

000 001 002 003 004 005 IMPROVED OBJECT-CENTRIC DIFFUSION LEARNING 006 WITH REGISTERS AND CONTRASTIVE ALIGNMENT 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Slot Attention (SA) with pretrained diffusion models has recently shown promise
028 for object-centric learning (OCL), but suffers from *slot entanglement* and *weak*
029 *alignment* between object slots and image content. We propose **Contrastive Object-**
030 **centric Diffusion Alignment** (CODA), a simple extension that (i) **employs** register
031 slots to absorb residual attention and reduce interference between object slots,
032 and (ii) applies a contrastive alignment loss to explicitly encourage slot–image
033 correspondence. The resulting training objective serves as a tractable surrogate
034 for maximizing mutual information (MI) between slots and inputs, strengthening
035 slot representation quality. On both synthetic (MOVi-C/E) and real-world datasets
036 (VOC, COCO), CODA improves object discovery (e.g., +6.1% FG-ARI on COCO),
037 property prediction, and compositional image generation over strong baselines.
038 Register slots add negligible overhead, keeping CODA efficient and scalable. These
039 results indicate potential applications of CODA as an effective framework for robust
040 OCL in complex, real-world scenes. Code is available as supplementary material.
041
042
043
044
045
046
047
048
049
050
051
052
053

1 INTRODUCTION

027 Object-centric learning (OCL) aims to decompose complex scenes into structured, interpretable object
028 representations, enabling downstream tasks such as visual reasoning (Assouel et al., 2022; D’Amario
029 et al., 2021), causal inference (Schölkopf et al., 2021; Zholus et al., 2022), world modeling (Ke et al.,
030 2021), robotic control (Haramati et al., 2024), and compositional generation (Singh et al., 2022a). Yet,
031 learning such compositional representations directly from images remains a core challenge. Unlike
032 text, where words naturally form composable units, images lack explicit boundaries for objects and
033 concepts. For example, in a street scene with pedestrians, cars, and traffic lights, a model must
034 disentangle these entities without labels and also capture their spatial relations (e.g., a person crossing
035 in front of a car). Multi-object scenes add further complexity: models must not only detect individual
036 objects but also capture their interactions. As datasets grow more cluttered and textured, this becomes
037 even harder. Manual annotation of object boundaries or compositional structures is costly, motivating
038 the need for fully unsupervised approaches such as Slot Attention (SA) (Locatello et al., 2020). While
039 effective in simple synthetic settings, SA struggles with large variations in real-world images, limiting
040 its applicability to visual tasks such as image or video editing.
041
042

043 Combining SA with diffusion models has recently pushed forward progress in OCL (Jiang et al.,
044 2023; Wu et al., 2023; Akan & Yemez, 2025). In particular, Stable-LSD (Jiang et al., 2023) and
045 SlotAdapt (Akan & Yemez, 2025) achieve strong object discovery and high-quality generation by
046 leveraging pretrained diffusion backbones such as Stable Diffusion (Rombach et al., 2022) (SD).
047 Nevertheless, these approaches still face two key challenges. First, as illustrated in Fig. 1 (left),
048 they often suffer from **slot entanglement**, where a slot encodes features from multiple objects
049 or fragments of them, leading to unfaithful single-slot generations. This entanglement degrades
050 segmentation quality and prevents composable generation to novel scenes and object configurations.
051 Second, they exhibit **weak alignment**, where slots fail to consistently correspond to distinct image
052 regions, especially on real-world images. As shown in our experiments, slots often suffer from
053 over-segmentation (splitting one object into multiple slots), under-segmentation (merging multiple
objects into one slot), or inaccurate object boundaries. Together, these two issues reduce both the
accuracy of object-centric representations and their utility for compositional scene generation.

Figure 1: Image generation from individual slots. **Top:** slot masks. **Bottom:** generated images. Both methods can reconstruct the full scene when conditioned on all slots (last column). However, Stable-LSD (without register slots) fails to generate images from individual slots. Our method yields faithful single-concept generations, demonstrating disentangled and well-aligned slots.

In response, we propose **Contrastive Object-centric Diffusion Alignment** (CODA), a slot-attention model that uses a pretrained diffusion decoder to reconstruct the input image. CODA **augments the model with** register slots, which absorb residual attention and reduce interference between object slots, and a contrastive objective, which explicitly encourages slot–image alignment. As illustrated in Fig. 1 (right), CODA faithfully generates images from both individual slots as well as their compositions. In summary, the contributions of this paper can be outlined as follows.

- (i) **Register-augmented slot diffusion.** We **employ** register slots that are independent of the input image into slot diffusion. Although these register slots carry no semantic information, they act as attention sinks, absorbing residual attention mass so that semantic slots remain focused on meaningful object–concept associations. This reduces interference between object slots and mitigating slot entanglement (Section 4.1).
- (ii) **Mitigating text-conditioning bias.** To reduce the influence of text-conditioning biases inherited from pretrained diffusion models, we finetune the key, value, and output projections in cross-attention layers. This adaptation further improves alignment between slots and visual content, ensuring more faithful object-centric decomposition (Section 4.2).
- (iii) **Contrastive alignment objective.** We propose a contrastive loss that ensures slots capture concepts present in the image (Section 4.3). Together with the denoising loss, our training objective can be viewed as a tractable surrogate for maximizing the mutual information (MI) between inputs and slots, improving slot representation quality (Section 4.4).
- (iv) **Comprehensive evaluation.** We demonstrate that CODA outperforms existing unsupervised diffusion-based approaches across synthetic and real-world benchmarks in object discovery (Section 5.1), property prediction (Section 5.2), and compositional generation (Section 5.3). On the VOC dataset, CODA improves instance-level object discovery by +3.88% mBOⁱ and +3.97% mIoUⁱ, and semantic-level object discovery by +5.72% mBO^c and +7.00% mIoU^c. On the COCO dataset, it improves the foreground Adjusted Rand Index (FG-ARI) by +6.14%.

2 RELATED WORK

Object-centric learning (OCL). The goal of OCL is to discover compositional object representations from images, enabling systematic generalization and stronger visual reasoning (D’Amario et al., 2021; Assouel et al., 2022). Learning directly from raw pixels is difficult, so previous works leveraged weak supervision (e.g., optical flow (Kipf et al., 2022), depth (Elsayed et al., 2022), text (Xu et al., 2022), pretrained features (Seitzer et al., 2023)), or auxiliary losses that guide slot masks toward moving objects (Bao et al., 2022; 2023; Zadaianchuk et al., 2023). Scaling OCL to complex datasets has been another focus: DINOSAUR (Seitzer et al., 2023) reconstructed self-supervised features to segment real-world images, and FT-DINOSAUR (Didolkar et al., 2025) extended this via encoder finetuning for strong zero-shot transfer. SLATE (Singh et al., 2022a) and STEVE (Singh et al., 2022b) combined discrete VAE tokenization with slot-conditioned autoregressive transformers, while SPOT (Kakogeorgiou et al., 2024) improved autoregressive decoders using patch permutation and attention-based self-training. Our work builds on SA, but does not require any additional supervision.

Diffusion models for OCL. Recent works explored diffusion models (Sohl-Dickstein et al., 2015; Rombach et al., 2022) as slot decoders in OCL. Different methods vary in how diffusion models are integrated. For example, SlotDiffusion (Wu et al., 2023) trained a diffusion model from scratch, while Stable-LSD (Jiang et al., 2023), GLASS (Singh et al., 2025), and SlotAdapt (Akan & Yemez,

108 leveraged pretrained diffusion models. Although pretrained models offer strong generative
 109 capabilities, they are often biased toward text-conditioning. To address this issue, GLASS (Singh
 110 et al., 2025) employed cross-attention masks as pseudo-ground truth to guide SA training. Unlike
 111 GLASS, CODA does not rely on supervised signals such as generated captions. SlotAdapt (Akan &
 112 Yemez, 2025) introduced adapter layers to enable new conditional signals while keeping the base
 113 diffusion model frozen. In contrast, CODA simply finetunes key, value, and output projections in cross-
 114 attention, without introducing additional layers. This ensures full compatibility with off-the-shelf
 115 diffusion models while remaining conceptually simple and computationally efficient.

116 **Contrastive learning for OCL.** Training SA with only reconstruction losses often leads to unstable
 117 or inconsistent results (Kim et al., 2023). To improve robustness, several works introduced contrastive
 118 objectives. For example, SlotCon (Wen et al., 2022) applied the InfoNCE loss (Oord et al., 2018)
 119 across augmented views of the input image to enforce slot consistency. Manasyan et al. (2025) used
 120 contrastive loss to enforce the temporal consistency for video object-centric models. In contrast,
 121 CODA tackles compositionality by aligning images with their slot representations, enabling faithful
 122 generation from both individual slots and their combinations. Unlike Jung et al. (2024), who
 123 explicitly maximize likelihood under random slot mixtures and thus directly tune for compositional
 124 generation, CODA focuses on enforcing slot–image alignment; its gains in compositionality arise
 125 indirectly from improved disentanglement. Although CODA uses a negative loss term, similar to
 126 negative guidance in diffusion models (Karras et al., 2024), the roles are fundamentally different.
 127 Karras et al. (2024) apply negative guidance during sampling to steer the denoising trajectory, whereas
 128 CODA uses a contrastive loss during training to improve slot–image alignment.

3 BACKGROUND

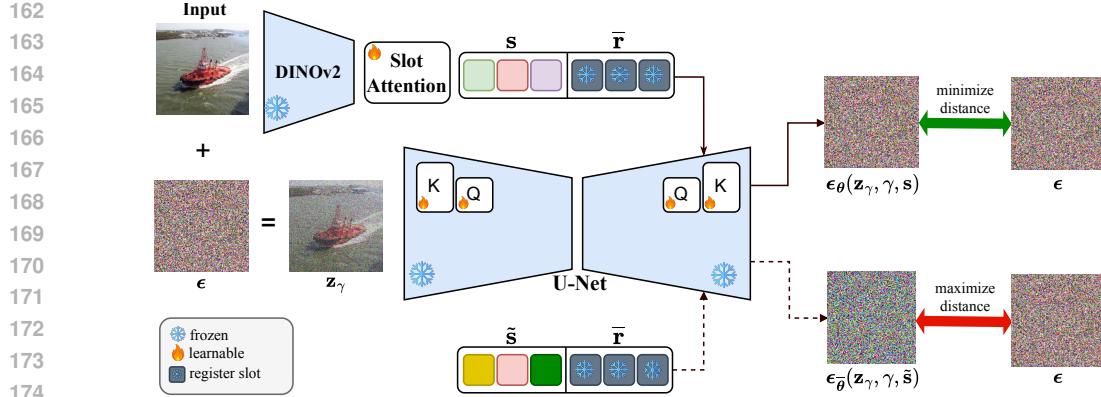
131 **Slot Attention (Locatello et al., 2020) (SA).** Given input features $\mathbf{f} \in \mathbb{R}^{M \times D_{\text{input}}}$ of an image,
 132 the goal of OCL is to extract a sequence $\mathbf{s} \in \mathbb{R}^{N \times D_{\text{slot}}}$ of N slots, where each slot is a D_{slot} -
 133 dimensional vector representing a composable concept. In SA, we start with randomly initialized
 134 slots as $\mathbf{s}^{(0)} \in \mathbb{R}^{N \times D_{\text{slot}}}$. Once initialized, SA employs an iterative mechanism to refine the slots. In
 135 particular, slots serve as *queries*, while the input features serve as *keys* and *values*. Let q , k , and v
 136 denote the respective linear projections used in the attention computation. Given the current slots $\mathbf{s}^{(t)}$
 137 and input features \mathbf{f} , the update rule can be formally described as

$$139 \quad \mathbf{s}^{(t+1)} = \text{GRU}(\mathbf{s}^{(t)}, \mathbf{u}^{(t)}) \quad \text{where} \quad \mathbf{u}^{(t)} = \text{Attention}(q(\mathbf{s}^{(t)}), k(\mathbf{f}), v(\mathbf{f})).$$

