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ABSTRACT

While image-text representation learning has become very popular in recent years,
existing models tend to lack spatial awareness and have limited direct applicability
for dense understanding tasks. For this reason, self-supervised pretraining is
still the go-to method for many dense vision applications (e.g. depth estimation,
semantic segmentation), despite the lack of explicit supervisory signals. In this
paper, we close this gap between image-text and self-supervised learning, by
proposing a novel general-purpose image-text model, which can be effectively
used off-the-shelf for dense and global vision tasks. Our method, which we refer
to as Text-Image Pretraining with Spatial awareness (TIPS), leverages two simple
and effective insights. First, on textual supervision: we reveal that replacing noisy
web image captions by synthetically generated textual descriptions boosts dense
understanding performance significantly, due to a much richer signal for learning
spatially aware representations. We propose an adapted training method that
combines noisy and synthetic captions, resulting in improvements across both dense
and global understanding tasks. Second, on the learning technique: we propose
to combine contrastive image-text learning with self-supervised masked image
modeling, to encourage spatial coherence, unlocking substantial enhancements
for downstream applications. Building on these two ideas, we scale our model
using the transformer architecture, trained on a curated set of public images. Our
experiments are conducted on 8 tasks involving 16 datasets in total, demonstrating
strong off-the-shelf performance on both dense and global understanding, for
several image-only and image-text tasks.

1 INTRODUCTION

The quest for effective image representations has permeated much of the research work in computer
vision over the past two decades: starting with hand-crafted techniques such as SIFT (Lowe, 2004)
and HOG (Dalal & Triggs, 2005), then moving into the deep learning era with supervised (Krizhevsky
et al., 2012; He et al., 2016; Dosovitskiy et al., 2021), weakly-supervised (Radford et al., 2021;
Mahajan et al., 2018) or self-supervised (Chen et al., 2020; Caron et al., 2021; He et al., 2020)
techniques. Most computer vision tasks critically depend on capable image encodings, and for this
reason the development of a generic representation model that can be used off-the-shelf for a variety
of downstream tasks is a holy grail in the field.

One of the most promising directions for such representation learning research is on leveraging noisy
textual supervision, which is abundant on the web, as introduced by CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021). Recent methods (Zhai et al., 2023; Sun et al., 2023) have pushed the
boundaries on this image-text learning direction. However, these techniques have for the most part
not been shown successful at dense image prediction tasks, such as depth estimation or semantic
segmentation. Self-supervised learning techniques (Caron et al., 2021; Zhou et al., 2022), on the
other hand, although lacking semantic signals to guide the training, can enforce consistency between
distorted images or spatially-adjacent patches, and result in effective pretraining techniques for dense
image understanding (Oquab et al., 2024). In this work, we build on top of both the image-text and
self-supervised learning paradigms, to develop general-purpose image representations which can be
used off the shelf for a variety of image-only and image-text downstream tasks. We build strong
representations for dense prediction tasks, such as segmentation and depth estimation, and global
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Figure 1: We introduce TIPS: Text-Image Pretraining with Spatial awareness. TIPS is a general-purpose
image-text encoder model, which can be effectively used off-the-shelf for dense and global understanding, in
vision-only or vision+language tasks.

prediction tasks that reason about the image as a whole, such as image classification and image-text
retrieval. We illustrate our method in Fig. 1.

Notably, we address image-text learning limitations which hinder its applicability to dense spatial
understanding tasks, with two simple and effective ideas, to improve the textual supervision and
incentivize image features to become spatially coherent: (1) Enhancing the textual supervision via
automated generation of image captions, leveraging a recent multimodal generative model (Beyer
et al., 2024). Such synthetic image captions tend to describe the visual contents more comprehensively
than the noisy captions mined from the web, capturing all the objects in the scene and their spatial
relationships, providing a much richer supervision signal for dense understanding. However, at the
same time, noisy web captions often contain more fine-grained details which can be helpful for
global understanding tasks (as presented in Fig. 3). Thus, we devise an effective method to train
our model with both noisy and synthetic captions, with separate image-text contrastive losses for
them, to achieve strong performance on both dense and global tasks. (2) Encouraging the learned
image features to be spatially coherent, inspired by lessons from the self-supervised literature. We
incorporate self-distillation and masked image modeling into the image-text learning framework,
with carefully designed adaptations, resulting in substantial improvements for many downstream
applications, especially the dense ones.

Finally, we build on these ideas to scale a Vision Transformer (Dosovitskiy et al., 2021) with text
alignment on a training dataset of 117M public images, leveraging their noisy web captions and
synthetically-generated ones. Our method showcases spatial understanding and textual alignment in
the same model, essentially combining the strengths of the image-text and self-supervised literature.
We refer to our method as Text-Image Pretraining with Spatial awareness (TIPS), and thoroughly
evaluate it across many downstream tasks. Specifically, we demonstrate that TIPS achieves strong
and competitive performance off-the-shelf across 8 computer vision tasks involving 16 datasets in
total, comprising image-only or image-text evaluations, for dense or image-level predictions. We
hope that our findings will inspire the community towards the development of next-generation image
representations, to enable multimodal and spatially grounded applications.

2 RELATED WORK

General-purpose image representation models have been proposed for computer vision tasks, gen-
erally leveraging self-supervised or weakly-supervised learning. Recent self-supervised techniques
include DINO (Caron et al., 2021), MAE (He et al., 2022), iBOT (Zhou et al., 2022), I-JEPA (Assran
et al., 2023) and the scaled-up DINOv2 (Oquab et al., 2024), which employs a large curated dataset.
Our work differs from self-supervised approaches by learning with readily-available and public textual
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captions, which makes the model more capable as it can handle language inputs. Weakly-supervised
learning of image representations generally leverages noisy textual captions, with early examples
coming from Joulin et al. (2016); Mahajan et al. (2018). Modern approaches include CLIP (Radford
et al., 2021), ALIGN (Jia et al., 2021), COCA (Yu et al., 2022), OpenCLIP (Cherti et al., 2023),
SigLIP (Zhai et al., 2023), Florence (Yuan et al., 2021), InternVL (Chen et al., 2024) and the EVA
series (Fang et al., 2023; 2024; Sun et al., 2023). Different from these image-text techniques, we
design TIPS to offer frozen pretrained image features that are directly useful to a broad range of
downstream vision tasks, without model fine-tuning. Generally, existing image-text models do not
focus much on downstream dense prediction tasks with frozen features. Additionally, our technique
differs from these by enhancing the core contrastive training common to all of these methods to
obtain spatially-coherent representations, via improved captions and loss functions.

