offline RL, such as conservative value estimation Kumar
et al. (2020) or policy constraints Fujimoto et al. (2019). This outcome strongly implies the potential
of the action discretization model GADM in addressing offline OOD issues.

4.1.3 GADM + MUZERO

Dataset GADM+ Sampled
MuZero MuZero

Medium-Expert 113.4 12.3
Medium 57.7 11.4

Table 2 Offline RL Performance comparison
of GADM+MuZero and Sampled MuZero in
two offline datasets of Hopper environment
of D4RL v2 with continuous action space.

Setup From the first principle, GADM is versatile
and can be integrated with any algorithms designed
for discrete actions. In this subsection, we illustrate
this by ingeniously incorporating model-based RL
algorithm MuZero. This amalgamation extends the
applicability of MuZero to continuous action spaces
with offline RL settings. For comparative purposes,
we utilize Sampled MuZero (Hubert et al., 2021),
an extension of MuZero based on sampled policy
iteration, and evaluate their performance in D4RL.

Results Table 2 demonstrates that, in an offline scenario, the new algorithm instance GADM+MuZero
performs well in these two datasets, while Sampled MuZero suffers from noticeably poor performance
due to sample efficiency and out-of-distribution issues. This underscores the compatibility of GADM
with various discrete decision techniques and its potential in addressing offline RL problems.

4.2 ABLATION STUDIES

The impact of latent action mask. Offline RL can often encounter latent action OOD problems as
discussed in 3.2, potentially leading to severe performance degradation. To mitigate this issue, in
Section 3.2, we propose the latent action mask technique. From our preceding analysis, we proposed
that a mask threshold of 1

K is a reasonable choice. In this section, we will delve further into the
effects of the latent action mask on offline RL performance and explore the implications of varying
mask threshold values. Consequently, we designed experiments involving three datasets within the
Hopper environment. We evaluated the performance of the confidence threshold, β, set at 1

K , 1.5
K

and 0.5
K respectively, as well as the variant algorithm without this technique. These evaluations were

conducted under the conditions of K=4 and K=8, allowing us to gain a comprehensive understanding
of the impact of different mask threshold values on offline RL performance. Table 3 demonstrates that
without the latent action (confidence) mask enabled, the performance significantly deteriorates due to
the overestimated Q-values for the redundant latent actions. Additionally, even minor adjustments to
the confidence threshold—either increases or decreases—can have a substantial influence on model
performance. This underscores the criticality of selecting 1/K as the optimal confidence threshold.
The impact of latent action remapping and warmup. We further examine the influence of
improvement techniques proposed in Section 3.1 for GADM on HalfCheetah-v3 and HardMove-v0-
n10. Specifically, we have two ablation variants: (1): GADM+DQN w/o Latent Action Remapping:
This variant does not involve the remapping of latent actions during the RL training phase. (2):
GADM+DQN w/o Warmup: This variant initiates RL training without the warmup stage. Figure 5
show that when we remove either of proposed techniques, the performance of GADM+DQN drops
significantly in both two environments, verifying the effectiveness of our proposed techniques.
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Figure 5 Ablation results for GADM+DQN in environments with continuous and hybrid action
spaces. There is significant drop when any of our proposed improvement techniques are removed.

Beside, the influence of varying latent action shapes K and state-conditions is elucidated in Appendix
A.5. To further analyze the learned space, we also conduct several visualizations in Appendix A.6.1.

5 RELATED WORK

RL encompasses numerous problems characterized by complex action spaces. For instance, some
problems exhibit high-dimensional continuous action space. Within such spaces, the presence of
countless actions poses challenges for exploration (Dalal et al., 2021) and neural network optimization
(Bjorck et al., 2021). Conversely, some problems feature hierarchical action space structures (Wei
et al., 2022), where the selection of actions becomes increasingly intricate. Moreover, actions in
hybrid spaces comprise a combination of discrete and continuous actions, necessitating the specialized
network design. In summary, training RL agents for complex actions presents a significant challenge.

To address the issues of action spaces, researchers have proposed various customized algorithms
that allow RL agents to learn directly in these raw action spaces. For instance, Parameterized
Action DDPG(Hausknecht & Stone, 2016) employs a modified DDPG actor-critic structure to handle
multiple action parts, while HPPO (Fan et al., 2019) improve original PPO to deal with hierarchical
action structures. To further combine the advantages of distinct common RL algortihms, PDQN
(Xiong et al., 2018) and MPDQN (Bester et al., 2019) utilize a hybrid structure of DQN and DDPG,
explicitly modeling dependencies between continuous and discrete sub-actions.

Action discretization is another possible solution. However, it needs the domain knowledge about the
specific environment and often encounters the curse of dimensionality in actions (Kanervisto et al.,
2020). To mitigate these problems, Tang & Agrawal (2020) verifies the feasibility of discretizing
the action space in on-policy optimization. The study conducted by (Seyde et al., 2021) explores the
impact of extreme actions on continuous control. These works also inspire the design of GADM,
including network architectures and optimization tricks.

Action representation learning offers another promising idea to adaptively discretize action spaces.
Chandak et al. (2019) proposes representation learning in a large action space, leveraging the structural
characteristics of actions and demonstrating its significance in enhancing generalization in real-world
applications. Pritz et al. (2020) attempts to utilize the joint-learned state-action embeddings to boost
decision-making. Li et al. (2021) proposes to learn a compact and decodable latent representation
space for the original hybrid action space. HyAR constructs the latent space and incorporates
the dependence between action parts through an embedding table and conditional VAE. Dadashi
et al. (2022) and Gu et al. (2022) propose to learn a set of plausible discrete actions from expert
demonstrations to overcome the curse of dimensionality problem. Conversely, we introduce a unified
decision-making framework. It is designed to learn compact, discrete latent actions in environments
with diverse action spaces and stands as the first decoupling paradigm for both online and offline RL.

6 CONCLUSION AND LIMITATION

Starting from the comprehensive analysis for action spaces designs, we propose a novel action
representation learning algorithm GADM adapted to common RL algorithms, which can be a unified
and efficient paradigm for diverse decision-making scenarios. Although our method achieve superior
performance in different benchmark environments, there are still some challenging problems, such
as variable-length actions in episodes and large-scale discrete actions in language models. Besides,
learning latent actions from the viewpoint of conditional sequential generation is also a valuable
attempt. We will continue to pursue the ultimate solution for action space in future work.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pp. 449–458. PMLR, 2017.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,
Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning.
CoRR, abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

Craig J. Bester, Steven D. James, and George Dimitri Konidaris. Multi-pass q-networks for deep
reinforcement learning with parameterised action spaces. CoRR, abs/1905.04388, 2019. URL
http://arxiv.org/abs/1905.04388.

Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Is high variance unavoidable in rl? a case
study in continuous control. arXiv preprint arXiv:2110.11222, 2021.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas. Learning
action representations for reinforcement learning. In International conference on machine learning,
pp. 941–950. PMLR, 2019.

Robert Dadashi, Léonard Hussenot, Damien Vincent, Sertan Girgin, Anton Raichuk, Matthieu
Geist, and Olivier Pietquin. Continuous control with action quantization from demonstrations.
In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp. 4537–4557. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/dadashi22a.html.

Murtaza Dalal, Deepak Pathak, and Russ R Salakhutdinov. Accelerating robotic rein-
forcement learning via parameterized action primitives. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 21847–21859. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/b6846b0186a035fcc76b1b1d26fd42fa-Paper.pdf.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Zhou Fan, Rui Su, Weinan Zhang, and Yong Yu. Hybrid actor-critic reinforcement learning in
parameterized action space. In Sarit Kraus (ed.), Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp.
2279–2285. ijcai.org, 2019. doi: 10.24963/ijcai.2019/316. URL https://doi.org/10.
24963/ijcai.2019/316.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020a.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020b.

S. Fujimoto, H. v. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In ICML, volume 80, pp. 1582–1591, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learning Research, pp. 2052–2062. PMLR,
2019. URL http://proceedings.mlr.press/v97/fujimoto19a.html.

10

http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1905.04388
https://proceedings.mlr.press/v162/dadashi22a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/b6846b0186a035fcc76b1b1d26fd42fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/b6846b0186a035fcc76b1b1d26fd42fa-Paper.pdf
https://doi.org/10.24963/ijcai.2019/316
https://doi.org/10.24963/ijcai.2019/316
http://proceedings.mlr.press/v97/fujimoto19a.html


Under review as a conference paper at ICLR 2024

Pengjie Gu, Mengchen Zhao, Chen Chen, Dong Li, Jianye Hao, and Bo An. Learning pseudometric-
based action representations for offline reinforcement learning. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 7902–7918. PMLR, 17–23 Jul 2022.

M. Hausknecht and P. Stone. Deep reinforcement learning in parameterized action space. ICLR,
2016.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. CoRR, abs/2104.06303,
2021. URL https://arxiv.org/abs/2104.06303.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktäschel, Edward Grefenstette,
and Yuandong Tian. Efficient planning in a compact latent action space. CoRR, abs/2208.10291,
2022. doi: 10.48550/arXiv.2208.10291. URL https://doi.org/10.48550/arXiv.
2208.10291.

Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. Action space shaping in deep rein-
forcement learning. In IEEE Conference on Games, CoG 2020, Osaka, Japan, August 24-
27, 2020, pp. 479–486. IEEE, 2020. doi: 10.1109/CoG47356.2020.9231687. URL https:
//doi.org/10.1109/CoG47356.2020.9231687.

Anssi Kanervisto, Stephanie Milani, Karolis Ramanauskas, Nicholay Topin, Zichuan Lin, Junyou Li,
Jianing Shi, Deheng Ye, Qiang Fu, Wei Yang, Weijun Hong, Zhongyue Huang, Haicheng Chen,
Guangjun Zeng, Yue Lin, Vincent Micheli, Eloi Alonso, François Fleuret, Alexander Nikulin, Yury
Belousov, Oleg Svidchenko, and Aleksei Shpilman. Minerl diamond 2021 competition: Overview,
results, and lessons learned. CoRR, abs/2202.10583, 2022. URL https://arxiv.org/abs/
2202.10583.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and
Yann LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http:
//arxiv.org/abs/1312.6114.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Boyan Li, Hongyao Tang, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng, and
Li Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action
representation. arXiv preprint arXiv:2109.05490, 2021.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1509.02971.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. CoRR, abs/1708.02002, 2017. URL http://arxiv.org/abs/1708.
02002.

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constrained decision transformer for offline safe reinforcement learning. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learning Research, pp. 21611–21630. PMLR, 2023.
URL https://proceedings.mlr.press/v202/liu23m.html.

11

https://arxiv.org/abs/2104.06303
https://doi.org/10.48550/arXiv.2208.10291
https://doi.org/10.48550/arXiv.2208.10291
https://doi.org/10.1109/CoG47356.2020.9231687
https://doi.org/10.1109/CoG47356.2020.9231687
https://arxiv.org/abs/2202.10583
https://arxiv.org/abs/2202.10583
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
https://proceedings.mlr.press/v202/liu23m.html


Under review as a conference paper at ICLR 2024

James Lucas, George Tucker, Roger B. Grosse, and Mohammad Norouzi. Understanding posterior
collapse in generative latent variable models. In Deep Generative Models for Highly Structured
Data, ICLR 2019 Workshop, New Orleans, Louisiana, United States, May 6, 2019. OpenReview.net,
2019.

W. Masson, P. Ranchod, and G. D. Konidaris. Reinforcement learning with parameterized actions. In
AAAI, pp. 1934–1940, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration by
random network distillation. arXiv preprint arXiv:2301.13616, 2023.

OpenAI. OpenAI Five. https://blog.openai.com/openai-five/, June 2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In
NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film:
Visual reasoning with a general conditioning layer. CoRR, abs/1709.07871, 2017. URL http:
//arxiv.org/abs/1709.07871.

Paul J. Pritz, Liang Ma, and Kin K. Leung. Joint state-action embedding for efficient reinforcement
learning. CoRR, abs/2010.04444, 2020. URL https://arxiv.org/abs/2010.04444.

Max-Philipp B. Schrader. gym-sokoban. https://github.com/mpSchrader/
gym-sokoban, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by planning with a learned model. CoRR,
abs/1911.08265, 2019. URL http://arxiv.org/abs/1911.08265.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Wulfmeier, and Daniela Rus. Is bang-bang control all you need? solving continuous control with
bernoulli policies. Advances in Neural Information Processing Systems, 34:27209–27221, 2021.