140 Here, attention readouts are aggregated and refined through a Gated Recurrent Unit (Cho et al., 2014)
 141 (GRU). Unlike self-attention (Vaswani et al., 2017), the softmax function in SA is applied along the
 142 slot axis, enforcing competition among slots. This iterative process is repeated for several steps, and
 143 the slots from the final iteration are taken as the slot representations. Finally, these slots are passed to
 144 a decoder trained to reconstruct the input image. The slot decoder can take various forms, such as an
 145 MLP (Watters et al., 2019) or an autoregressive Transformer (Vaswani et al., 2017). Interestingly,
 146 recent works (Jiang et al., 2023; Singh et al., 2025; Akan & Yemez, 2025) have shown that using
 147 (latent) diffusion models as slot decoders proves to be particularly powerful and effective in OCL.

148 **Latent diffusion models (Rombach et al., 2022) (LDMs).** Diffusion models are probabilistic models
 149 that sample data by gradually denoising Gaussian noise (Sohl-Dickstein et al., 2015; Song et al.,
 150 2021; Ho et al., 2020). The forward process progressively corrupts data with Gaussian noise, while
 151 the reverse process learns to denoise and recover the original signal. To improve efficiency, SD
 152 performs this process in a compressed latent space rather than pixel space. Concretely, a pretrained
 153 autoencoder maps an image to a latent vector $\mathbf{z} \in \mathcal{Z}$, where a U-Net denoiser iteratively refines
 154 noisy latents. Consider a variance preserving process that mixes the signal \mathbf{z} with Gaussian noise
 155 $\epsilon \sim \mathcal{N}(0, \mathbf{I})$, given by $\mathbf{z}_\gamma = \sqrt{\sigma(\gamma)}\mathbf{z} + \sqrt{\sigma(-\gamma)}\epsilon$, where $\sigma(\cdot)$ is the sigmoid function and γ is the
 156 log signal-to-noise ratio. Let $\epsilon_\theta(\mathbf{z}_\gamma, \gamma, \mathbf{c})$ denote a denoiser parameterized by θ that predicts the
 157 Gaussian noise ϵ from noisy latents \mathbf{z}_γ , conditioned on an external signal \mathbf{c} . In SD, conditioning
 158 is implemented through cross-attention, which computes attention between the conditioning signal
 159 and the features produced by U-Net. Training diffusion models is formulated as a noise prediction
 160 problem, where the model learns to approximate the true noise ϵ added during the forward process,

$$161 \quad \min_{\theta} \quad \mathbb{E}_{(\mathbf{z}, \mathbf{c}), \epsilon, \gamma} [\|\epsilon - \epsilon_\theta(\mathbf{z}_\gamma, \gamma, \mathbf{c})\|_2^2]$$



¹For SD v1.5, 77 padding tokens are used, resulting in 77 register slots.

216 **Why do register slots mitigate slot entanglement?** The softmax operation in cross-attention forces
 217 attention weights to sum to one across all slots. When a query from U-Net features does not strongly
 218 match any semantic slot, this constraint causes the attention mass to spread arbitrarily, weakening
 219 slot-concept associations. Register slots serve as placeholders that absorb this residual attention,
 220 giving the model extra capacity to store auxiliary information without interfering with semantic
 221 slots. This leads to cleaner and more coherent slot-to-concept associations. Consistent with this
 222 view, we observe in Appendix C that a substantial fraction of attention mass is allocated to register
 223 slots. A similar phenomenon has been reported in language models, where softmax normalization
 224 causes certain initial tokens to act as attention sinks (Xiao et al., 2024; Gu et al., 2025), absorbing
 225 unnecessary attention mass and preventing it from distorting meaningful associations.

226 In a related approach, Akan & Yemez (2025) introduced an additional embedding by pooling from
 227 either generated slots or image features. Unlike our method, their embedding is injected directly into
 228 the cross-attention layers and is explicitly designed to capture global scene information. While this
 229 might provide contextual guidance, it ties the model to input-specific features, reducing flexibility in
 230 reusing slots across arbitrary compositions. In contrast, our register slots are independent of the input
 231 image, making them better suited for compositional generation.

232 4.2 FINETUNING CROSS-ATTENTION KEYS AND QUERIES

233 SD is trained on large-scale image–text pairs, so directly using its pretrained model as a slot decoder
 234 introduces a text-conditioning bias: the model expects text embeddings and tends to prioritize
 235 language-driven semantics over slot-level representations (Akan & Yemez, 2025). This mismatch
 236 weakens the fidelity of slot-based generation. Prior works have approached this issue in different
 237 ways. For example, Wu et al. (2023) trained diffusion models from scratch, thereby removing text bias
 238 but sacrificing generative quality due to limited training data. More recently, Akan & Yemez (2025)
 239 proposed adapter layers (Mou et al., 2024) to align slot representations with pretrained diffusion
 240 models, retaining generation quality but still relying on text-conditioning features.

241 In contrast, we adopt a lightweight adaptation strategy: finetuning only the key, value, and output
 242 projections in cross-attention layers (Kumari et al., 2023). This allows the model to better align slots
 243 with visual content, mitigating text-conditioning bias while preserving the expressive power of the
 244 pretrained diffusion backbone. We find this minimal modification sufficient to eliminate the bias
 245 introduced by text conditioning. Unlike the previous approaches, our method is both computationally
 246 and memory efficient, requiring no additional layers or architectural modifications. This makes our
 247 approach not only effective but also conceptually simple. Formally, let ϕ denote the parameters of
 248 SA, the denoising objective for diffusion models can be written as

$$249 \mathcal{L}_{\text{dm}}(\phi, \theta) = \mathbb{E}_{(\mathbf{z}, \mathbf{s}), \epsilon, \gamma} [\|\epsilon - \epsilon_\theta(\mathbf{z}_\gamma, \gamma, \mathbf{s}, \bar{\mathbf{r}})\|_2^2], \quad (1)$$

250 where (\mathbf{z}, \mathbf{s}) are sampled from $p(\mathbf{z})p_\phi(\mathbf{s} \mid \mathbf{z})$. In practice, \mathbf{s} is not computed directly from \mathbf{z} , but
 251 rather from DINOv2 features of the image corresponding to \mathbf{z} . The U-Net is conditioned on the
 252 concatenation $(\mathbf{s}, \bar{\mathbf{r}})$ of semantic slots \mathbf{s} and register slots $\bar{\mathbf{r}}$. During training, the parameters of SA are
 253 optimized jointly with the finetuned key, value, and output projections of SD, while other parameters
 254 are kept frozen.

255 4.3 CONTRASTIVE ALIGNMENT

256 The goal of OCL is to learn composable slots that capture distinct concepts from an image. However,
 257 in diffusion-based OCL frameworks, slot conditioning only serves as auxiliary information for the
 258 denoising loss, providing no explicit supervision to ensure that slots capture concepts present in
 259 the image. As a result, slots may drift toward arbitrary or redundant representations, limiting their
 260 interpretability and compositionality.

261 To address this, we propose a contrastive alignment objective that explicitly aligns slots with image
 262 content while discouraging overlap between different slots. Intuitively, the model should assign
 263 high likelihood to the correct slot representations and low likelihood to mismatched (negative) slots.
 264 Concretely, in addition to the standard denoising loss in Eq. (1), we introduce a contrastive loss
 265 defined as the negative of denoising loss evaluated with negative slots $\tilde{\mathbf{s}}$:

$$266 \mathcal{L}_{\text{cl}}(\phi) = -\mathbb{E}_{(\mathbf{z}, \tilde{\mathbf{s}}), \epsilon, \gamma} [\|\epsilon - \epsilon_\theta(\mathbf{z}_\gamma, \gamma, \tilde{\mathbf{s}}, \bar{\mathbf{r}})\|_2^2], \quad (2)$$

270 where $(\mathbf{z}, \tilde{\mathbf{s}})$ are sampled from $p(\mathbf{z})q_\phi(\tilde{\mathbf{s}} | \mathbf{z})$ and $\bar{\boldsymbol{\theta}}$ denotes stop-gradient parameters of $\boldsymbol{\theta}$. Minimizing Eq. (1) increases likelihood under aligned slots, while minimizing Eq. (2) decreases likelihood under mismatched slots. We freeze the diffusion decoder and update only the SA module in Eq. (2), preventing the decoder from trivially reducing contrastive loss by altering its generation process. This ensures that improvements come from better slot representations rather than shortcut solutions. As confirmed by our ablations (see Table 5), unfreezing the decoder leads to unstable training and degraded performance across all metrics.

277 Finally, combining Eqs. (1) and (2), the overall training objective of CODA is defined as

$$\mathcal{L}(\boldsymbol{\phi}, \boldsymbol{\theta}) = \mathcal{L}_{\text{dm}}(\boldsymbol{\phi}, \boldsymbol{\theta}) + \lambda_{\text{cl}} \mathcal{L}_{\text{cl}}(\boldsymbol{\phi}), \quad (3)$$

280 where $\lambda_{\text{cl}} \geq 0$ controls the trade-off between the denoising and contrastive terms. We study the effect
281 of varying λ_{cl} in Appendix E.4. This joint objective forms a contrastive learning scheme that acts as
282 a surrogate for maximizing the MI between slots and images, as further discussed in Section 4.4.

283 **Strategy for composing negative slots.** A straightforward approach for obtaining negative slots
284 is to sample them from unrelated images. However, such negatives are often too trivial for the
285 decoder, providing little useful gradient signal. To address this, we construct *hard negatives*—more
286 informative mismatches that push the model to refine its representations more effectively (Robinson
287 et al., 2021). Concretely, given two slot sequences, \mathbf{s} and \mathbf{s}' , extracted from distinct images \mathbf{x} and \mathbf{x}' ,
288 we form negatives for \mathbf{x} by randomly replacing a subset of slots in \mathbf{s} with slots from \mathbf{s}' . This produces
289 mixed slot sets that only partially match the original image, creating harder and more instructive
290 negative examples. In our experiments, we replace half of the slots in \mathbf{s} with those from \mathbf{s}' , and
291 provide an ablation over different replacement ratios in Appendix E.5. A remaining challenge is that
292 naive mixing can yield invalid combinations, e.g., omitting background slots or combining objects
293 with incompatible shapes or semantics. To mitigate this, we share the slot initialization between \mathbf{x} and
294 \mathbf{x}' . Because initialization is correlated with the objects each slot attends to, sampling from mutually
295 exclusive slots under shared initialization is more likely to produce semantically valid negatives than
296 purely random mixing (Jung et al., 2024).