Image-text learning for dense understanding tasks. While the above-mentioned existing image-
text learning approaches lead to powerful representations, they have not demonstrated clear benefits
for dense image prediction tasks. As a consequence, today the models learned with self-supervised
techniques are preferred for these cases: for example, the recent DepthAnything (Yang et al., 2024)
model is built on top of the self-supervised DINOv2 features, even though weakly-supervised image
backbones are widely available. Similarly, Tong et al. (2024) have demonstrated shortcomings of
CLIP-style models and incorporated DINOv2 to enhance the visual grounding of multimodal models.
However, recent work has adapted image-text learning for dense prediction, e.g. for open-vocabulary
detection (Kim et al., 2023; Minderer et al., 2022; Rao et al., 2022) and segmentation (Mukhoti
et al., 2023; Wu et al., 2024; Wysoczanska et al., 2024). SLIP (Mu et al., 2021) combines an adapted
SimCLR (Chen et al., 2020) self-supervised objective with CLIP for classification tasks. Closer to
our work, MaskCLIP (Dong et al., 2023) leverages masked image modeling with contrastive learning,
and the very recent SILC method (Naeem et al., 2024) combines contrastive image-text training with
self-distillation. Different from our goals, most of these methods are specifically tailored towards
improving vision-language tasks that require spatial understanding and do not aim to learn a general-
purpose vision encoder. Besides, most of these do not incorporate dense objectives during pretraining,
and may require additional fine-tuning stages or dense supervision, which can be costly. MaskCLIP
and SILC propose to incorporate self-supervised losses into image-text training, but only employ
either masked image modeling or self-distillation, respectively; in contrast, our TIPS technique
goes beyond to combine both, which we show to boost performance significantly for dense image
prediction. FLIP (Li et al., 2023) proposed to combine contrastive learning with masking, but without
any reconstruction loss, aiming only at efficient language-image training. Altogether, our approach
demonstrates for the first time a way to learn image-text models whose vision representations rival
those of self-supervised approaches in dense image understanding tasks.

Synthetic data for image representation learning. One of our contributions is to show the power
of synthetic textual captions for image representation learning, in particular for dense prediction.
Previous work has explored the training of visual representation models with synthetic data, especially
with synthetic images (Ren & Lee, 2018; Tian et al., 2023; Sariyildiz et al., 2023), which may be
generated based on LLM captions (Tian et al., 2024; Hammoud et al., 2024). CapsFusion (Yu
et al., 2024) leverages synthetic captions to improve large multimodal models for generative text
applications. More similar to our work, VeCLIP (Lai et al., 2024) and LaCLIP (Fan et al., 2023)
generate synthetic captions for contrastive image-text training. However, their methods are only
applied to global image understanding tasks such as image retrieval and classification, and there
is no consideration related to dense prediction. In contrast, we reveal for the first time the power
of synthetic captions to improve spatial understanding in image-text models. Additionally, we
propose a new learning method to combine noisy web captions with synthetic descriptions, by
introducing an additional vision transformer class token to better leverage synthetic descriptions,
boosting performance in many tasks. Our technique goes beyond the sampling or multi-text caption
combination strategies proposed in LaCLIP, enabling more flexible learning with two image-level
tokens which focus on different characteristics.

3 TIPS

Our goal is to create a general-purpose image representation model, with text alignment, which can be
used off-the-shelf for dense and global vision tasks. While image-text contrastive techniques (Radford
et al., 2021; Jia et al., 2021) can effectively model global image information, they tend to underperform
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Figure 2: Block diagram of TIPS. From bottom to top: given an input image, we produce masking and
cropped augmentations, along with synthetic descriptive captions from a captioner model. They are fed into
the text and image encoders, along with the noisy web caption, and the output tokens are used in the losses.
The contrastive loss makes use of the two captions, aligning them with two [CLS] tokens obtained from the
image encoder. TIPS also employs self-distillation applied to the local crops and a masked image modeling loss
applied to dense patch tokens, which encourage spatially-aware and discriminative image representations.

for dense understanding tasks, where self-supervised models are the method of choice today (Oquab
et al., 2024). To bridge this gap, we propose Text-Image Pretraining with Spatial awareness (TIPS),
illustrated in Fig. 2, which leverages enhanced weak supervision via synthetic image captions, as
well as self-supervised masked modeling, improving image feature quality significantly, for both
dense and global understanding.

Problem setup. Given a collection of image-text pairs {(Ik, Tk)}, where Tk is a noisy textual caption
for image Ik, we aim to learn a model which encodes images into dense and global embeddings
that are useful to a variety of multimodal tasks. More concretely, we set out to train the function
f , mapping image I to a set of image embeddings {eg, e1, e2, . . . , eN}, where eg is the global
embedding representation of the entire image and {en}Nn=1 are patch embeddings corresponding to
different image regions. The text associated with the images can be leveraged to train a semantically
meaningful joint embedding space, leading to useful image features. We build on top of the standard
CLIP method (Radford et al., 2021), which learns a text encoder g, mapping T to its embedding et,
by pushing eg and et close for corresponding images and captions, and far otherwise. CLIP uses a
cross-entropy loss with softmax normalization of cosine similarities, referred to as InfoNCE (van den
Oord et al., 2018), which we denote LCLIP . In this work, we model f as a Vision Transformer (ViT)
(Dosovitskiy et al., 2021) and obtain the image embeddings from the final layer’s feature map, with
eg corresponding to the [CLS] token. The function g is modeled as a standard transformer (Vaswani
et al., 2017).

3.1 ENHANCING WEAK SUPERVISION WITH SYNTHETIC IMAGE CAPTIONS

A limitation of standard image-text learning using large-scale web data is the quality
of the captions, which are noisy and may not accurately describe images. An exam-
ple is shown in Fig. 3 (top), where the words “for sale dealership $30k" are not de-
scribing the image contents. While this may hinder model learning, the caption can
still be useful to understand the main object, given the words “2007 Cadillac Escalade".
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Noisy web caption: “2007 Cadillac 
Escalade for sale dealership $30k”

Synthetic caption: “A black SUV 
parked in front of a building.”

Figure 3: Example web image (CC BY-SA
2.0) with noisy caption (top) and synthetic
caption by PaliGemma (Beyer et al., 2024)
(bottom).

However, a deeper issue we commonly observe is that
these captions often only mention salient objects, without
describing their arrangement in the scene. In other words,
the captions usually serve as noisy image-level supervi-
sion and generally tend to be of limited use for learning
spatially-aware representations. This motivates us to inves-
tigate automated generation of synthetic captions, which
could serve as useful pre-training weak supervision for
dense tasks.