Nur Muhammad (Mahi) Shafiullah, Zichen Jeff Cui, Ariuntuya Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone. CoRR, abs/2206.11251, 2022. doi: 10.48550/arXiv.
2206.11251. URL https://doi.org/10.48550/arXiv.2206.11251.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
In Proceedings of the aaai conference on artificial intelligence, pp. 5981–5988, 2020.

thomashirtz. Gym hybrid. https://github.com/thomashirtz/gym-hybrid, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pp. 6306–6315, 2017.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, and et al. Starcraft ii: A new challenge for reinforce-
ment learning. CoRR, abs/1708.04782, 2017.

12

https://blog.openai.com/openai-five/
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://arxiv.org/abs/1709.07871
http://arxiv.org/abs/1709.07871
https://arxiv.org/abs/2010.04444
https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban
http://arxiv.org/abs/1911.08265
https://doi.org/10.48550/arXiv.2206.11251
https://github.com/thomashirtz/gym-hybrid


Under review as a conference paper at ICLR 2024

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith,
Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David
Silver. Grandmaster level in starcraft II using multi-agent reinforcement learning. Nat., 575(7782):
350–354, 2019. doi: 10.1038/s41586-019-1724-z. URL https://doi.org/10.1038/
s41586-019-1724-z.

Hua Wei, Jingxiao Chen, Xiyang Ji, Hongyang Qin, Minwen Deng, Siqin Li, Liang Wang, Weinan
Zhang, Yong Yu, Lin Liu, Lanxiao Huang, Deheng Ye, Qiang Fu, and Wei Yang. Honor of kings
arena: an environment for generalization in competitive reinforcement learning. In Proceedings of
the Neural Information Processing Systems Track on Datasets and Benchmarks, 2022.

Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo Fu, Tong
Zhang, Ji Liu, and Han Liu. Parametrized deep q-networks learning: Reinforcement learning with
discrete-continuous hybrid action space. CoRR, abs/1810.06394, 2018. URL http://arxiv.
org/abs/1810.06394.

Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. CoRR, abs/2106.03400, 2021. URL https://arxiv.org/abs/
2106.03400.

Ming Zhang. Gobigger: A scalable platform for cooperative-competitive multi-agent reinforcement
learning. https://github.com/opendilab/GoBigger, 2021.

13

https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
http://arxiv.org/abs/1810.06394
http://arxiv.org/abs/1810.06394
https://arxiv.org/abs/2106.03400
https://arxiv.org/abs/2106.03400
https://github.com/opendilab/GoBigger


Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 DETAILS OF BACKGROUND

In this section, we first offer an general definition of the Hybrid Action Space. Subsequently, we
present a formal explanation of the Action Transformed MDP that appears in Figures 1 and 2 in the
paper.

Hybrid Action Space This work (Masson et al., 2016) introduces the parameterized action space,
which is an hierarchical action space with two layers. Specifically, Ad represents a finite set of
discrete actions, while Xa denotes the continuous parameter space associated with action a ∈ Ad.
During action selection, we first choose a discrete action a from Ad, and then select a parameter x
from the corresponding space Xa. A complete action is uniquely determined by a binary tuple (a, x).
Namely, the action space is then given by:

A = {(a, x) | a ∈ Ad, x ∈ Xa} (7)

To represent a more general hybrid action space, as found in complex video games like StarCraftII
(Vinyals et al., 2017) or Dota2 (OpenAI, 2018), we extend the two-layer structure to N -layer. We
decompose an action into N successive selections across different layers. In the initial layer of
selection, we choose a node a1 from the initial set A0. As we progress to the i-th layer of selection,
the previous selection sequence a1:i−1 = (a1, a2, ..., ai−1) defines a corresponding space Xa1:i−1

.
Subsequently, we select a node ai from Xa1:i−1 . A complete action is uniquely determined by an
N -tuple (a1, a2, ..., aN ). Furthermore, the action space can be described as:

A = {(a1, a2, ..., aN ) | a1 ∈ A0, ai ∈ Xa1:i−1
for i = 2, ..., N} (8)

Notably, parameterized action space is a special case of our definition where N = 2 and A0 = Ad.
A common hybrid action space in everyday life is the realm of keyboard shortcuts. Let’s take the
shortcut Ctrl + Shift + Esc as an example. To utilize this shortcut, we begin by pressing the Ctrl key
on the keyboard. This initiates a candidate set comprising all the keys that can be combined after Ctrl.
From this set, we choose Shift as the second key. Once again, the various options that can be paired
with Ctrl + Shift form a set of choices. Finally, we select Esc from the choices as the third key. This
process exemplifies the execution of actions within a hybrid action space with N = 3.

Action Transformed MDP We introduce a transformation operator T , which can transform the
raw action into the latent space. Denote the transformed action as k, we can describe T as:

T : k = T (s, a) (9)

And we can reconstruct an action in the raw action space from the latent space through T −1:

T −1 : a′ = T −1(s, k) (10)

In fact, T may map different actions from the raw action space to the same k in the latent space.
These actions often have similar effects in the environment, such as resulting in the same state
transition and obtaining the same reward. Therefore, T −1 is not a strict inverse transformation of
T . That is to say, a′ may not necessarily be the same as the original a, but it will have a similar
effect in the environment. With the transformation T and T −1, we can convert an original MDP
M=(S,A,P,R, γ, ρ0) into an action transformed MDPMT = (S,K,PT ,RT , γ, ρ0), where K is
the latent action space, which can be defined by:

K = {k | k = T (s, a), for all (s, a) in S ×A} (11)

And PT andRT are the transition function and reward function, respectively, induced by P andR.
Specifically, they are defined as follows:

PT (· | s, k) = P(· | s, T −1(k)) (12)

RT (· | s, k) = R(· | s, T −1(k)) (13)

The other elements are consistent with the original definition ofM.
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A.2 MOTIVATION

In this section, we provide a thorough discussion of the foundational motivations and insights that
inspired the design of GADM.

A.2.1 UNIFIED AND DECOUPLING ACTION REPRESENTATION LEARNING

The diversity of raw action spaces is one of the most challenging aspect for RL training. To improve
data efficiency and training stability, it is inevitable to first conduct different action shaping operations
and select specific algorithms for the corresponding action spaces, which brings non-negligible
learning and tuning costs beyond core RL optimization. Therefore, some researchers begin to find
the solution to learn general and compact action representations adaptively instead of repeating some
dirty work in the raw action space. Moreover, since RL agents can be directly applied into the
learned discrete action space, this scheme can be seen as a kind of decoupling of action representation
learning and RL, which allows researchers to concentrate on only one of the topics. For training
pipeline, these two parts can be alternative or parallel training according to concrete situations.