297 4.4 CONNECTION WITH MUTUAL INFORMATION

299 A central goal of our framework is to maximize MI between slots and the input image, so that slots
300 capture representations that are both informative and compositional. To make this connection explicit,
301 we reinterpret our training objective in Eq. (3) through the lens of MI. We begin by defining the
302 optimal conditional denoiser, i.e., the minimum mean square error (MMSE) estimator of $\boldsymbol{\epsilon}$ from a
303 noisy channel \mathbf{z}_γ , which mixes \mathbf{z} and $\boldsymbol{\epsilon}$ at noise level γ , conditioned on slots \mathbf{s} :

$$\hat{\boldsymbol{\epsilon}}(\mathbf{z}_\gamma, \gamma, \mathbf{s}) = \mathbb{E}_{\boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon} | \mathbf{z}_\gamma, \mathbf{s})} [\boldsymbol{\epsilon}] = \arg \min_{\tilde{\boldsymbol{\epsilon}}(\mathbf{z}_\gamma, \gamma, \mathbf{s})} \mathbb{E}_{p(\boldsymbol{\epsilon})p(\mathbf{z} | \mathbf{s})} [\|\boldsymbol{\epsilon} - \tilde{\boldsymbol{\epsilon}}(\mathbf{z}_\gamma, \gamma, \mathbf{s})\|_2^2].$$

306 By approximating the regression problem with a neural network, we obtain an estimate of the MMSE
307 denoiser, which coincides with the denoising objective of diffusion model training. Let $\tilde{\mathbf{s}}$ denote
308 negative slots sampled from a distribution $q(\tilde{\mathbf{s}} | \mathbf{z})$. Under this setup, we state the following theorem.

309 **Theorem 1.** *Let \mathbf{z} and \mathbf{s} be two random variables, and let $\tilde{\mathbf{s}}$ denote a sample from a distribution
310 $q(\tilde{\mathbf{s}} | \mathbf{z})$. Consider the diffusion process $\mathbf{z}_\gamma = \sqrt{\sigma(\gamma)}\mathbf{z} + \sqrt{\sigma(-\gamma)}\boldsymbol{\epsilon}$, with $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$. Let
311 $\hat{\boldsymbol{\epsilon}}(\mathbf{z}_\gamma, \gamma, \mathbf{s})$ denote the MMSE estimator of $\boldsymbol{\epsilon}$ given $(\mathbf{z}_\gamma, \gamma, \mathbf{s})$. Then the negative of mutual information
312 (MI) between \mathbf{z} and \mathbf{s} admits the following form:*

$$\begin{aligned} -I(\mathbf{z}; \mathbf{s}) &= \frac{1}{2} \underbrace{\int_{-\infty}^{\infty} \left(\mathbb{E}_{(\mathbf{z}, \mathbf{s}), \boldsymbol{\epsilon}} [\|\boldsymbol{\epsilon} - \hat{\boldsymbol{\epsilon}}(\mathbf{z}_\gamma, \gamma, \mathbf{s})\|^2] - \mathbb{E}_{(\mathbf{z}, \tilde{\mathbf{s}}), \boldsymbol{\epsilon}} [\|\boldsymbol{\epsilon} - \hat{\boldsymbol{\epsilon}}(\mathbf{z}_\gamma, \gamma, \tilde{\mathbf{s}})\|^2] \right) d\gamma}_{316} \\ &\quad + \mathbb{E}_{\mathbf{z}} [D_{\text{KL}}(q(\tilde{\mathbf{s}} | \mathbf{z}) || p(\tilde{\mathbf{s}} | \mathbf{z})) - D_{\text{KL}}(q(\tilde{\mathbf{s}} | \mathbf{z}) || p(\tilde{\mathbf{s}}))] . \end{aligned} \quad (4)$$

318 Direct optimization of Eq. (4) is infeasible, both due to the high sample complexity and the difficulty
319 of evaluating the KL-divergence terms. The quantity Δ instead provides a practical handle: it
320 measures the denoising gap between aligned and mismatched slots, and thus serves as a tractable
321 surrogate for MI. For this reason, we adopt the training objective in Eq. (3), which aligns directly with
322 Δ . Since the register slots $\bar{\mathbf{r}}$ are independent of the data, they do not influence $I(\mathbf{z}; \mathbf{s})$. Furthermore,
323 when $\tilde{\mathbf{s}}$ are sampled independently of \mathbf{z} such that $q(\tilde{\mathbf{s}} | \mathbf{z}) = p(\tilde{\mathbf{s}})$, the KL-divergence terms in Eq. (4)
324 can be reinterpreted as dependency measures between \mathbf{s} and \mathbf{z} :

324 **Corollary 1.** *With the additional assumption $q(\tilde{\mathbf{s}} \mid \mathbf{z}) = p(\tilde{\mathbf{s}})$ in Theorem 1, it follows that*

$$325 \quad 326 \quad 327 \quad 328 \quad 329 \quad 330 \quad 331 \quad 332 \quad 333 \quad 334 \quad 335 \quad 336 \quad 337 \quad 338 \quad 339 \quad 340 \quad 341 \quad 342 \quad 343 \quad 344 \quad 345 \quad 346 \quad 347 \quad 348 \quad 349 \quad 350 \quad 351 \quad 352 \quad 353 \quad 354 \quad 355 \quad 356 \quad 357 \quad 358 \quad 359 \quad 360 \quad 361 \quad 362 \quad 363 \quad 364 \quad 365 \quad 366 \quad 367 \quad 368 \quad 369 \quad 370 \quad 371 \quad 372 \quad 373 \quad 374 \quad 375 \quad 376 \quad 377 \quad \Delta = -I(\mathbf{z}; \mathbf{s}) - D_{\text{KL}}(p(\mathbf{z})p(\mathbf{s}) \parallel p(\mathbf{z}, \mathbf{s})). \quad (5)$$

358 Minimizing Δ therefore corresponds to maximizing MI plus an additional reverse KL-divergence in Eq. (5). Intuitively, this reverse KL-divergence contributes by rewarding configurations where the joint distribution $p(\mathbf{z}, \mathbf{s})$ and the product of marginals $p(\mathbf{z})p(\mathbf{s})$ disagree in the opposite direction of MI. In combination with the forward KL in MI, this enforces divergence in both directions, thereby promoting stronger statistical dependence between \mathbf{z} and \mathbf{s} . Proofs are provided in Appendix A.

5 EXPERIMENTS

364 We design our experiments to address the following key questions: (i) How well does CODA perform 365 on unsupervised object discovery across synthetic and real-world datasets? (Section 5.1) (ii) How 366 effective are the learned slots for downstream tasks such as property prediction? (Section 5.2) (iii) 367 Does CODA improve the visual generation quality of slot decoders? (Section 5.3) (iv) What is the 368 contribution of each component in CODA? (Section 5.4) To answer these questions, CODA is compared 369 against state-of-the-art fully unsupervised OCL methods, described in Appendix B.2.

370 **Datasets.** Our benchmark covers both synthetic and real-world settings. For synthetic experiments, 371 we use two variants of the MOVi dataset (Greff et al., 2022): MOVi-C, which includes objects 372 rendered over natural backgrounds, and MOVi-E, which includes more objects per scene, making it 373 more challenging for OCL. For real-world experiments, we adopt PASCAL VOC 2012 (Everingham 374 et al., 2010) and COCO 2017 (Lin et al., 2014), two standard benchmarks for object detection and 375 segmentation. Both datasets substantially increase complexity compared to synthetic ones, due to 376 their large number of foreground classes. VOC typically contains images with a single dominant 377 object, while COCO includes more cluttered scenes with two or more objects. Further dataset and 378 implementation details are provided in Appendix B.

5.1 OBJECT DISCOVERY

379 Object discovery evaluates how well slots bind to objects by predicting a set of masks that segment 380 distinct objects in an image. Following prior works, we report the FG-ARI, a clustering similarity 381 metric widely used in this setting. However, FG-ARI alone can be misleading, as it may favor either 382 over-segmentation or under-segmentation (Kakogeorgiou et al., 2024; Wu et al., 2023; Seitzer et al., 383 2023), thus failing to fully capture segmentation quality. To provide a more comprehensive evaluation, 384 we also report mean Intersection over Union (mIoU) and mean Best Overlap (mBO). Intuitively, FG- 385 ARI reflects instance separation, while mBO measures alignment between predicted and ground-truth 386 masks. On real-world datasets such as VOC and COCO, where semantic labels are available, we 387 compute both mBO and mIoU at two levels: instance-level and class-level. Instance-level metrics 388 assess whether objects of the same class are separated into distinct instances, whereas class-level 389 metrics measure semantic grouping across categories. This dual evaluation reveals whether a model 390 tends to prefer instance-based or semantic-based segmentations.

391 Table 1 shows results on synthetic datasets. CODA outperforms on both MOVi-C and MOVi-E. On 392 MOVi-C, it improves FG-ARI by +7.15% and mIoU by +7.75% over the strongest baseline. On MOVi- 393 E, which contains visually complex scenes, it improves FG-ARI by +2.59% and mIoU by +3.36%. 394 In contrast, SLATE and LSD struggle to produce accurate object segmentations. Table 2 presents 395 results on real-world datasets. CODA surpasses the best baseline (SlotAdapt) by +6.14% in FG-ARI 396 on COCO. CODA improves instance-level object discovery by +3.88% mBOⁱ and +3.97% mIoUⁱ, 397 and semantic-level object discovery by +5.72% mBO^c and +7.00% mIoU^c on VOC. Qualitative 398 results in Fig. 5 further illustrate the high-quality segmentation masks produced by CODA. Overall, 399 these results demonstrate that CODA consistently outperforms diffusion-based OCL baselines by a 400 significant margin. The improvements highlight its ability to obtain accurate segmentation, which 401 facilitates compositional perception of complex scenes.

5.2 PROPERTY PREDICTION

402 Following prior works (Dittadi et al., 2022; Locatello et al., 2020; Jiang et al., 2023), we evaluate the 403 learned slot representations through downstream property prediction on the MOVi datasets. For each 404

378 Table 1: Unsupervised object segmentation results on synthetic datasets. Results of other methods are reported
 379 from (Jiang et al., 2023; Akan & Yemez, 2025).

MOVi-C	SLATE	SLATE ⁺	LSD	Ours	MOVi-E	SLATE	SLATE ⁺	LSD	SlotAdapt	Ours
mBO (\uparrow)	39.37	38.17	45.57	46.55	mBO (\uparrow)	30.17	22.17	38.96	43.38	43.35
mIoU (\uparrow)	37.75	36.44	44.19	51.94	mIoU (\uparrow)	28.59	20.63	37.64	41.85	45.21
FG-ARI (\uparrow)	49.54	52.04	51.98	59.19	FG-ARI (\uparrow)	46.06	45.25	52.17	56.45	59.04

385 Table 2: Unsupervised object segmentation results on real-world datasets. \dagger indicates results taken from (Wu
 386 et al., 2023), while results for other methods are taken from their respective papers.