We employ off-the-shelf, publicly available models which
can caption images effectively: given the image I , we gen-
erate text T̂ . In particular, we leverage captioning models
which tend to generate accurate and high-level image de-
scriptions – an example is given in Fig. 3 (bottom). Note
the use of the preposition “in front of", which indicates
the spatial arrangement of the scene, the description of
the background (“building") and the color of the object
(“black"), all combined providing rich signals for dense
image representation learning.

However, a drawback of the synthetically generated captions is their lack of detailed object semantics.
Referring again to Fig. 3, the synthetically-generated caption misses information of the specific car
model, which can be helpful to learn discriminative representations. For this reason, we propose to
combine the original T and synthetic T̂ captions, to aim for globally discriminative and spatially-
aware image features.

Dual image-text embedding. We strive to leverage relevant information from both captions, and
thus propose to modify the vision transformer f to learn from them, in an approach we call “dual
embedding”. We insert an additional [CLS] token in the model, to be used for learning with the
synthetic caption, obtaining an additional global embedding êg. At training time, we feed both T
and T̂ into the text encoder, to obtain their text embeddings et and êt. In addition to the LCLIP loss
between eg and et, we compute L̂CLIP between êg and êt. This introduces flexibility in the model
to learn an object-centric image embedding in eg , and a more spatially-aware image embedding in êg .
Both back-propagate into the dense feature maps to learn improved patch embeddings {en}Nn=1. At
inference time, the model can have access to both types of global image embeddings, and the one to
use may be decided based on the downstream task: generally spatially aware tasks will use êg while
object-centric ones will employ eg .

3.2 INTEGRATING SELF-DISTILLATION AND MASKING TO BOOST IMAGE FEATURES

In addition to improving training data quality and learning with different types of textual supervision,
we propose to incentivize the model to learn spatially-aware representations via dedicated loss
functions. We are inspired by recent self-supervised learning techniques, which produce features
suitable to dense downstream tasks (Caron et al., 2021; Zhou et al., 2022; Oquab et al., 2024). We
incorporate self-distillation and masking losses in our training setup, adapting them to work in a
weakly-supervised image-text learning framework. Building on top of CLIP, we introduce a teacher
ViT model, ft, to help guide the training process, which processes the full image I . The teacher’s
weights are updated by Exponential Moving Average (EMA) of the main (student) ViT, fs = f , as
per (He et al., 2020). Two additional loss terms are introduced, as described next.

Self-distillation loss. We create M local crops from the input image I , which are processed by
fs, to obtain M local crop embeddings via their [CLS] tokens, {eg,m}Mm=1. During training, we
enforce these embeddings to match predictions of the teacher’s [CLS] token, eg,t, which is obtained
from a forward pass of I through ft. This incentivizes the model to learn representations which are
consistent across the local crops and the original (global) image. The embeddings are used to compute
prototype scores using an MLP-based projection head, on top of which softmax normalization and
cross-entropy loss are applied:
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Ldistill = −
∑
b

∑
m

softmax((pt
b − c)/τt) log(softmax(pm

b /τs)) (1)

where b iterates over the images in the batch. pt = Pt(e
g,t) and pm = Ps(e

g,m) correspond to
the teacher’s and student’s prototype scores respectively, which are computed with the teacher and
student projections, Pt and Ps, where Pt is updated with an EMA of Ps. τt and τs correspond to the
teacher’s and student’s temperatures, used for sharpening the scores, and c to a centering variable
which is updated with an EMA of pt

b, to encourage a uniform distribution.

Masking loss. We introduce a masked image modeling loss in order to encourage the learned patch
embeddings to understand their spatial surroundings. The high-level idea is to have the visible patch
representations recover the semantics of the masked patches. More concretely, we feed a masked
version of I through fs, where the masked patches are replaced by mask tokens, {mn}n. The
encoded mask tokens, {emn }n, are then projected to prototype scores and compared to the teacher’s
corresponding unmasked tokens, {etn}n, similarly to Eq. 1:

Lmask = −
∑
b

∑
n

softmax((pt
b,n − c′)/τ ′t) log(softmax(pm

b,n/τ
′
s)) (2)

where, again, b iterates over the batch. pt
n = P′

t(e
t
n) and pm

n = P′
s(e

m
n ) correspond respectively to

the teacher’s and student’s prototype scores for patch n, which are computed with the teacher and
student projections, P ′

t and P ′
s, where P ′

t is updated with an EMA of P ′
s. Similarly as before, τ ′t and

τ ′s correspond to the teacher’s and student’s temperatures and c′ to the centering variable.

The total loss for our method is then: Ltotal =
1
2 (LCLIP + L̂CLIP ) + αLdistill + βLmask.

Discussion. Our method builds on representation learning ideas from the weakly and self-supervised
literature, and to the best of our knowledge is the first to demonstrate that simultaneously combining
contrastive image-text learning with both self-distillation and masked image modeling can lead
to improvements across many tasks, indicating positive synergies between these objectives. The
closest existing techniques are MaskCLIP (Dong et al., 2023) and SILC (Naeem et al., 2024), which
combined CLIP with either masked image modeling or self-distillation. As we show in experimental
ablations, though, the combination of masked image loss with self-distillation substantially improves
performance across dense tasks, being critical for downstream applications. We also note some
key differences compared to previous methods. Given that we use a CLIP loss, the self-supervised
components can be simplified, compared to the original formulations in DINO (Caron et al., 2021)
and iBOT (Zhou et al., 2022). A major difference is that we use a single global “crop", instead of
two in DINO, iBOT and SILC, substantially increasing throughput by 25%. In contrast to many
self-supervised methods, we use no data augmentations: the global crop is just a center square crop
of the original image, and the local crops are just crops of the global. This is similar to Assran et al.
(2023); Moutakanni et al. (2024) who argue that complex augmentations may not be necessary for
representation learning. Finally, our masking approach is simply random, in contrast to blockwise in
iBOT.

3.3 SCALING TIPS

We aim at creating a highly-capable and general-purpose model, and for this reason it is critical to
scale it to a large model architecture and training dataset, aiming at enhanced image representations.

Model. The ViT architecture has been shown to scale well to billion-sized models in a variety of
tasks (Zhai et al., 2022; Oquab et al., 2024; Chen et al., 2024). We scale our TIPS model to the ViT-g
architecture, with patch size 14, and use the SwiGLU (Shazeer, 2020) feed-forward network variant.
Similar to Oquab et al. (2024), we adapt the embedding dimension to 1536 with 24 heads. This
makes our image encoder directly comparable to DINOv2-g, counting 1.1B parameters in total. On
the text side, we scale the transformer to 12 layers, with the same embedding dimension and number
of heads as the image encoder.