A.2.2 ACTION SPACE REDUNDANCY

Action space redundancy in reinforcement learning mainly refers to the presence of multiple actions
that lead to the same state transition or reward. This means that there may be more than one way
to achieve the desired result using different actions. The existence of redundant actions may cause
agents to explore many invalid or useless actions instead of necessary valuable actions, making it
challenging for agents to learn optimal policies efficiently.

This redundancy widely exists in discrete, continuous, and hybrid action spaces. In discrete action
space, redundancy is reflected in the fact that the state transitions and rewards caused by different
actions are similar or even completely consistent. As shown in Figure 1 (left), there is a lot of
redundancy in the raw actions in the Sokoban (Schrader, 2018) environment. For continuous control,
action redundancy manifests itself in the fact that small changes between actions do not have a large
impact on future returns. For example, the difference of Q value between an action and its nearby
actions during training of TD3 (Fujimoto et al., 2018) algorithm will not be very large (Figure 1
(right)). As shown in equation (2), the redundancy of the hybrid action space lies in the existence of a
large number of illegal actions, that is, ai /∈ Xa1:i−1

. This requires designing complex mechanisms
for specific environments to ensure efficient exploration and steady policy optimization.

A.2.3 THE INFLUENCE OF OFFLINE DATASET

To better distinguish between the necessary and redundant subsets of the original action space,
especially in some complex action spaces, it is reasonable to combine action reprensetation learning
with the offline dataset. Since the purpose of RL agents is not to traverse all states and actions of
the environment but to find the optimal decision-making policies, proper offline datasets can provide
valuable initial experiences for action representation learning, making it easier to take high-value
actions instead of random exploration in the following training. Furthermore, state-action pairs in
datasets can not only serve as proper action candidates, but also be considered as an implicit constrain,
which are similar to the idea proposed in recent offline RL algorithms BCQ Fujimoto et al. (2019)
and ICQ Yang et al. (2021). Due to the lack of online interaction with environments, offline RL
algorithms usually need to be conservative enough to avoid the out-of-distribution problem of target
actions in TD learning. The action model pretrained on existing offline datasets can be an appropriate
constraint design for all kinds of action spaces (Section 4.1.2).

A.3 BENCHMARK ENVIRONMENTS

In this section, we provide detailed descriptions of benchmark environments used in our experiments.

D4RL Fu et al. (2020a) is a widely used offline RL benchmark that comprises several environments
and datasets. In line with numerous prior studies, we concentrate on the locomotion subset: Hopper,
HalfCheetah, and Walker2D. For each environment, we evaluate three different dataset configurations:
Medium-Expert, Medium, and Medium-Replay, which facilitate the study of offline RL.
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Figure 6 Comparison of different action constraints across various offline RL algorithms. BCQ
Fujimoto et al. (2019) is only capable of generating certain parts of the original action space, while
ICQ Yang et al. (2021) performs optimization on all trusted seen actions. In contrast, GADM can
learn more compact spaces than the others.

MuJoCo stands for multi-joint dynamics with contact. It is a versatile physics engine designed to
support research and development in fields such as robotics, biomechanics, graphics and animation,
machine learning, and others that necessitate rapid and precise modeling of articulated structures
interacting with their environment Todorov et al. (2012). The MuJoCo environment features contin-
uous action spaces and reward representations composed of multiple components, often including
penalties for actions corresponding to poor control. We evaluate our proposed GADM+DQN along
with other baseline algorithms in: Hopper-v3, HalfCheetah-v3„ Ant-v3, and Humanoid-v3.

Gym-Hybrid 1 constitutes a range of sandbox environments with parameterized (also called hybrid)
action space. The objective of the agent is to halt within a target area, a circle with a radius of 0.1
situated within a square field with a side length of 2. There are three discrete actions: turn, accelerate,
and brake, complemented by two possible parameters: acceleration and rotation. We also employ the
HardMove-v0-n* introduced in (Li et al., 2021), where the agent controls n evenly spaced actuators,
choosing whether each should be on or off and determining the corresponding continuous parameter
for each actuator (moving distance) to reach the target area. An increase in n corresponds to a
larger action space and a greater challenge for the agent in terms of exploration and learning. In our
experiments, we use the hardest case that n=10.

GoBigger is a multi-agent RL environment emphasizing cooperation and competition. Each agent,
represented by one or multiple balls (termed clone balls), enlarges its size by colliding and merging
with other balls within a bounded rectangular area within a fixed time frame. A larger clone ball
size corresponds to a higher score. The observation space in GoBigger includes information about
all units within the agent’s local field of view, and the reward is calculated as the difference in sizes
across two consecutive timesteps. The action space is a hybrid one (x, y, action_type), similar to Gym-
Hybrid. Given the rapid development or elimination of opponents through continuous cooperation
in GoBigger, precise actions are usually required for cooperation, making action representation a
significant challenge. GoBigger includes multiple sub-environments that can be tailored for various
tasks. Commonly used environments include t2p2, t3p2, t4p3, with the number following t (team)
indicating the number of teams in a game, and the number following p (player) indicating the number
of agents per team. In our experiments, we configure the parameters such that t=p=2. Given that this
is a multi-agent environment, we employ an independent learning mechanism (de Witt et al., 2020) to
facilitate the adaptation of GADM+DQN to this context. Correspondingly, similar mechanisms are
utilized for comparative algorithms to ensure a fair evaluation.

1https://github.com/thomashirtz/gym-hybrid
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In Figure 7, we have visualized two benchmark environments that feature complex hybrid action
spaces, HardMove-v0-n* and GoBigger (T2P2). These visualizations provide a graphical represen-
tation of the challenges and complexities inherent in these environments, thereby highlighting the
capabilities required of effective action representation and learning models.