VOC	FG-ARI \uparrow mBO $^i\uparrow$ mBO $^c\uparrow$ mIoU $^i\uparrow$ mIoU $^c\uparrow$					COCO	FG-ARI \uparrow mBO $^i\uparrow$ mBO $^c\uparrow$ mIoU $^i\uparrow$ mIoU $^c\uparrow$				
MLP decoders						MLP decoders					
SA †	12.3	24.6	24.9	-	-	SA †	21.4	17.2	19.2	-	-
DINOSAUR	24.6	39.5	40.9	-	-	DINOSAUR	40.5	27.7	30.9	-	-
Autoregressive decoders						Autoregressive decoders					
SLATE †	15.6	35.9	41.5	-	-	SLATE †	32.5	29.1	33.6	-	-
DINOSAUR	24.8	44.0	51.2	-	-	DINOSAUR	34.1	31.6	39.7	-	-
SPOT w/o ENS	19.7	48.1	55.3	46.5	-	SPOT w/o ENS	37.8	34.7	44.3	32.7	-
SPOT w/ ENS	19.7	48.3	55.6	46.8	-	SPOT w/ ENS	37.8	35.0	44.7	33.0	-
Diffusion decoders						Diffusion decoders					
SlotDiffusion †	17.8	50.4	55.3	44.9	49.3	SlotDiffusion †	37.2	31.0	35.0	31.2	36.5
SlotAdapt	29.6	51.5	51.9	-	-	Stable-LSD	35.0	30.4	-	-	-
Ours	32.23	55.38	61.32	50.77	56.30	SlotAdapt	41.4	35.1	39.2	36.1	41.4
						Ours	47.54	36.61	41.43	36.41	42.60

402 property, a separate prediction network is trained using the frozen slot representations as input. We
 403 employ a 2-layer MLP with a hidden dimension of 786 as the predictor, applied to both categorical
 404 and continuous properties. Cross-entropy loss is used for categorical properties, while mean squared
 405 error (MSE) is used for continuous ones. To assign object labels to slots, we use Hungarian matching
 406 between predicted slot masks and ground-truth foreground masks. This task evaluates whether slots
 407 encode object attributes in a disentangled and predictive manner, beyond simply segmenting objects.

408 We report classification accuracy for categorical properties (Category) and MSE for continuous
 409 properties (Position and 3D Bounding Box), , as shown in Table 3. With the exception of 3D Bounding
 410 Box, CODA outperforms all baselines by a significant margin. The lower performance on 3D bounding
 411 box prediction is likely due to DINOV2 features, which lack fine-grained geometric details necessary
 412 for precise 3D localization. Overall, these results indicate that the slots learned by CODA capture more
 413 informative and disentangled object features, leading to stronger downstream prediction performance.
 414 This suggests that CODA encodes properties that enable controllable compositional scene generation.

415 Table 3: Representation quality. Mean squared error (MSE) is reported for spatial attributes, including ‘Position’
 416 and ‘3D bounding box’, while classification accuracy is reported for ‘Category’. Results of other methods are
 417 taken from (Jiang et al., 2023; Akan & Yemez, 2025).

MOVi-C	SLATE	SLATE ⁺	LSD	Ours	MOVi-E	SLATE	SLATE ⁺	LSD	SlotAdapt	Ours
Position (\downarrow)	1.37	1.28	1.14	0.01	Position (\downarrow)	2.09	2.15	1.85	1.77	0.01
3D B-Box (\downarrow)	1.48	1.44	1.44	2.11	3D B-Box (\downarrow)	3.36	3.37	2.94	3.75	4.22
Category (\uparrow)	42.45	45.32	46.11	74.12	Category (\uparrow)	38.93	38.00	42.96	43.92	78.06

425 5.3 COMPOSITIONAL IMAGE GENERATION

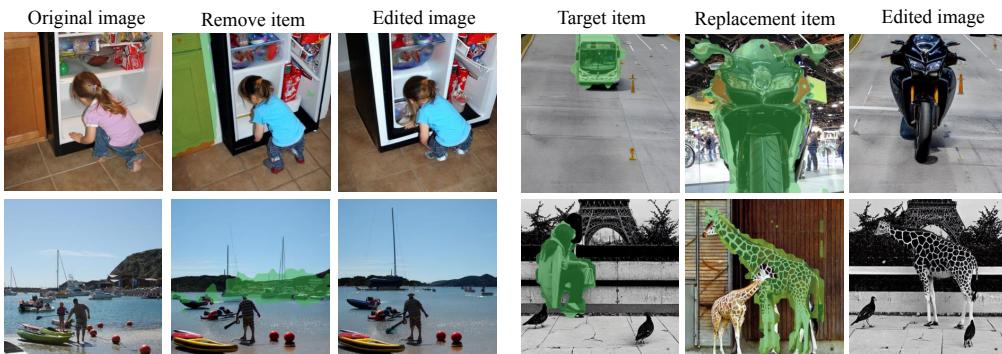
427 To generate high-quality images, a model must not only encode objects faithfully into slots but also
 428 recombine them into novel configurations. We evaluate this capability through two tasks. First, we
 429 assess *reconstruction*, which measures how accurately the model can recover the original input image.
 430 Second, we evaluate *compositional generation*, which tests whether slots can be recombined into
 431 new, unseen configurations. Following Wu et al. (2023), these configurations are created by randomly
 432 mixing slots within a batch. Both experiments are conducted on COCO. In our evaluation, we focus

432 on image fidelity, since our primary goal is to verify that slot-based compositions yield visually
 433 coherent generations. We report Fréchet Inception Distance (FID) (Heusel et al., 2017) and Kernel
 434 Inception Distance (KID) (Bińkowski et al., 2018) as quantitative measures of image quality.
 435

436 Table 4 shows that CODA outperforms both LSD and SlotDiffusion, **and further achieves higher**
 437 **fidelity than SlotAdapt**. In the more challenging compositional generation setting, it achieves the
 438 best results on both FID and KID, highlighting its effectiveness for slot-based composition. Beyond
 439 quantitative metrics, Figs. 3 and 12 demonstrates CODA’s editing capabilities. By manipulating slots,
 440 the model can remove objects by discarding their corresponding slots or replace them by swapping
 441 slots across scenes. These examples highlight that CODA supports fine-grained, controllable edits
 442 in addition to faithful reconstructions. Overall, CODA not only preserves reconstruction quality but
 443 also significantly improves the ability of slot decoders to generalize compositionally, producing
 444 high-fidelity images even in unseen configurations.
 445

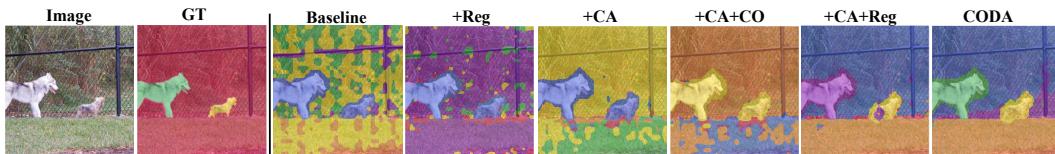
446 Table 4: Image generation results for reconstruction and compositional generalization on the COCO dataset.
 447 Results of other methods are taken from (Akan & Yemez, 2025).

Metric	Reconstruction				Compositional generation			
	LSD	SlotDiffusion	SlotAdapt	Ours	LSD	SlotDiffusion	SlotAdapt	Ours
KID $\times 10^3$	19.09	5.85	0.39	0.35	103.48	57.31	34.38	30.44
FID	35.54	19.45	10.86	10.65	167.23	64.21	40.57	31.03



453 Figure 3: Illustration of compositional editing. CODA can compose novel scenes from real-world images by
 454 removing (left) or swapping (right) the slots, shown as masked regions in the images.
 455

466 5.4 ABLATION STUDIES



476 Figure 4: Illustration of the ablation study on VOC. We start from the pretrained diffusion model as a slot
 477 decoder (Baseline), adding register slots (Reg), finetuning the key, value, and output projections in the cross-
 478 attention layers (CA), adding contrastive alignment (CO).
 479

480 We conduct ablations to evaluate the contribution of each component in our framework, with results on
 481 the VOC dataset summarized in Table 5. The baseline (first row) uses the frozen SD as a slot decoder.
 482 Finetuning the key, value, and output projections of the cross-attention layers (CA) yields moderate
 483 gains. Introducing register slots (Reg) provides substantial improvements, particularly in mBO, by
 484 reducing slot entanglement. Adding the contrastive loss (CO) further boosts mIoU; however, applying
 485 it without stopping gradients in the diffusion model (\circ) degrades performance. When combined, all
 486 components yield the best overall results, as shown in the final row, with qualitative examples in
 487 Fig. 4. **Further ablation studies on the COCO dataset are reported in Table 9 and** additional results

486 are provided in Appendix E. Overall, the ablations demonstrate that each component contributes
 487 complementary benefits in enhancing compositional slot representations.
 488

497 Figure 5: Segmentation masks learned by CODA on COCO
 498

Table 5: Ablation study on the VOC dataset

Component	Metric							
	Reg	CA	CO	FG-ARI↑	mBO ⁱ ↑	mBO ^c ↑	mIoU ⁱ ↑	mIoU ^c ↑
				12.27	47.21	54.20	48.72	55.71
✓				15.44	47.03	52.63	49.75	55.63
✓				19.21	55.76	64.02	49.93	57.14
✓				11.96	47.16	54.17	49.40	56.56
✓				19.62	56.27	65.05	50.40	58.02
✓				15.48	47.95	53.72	51.80	57.98
✓				31.27	54.30	59.44	50.62	55.63
✓		✓	○	10.54	30.64	35.86	37.74	43.61
✓	✓	✓		32.23	55.38	61.32	50.77	56.30

6 CONCLUSIONS

502 We introduced CODA, a diffusion-based OCL framework that augments slot sequences with input-
 503 independent register slots and a contrastive alignment objective. Unlike prior approaches that
 504 rely solely on denoising losses or architectural biases, CODA explicitly encourages slot–image
 505 alignment, leading to stronger compositional generalization. Importantly, it requires no architectural
 506 modifications or external supervision, yet achieves strong performance across synthetic and real-world
 507 benchmarks, including COCO and VOC. Despite its current limitations (Appendix F), these results
 508 highlight the value of register slots and contrastive learning as powerful tools for advancing OCL.
 509

510 REPRODUCIBILITY STATEMENT

511 Appendix B.4 provides implementation details of CODA along with the hyperparameters used in our
 512 experiments. All datasets used in this work are publicly available and can be accessed through their
 513 official repositories. To ensure full reproducibility, the source code is available as supplementary
 514 material. We will release all model checkpoints upon acceptance of the paper.
 515

517 LLM USAGE

518 In this work, large language models (LLMs) were used only to help with proofreading and enhancing
 519 the clarity of the text. All research ideas, theoretical developments, experiments, and implementation
 520 were conducted entirely by the authors.
 521

523 ETHICS STATEMENT

525 This work focuses on improving OCL and compositional image generation using pretrained diffusion
 526 models. While beneficial for controllable visual understanding, it carries risks: (i) misuse, as
 527 compositional generation could create misleading or harmful content; and (ii) bias propagation, since
 528 pretrained diffusion models may reflect biases in their training data, which can appear in generated
 529 images or representations. Our method is intended for research on OCL and representation, not for
 530 deployment in production systems without careful considerations.
 531

532 REFERENCES

533 Kaan Akan and Yucel Yemez. Slot-guided adaptation of pre-trained diffusion models for object-
 534 centric learning and compositional generation. In *Proceedings of the International Conference on*
 535 *Learning Representations*, 2025.