Data. We leverage the WebLI dataset (Chen et al., 2023), which is a large and noisy web dataset
of public images and associated alt-text containing 10B image-text pairs. We filter the dataset in
successive rounds in order to enhance its quality for model training, similar to previous work in
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language (Gunasekar et al., 2023; Wenzek et al., 2020) and vision (Oquab et al., 2024; Parthasarathy
et al., 2023). This is critical for our model, since it is intended for off-the-shelf use in many
downstream applications. First, similar to Schuhmann et al. (2022), we filter the image-text pairs
based on their contents, by discarding those whose image-text similarities are low, as computed
by a pretrained alignment model. Second, we filtered the resulting dataset to only keep pairs with
English captions. These two initial steps result in a dataset of 1.7B images. Finally, we follow a
similar curation process as previous work (Oquab et al., 2024; Parthasarathy et al., 2023) and select
images that are similar enough to those in curated datasets, leveraging a pretrained model to compute
image embeddings; further details on the curated datasets and filtering strategies are detailed in
Appendix A.3. Note that we also remove near-duplicate images from our dataset if they appeared in
any of the evaluation datasets used in this paper. This process generates our main curated pretraining
dataset, containing 116M image-text pairs in total.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation datasets and protocols. Our models are evaluated on a suite of 8 tasks involving 16
datasets in total, comprising images-only or images-and-text tasks. We assess the quality of the
learned representations thoroughly in a wide range of conditions, covering indoor/outdoor scenes and
object-centric captures. Note that, in all evaluations, our image-text representations are kept frozen,
since our goal is to assess their applicability as off-the-shelf feature extractors. We evaluate 3 dense
prediction tasks, 2 holistic global image understanding tasks and 3 multimodal retrieval tasks. We
introduce the tasks below, and provide further details about their evaluation protocols in the appendix
(Section A.4).

Semantic segmentation is a dense task evaluated on PASCAL VOC (Everingham et al., 2010) and
ADE20k (Zhou et al., 2017) datasets, using mean Intersection over Union (mIoU). We use a simple
linear probe setup similar to (Oquab et al., 2024), where classes are predicted from the spatial features.

Monocular depth estimation aims to predict the depth value for each pixel on the image. We
benchmark depth estimation on the scene-centric NYUv2 (Silberman et al., 2012), and the object-
centric NAVI (Jampani et al., 2023), and we use the RMSE metric. For NYUv2, we use a linear
probe setup similar to (Oquab et al., 2024), where patch tokens are concatenated to the global
embedding, on top of which a linear classifier predicts among 256 quantized depth values. For NAVI,
we follow (El Banani et al., 2024) and probe with the DPT (Ranftl et al., 2021) decoder.

Surface normal estimation is the task of densely predicting the 3D normal of the pixdels, and is
also assessed using NYUv2 and NAVI. We train on both datasets using the setup of (El Banani et al.,
2024), and report angular RMSE.

Image classification is evaluated on the ImageNet-1K dataset (Russakovsky et al., 2015), where we
consider K-Nearest-Neighbor (KNN) and linear probe evaluations on top of the learned features. We
report top-1 accuracy.

Fine-grained and instance-level retrieval is evaluated leveraging the Universal Embeddings Dataset
(UnED) (Ypsilantis et al., 2023), which itself is a benchmark combining datasets from 8 domains:
food (Food2k dataset, Min et al. (2023)), cars (CARS196 dataset, Krause et al. (2013)), online
products (SOP dataset, Song et al. (2016)), clothing (InShop dataset, Liu et al. (2016)), natural world
(iNat dataset, Van Horn et al. (2018)), artworks (Met dataset, Ypsilantis et al. (2021)), landmarks
(GLDv2 dataset, Weyand et al. (2020)) and retail products (Rp2k dataset, Peng et al. (2020)). We
report the average recall@1 (R@1) over the 8 domains, and report more detailed results in the
appendix.

Image-to-text (I→T) retrieval is assessed using the Flickr30K (Young et al., 2014), DOCCI (Onoe
et al., 2024) and COCO (Chen et al., 2015) datasets, also reporting the R@1 metric.

Text-to-image (T→I) retrieval is similarly assessed using Flickr30K, DOCCI and COCO, with the
R@1 metric.
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Method ↑ Segmentation ↓ Depth ↑ KNN classif. ↑ I→T retrieval ↑ T→I retrieval
(Pascal VOC) (NYUv2) (ImageNet) (Flickr) (Flickr)

(A) Baseline
CLIP (noisy captions) 64.4 0.620 76.9 79.1 62.9

(B) CLIP using synthetic captions
PaliGemma captions 74.5 0.544 70.0 79.8 60.1
Both captions, sampled 71.8 0.563 77.0 90.2 75.4
Both captions, multi-text 72.1 0.580 76.9 85.1 73.9
Both captions, dual 73.3 0.588 78.3 88.7 77.1

(C) Improved loss functions, with noisy captions
CLIP + self-dist 70.3 0.589 79.1 81.5 67.0
CLIP + self-dist + MIM 75.9 0.511 79.0 82.6 67.6

(D) Ours: combining improved captions from (B) and losses from (C)
CLIP + self-dist + MIM

Both captions, dual 79.0 0.478 78.8 89.2 77.3

Table 1: Ablations for enhanced captions and improved losses, using the ViT-B backbone on 5 representative
dense, global and image-text tasks. Our final method presented in (D) achieves large gains in all tasks compared
to the baseline CLIP shown in (A).

Zero-shot classification is conducted on ImageNet-1K by retrieving the class text embedding closest
to the each test image’s embedding, following the approach of Radford et al. (2021), using top-1
accuracy.

Additional training dataset details. As discussed in Sec. 3.3, we use images from a set of curated
datasets as queries for mining among a large pool of web images. Following the steps adopted by
DINOv2 (Oquab et al., 2024), we use the training sets of some of our evaluation datasets as the
curated queries, details provided in the appendix. As previously mentioned, this leads to a web-based
training dataset with 116M image-text pairs. Additionally, for the scaling ViT-g experiment, we
add the training set of the Mapillary SLS dataset (Warburg et al., 2020) as-is to our training set to
compensate for the lack of street-level imagery in web images, and in the absense of any alt-text
we use the generated synthetic caption for training both CLS tokens. This increases the number of
images in our training set to 117M in total. Again, a similar procedure is conducted by DINOv2
when constructing their LVD-142M dataset.

Implementation details. We train the ViT-B models for 70 epochs at batch size 16k, which takes 4
days on 256 TPUv3 chips. We train the ViT-g model for 15 epochs at batch size 16k, which takes 2
days on 512 TPUv5 chips. We train with global crops at resolution 224 and local crops at resolution
98. For our final ViT-g model, we train two model versions. The first, named TIPS-g/14 LR for
low-resolution training, is trained as previously described. The second, named TIPS-g/14 HR for
high-resolution finetuning, adds an additional finetuning stage at resolution 448, which runs for 0.1
epochs at batch size 4k. We use no training image augmentations beyond a center square crop. Other
details can be found in Sec. A.2.