(a) HardMove-v0-n* (b) GoBigger (T2P2)

Figure 7 Benchmark Environments featuring complex hybrid action spaces: (a) Illustrates an
HardMove-v0-n* environment where the agent’s goal is to navigate to the target area. The agent is
equipped with n uniformly distributed actuators, with the capability to decide the status (on or off)
of each actuator while simultaneously determining the corresponding continuous parameters. (b)
Depicts a dynamic multi-agent arena in GoBigger (T2P2), each agent, represented by a ball, aims to
increase its size (or weight) by strategically colliding and merging with other balls within a bounded
rectangular space, all within a specified time limit (e.g. 300 seconds). The same colors mean the
same team while the distinct alphabets mean different players.

A.4 IMPLEMENTATION DETAILS

In this section, we begin by outlining the pseudocode for our proposed framework, which is ap-
plicable to both online and offline reinforcement learning environments. We then dig deeper into
the architecture of the GADM model, with a particular focus on elucidating the functionalities of
the action model. Furthermore, we describe the hyperparameters associated with GADM+DQN,
GADM+MuZero, and the baseline algorithms across a range of different settings. Concluding this
section, we detail the computational overhead that our algorithm incurs, thereby providing a holistic
view of its performance characteristics.

A.4.1 PSEUDOCODE

Algorithms 1 and 2 present the seamless integration of the GADM model with traditional reinforce-
ment learning algorithms in both online and offline contexts. We plan to release our source code
publicly following the conclusion of the full review process.

Algorithm 1 explores the confluence of the GADM algorithm with online reinforcement learning
situations. The algorithm splits fundamentally into two main Stages: an optional Warmup Stage
and an Online Stage. These stages encompass various Phases, including data collection, action
representation learning (AR), reinforcement learning (RL), and latent action confidence prediction
(LACP). Algorithm 2 lays out the methodological structure of the GADM algorithm when applied
in offline reinforcement learning scenarios. This algorithm is built around three central Phases:
action representation learning (AR), latent action confidence prediction (LACP), and the actual
reinforcement learning phase (RL).

Furthermore, inspired by our practical experiments and insights from previous research Seyde
et al. (2021), we discovered that for environments with continuous action spaces, such as MuJoCo,
the endpoint values of the action threshold bear a significant impact on performance. To tackle
the challenges associated with modeling extreme action values, we devised a technique known as
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Extreme Action Regression (E.A.R.) to handle the need for extreme values in certain environments.
Notably, this technique is applicable not only to environments requiring specific extreme action
values but also to generic environments.

Algorithm 1 GADM for Online RL

1: Initialize GADM: Encoder eϕ, Decoder dψ , Action embedding table Vε
2: Initialize action representation (AR) buffer DAR, reinforcement learning (RL) buffer DRL
3: Initialize RL agent networks (such as Qθ and/or πω)
4: Initialize exploartion strategies χRL, χAR

5: 1 Warmup Stage (optional)
6: while not reaching maximum warm-up environment steps do
7: // Warm-up data collection phase
8: while not reaching maximum warm-up collecting steps do
9: Collect data using random/expert policy and store {st, at, rt, st+1} in buffer DAR

10: // Warm-up AR training phase
11: while not reaching maximum warm-up training steps do
12: Sample mini-batch {st, at} from DAR
13: Update ϕ, ψ and ε using the sampled mini-batch
14: 2 Online Stage
15: while not reaching maximum online environment steps do
16: // Online data collection phase
17: for t← 1 to T do
18: kt = χRL(agent(st)) // Select latent action in the latent action space
19: at = χAR(dψ(st, kt)) // Decode into raw action space
20: Execute raw action at, observe reward rt and next state st+1

21: Store (st, at, rt, st+1) in DRL and DAR

22: // Online AR training phase
23: while not reaching maximum AR training steps do
24: Sample mini-batch {st, at, rt, st+1} from DAR
25: Update ϕ, ψ and ε using the sampled mini-batch
26: // Online LACP phase (optional)
27: while not reaching maximum LACP training steps do
28: Sample mini-batch {st, at} from Doffline
29: Update ζ using Focal Loss Lfocal on the sampled mini-batch
30: // Online RL training phase
31: while not reaching maximum RL training steps do
32: Sample mini-batch {st, at, rt, st+1} from DRL
33: Compute confidence scores C for all latent actions using Cζ(st)
34: Determine latent action mask M based on confidence scores C and threshold β
35: kt = eϕ(st, at) // Latent Action Remapping
36: Update agent networks using {st, sg[kt], rt, st+1} and the latent action mask M

Extreme Action Regression Another innate property of raw action spaces deserving careful
consideration relates to special action values, such as the extreme actions pointed out in Seyde et al.
(2021), or the action thresholds of engine dynamics in LunarLander (please refer to A.6.2). Precise
recreation of these unique continuous values by the action model is essential. For this purpose, in the
action decoder of GADM, we employ the distributional head (Bellemare et al., 2017) to automatically
reconstruct these specific actions.

Assuming the range of the raw continuous action is represented by [Amin, Amax], and it is divided into
N + 1 equally spaced bins, the action decoder of our model outputs an N -dimensional probability
distribution. The predicted action can then be obtained as:

â =

N∑
j=0

sj ∗ pj (si) , sj = Amin + j ∗ (Amax −Amin)/N (14)
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Algorithm 2 GADM for Offline RL

1: Given the offline dataset Doffline, confidence score threshold β
2: Initialize GADM: Encoder eϕ, Decoder dψ , Action embedding table Vε, Latent action confidence

predictor Cζ
3: Initialize RL agent networks (such as Qθ for DQN, Qθ and πω networks for MuZero)
4: Phase 1 : Learn the action representation model (AR)
5: while not reaching maximum AR training steps do
6: Sample mini-batch {st, at} from Doffline
7: Update ϕ, ψ and ε using reconstruction loss Lrec on the sampled mini-batch
8: Phase 2 : Learn the latent action confidence predictor (LACP)
9: while not reaching maximum LACP training steps do

10: Sample mini-batch {st, at} from Doffline
11: Update ζ using Focal Loss Lfocal on the sampled mini-batch
12: Phase 3 : Apply any discrete action RL methods (e.g. DQN and MuZero)
13: while not reaching maximum RL training steps do
14: Sample mini-batch {st, at, rt, st+1} from Doffline
15: Compute confidence scores C for all latent actions using Cζ(st)
16: Determine latent action mask M based on confidence scores C and threshold β
17: kt = eϕ(st, at) // Latent Action Mapping
18: Update agent networks using {st, sg[kt], rt, st+1} and the latent action mask M

where pj(si) is the jth output probability of the reconstruction distribution of the action decoder for
(s, a). During evaluation, if the probability of the support exceeds a specific threshold (for example,
0.9), we directly output the corresponding support value. This design has proven to be particularly
effective in certain environments, such as Hopper and Halfcheetah in MuJoCo benchmark.