536 Rim Assouel, Pau Rodriguez, Perouz Taslakian, David Vazquez, and Yoshua Bengio. Object-centric
 537 compositional imagination for visual abstract reasoning. In *ICLR2022 Workshop on the Elements*
 538 *of Reasoning: Objects, Structure and Causality*, 2022.

540 Zhipeng Bao, Pavel Tokmakov, Allan Jabri, Yu-Xiong Wang, Adrien Gaidon, and Martial Hebert.
 541 Discovering objects that can move. In *Proceedings of the Conference on Computer Vision and*
 542 *Pattern Recognition*, pp. 11789–11798, 2022.

543 Zhipeng Bao, Pavel Tokmakov, Yu-Xiong Wang, Adrien Gaidon, and Martial Hebert. Object
 544 discovery from motion-guided tokens. In *Proceedings of the Conference on Computer Vision and*
 545 *Pattern Recognition*, pp. 22972–22981, 2023.

546 Mikolaj Bińkowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying MMD
 547 GANs. In *Proceedings of the International Conference on Learning Representations*, 2018.

548 Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
 549 of neural machine translation: Encoder–decoder approaches. In *Proceedings of SSST-8, Eighth*
 550 *Workshop on Syntax, Semantics and Structure in Statistical Translation*, pp. 103–111, 2014.

551 Vanessa D’Amario, Tomotake Sasaki, and Xavier Boix. How modular should neural module
 552 networks be for systematic generalization? In *Advances in Neural Information Processing Systems*,
 553 volume 34, pp. 23374–23385, 2021.

554 Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
 555 registers. In *Proceedings of the International Conference on Learning Representations*, 2024.

556 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 557 bidirectional transformers for language understanding. In *Proceedings of the Conference of the*
 558 *North American Chapter of the Association for Computational Linguistics*, pp. 4171–4186, 2019.

559 Aniket Rajiv Didolkar, Andrii Zadaianchuk, Anirudh Goyal, Michael Curtis Mozer, Yoshua Bengio,
 560 Georg Martius, and Maximilian Seitzer. On the transfer of object-centric representation learning.
 561 In *Proceedings of the International Conference on Learning Representations*, 2025.

562 Andrea Dittadi, Samuele S Papa, Michele De Vita, Bernhard Schölkopf, Ole Winther, and Francesco
 563 Locatello. Generalization and robustness implications in object-centric learning. In *Proceedings of*
 564 *the International Conference on Machine Learning*, pp. 5221–5285, 2022.

565 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 566 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 567 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 568 In *Proceedings of the International Conference on Learning Representations*, 2021.

569 Gamaleldin Elsayed, Aravindh Mahendran, Sjoerd Van Steenkiste, Klaus Greff, Michael C Mozer,
 570 and Thomas Kipf. Savi++: Towards end-to-end object-centric learning from real-world videos. In
 571 *Advances in Neural Information Processing Systems*, volume 35, pp. 28940–28954, 2022.

572 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 573 synthesis. In *Proceedings of the Conference on Computer Vision and Pattern Recognition*, pp.
 574 12873–12883, 2021.

575 Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
 576 The pascal visual object classes (voc) challenge. *International Journal of Computer Vision*, 88(2):
 577 303–338, 2010.

578 Ke Fan, Zechen Bai, Tianjun Xiao, Tong He, Max Horn, Yanwei Fu, Francesco Locatello, and Zheng
 579 Zhang. Adaptive slot attention: Object discovery with dynamic slot number. In *Proceedings of the*
 580 *Conference on Computer Vision and Pattern Recognition*, pp. 23062–23071, 2024.

581 Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
 582 Nagarajan. Think before you speak: Training language models with pause tokens. In *Proceedings*
 583 *of the International Conference on Learning Representations*, 2024.

584 Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J
 585 Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, et al. Kubric: A scalable dataset
 586 generator. In *Proceedings of the Conference on Computer Vision and Pattern Recognition*, pp.
 587 3749–3761, 2022.

594 Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao Du, Ye Wang, and Min
 595 Lin. When attention sink emerges in language models: An empirical view. In *Proceedings of the*
 596 *International Conference on Learning Representations*, 2025.

597

598 Dan Haramati, Tal Daniel, and Aviv Tamar. Entity-centric reinforcement learning for object manipu-
 599 lation from pixels. In *Proceedings of the International Conference on Learning Representations*,
 600 2024.

601 Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev, Subhransu Maji, and Jitendra Malik. Semantic
 602 contours from inverse detectors. In *Proceedings of the International Conference on Computer*
 603 *Vision*, pp. 991–998. IEEE, 2011.

604

605 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 606 trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances in Neural*
 607 *Information Processing Systems*, volume 30, 2017.

608

609 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on*
 610 *Deep Generative Models and Downstream Applications*, 2021.

611

612 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in*
 613 *Neural Information Processing Systems*, volume 33, pp. 6840–6851, 2020.

614

615 Lawrence Hubert and Phipps Arabie. Comparing partitions. *Journal of classification*, 2(1):193–218,
 1985.

616

617 Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-centric slot diffusion. In *Advances*
 618 *in Neural Information Processing Systems*, 2023.

619

620 Whie Jung, Jaehoon Yoo, Sungjin Ahn, and Seunghoon Hong. Learning to compose: Improving object
 621 centric learning by injecting compositionality. In *Proceedings of the International Conference on*
 622 *Learning Representations*, 2024.

623

624 Ioannis Kakogeorgiou, Spyros Gidaris, Konstantinos Karantzalos, and Nikos Komodakis. Spot: Self-
 625 training with patch-order permutation for object-centric learning with autoregressive transformers.
 In *Proceedings of the Conference on Computer Vision and Pattern Recognition*, pp. 22776–22786,
 2024.

626

627 Tero Karras, Miika Aittala, Tuomas Kynkänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
 628 Guiding a diffusion model with a bad version of itself. In A. Globerson, L. Mackey, D. Belgrave,
 629 A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing*
 630 *Systems*, volume 37, pp. 52996–53021, 2024.

631

632 Nan Rosemary Ke, Aniket Rajiv Didolkar, Sarthak Mittal, Anirudh Goyal, Guillaume Lajoie, Stefan
 633 Bauer, Danilo Jimenez Rezende, Yoshua Bengio, Christopher Pal, and Michael Curtis Mozer.
 634 Systematic evaluation of causal discovery in visual model based reinforcement learning. In
 635 *Advances in Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*,
 2021.

636

637 Jinwoo Kim, Janghyuk Choi, Ho-Jin Choi, and Seon Joo Kim. Shepherding slots to objects: Towards
 638 stable and robust object-centric learning. In *Proceedings of the Conference on Computer Vision*
 639 *and Pattern Recognition*, pp. 19198–19207, 2023.

640

641 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Proceedings of*
 642 *the International Conference on Learning Representations*, 2015.

643

644 Thomas Kipf, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg
 645 Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional object-centric
 646 learning from video. In *Proceedings of the International Conference on Learning Representations*,
 2022.

647

648 Xianghao Kong, Rob Brekelmans, and Greg Ver Steeg. Information-theoretic diffusion. In *Proceed-
 649 ings of the International Conference on Learning Representations*, 2023.

648 Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
 649 customization of text-to-image diffusion. In *Proceedings of the Conference on Computer Vision*
 650 and *Pattern Recognition*, pp. 1931–1941, 2023.

651 652 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

653 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
 654 training with frozen image encoders and large language models. In *Proceedings of the International*
 655 *Conference on Machine Learning*, pp. 19730–19742, 2023.

656 657 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 658 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Proceedings of*
 659 *the European Conference on Computer Vision*, pp. 740–755, 2014.

660 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
 661 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention.
 662 In *Advances in Neural Information Processing Systems*, volume 33, pp. 11525–11538, 2020.

663 Anna Manasyan, Maximilian Seitzer, Filip Radovic, Georg Martius, and Andrii Zadaianchuk. Tem-
 664 porally consistent object-centric learning by contrasting slots. In *Proceedings of the Computer*
 665 *Vision and Pattern Recognition Conference*, pp. 5401–5411, 2025.

666 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan. T2i-
 667 adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models.
 668 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 4296–4304, 2024.

669 670 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 671 coding. *arXiv preprint arXiv:1807.03748*, 2018.

672 673 Maxime Oquab, Timothée Darzet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 674 Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas
 675 Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
 676 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
 677 mand Joulin, and Piotr Bojanowski. DINov2: Learning robust visual features without supervision.
 678 *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.

679 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 680 *the International Conference on Computer Vision*, pp. 4195–4205, 2023.

681 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 682 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
 683 synthesis. In *Proceedings of the International Conference on Learning Representations*, 2024.

684 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 685 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 686 models from natural language supervision. In *Proceedings of the International Conference on*
 687 *Machine Learning*, pp. 8748–8763, 2021.

688 Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning
 689 with hard negative samples. In *Proceedings of the International Conference on Learning*
 690 *Representations*, 2021.

691 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 692 resolution image synthesis with latent diffusion models. In *Proceedings of the Conference on*
 693 *Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.

694 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
 695 Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of the*
 696 *IEEE*, 109(5):612–634, 2021.

697 698 Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-Johann
 699 Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, and Francesco Lo-
 700 catello. Bridging the gap to real-world object-centric learning. In *Proceedings of the International*
 701 *Conference on Learning Representations*, 2023.

702 Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate DALL-e learns to compose. In *Proceedings of*
 703 *the International Conference on Learning Representations*, 2022a.
 704

705 Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple unsupervised object-centric learning for complex
 706 and naturalistic videos. In *Advances in Neural Information Processing Systems*, volume 35, pp.
 707 18181–18196, 2022b.

708 Krishnakant Singh, Simone Schaub-Meyer, and Stefan Roth. Glass: Guided latent slot diffusion
 709 for object-centric learning. In *Proceedings of the Computer Vision and Pattern Recognition*
 710 *Conference*, pp. 28673–28683, 2025.

711 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 712 learning using nonequilibrium thermodynamics. In *Proceedings of the International Conference*
 713 *on Machine Learning*, pp. 2256–2265. pmlr, 2015.

714

715 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 716 Poole. Score-based generative modeling through stochastic differential equations. In *Proceedings*
 717 *of the International Conference on Learning Representations*, 2021.