Captioner model. We leverage the recent PaliGemma (Beyer et al., 2024) model for image caption-
ing. Specifically, we use the version fine-tuned on COCO, with the 224 image size version used for
the core pretraining run and the 448 version for the short high-resolution fine-tuning stage.

Compared techniques. We strive to provide a large number of comparisons against recent work.
For each existing model family, we compare against the largest instantiation up to ViT sizes “g” or
“G”, at about 1.8B parameters or less in the image encoder. We benchmark our method against a wide
range of methods, from the self-supervised, weakly-supervised and supervised literature. All methods
are used off-the-shelf, with frozen weights, for fair comparisons. As self-supervised methods, we
compare against DINO (Caron et al., 2021), MAE (He et al., 2022), iBOT (Zhou et al., 2022) and
DINOv2 (Oquab et al., 2024). As weakly-supervised methods, we compare against CLIP (Radford
et al., 2021), OpenCLIP (Cherti et al., 2023), SigLIP (Zhai et al., 2023), MaskCLIP (Dong et al.,
2023), SILC (Naeem et al., 2024) and EVA-CLIP (Sun et al., 2023). As a supervised method, we
benchmark against the ViT-g trained on JFT-3B, as per (Zhai et al., 2022).

4.2 RESULTS

Ablations. We present in Tab. 1 ablative experiments on 5 different tasks to isolate the effect of the
enhanced textual supervision and new losses, where a ViT-B backbone is used. The baseline CLIP
model with the noisy web captions is presented in (A). Part (B) of the table ablates the contribution
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Method ↑ Segmentation ↓ Depth ↓ Normals ↑ Fine-grained ↑ ImageNet classif.
PASCAL ADE20k NYUv2 NAVI NYUv2 NAVI retrieval (UnED) KNN lin

DINO-B 66.4 31.8 0.555 - 28.4 28.8 - 77.4 80.1
MAE-H/14 67.6 33.3 0.517 - - - - 49.4 76.6
iBOT-L/16 82.3 44.6 0.417 - 24.5 26.6 - 72.9 82.3
JFT-3B ViT-g/14 70.7 37.5 0.605 0.096 24.4 26.7 59.5 85.1 87.4
DINOv2-g/14 83.0 49.0 0.344 0.054 20.5 24.0 62.2 83.5 86.5
CLIP-L 74.5 39.0 0.553 0.073 24.3 25.5 57.4 79.8 84.3
SigLIP-SO/14 67.8 35.8 0.580 0.074 25.6 25.7 70.8 84.4 86.4
OpenCLIP-G/14 71.4 39.3 0.541 - - - - 83.2 86.2
TIPS-g/14 LR (ours) 82.8 47.4 0.377 0.061 23.0 24.5 71.4 83.6 86.4
TIPS-g/14 HR (ours) 83.6 49.9 0.353 0.058 21.9 24.2 68.2 83.3 86.2

Table 2: Image-only evaluations for dense and global prediction tasks. Experiments using the largest
backbone available for each model variant, comparing recent self-supervised and image-text models against
TIPS. Rows that are highlighted refer to image-only models that are very good at dense prediction tasks, but
are by nature unable to perform text-related tasks. We also highlight the best and second-best number of each
column. TIPS achieves the best or second-best performance in 7 out of 9 evaluations.

of enhanced textual supervision. Simply replacing the web captions by PaliGemma-generated ones
improves segmentation by 10.1 percentage points and reduces depth RMSE by 0.076, which are big
positive gains. This shows the power that can be unlocked by using synthetic captions for dense
understanding with image-text models. However, image-level tasks may suffer with these captions,
showing KNN classification loss of 6.9 points. But the CLIP performance can be improved in all tasks
by combining the web and synthetic captions: using our dual embedding approach, we achieve large
gains across the board. We also compare our dual approach against two other caption combination
options, inspired by the ones proposed by Fan et al. (2023): “sampled”, where either the web or
the synthetic caption is chosen at random; or “multi-text”, where both captions are matched against
the same image embedding. Our dual approach performs better than other caption combinations
in 3 out 5 cases and achieves competitive results on the other 2, which indicates the effectiveness
of our approach. Part (C) ablates the effect of the new losses, using web captions. The addition of
self-distillation brings improvements in all tasks. This is a setup similar to SILC (Naeem et al., 2024):
we confirm their findings for I→T and T→I retrieval, and additionally show that the self-distillation
loss is effective for image-only tasks, notably dense ones. With our additional MIM loss, significant
improvements are observed in dense tasks, while maintaining high scores in the other tasks: 5.6
points gain in segmentation and 0.078 reduction in depth RMSE. Part (D) combines the findings of
(B) and (C) to deliver very substantial improvements against the baseline CLIP setup in all tasks,
notably: 14.6 points gain in segmentation, 0.142 reduction in depth RMSE, 10.1 points gain in I→T
retrieval and 14.4 points gain in T→I retrieval. Additional ablations can be found in the appendix,
Sec. A.1.

Comparisons against existing general-purpose methods are provided in Tables 2 and 3, for tasks
involving images only or images and text, respectively, where results for TIPS are provided for the
model before (“LR”) and after (“HR”) high-resolution fine-tuning. Overall, TIPS achieves strong
results, with competitive performance across a wide range of tasks, reaching the best or second-best
numbers in 13 out of the 16 reported evaluations. Compared against existing image-text methods,
TIPS improves on I→T and T→I retrieval, while also achieving substantial gains in dense prediction
tasks, reaching the level of DINOv2 and surpassing it in some cases. It is interesting to note that
while recent image-text models have achieved excellent results in multimodal retrieval or zero-shot
classification, those gains do not translate to improved features for dense undertanding, whose
performance lags substantially behind TIPS and self-supervised approaches. In particular, even
CLIP-L, with much worse performance on image-level prediction tasks, outperforms the recent
SigLIP-SO on all 6 dense evaluations. Another recent and much larger image model trained with
contrastive learning, InternViT-6B (Chen et al., 2024), achieves 47.2% on ADE20k, which is much
worse than our 1.1B TIPS-g model. In terms of supervised methods, the ViT-g trained on JFT-3B also
performs worse on dense tasks than CLIP-L. And an even larger ViT-22B (Dehghani et al., 2023),
also trained on JFT, achieves only 34.6% in ADE20k on the same setup, as reported by Chen et al.
(2024). In comparison to self-supervised techniques, TIPS achieves strong results, with numbers
comparable to DINOv2 in most cases and surpassing them significantly in segmentation and retrieval,
while at the same time enabling multimodal tasks which cannot be performed with self-supervised
methods alone. Fig. 4 shows qualitative examples for our dense feature probes.