A.4.2 NETWORK ARCHITECTURE

Action Model The network architecture of the action encoder and decoder for GADM designed
for hybrid action spaces is depicted in Figure 8. As discussed in Section 3.2, the inputs of the
action encoder encompass both the state and action embeddings. A skip connection of the state
embedding is also integrated into the action decoder. The output of the action decoder bifurcates into
two-types of heads, each tasked with reconstructing the continuous and discrete components of the
raw hybrid action, respectively. Take the Gym-Hybrid environment for instance: the raw action is a
tuple composed of (action type, action arguments). In this context, action type is the discrete action
that determines the type of the hybrid action, such as {accelerate, turn, brake}. Action arguments are
two-dimensional continuous action. Since the dimension of states is usually much larger than those of
actions, which may lead to posterior collapse (Lucas et al., 2019) issue during training, we leverage
the effective feature fusion method FiLM (Perez et al., 2017) to merge state and action embeddings.

Latent Action Confidence Predictor The network architecture of latent action confidence predictor
Cζ is a simple state encoder, which employs a 3-layers MLP (multilayer perceptron) for vector states
or a 3-layers convolutional neural network for image states. It takes a state as input and returns a
K-dimensional confidence score vector for each latent action specific to that state, i.e., C = Cζ(s).
Given the confidence scores C and a confidence OOD threshold β, we can compute a latent action
mask used for the latent action mask technique.

A.4.3 HYPERPARAMETERS

We provide the hyperparameters for our proposed methods, GADM+DQN and GADM+MuZero, in
an offline setting for D4RL in Table 6 and Table 7, respectively.

In an online setting, we provide the hyperparameters for hybrid action space environments in Table 5,
and for continuous action space environments, specifically MuJoCo, in Table 4.

We adhere to the same hyperparameters as provided in the original papers for the continuous action
space baseline algorithm TD3, and the hybrid action space algorithms MPDQN Bester et al. (2019),
and HPPO Fan et al. (2019). This ensures consistency in our methodological approach.
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Figure 8 Network structure of the action encoder and decoder in GADM for hybrid action spaces.
The inputs of the action encoder include both the state and action embeddings. Since the dimension of
states is usually much larger than those of actions, which may lead to posterior collapse (Lucas et al.,
2019) issue during training, we leverage the effective feature fusion method FiLM (Perez et al., 2017)
to merge state and action embeddings. A skip connection of the state embedding is also incorporated
into the action decoder.

DQN Hyper-parameter Value
Discount factor 0.99
Learning rate 3e-3
DQN replay buffer size 1e6 (transitions)
Hidden size list of Q network [256, 256, 128]
N sample per collect 256 (transitions)
Batch Size 512
Update per collect 50
GADM Hyper-parameter Value
Learning rate 3e-3
Hidden size list of encoder [256, 256,256]
Batch Size 512
The number of embedding vectors (i.e. latent action shape) 128 (64 for Hopper-v3)
The dimension of embedding vectors 256
Warmup data size 5e4
Warmup update steps 1e4

Table 4 Key Hyperparameters of GADM+DQN used in (continuous action space) MuJoCo.

DQN Hyper-parameter Value
Discount factor 0.99
Learning rate 3e-3
RL replay buffer size 1e6 (transitions)
DQN replay buffer size 1e6 (transitions)
Hidden size list of Q network for HardMove-v0-n10 and GoBigger [256, 256, 128]
Hidden size list of Q network for Moving-v0 and Sliding-v0 [128, 128, 64]
Ensemble Number (N) 20
N sample per collect 256 (transitions)
Batch Size 512
Update per collect 50
GADM Hyper-parameter Value
Learning rate 3e-3
Hidden size list of encoder [256, 256, 256]
Batch Size 512
latent action shape for Moving-v0 and Sliding-v0 16
latent action shape for HardMove-v0-n10 and GoBigger 64
The dimension of embedding vectors 64
Warmup data size 5e4
Warmup update steps 1e4

Table 5 Key Hyper-parameters of GADM+DQN on (hybrid action space) Gym-Hybrid and GoBigger.
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DQN Hyper-parameter Value
Training Epoch 500
Discount factor 0.99
Learning rate 3e-3
Hidden size list of Q network [256, 256, 128]
Batch Size 512
GADM Hyper-parameter Value
Training Epoch 200
Learning rate 3e-3
Hidden size list of encoder [256, 256, 256]
Batch Size 512
Latent action shape 16 (4 for Hopper)
The dimension of embedding vectors 256

Table 6 Key Hyperparameters of GADM+DQN used in offline D4RL Environment.

MuZero Hyper-parameter Value
Training Epoch 500
Optimizer type Adam
Learning rate 3× 10−3

Discount factor 0.997
Weight of policy loss 1
Weight of value loss 0.25
Weight of reward loss 1
Weight of policy entropy loss 0
Weight of SSL (self-supervised learning) loss 2
Batch size 512
Frequency of target network update 100
Weight decay 10−4

Max gradient norm 10
Length of game segment 200
TD steps 5
Number of unroll steps 5
Discrete action encoding type One Hot
Normalization type Batch Normalization
Dirichlet noise alpha 0.3
Dirichlet noise weight 0.25
Number of simulations in MCTS (sim) 100
Reanalyze ratio 1
Categorical distribution in value and reward modeling True
The scale of supports used in categorical distribution 300
GADM Hyper-parameter Value
Training Epoch 200
Learning rate 3e-3
Hidden size list of encoder [256, 256, 256]
Batch Size 512
Latent action shape 16 (4 for Hopper)
The dimension of embedding vectors 256

Table 7 Key Hyperparameters of GADM+MuZero used in offline D4RL Environment.