718 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 719 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information*
 720 *Processing Systems*, volume 30, 2017.

721

722 Nicholas Watters, Loic Matthey, Christopher P Burgess, and Alexander Lerchner. Spatial broadcast
 723 decoder: A simple architecture for learning disentangled representations in vaes. In *ICLR 2019*
 724 *Learning from Limited Labeled Data (LLD) Workshop*, 2019.

725

726 Xin Wen, Bingchen Zhao, Anlin Zheng, Xiangyu Zhang, and Xiaojuan Qi. Self-supervised visual
 727 representation learning with semantic grouping. In *Advances in Neural Information Processing*
 728 *Systems*, volume 35, pp. 16423–16438, 2022.

729

730 Ziyi Wu, Jingyu Hu, Wuyue Lu, Igor Gilitschenski, and Animesh Garg. Slotdiffusion: Object-centric
 731 generative modeling with diffusion models. In *Advances in Neural Information Processing Systems*,
 732 volume 36, pp. 50932–50958, 2023.

733

734 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 735 language models with attention sinks. In *Proceedings of the International Conference on Learning*
 736 *Representations*, 2024.

737

738 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, and Xiaolong
 739 Wang. Groupvit: Semantic segmentation emerges from text supervision. In *Proceedings of the*
 740 *Conference on Computer Vision and Pattern Recognition*, pp. 18134–18144, 2022.

741

742 Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Object-centric learning for real-world
 743 videos by predicting temporal feature similarities. In *Advances in Neural Information Processing*
 744 *Systems*, volume 36, pp. 61514–61545, 2023.

745

746

747

748

749

750

751

752

753

754

755

756 757 758 759 760 761 Appendix

762	A Proofs	15
763	A.1 Proof of Theorem 1	15
764	A.2 Proof of Corollary 1	16
765		
766	B Experimental setup	16
767	B.1 Datasets	17
768	B.2 Baselines	17
769	B.3 Metrics	17
770	B.4 Implementation details	18
771		
772	C Visualization of attention scores	19
773		
774	D Compositional image generation from individual slots	19
775		
776	E Additional results	22
777	E.1 Classifier-free guidance	22
778	E.2 Learnable register slots	22
779	E.3 Additional ablation on COCO	23
780	E.4 Effect of the contrastive loss weighting	23
781	E.5 Combination ratios for negative slots	23
782	E.6 Comparison with weakly-supervised baselines	24
783	E.7 Qualitative comparison	24
784		
785	F Limitations and future work	26
786		

787 788 789 A PROOFS

790 791 A.1 PROOF OF THEOREM 1

793 To prove Theorem 1, we build on theoretical results that connect data distributions with optimal
794 denoising regression. Let define the MMSE estimator of ϵ from a noisy channel \mathbf{z}_γ , which mixes \mathbf{z}
795 and ϵ at noise level γ as

$$796 \hat{\epsilon}(\mathbf{z}_\gamma, \gamma) = \mathbb{E}_{\epsilon \sim p(\epsilon | \mathbf{z}_\gamma)}[\epsilon] = \arg \min_{\tilde{\epsilon}(\mathbf{z}_\gamma, \gamma)} \mathbb{E}_{p(\epsilon)p(\mathbf{z})} [\|\epsilon - \tilde{\epsilon}(\mathbf{z}_\gamma, \gamma)\|_2^2].$$

797 Kong et al. (2023) showed that the log-likelihood of \mathbf{z} can be written solely in terms of the MMSE
798 solution:

$$801 \log p(\mathbf{z}) = -\frac{1}{2} \int_{-\infty}^{\infty} \mathbb{E}_{\epsilon} [\|\epsilon - \hat{\epsilon}(\mathbf{z}_\gamma, \gamma)\|^2] d\gamma + c, \quad (6)$$

802 where $c = -\frac{D}{2} \log(2\pi e) + \frac{D}{2} \int_{-\infty}^{\infty} \sigma(\gamma) d\gamma$ is a constant independent of the data, with D denoting
803 the dimensionality of \mathbf{z} .

804 Analogously, defining the optimal denoiser $\hat{\epsilon}(\mathbf{z}_\gamma, \gamma, \mathbf{s})$ for the conditional distribution $p(\mathbf{z} | \mathbf{s})$ yields

$$805 \log p(\mathbf{z} | \mathbf{s}) = -\frac{1}{2} \int_{-\infty}^{\infty} \mathbb{E}_{\epsilon} [\|\epsilon - \hat{\epsilon}(\mathbf{z}_\gamma, \gamma, \mathbf{s})\|^2] d\gamma + c. \quad (7)$$

Let $\tilde{\mathbf{s}} \sim q(\tilde{\mathbf{s}} \mid \mathbf{z})$ denote slots sampled from an auxiliary distribution $q(\tilde{\mathbf{s}} \mid \mathbf{z})$, which may differ from $p(\tilde{\mathbf{s}} \mid \mathbf{z})$. Using the KL divergence, we obtain

$$\begin{aligned} D_{\text{KL}}(q(\tilde{\mathbf{s}} \mid \mathbf{z}) \parallel p(\tilde{\mathbf{s}} \mid \mathbf{z})) &= \mathbb{E}_{q(\tilde{\mathbf{s}} \mid \mathbf{z})} \left[\log \frac{q(\tilde{\mathbf{s}} \mid \mathbf{z})}{p(\tilde{\mathbf{s}} \mid \mathbf{z})} \right] \\ &= \mathbb{E}_{q(\tilde{\mathbf{s}} \mid \mathbf{z})} [\log q(\tilde{\mathbf{s}} \mid \mathbf{z}) - \log p(\mathbf{z} \mid \tilde{\mathbf{s}}) - \log p(\tilde{\mathbf{s}}) + \log p(\mathbf{z})] \\ &= -\mathbb{E}_{q(\tilde{\mathbf{s}} \mid \mathbf{z})} [\log p(\mathbf{z} \mid \tilde{\mathbf{s}})] + D_{\text{KL}}(q(\tilde{\mathbf{s}} \mid \mathbf{z}) \parallel p(\tilde{\mathbf{s}})) + \log p(\mathbf{z}) . \end{aligned}$$

This leads to the following decomposition of the marginal distribution:

$$\log p(\mathbf{z}) = \mathbb{E}_{q(\tilde{\mathbf{s}} \mid \mathbf{z})} [\log p(\mathbf{z} \mid \tilde{\mathbf{s}})] + D_{\text{KL}}(q(\tilde{\mathbf{s}} \mid \mathbf{z}) \parallel p(\tilde{\mathbf{s}} \mid \mathbf{z})) - D_{\text{KL}}(q(\tilde{\mathbf{s}} \mid \mathbf{z}) \parallel p(\tilde{\mathbf{s}}))$$

Consequently, the mutual information (MI) between \mathbf{z} and \mathbf{s} can be expressed as

$$\begin{aligned} I(\mathbf{z}; \mathbf{s}) &= \mathbb{E}_{p(\mathbf{z}, \mathbf{s})} [\log p(\mathbf{z} \mid \mathbf{s})] - \mathbb{E}_{p(\mathbf{z})} [\log p(\mathbf{z})] \\ &= \mathbb{E}_{p(\mathbf{z}, \mathbf{s})} [\log p(\mathbf{z} \mid \mathbf{s})] - \mathbb{E}_{p(\mathbf{z})} \mathbb{E}_{q(\tilde{\mathbf{s}} \mid \mathbf{z})} [\log p(\mathbf{z} \mid \tilde{\mathbf{s}})] \\ &\quad - \mathbb{E}_{p(\mathbf{z})} [D_{\text{KL}}(q(\tilde{\mathbf{s}} \mid \mathbf{z}) \parallel p(\tilde{\mathbf{s}} \mid \mathbf{z})) - D_{\text{KL}}(q(\tilde{\mathbf{s}} \mid \mathbf{z}) \parallel p(\tilde{\mathbf{s}}))] \end{aligned}$$

From Eq. (7), it follows that

$$\begin{aligned} -I(\mathbf{z}; \mathbf{s}) &= \frac{1}{2} \int_{-\infty}^{\infty} \mathbb{E}_{(\mathbf{z}, \mathbf{s}), \epsilon} [\|\boldsymbol{\epsilon} - \hat{\boldsymbol{\epsilon}}(\mathbf{z}_\gamma, \gamma, \mathbf{s})\|^2] d\gamma - \frac{1}{2} \int_{-\infty}^{\infty} \mathbb{E}_{(\mathbf{z}, \tilde{\mathbf{s}}), \epsilon} [\|\boldsymbol{\epsilon} - \hat{\boldsymbol{\epsilon}}(\mathbf{z}_\gamma, \gamma, \tilde{\mathbf{s}})\|^2] d\gamma \\ &\quad + \mathbb{E}_{\mathbf{z}} [D_{\text{KL}}(q(\tilde{\mathbf{s}} \mid \mathbf{z}) \parallel p(\tilde{\mathbf{s}} \mid \mathbf{z})) - D_{\text{KL}}(q(\tilde{\mathbf{s}} \mid \mathbf{z}) \parallel p(\tilde{\mathbf{s}}))] \\ &= \frac{1}{2} \int_{-\infty}^{\infty} \left(\mathbb{E}_{(\mathbf{z}, \mathbf{s}), \epsilon} [\|\boldsymbol{\epsilon} - \hat{\boldsymbol{\epsilon}}(\mathbf{z}_\gamma, \gamma, \mathbf{s})\|^2] - \mathbb{E}_{(\mathbf{z}, \tilde{\mathbf{s}}), \epsilon} [\|\boldsymbol{\epsilon} - \hat{\boldsymbol{\epsilon}}(\mathbf{z}_\gamma, \gamma, \tilde{\mathbf{s}})\|^2] \right) d\gamma \\ &\quad + \mathbb{E}_{\mathbf{z}} [D_{\text{KL}}(q(\tilde{\mathbf{s}} \mid \mathbf{z}) \parallel p(\tilde{\mathbf{s}} \mid \mathbf{z})) - D_{\text{KL}}(q(\tilde{\mathbf{s}} \mid \mathbf{z}) \parallel p(\tilde{\mathbf{s}}))] , \end{aligned} \tag{8}$$

which completes the proof. \square

A.2 PROOF OF COROLLARY 1

Under the assumption that $q(\tilde{\mathbf{s}} \mid \mathbf{z}) = p(\tilde{\mathbf{s}})$, it yields

$$\begin{aligned} \mathbb{E}_{\mathbf{z}} [D_{\text{KL}}(q(\tilde{\mathbf{s}} \mid \mathbf{z}) \parallel p(\tilde{\mathbf{s}}))] &= \mathbb{E}_{\mathbf{z}} [D_{\text{KL}}(p(\tilde{\mathbf{s}}) \parallel p(\tilde{\mathbf{s}}))] \\ &= 0 . \end{aligned} \tag{9}$$