Application: Single-image to 3D. Modern large reconstruction models rely on high-quality
pre-trained image encoders to produce image tokens for an encoder/decoder transformer (Hong
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Method ↑ I→T retrieval ↑ T→I retrieval ↑ ImageNet
COCO Flickr DOCCI COCO Flickr DOCCI 0-shot

MaskCLIP-B/14 41.4 70.1 - 25.5 45.6 - 44.5
CLIP-L/14 56.3 85.2 44.4 36.5 65.2 40.4 75.5
OpenCLIP-G/14 67.3 92.9 - 51.4 79.5 - 80.1
EVA-CLIP-g/14 68.2 91.6 - 50.3 78.9 - 79.3
SigLIP-SO/14 70.2 91.0 27.5 52.0 75.3 28.4 83.2
SILC-G/16 73.2 - - 54.7 - - 83.7
TIPS-g/14 LR (ours) 73.7 93.0 56.4 58.3 83.2 58.9 79.7
TIPS-g/14 HR (ours) 74.0 93.0 57.2 59.4 84.5 58.8 79.9

Table 3: Image-text evaluations for multimodal retrieval and zero-shot classification, where TIPS outper-
forms others in 6 out of 7 cases. We compare solely against weakly-supervised methods, since self-supervised
ones are not naturally aligned with language. We highlight the best and second-best number of each column.

RGB image PCA feat. M. Depth S. Normals Sem. Segm.

Figure 4: Qualitative results for dense prediction tasks. For a given image (first column), we illustrate the
principal components of the predicted spatial features (column 2) . Depth (column 3) and normals (column 4)
are predicted by attaching the DPT decoder on our image encoder, and semantic segmentation (last column) is a
result of probing the features with a linear layer. More qualitative results can be found in Section A.5.

et al., 2024; Wang et al., 2024). For example, LRM (Hong et al., 2024) predicts pa-
rameters of a neural rendering model from the image features of a single input image.

Method ↑ PSNR
DINO-B/14 21.13
TIPS-B/14 21.75

Table 4: LRM novel view synthesis using
original DINO features vs. TIPS features.

The authors choose the ViT-based DINO encoder over
more semantic-aware ones (such as CLIP) due to its knowl-
edge of structural and texture information necessary for
3D tasks. In order to better understand our model’s ca-
pabilities for neural 3D reconstruction, we evaluate TIPS
performance in the LRM framework and compare DINO-
B/14 to an equivalently-sized TIPS-B/14.Single-image to
3D results on the Objaverse (Deitke et al., 2023) dataset are
presented in Tab. 4, showing that TIPS outperforms DINO as an image encoder for large reconstruc-
tion models, with enhanced novel view synthesis capabilities (0.62 increase in PSNR). Additional
qualitative results can be found in A.4.4.

5 CONCLUSIONS

We introduce TIPS (Text-Image Pretraining with Spatial awareness), a new general-purpose image-
text encoder. TIPS can be successfully applied off-the-shelf to a variety of computer vision tasks,
enabling dense and image-level prediction, leveraging two simple and effective contributions. First,
we employ existing multimodal generative models to produce high-quality synthetic image de-
scriptions, which are used to improve contrastive learning and boost performance on dense image
prediction. We propose a dual embedding approach to leverage both synthetic and noisy web captions,
unlocking gains across a wide range of tasks. Second, we combine contrastive image-text learning
with self-distillation and masked image modeling, incentivizing the model to learn spatially-aware
representations. These two contributions are complementary and allow us to effectively scale our
models to a ViT-g architecture trained on a curated dataset of 117M images. Our comprehensive ex-
periments demonstrate strong off-the-shelf results on 8 tasks comprising 16 datasets in total, enabling
a wide variety of computer vision applications which involve only images, or images and text.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL RESULTS

Ablation on synthetic caption versions. To understand in more detail the impact of synthetically-
generated descriptions on different tasks, we create different variants to ablate the effect of the
composition of the description. “PaliGemma object list” is created by prompting Gemini 1.5
Flash (Gemini Team Google, 2023) to take the original PaliGemma caption and produce a list
of the objects that are mentioned in it, for example: “A black SUV parked in front of a building”
becomes “black SUV, building”. “PaliGemma main object” is created similarly to the object list
version, except that it is prompted to produce only the main object in the caption, for example: “A
black SUV parked in front of a building” becomes “black SUV”. Results are presented in Tab. 5, using
a CLIP model with a ViT-B backbone. First, note how “PaliGemma object list” already provides
significant boost over the noisy captions for dense prediction tasks, which indicates that listing the
multiple objects in the images, without noisy web terms, helps substantially. On top of this, the full
“PaliGemma captions”, including descriptions about object spatial arrangements, further improves
dense understanding, notably for depth estimation. The results for “PaliGemma main object” show
some improvement compared to noisy captions in depth, but not for segmentation. On I→T and
T→I retrieval, “PaliGemma captions” also provide significant improvements compared against other
PaliGemma caption variants.

Captioning version ↑ Segmentation ↓ Depth ↑ KNN classif. ↑ I→T retrieval ↑ T→I retrieval
(Pascal VOC) (NYUv2) (ImageNet) (Flickr) (Flickr)

Noisy captions 64.4 0.620 76.9 79.1 62.9
PaliGemma captions 74.5 0.544 70.0 79.8 60.1
PaliGemma object list 73.8 0.575 70.1 66.4 45.0
PaliGemma main object 61.9 0.598 67.7 8.7 4.7

Table 5: Synthetic caption ablations for representative evaluations, using a CLIP ViT-B model.

Ablation on dataset versions. We compare our final curated version of WebLI, with 116M image-
text pairs in total, to 2 other versions: “raw” (10B unfiltered image-text pairs) and “EN quality-
filtered” (1.7B image-text pairs filtered with pretrained alignment model and keeping only English-
captioned pairs). Results are presented in Tab. 6, using a CLIP model with a ViT-B backbone, for a
representative set of image evaluations. Our curated dataset helps improve performance across all of
these evaluations, while being 1 or 2 orders of magnitude smaller.

Training set ↑ Segmentation ↓ Depth ↑ KNN classif. ↑ Fine-grained retrieval
(ADE20k) (NYUv2) (ImageNet) (UnED)

Raw (10B) 29.1 0.698 68.4 45.8
EN quality-filtered (1.7B) 31.5 0.632 76.2 59.3
Ours curated (116M) 31.6 0.620 76.9 62.9

Table 6: Training set ablations for representative image evaluations, using a CLIP ViT-B model.