A.4.4 COMPUTATIONAL COST

All our experiments are performed on the NVIDIA V100 GPU. The experiments on MuJoCo
environment with continuous action space taken approximately 1.5 hours to achieve training iterations
on 3M env steps in each seed. The experiments on Gym-Hybrid environments with hybrid action
space taken approximately 2 hours to achieve training iterations on 3M env steps in each seed. The
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Figure 9 (Online RL) Benchmark performance on four continuous action environments in MuJoCo.
Our proposed method, GADM+DQN, achieves results on par with TD3 and demonstrates a significant
improvement over DQN with naive manually discretized action space across all four domains. Curves
and shadings denote the mean and standard deviation over 10 seeds.
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Figure 10 The Effect of different mechanisms of warmup in our GADM. The x- and y-axis denote
the environment steps (×106) and average episode return over 10 episodes, respectively. Curves and
shading denote the mean and standard deviation over 3 seeds.

experiments on GoBigger environments with hybrid action space taken approximately 8 hours to
achieve training iterations on 3M env steps. D4RL experiments usually finish in 30 minutes.

A.5 ADDITIONAL EXPERIMENTS

A.5.1 ONLINE MUJOCO RESULT

In this section, we examine the efficacy and efficiency of GADM across various continuous and
hybrid-action environments, contrasting it with previous algorithms specifically tailored for these
action spaces. We first test our approach on MuJoCo, a classic benchmark for continuous control. This
includes two high-dimensional continuous domains: Ant and Humanoid, with 8 and 17 dimensions
respectively. It’s worth noting that we introduce several redundant dimensions to the raw action
spaces for this experiment. Our GADM+DQN is compared against two groups: TD3, a popular
algorithm for continuous action spaces, and a basic DQN implemented in a manually discretized
action space. In the latter, we evenly divide the raw continuous action into 3 bins at each dimension
and use their Cartesian product to derive handcrafted discrete actions. As illustrated in Figure 9,
GADM+DQN yields results comparable to TD3 and demonstrates a clear enhancement over the basic
DQN across all four domains.

A.5.2 THE EFFECT OF EXPERT DATA WARMUP

In this section, we investigate the effect of different mechanisms of warmup in GADM+DQN on
Hopper-v3 (continuous). The comparison curves are shown in Figure 10. Concretely, we have the
following two variants in total, and their brief descriptions are as follows:

Collection of Expert Data First, we train the TD3 agent until convergence, then use the best TD3
agent interact with the environment to collect 1000 episodes, then we only select the episodes whose
return is larger than 3500 as the expert warmup dataset, in total, about 269800 transitions. When we
pre-training GADM, we set the epoches as 20.
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Figure 11 The Effect of different mechanisms of Exploring the Raw Action Space in our GADM.
The x- and y-axis denote the environment steps (×106) and average episode return over 10 episodes,
respectively. Curves and shading denote the mean and standard deviation over 3 seeds.

GADM+DQN-expert-warmup: The variant agent pretrain the GADM utilizing the expert data.

GADM+DQN-expert-warmup w/o E.A.R.: The variant agent don’t use Extreme Action Regression
in GADM, and GADM is pretrained utilizing the expert data.

A.5.3 DIFFERENT MECHANISMS OF EXPLORING THE RAW ACTION SPACE

There are two places in our GADM framework that need to introduce exploration mechanisms,
namely exploration in latent action space χRL and exploration in Raw action space χAR. Our instance
method GADM+DQN is essentially value-based, thus naturally, we adapt the usual epsilon-greedy
exploration mechanism as χRL, i.e. kt = ϵ − Greedy(Q(st, .)). Another core problem is how to
efficiently explore the raw action space without affecting the stability of the GADM framework.

Motivated by (Seyde et al., 2021), we propose a special noise mechanism, namely, with a small
probability (e.g. 0.1), we execute the random Bernoulli extreme action instead of the decoded raw
action. And we also experiment the usually gaussian noise mechanism. Therefore, we investigate the
effect of different mechanisms of exploring the raw action space χAR on HalfCheetah-v3 (continuous).
The comparison curves are shown in Figure 11. Concretely, we have the following variants in total:

GADM+DQN w/ extreme noise w/ E.A.R.: The normal GADM+DQN agent use Extreme Action
Regression in GADM, and when collecting data, we execute the random Bernoulli extreme action
distribution with a small probability (e.g. 0.1).

GADM+DQN w/ Gaussian noise w/ E.A.R.: The variant agent use Extreme Action Regression in
GADM, and when collecting data, we first add a Gaussian noise into the decoded continous action
same as in (Fujimoto et al., 2018), then use the noised action interacting with the environment.
Specifically, the Gaussian distribution is N (µ, σ2), and the clipped noise range in [-0.5, 0.5].

GADM+DQN w/ extreme noise w/o E.A.R.: The variant agent don’t use Extreme Action Regression
in GADM, and when collecting data, we execute the random Bernoulli extreme action distribution
with a small probability (e.g. 0.1).

Figure 11 shows that when collecting data, if we add a gaussian noise action into the decoded
raw continuous action, the performance of GADM+DQN drops significantly. We conjecture that
the reason for this is the normal action representation learning process is severely hindered by the
continuous noise injection. And the performance of GADM+DQN w/o E.A.R. + extreme noise is
better than GADM+DQN w/ E.A.R. + extreme noise, verifying the effectiveness of Extreme Action
Regression discussed before.
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Figure 12 Visualization of the latent action space, learned by GADM in ToyEnv with K = 4 at the
specific state 1. Left: Mapping from the original to the latent action space. The red box indicates
the In Distribution actions within ToyDataset. Colored points signify mappings to latent actions
and pentagrams represent decoded actions, seen as cluster centers. Right: Confidence prediction
for latent actions, trained with focal loss over different γ values. As γ increases, the confidence
distribution trends toward uniformity. At γ = 0 (cross-entropy loss), confidence scores accurately
mirror the latent action distribution. Note that too high γ values lead to uniform confidence scores of
1/K. In practice, it is found that setting 2 is a reasonable initial choice.
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Figure 13 Visualization of the latent action space in ToyEnv with K = 4 at the specific state 2.
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Figure 14 left Episode return of three algorithms on LunarLander: TD3 (raw continuous action
space), DQN + expert cluster, GADM+DQN (discrete action learned by GADM from scratch) ; right
The proportion of semantically identical actions (no operation), where a higher number of no-op
actions denotes increased redundancy during training, hence lower is preferable.

A.6 VISUALIZATION ANALYSIS OF LATENT ACTION SPACE

A.6.1 OFFLINE SETTINGS

To delve deeper into the behavior of GADM in the learning process of the latent action space, we
have visualized this space through a carefully constructed toy environment (ToyEnv). For ToyEnv’s
environment state transition, reward function, and other details pertaining to the Markov Decision
Process (MDP) please refer to section .