Similarly, the expected KL-divergence term in Eq. (8) simplifies as follows:

$$\begin{aligned} \mathbb{E}_{\mathbf{z}} [D_{\text{KL}}(q(\tilde{\mathbf{s}} \mid \mathbf{z}) \parallel p(\tilde{\mathbf{s}} \mid \mathbf{z}))] &= \mathbb{E}_{\mathbf{z}} [D_{\text{KL}}(p(\tilde{\mathbf{s}}) \parallel p(\tilde{\mathbf{s}} \mid \mathbf{z}))] \\ &= \mathbb{E}_{p(\mathbf{z})p(\tilde{\mathbf{s}})} \left[\log \frac{p(\tilde{\mathbf{s}})}{p(\tilde{\mathbf{s}} \mid \mathbf{z})} \right] \\ &= \mathbb{E}_{p(\mathbf{z})p(\tilde{\mathbf{s}})} \left[\log \frac{p(\mathbf{z})p(\tilde{\mathbf{s}})}{p(\tilde{\mathbf{s}}, \mathbf{z})} \right] \\ &= D_{\text{KL}}(p(\mathbf{z})p(\tilde{\mathbf{s}}) \parallel p(\mathbf{z}, \tilde{\mathbf{s}})) . \end{aligned} \tag{10}$$

Substituting Eqs. (9) and (10) into Eq. (8) completes the proof. \square

Remark 1. Eq. (10) shows that the additional expected KL-divergence reduces to the reverse KL divergence between the product of marginals $p(\mathbf{z})p(\tilde{\mathbf{s}})$ and the joint distribution $p(\mathbf{z}, \tilde{\mathbf{s}})$. This term complements the standard mutual information $I(\mathbf{z}; \mathbf{s})$, and together they form the Jeffreys divergence. Intuitively, while MI penalizes approximating the joint by the independent model, the reverse KL penalizes the opposite mismatch, thereby reinforcing the statistical dependence between \mathbf{z} and \mathbf{s} .

B EXPERIMENTAL SETUP

This section outlines the experimental setup of our study. We detail the datasets, baseline methods, evaluation metrics, and implementation choices used in all experiments.

864
865

B.1 DATASETS

866
867
868
869
870

MOVi-C/E (Greff et al., 2022). These two variants of the MOVi benchmark are generated with the Kubric simulator. Following prior works (Kakogeorgiou et al., 2024; Locatello et al., 2020; Seitzer et al., 2023), we evaluate on the 6,000-image validation set, since the official test sets are designed for out-of-distribution (OOD) evaluation. MOVi-C consists of complex objects and natural backgrounds, while MOVi-E includes scenes with a large numbers of objects (up to 23) per image.

871

VOC (Everingham et al., 2010). We use the PASCAL VOC 2012 “trainaug” split, which includes 10,582 images: 1,464 images from the official train set and 9,118 images from the SDB dataset (Hariharan et al., 2011). This configuration is consistent with prior works (Seitzer et al., 2023; Kakogeorgiou et al., 2024; Akan & Yemez, 2025). Training images are augmented with center cropping and then random horizontal flipping applied with a probability of 0.5. For evaluation, we use the official segmentation validation set of 1,449 images, where unlabeled pixels are excluded from scoring.

872
873
874
875
876

COCO (Lin et al., 2014). For experiments, we use the COCO 2017 dataset, consisting of 118,287 training images and 5,000 validation images. Training images are augmented with center cropping followed by random horizontal flipping with probability 0.5. For evaluation, we follow standard practice (Wu et al., 2023; Seitzer et al., 2023) by excluding crowd instance annotations and ignoring pixels corresponding to overlapping objects.

877
878
879
880
881

B.2 BASELINES

882
883

We compare CODA against state-of-the-art fully unsupervised OCL models. The baselines include SA (Locatello et al., 2020), DINOSAUR (Seitzer et al., 2023), SLATE (Singh et al., 2022a), SLATE⁺ (a variant using a pretrained VQGAN (Esser et al., 2021) instead of a dVAE), SPOT² (Kakogeorgiou et al., 2024), Stable-LSD³ (Jiang et al., 2023) SlotDiffusion⁴ (Wu et al., 2023), and SlotAdapt (Akan & Yemez, 2025). For DINOSAUR, we evaluate both MLP and autoregressive Transformer decoders. For SPOT, we report results with and without test-time permutation ensembling (SPOT w/ ENS, SPOT w/o ENS). We use the pretrained checkpoints released by the corresponding authors for SPOT and SlotDiffusion.

884
885

B.3 METRICS

886
887

Foreground Adjusted Rand Index (FG-ARI). The Adjusted Rand Index (Hubert & Arabie, 1985) (ARI) measures the similarity between two partitions by counting pairs of pixels that are consistently grouped together (or apart) in both segmentations. The score is adjusted for chance, with values ranging from 0 (random grouping) to 1 (perfect agreement). The Foreground ARI (FG-ARI) is a variant that evaluates agreement only on foreground pixels, excluding background regions.

888
889
890
891
892

Mean Intersection over Union (mIoU). The Intersection over Union (IoU) between a predicted segmentation mask and its ground-truth counterpart is defined as the ratio of their intersection to their union. The mean IoU (mIoU) is obtained by averaging these IoU values across all objects and images in the dataset. This metric measures how well the predicted segmentation masks overlap with the ground-truth masks, aggregated over all instances.

893
894
895
896
897

Mean Best Overlap (mBO). The Best Overlap (BO) score for a predicted segmentation mask is defined as the maximum IoU between that predicted mask and any ground-truth object mask in the image. The mean BO (mBO) is then computed by averaging these BO scores across all predicted masks in the dataset. Unlike mIoU, which evaluates alignment with ground-truth objects directly, mBO emphasizes how well each predicted mask corresponds to its best-matching object, making it less sensitive to under- or over-segmentation.

898
899
900
901
902

²<https://github.com/gkakogeorgiou/spot>

³<https://github.com/JindongJiang/latent-slot-diffusion>

⁴<https://github.com/Wuziyi616/SlotDiffusion>

918

Table 6: Hyperparameters used for CODA on MOVi-C, MOVi-E, VOC, and COCO datasets

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

B.4 IMPLEMENTATION DETAILS

The hyperparameters are summarized in Table 6. We initialize the U-Net denoiser and VAE components from Stable Diffusion v1.5⁵ (Rombach et al., 2022). During training, only the key, value, and output projections in the cross-attention layers are finetuned, while all other components remain frozen. For slot extraction, we employ DINOv2⁶ (Oquab et al., 2024) with a ViT-B backbone and a patch size of 14, producing feature maps of size 32×32 . The input resolution is set to 512×512 for the diffusion model and 448×448 for SA. As a form of data augmentation, we apply random horizontal flipping (Rand.HFlip) during training with a probability of 0.5. The negative slots are constructed by replacing 50% of the original slots with a subset of slots sampled from other images within the batch. CODA is trained using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 2×10^{-5} , a weight decay of 0.01, and a constant learning rate schedule with a warm-up of 2500 steps. To improve efficiency and stability, we use 16-bit mixed precision and gradient norm clipping at 1. All models are trained on 4 NVIDIA A100 GPUs with a local batch size of 32. We train for 500k steps on the COCO dataset and 250k steps on all other datasets. Training takes approximately 5.5 days for COCO and 2.7 days for the remaining datasets. For evaluation, the results are averaged over five random seeds. To ensure a fair comparison, for all FID and KID evaluations, we downsample CODA’s 512×512 outputs to 256×256 , matching the resolution used in prior works.

Attention masks for evaluation. We evaluate object segmentation using the attention masks produced by SA. At each slot iteration, attention scores are first computed using the standard softmax along the slot axis and then normalized via a weighted mean:

$$\mathbf{m}^{(t)} = \underset{N}{\text{softmax}} \left(\frac{q(\mathbf{s}^{(t)}) k(\mathbf{f})^\top}{\sqrt{D}} \right) \implies \mathbf{m}_{m,n}^{(t)} = \frac{\mathbf{m}_{m,n}^{(t)}}{\sum_{l=1}^M \mathbf{m}_{l,n}^{(t)}},$$

where D denotes the dimension of $k(\mathbf{f})$. The soft attention masks from the final iteration are converted to hard masks with argmax and used as the predicted segmentation masks for evaluation. This procedure ensures that each pixel is assigned to the slot receiving the highest attention weight.

⁵[https://huggingface.co/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)

⁶<https://github.com/facebookresearch/dinov2>

972 C VISUALIZATION OF ATTENTION SCORES
973
974

975 We visualize the attention scores in Fig. 6, showing the average attention mass assigned to semantic
976 slots versus register slots. CODA is trained on the COCO dataset, and illustrative images are randomly
977 sampled. Since the cross-attention layers in SD are multi-head, we average the attention maps across
978 both heads and noise levels.

979 Interestingly, although register slots are semantically empty, they consistently absorb a substantial
980 portion of the attention mass. This arises from the softmax normalization, which forces attention
981 scores to sum to one across all slots. When a query does not strongly correspond to any semantic
982 slot, the model must still allocate its attention; register slots act as neutral sinks that capture these
983 residual values. This mechanism helps preserve clean associations between semantic slots and object
984 concepts.

985
986 D COMPOSITIONAL IMAGE GENERATION FROM INDIVIDUAL SLOTS
987
988

989 We evaluate the ability of diffusion-based OCL methods to generate images from individual slots. As
990 shown in Fig. 7, each input image is decomposed into six slots, with each slot intended to represent
991 a distinct concept. We then condition the decoder on individual slots to generate single-concept
992 images. The last column shows reconstructions using all slots combined. While all methods can
993 reconstruct the original images when conditioned on the full slot set, most fail to produce faithful
994 generations from individual slots. Specifically, Stable-LSD (Jiang et al., 2023) produces mostly
995 texture-like patterns that poorly match the intended concepts, while SlotDiffusion (Wu et al., 2023),
996 despite being trained end-to-end, also struggles to generate coherent objects. In Stable-LSD, slots are
997 jointly trained to reconstruct the full scene, so object information can be distributed across multiple
998 slots rather than concentrated in any single one. Consequently, removing all but one slot at test time
999 puts the model in an out-of-distribution regime, and single-slot generations do not yield coherent
1000 objects even though the full slot set reconstructs the image well. This reflects slot entanglement
1001 where individual slots mix features from multiple objects. SlotAdapt (Akan & Yemez, 2025) partially
1002 alleviates this issue through an average register token, but since their embedding is injected directly
1003 into the cross-attention layers and tied to input-specific features, it limits flexibility in reusing slots
1004 across arbitrary compositions. In contrast, the input-independent register slots introduced in CODA
1005 act as residual sinks and do not encode input-specific features, enabling more faithful single-slot
1006 generations and greater compositional flexibility.

1007 To quantify these results, we report FID and KID scores by comparing single-slot generations against
1008 the real images in the training set. For each validation image, we extract six slots and generate
1009 six corresponding single-slot images, ensuring a fair comparison across methods. Results on the
1010 VOC dataset are reported in Table 10, where CODA achieves the best scores, confirming its ability to
1011 generate coherent and semantically faithful images from individual slots.