Ablation on self-supervised learning components. We present ablations on design choices for the
self-supervised learning component in Tab. 7, using a ViT-B backbone model, for a representative
set of image evaluations. We vary the masking approach (random masking or blockwise masking)
and masking ratios (from 25% to 75%). Note that TIPS employs random masking with 75%
ratio. The results show that higher masking ratios tend to benefit dense tasks substantially, while
only impacting global classification and image-text retrieval modestly. For example, depth RMSE
improves significantly with higher masking ratios, with small impact on ImageNet KNN and Flickr
I→T retrieval. As we aim for a spatially-aware image-text model, we find that 75% is a good trade-off.
Blockwise masking performs a little worse than random masking overall, and for this reason we
adopt the simpler random masking approach.

UnED detailed results can be found in Tab. 8, covering all of the 8 domains in the benchmark: food
(Food2k dataset, Min et al. (2023)), cars (CARS196 dataset, Krause et al. (2013)), online products
(SOP dataset, Song et al. (2016)), clothing (InShop dataset, Liu et al. (2016)), natural world (iNat
dataset, Van Horn et al. (2018)), artworks (Met dataset, Ypsilantis et al. (2021)), landmarks (GLDv2
dataset, Weyand et al. (2020)) and retail products (Rp2k dataset, Peng et al. (2020)). We compare
TIPS against the main competitors, outperforming SigLIP on average by 0.6 percentage point and

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Method ↑ Segmentation ↓ Depth ↑ KNN classif. ↑ I→T retrieval ↑ T→I retrieval
(Pascal VOC) (NYUv2) (ImageNet) (Flickr) (Flickr)

(A) TIPS complete method
TIPS ViT-B (ours) 79.0 0.478 78.8 89.2 77.3

(B) Varying masking ratio
Random, 50% 79.3 0.501 79.1 90.5 78.0
Random, 25% 78.8 0.533 79.3 90.5 77.9

(C) Varying masking approach
Blockwise, 75% 79.5 0.491 78.6 89.2 77.3
Blockwise, 50% 78.9 0.504 79.0 89.5 77.3
Blockwise, 25% 78.8 0.537 79.4 89.8 77.9

Table 7: Ablations for design choices of self-supervised learning components, using the ViT-B backbone
on 5 representative dense, global and image-text tasks.

DINOv2 with a very significant 9.2 points gain. TIPS achieves the best score in 3 domains, SigLIP in
another 3 domains and DINOv2 in 2 domains.

Method Food2k CARS196 SOP InShop iNat Met GLDv2 Rp2k Mean
CLIP-L/14 46.7 89.8 63.5 61.1 72.4 30.8 36.7 58.3 57.4
JFT-3B ViT-g/14 56.7 96.9 64.0 58.0 75.4 28.2 27.2 69.6 59.5
DINOv2-g/14 54.4 83.2 56.3 35.8 82.3 60.4 55.3 69.5 62.2
SigLIP-SO/14 60.6 97.5 76.7 76.1 76.5 58.9 44.6 76.2 70.8
TIPS-g/14 LR (ours) 63.6 94.9 73.8 83.9 83.3 55.6 41.9 74.4 71.4
TIPS-g/14 HR (ours) 57.0 94.8 73.2 81.3 80.8 48.2 40.8 72.4 68.6

Table 8: UnED detailed results over the 8 fine-grained/instance-level recognition domains, measured with
Recall@1.

A.2 ADDITIONAL IMPLEMENTATION DETAILS

Loss weight coefficients as in Sec. 3.2 are α = 1, β = 2. We use the Adafactor optimizer (Shazeer
& Stern, 2018) with a learning rate schedule of linear warm-up for 1.4 epochs up to 5e-4, and then
linear decay down to 0 for the remaining epochs. The teacher model is updated with the EMA of
the student using a momentum on a cosine schedule from 0.994 to 1. The projection heads for self-
distillation and masking are identical but unshared, and consist of a 3-layer MLP, l2 normalization,
and a weight-normalized projection layer to a prototype dimension of 32k. We use sharpening and
centering operations after the projection head to avoid collapse to either uniform or Dirac delta
distributions. To center, we subtract the student scores by the EMA of their means using constant
momentum 0.9. To sharpen, we set temperatures τs = τ ′s = 0.1, τt = 0.07, and warm-up τ ′t along a
linear schedule from 0.04 to 0.07. For TIPS-g/14 LR, we stop the training early at 15 epochs due
to evaluation saturation. For TIPS-g/14 HR, we start high-resolution finetuning from the 13-epoch
checkpoint of TIPS-g/14 LR.

A.3 DATASET CURATION

Table 9 lists the high-quality datasets used to curate WebLI beyond filtering based on image-text and
English language. For each target dataset, we first extract image embeddings from a pretrained model
and perform k-means clustering; Table 9 includes the number of clusters chosen manually to avoid
overclustering. WebLI images are assigned to its closest cluster by image embedding distance, and a
probability distribution is defined over the clusters using cluster membership sizes. Then, we sample
from the clusters accordingly, ignoring members that are sufficiently far from their assigned cluster
center (90th percentile or above). We repeat this process for each target dataset independently and
perform deduplication across all samples. We also perform deduplication with all evaluation data,
which removes around 19k images.

A.4 DETAILED EVALUATION PROTOCOLS

In this section we provide the detailed evaluation protocols of all evals used in this work. As a general
remark, we use identical protocols for low-res and high-res models, without modifying the input
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Dataset Name Dataset Size # Clusters # Images Sampled

PASCAL-VOC-2007-train 2,501 5 16,935,483
PASCAL-VOC-2012-train 8,648 8 17,925,056
ADE20K-train 20,210 20 17,288,796
NYU-Depth-V2-train 24,231 5 1,004,740

ImageNet-2012-train 1,281,167 1000 17,792,551
ImageNet22k-train 12,720,275 1000 19,859,560
UnED-Food2k-train 472,349 100 4,063,232
UnED-CARS196-train 6,346 6 5,012,681
UnED-SOP-train 48,942 48 15,246,219
UnED-InShop-train 20,897 20 13,611,747
UnED-iNaturalist-train 273,929 188 10,017,768
UnED-Met-train 397,121 397 8,010,633
UnED-GLDv2-train 1,422,914 1000 12,323,999
UnED-Rp2k-train 188,724 50 561,095

Total 16,888,254 - 159,654,074
Total (after self-dedup.) 16,888,254 - 115,913,373
Total (after self+eval-dedup.) 16,888,254 - 115,894,610

Table 9: Dataset curation statistics. High-quality image datasets are used to filter WebLI. We use precomputed
image embeddings to calculate image similarity between target datasets and raw WebLI data.

resolution, consistent with previous work (Oquab et al., 2024). The parameters of the pretrained
transformer network remain frozen throughout the evals.