Setup In an offline setting, we created the ToyEnv and its corresponding dataset, ToyDataset. The
ToyEnv only includes four discrete states, with an action space that is a two-dimensional continuous
space, each dimension ranging from [0,4]. To generate the ToyDataset, we uniformly sampled 4096
actions within a small square region corresponding to each state. Actions outside these regions
are defined as Out-of-Distribution (OOD) actions. Next, we executed our GADM+DQN (K=4)
algorithm on ToyDataset, conducting a visual analysis of the learned action model and the latent
action confidence predictor.

Results As shown in Figure 12, the left graph demonstrates the mapping relationship from the
original action space to the latent action space under a specific state, state0. The area marked by the
red box represents the In-Distribution action area in ToyDataset. Different colored dots symbolize
different latent actions mapped, while the small pentagrams represent the positions of four latent
actions mapped back to the original action space via the action decoder, serving as the cluster centers
for their respective categories. The right of Figure 12 illustrates the confidence prediction of different
latent actions by the latent action confidence predictor, trained using focal loss with different γ values,
under the same state. The results indicate that as the γ value increases, the confidence distribution
gradually approaches a uniform distribution. When γ=0, which equates to using cross entropy loss,
the confidence score of the latent actions precisely mirrors the distribution of the latent actions in
the dataset. For example, under the current state0, there are no instances of latent action=1 in the
dataset, which is why the predicted confidence score is also 0. However, if the γ value is too large,
all confidence scores will be 1

K . A reasonable γ = 2 can mitigate the imbalance in the amount of
different latent actions in the dataset without leading the optimization of confidence to approach
a uniform distribution. This allows for the determination of a convenience threshold value for the
confidence mask as 1

K .

A.6.2 ONLINE SETTINGS

Case Study on LunarLander To assess the performance and the proportion of non-operational
actions, such as excessive no operation, we conduct an empirical experiment (Figure 14). Leveraging
these insights, we design an action model that autonomously discerns the latent discrete action
space from the raw action space. This model efficiently approximates the necessary components
while discarding the redundant aspects of the raw space, thereby boosting exploration efficiency.
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Figure 15 Comparison of the spaceship’s landing path during different training stages of three
algorithms in the LunarLander environment. Trajectories with color closer to red denote
higher episode return, i.e., yellow > green > blue > purple, with episode return ranges of
(−inf,−100), [−100, 0), [0, 200), [200, inf), respectively. The algorithms compared include TD3
(raw continuous action space), DQN + expert cluster (discrete action space obtained by clustering on
TD3 expert data), and GADM+DQN (discrete action learned by GADM from scratch).

Figure 16 Visualization of the latent action space of LunarLander games. Detailed explanation is
provided in A.6.2.

Furthermore, several studies Jiang et al. (2022) have highlighted that the marginal distribution of
each action dimension often exhibits multi-modal characteristics, suggesting a discrete categorical
distribution might be more suitable than the simple regression used in TD3. For extended analysis,
Figure 15 showcases the landing path comparison of different algorithms in the LunarLander
environment.

Our study also illuminates the learned latent action representation in the LunarLander environment for
2-dimensional continuous control (Figure 16). Initially, the figure displays the status of the spaceship
when it is about to land, i.e., launching both horizontal and vertical engines to control speed and
position (left). It then uniformly samples points in the raw continuous space and transforms them
with the action encoder to find their nearest discrete indexes (middle). Finally, we directly send the
corresponding embeddings in the code table to the decoder to obtain their counterparts in the raw
space (right). Interestingly, we observe that the learned latent space mirrors the intrinsic mechanisms
of this environment, as highlighted by the red line: it uses a single discrete action to represent less
important actions in this state, like no-op, mapping several different actions to the bottom right corner.
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Figure 17 Visualization of the constructed ToyDataset. The dataset is configured in a two-dimensional
action space and comprises four discrete states, each corresponding to a corner of the action grid. For
each state, we uniformly sample 5000 two-dimensional actions within its respective square region.
During the GADM training, states are represented using one-hot encoding.

A.7 DEFINITION OF TOYENV AND TOYDATASET

ToyEnv Inspired by (Nikulin et al., 2023), we formulated a similar environment termed as ToyEnv,
illustrated in Figure 17. The embodied Markov Decision Process (MDP) is characterized as follows:

• State Space: The environment comprises four discrete states: s1, s2, s3, and s4.
• Action Space: The action space is a two-dimensional continuous span, denoted as a = (x, y). To

facilitate the subsequent construction of the offline ToyDataset, we define a special square action
region for each state (with a side length of 0.375). For each state, actions within this special square
region are considered In-Distribution (ID) actions, and all others are Out-of-Distribution (OOD)
actions. These regions are defined as follows:
• For state s1, the action region is x = [0.75, 1.125], y = [0.75, 1.125].
• For state s2, the action region is x = [2.875, 3.25], y = [0.75, 1.125].
• For state s3, the action region is x = [0.75, 1.125], y = [2.875, 3.25].
• For state s4, the action region is x = [2.875, 3.25], y = [2.875, 3.25].

• Transitions Dynamics: The transitions between states are driven by the y-value of the raw actions.
For states s1 and s2, the y-value threshold is 0.9375; for states s3 and s4, it is 3.0625. The
threshold corresponds to the median y-value within the square action region of each state:
• If the y-value of a performed action is larger than the threshold conditioned on the current state,

the system transitions to the next state, i.e., s1→ s2, s2→ s3, s3→ s4, and s4→ s1.
• If the y-value of a performed action is is smaller than than the state-conditioned threshold, the

system remains in the current state, i.e., s1→ s1, s2→ s2, s3→ s3, and s4→ s4.
• Rewards and Termination Conditions: Only the reward in state s4 is equal to 1, and the termination

condition is set to true. In all other states, the reward is 0 and the termination condition is false.

ToyDataset To construct the corresponding offline ToyDataset, we randomly sample 5000 actions
from the square region defined for each state. This approach ensures that each state is associated with
a specific action region, defined by a square in terms of x and y coordinates. Through this process,
we create the ToyDataset, a comprehensive dataset that encapsulates all possible states and its ID
actions. This dataset is not only easy to understand and visualize but also provides a rigorous testing
and analytical environment for the learning and exploration of our GADM model.
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