A.4.1 DENSE IMAGE TASKS

For dense prediction tasks, we evaluate the quality of the patch tokens. As is common practice, we
concatenate the [CLS] token to each of the patch tokens. For our method, we choose the [CLS]
token that was trained with the more spatially aware synthetic caption (êg). We attach two different
types of probes to the image encoder: a simple linear layer (segmentation, depth) or a powerful
DPT (Ranftl et al., 2021) decoder (depth, normals).

Semantic segmentation. For semantic segmentation, we train the network with images of resolution
512× 512. We use batch size of 8 images, and train for 40k iterations. We attach a linear layer to the
main network, and up-sample to the input resolution to apply the cross-entropy loss. At test time,
we run inference on full-resolution images. For simplicity, we use no sliding window evaluation.
We note that for DINOv2 (Oquab et al., 2024) concatenating the [CLS] token to the patch tokens
consistently yields inferior results, so we report results using their original protocol.

Monocular depth estimation. For NYUv2, we use the simple evaluation protocol of Li et al. (2024);
Oquab et al. (2024). We train with a resolution of 480 × 640. Similar to segmentation evals, we
concatenate the [CLS] token to the patch tokens, and we upsample by a factor of 4. We attach a
linear layer and cast the prediction as classification into 256 uniformly distributed bins. Note that this
version of NYUv2 is slightly different to the one used in (El Banani et al., 2024), and the numbers
not directly comparable with that work.

For NAVI, we follow El Banani et al. (2024) and attach the DPT decoder (Ranftl et al., 2021) to 4
uniformly distributed layers (l = 10, 20, 30, 40 for ViT-g/14). We train and test on center crops of
objects, with a resolution of 512× 512.

For both datasets we use batch size of 8 and train for 50k iterations.

Surface normal estimation. We follow similar protocols to El Banani et al. (2024) for both NYUv2
and NAVI, using their data and metrics. For both datasets, we probe with the powerful DPT decoder
using outputs from 4 uniformly sampled transformer blocks. For NYUv2 we train with a resolution
of 480 × 480, and we test with full-resolution 480 × 640 images. For NAVI, we train and test on
center crops of the objects, with a resolution of 512× 512. For both datasets we use batch size of 8
and we train for 50k iterations.

A.4.2 GLOBAL IMAGE TASKS

In global image tasks, we use the [CLS] token that corresponds to the noisy image label that often
contains more fine-grained information (eg).
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RGB image PCA feat. M. Depth S. Normals Sem. Segm.

Figure 5: More qualitative results for dense prediction tasks. We illustrate the principal components of the
predicted spatial features (column 2) for a given image (first column). Depth (column 3) and normals (column 4)
are predicted by attaching the DPT decoder on our image encoder, and semantic segmentation (last column) is a
result of probing the features with a linear layer.

Image classification. We use ImageNet-1k for classification. We train a linear classifier on top of
the eg embedding. We use input image resolution of 224 × 224 for 10 epochs, using an effective
batch size of 1024 (smaller batch sizes achieve identical results). We run a grid search with the search
space of (Oquab et al., 2024), and we report the maximum accuracy, which is a standard practice. We
also report the accuracy of soft KNN classification with 20 neighbours (Oquab et al., 2024), without
training any weights.

Fine-grained and instance-level retrieval. We use the UnED (Ypsilantis et al., 2023) dataset for
retrieval. We use an input size of 224× 224, and we l2-normalize the resulting eg embedding. As is
standard for this dataset, we run KNN with a single neighbour. As also mentioned in the main text,
UnED consists of 8 datasets of different domains. We report recall@1 as the final aggregated result,
and report results per domain in Sec. A.1.

A.4.3 MULTIMODAL RETRIEVAL TASKS

Image-to-text (I→T) and text-to-image (T→I) retrieval. We use the [CLS] token that was trained
with the synthetic caption (êg) as the image representation. We prefer synthetic captions because
they tend to describe image content more comprehensively than noisy web captions, making them
better aligned with the image-text retrieval evaluation datasets used in this work: Flickr30k (Young
et al., 2014), DOCCI (Onoe et al., 2024) and COCO (Chen et al., 2015). Our text encoder handles a
maximum of 64 tokens. Texts longer than this limit are truncated, which happens more frequently in
DOCCI. Notably, the text encoder of SigLIP has a small maximum token length of 16, which likely
contributes to its relatively low performance in DOCCI.
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Zero-shot classification. We use the [CLS] token that corresponds to the noisy web caption, which
often contains more fine-grained information (eg), as image embedding. We adhere to the established
protocol initiated by Radford et al. (2021), which utilizes 80 context prompts to transform each
ImageNet1k class into 80 distinct texts. The class embedding is then formed by taking the average of
the embeddings from these 80 texts. Classification of the image is achieved by retrieving the nearest
class embedding.

A.4.4 3D VISION TASKS.

Single-image to 3D. We use the baseline LRM (Hong et al., 2024) method and follow the architectural
and training details of the original paper closely unless otherwise mentioned. We obtain images
from Objaverse (Deitke et al., 2023) by sampling random rotations around each object and rendering
with uniformly sampled focal lengths ∈ [512, 1024] and a nominal distance of 0.4. Cameras are
oriented towards the origin and objects are centered at the origin. For each entry in Objaverse,
we render reference views for training and novel target views for evaluating view synthesis. We
freeze the image encoder to extract patch features and directly compare the paper baseline (DINO-B)
with ours at the ViT-B/14 scale, for a fair comparison. Figure 6 shows qualitative results of LRM
trained on top of DINO-B/14 and our TIPS-B/14. We show the input single image used to generate
neural rendering model parameters, along with RGB and depth images rendered via NeRF-style ray
marching (Mildenhall et al., 2020).

A.5 QUALITATIVE RESULTS

Figure 5 illustrates further qualitative results of the features and outputs obtained by our method for
dense features, probing the image encoder features. In Figure 6 we show the quality improvement
when substituting the default DINO-B with the TIPS-B model.
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Figure 6: Qualitative results on novel view synthesis from LRM (Hong et al., 2024) trained on top of DINO-
B/14 and TIPS-B/14. The input image is used to generate parameters for a neural rendering model, after image
encoding. We visualize RGB and depth images rendered with the same camera parameters (intrinsics and
extrinsics) using NeRF-style ray marching. We can observe that LRM-TIPS is able to predict the geometry of
the captured object with a higher degree of accuracy, as indicated by the gain in PSNR from Tab. 4.
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