1012 Although register slots substantially reduce background entanglement, they do not enforce a hard
1013 separation between foreground and background. The attention mechanism in SA still remains soft,
1014 and our objectives do not explicitly prevent semantic slots from attending to background regions. As
1015 a result, semantic slots may still absorb contextual pixels, especially near object boundaries or in
1016 textured areas that are useful for reconstruction, when the number of slots exceeds the number of
1017 objects. As a result, small “meaningless” background fragments may still be assigned to semantic
1018 slots, as seen in Fig. 7. Empirically, however, we find that register slots substantially decrease
1019 background leakage compared to baselines without registers.

1020 Table 7: Image generalization quality when using individual slots on the VOC dataset
1021
1022

Metric	Stable-LSD	SlotDiffusion	SlotAdapt	Ours
KID $\times 10^3$	111.30	23.26	10.86	5.09
FID	189.77	94.88	47.70	27.61

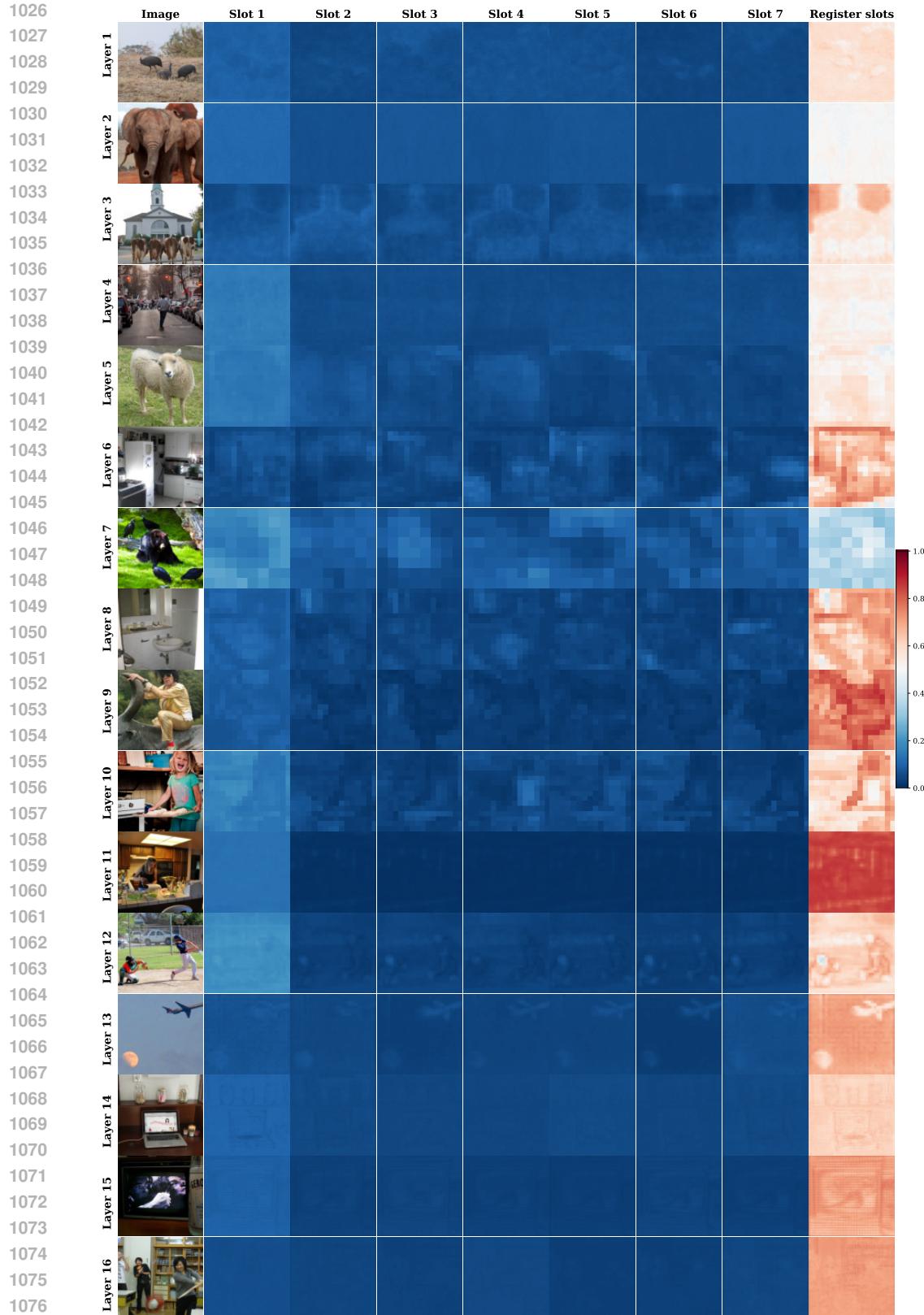


Figure 6: Attention scores across different cross-attention layers, averaged over heads and noise levels. **The first column shows the original input image fed to CODA. Each image in row Layer i and column Slot j visualizes the total attention mass assigned to slot j at layer i .** The last column reports the total attention mass absorbed by the register slots. **CODA heavily attends to the register slots across all layers.**

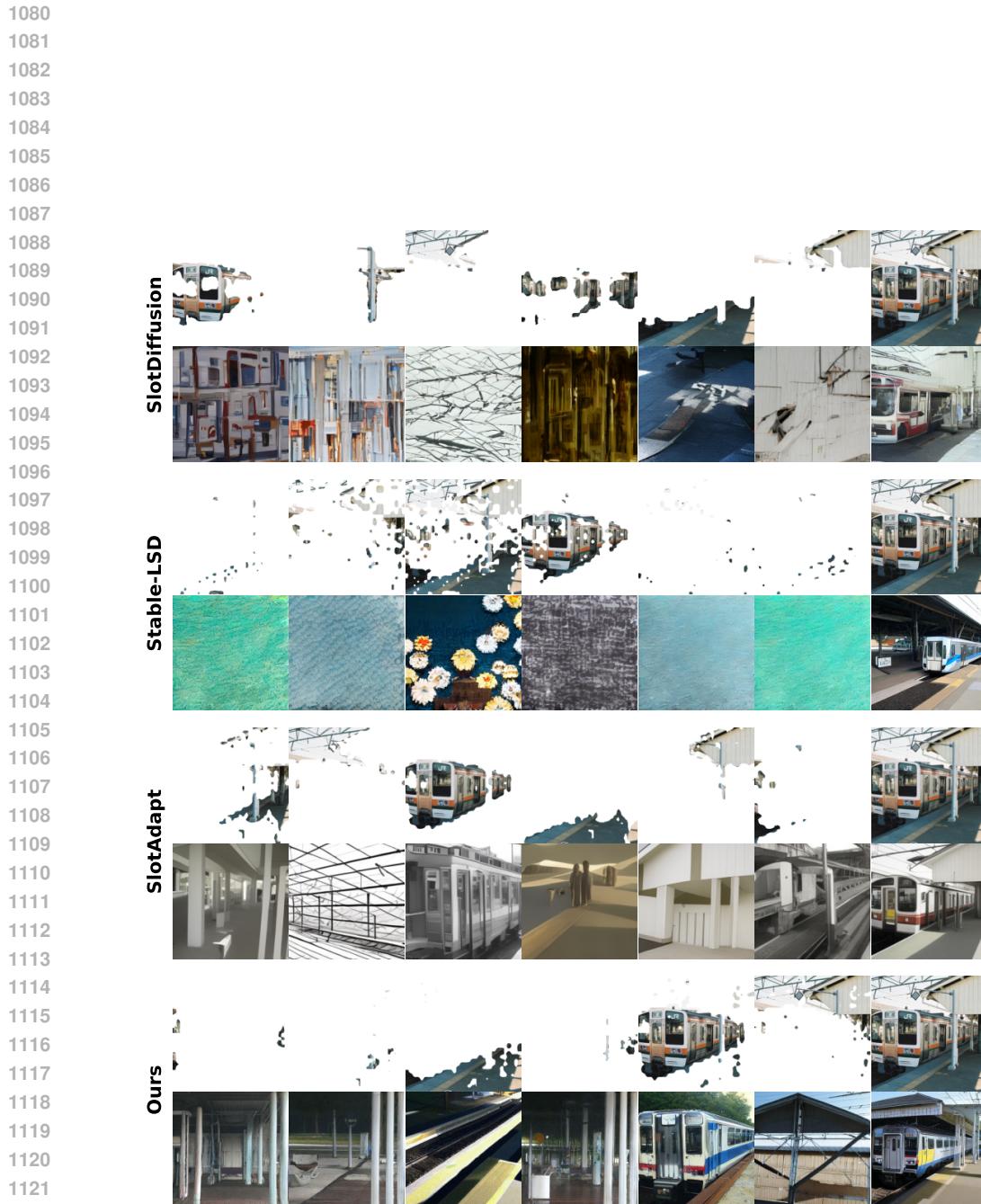
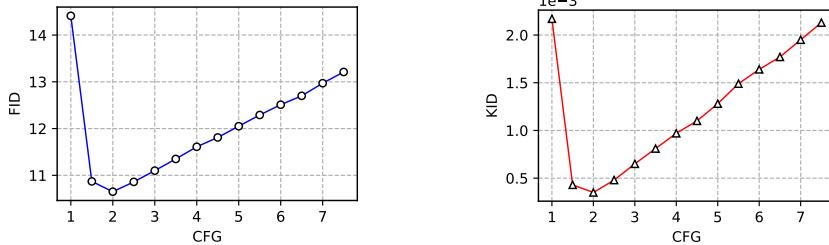


Figure 7: Image generation from individual slots. For each method, **Top**: slot masks, **Bottom**: generated images. The last column shows reconstructions from all slots. [In CODA, register slots can be regarded as part of the U-Net architecture as they are independent from the input.](#) Compared to baselines, our method generates faithful images from individual slots.

1134 E ADDITIONAL RESULTS
11351136 In this section, we present supplementary quantitative and qualitative results that provide further
1137 insights into the performance of CODA.
11381139 E.1 CLASSIFIER-FREE GUIDANCE
11401141 To enhance image generation quality, we employ classifier-free guidance (CFG) (Ho & Salimans,
1142 2021), which interpolates between conditional and unconditional diffusion predictions. A guidance
1143 scale of $CFG = 1$ corresponds to standard conditional generation. We conduct an ablation study
1144 on different CFG values to assess their impact on generation quality. As shown in Fig. 8, both
1145 FID (Heusel et al., 2017) and KID (Bińkowski et al., 2018) scores improve with moderate guidance,
1146 with CODA achieving the best performance at $CFG = 2.0$. This indicates that a balanced level of
1147 guidance enhances fidelity without over-amplifying artifacts.
11481157 Figure 8: Generation fidelity on the COCO dataset for different CFG values
11581159 E.2 LEARNABLE REGISTER SLOTS
11601161 Several works have explored trainable tokens as auxiliary inputs to transformers. For example,
1162 the [CLS] token is commonly introduced for classification in ViT (Dosovitskiy et al., 2021) and
1163 BERT (Devlin et al., 2019), while CLIP (Radford et al., 2021) employs an [EOS] token. These
1164 tokens serve as learnable registers that allow the model to store and retrieve intermediate information
1165 during inference. Goyal et al. (2024) demonstrated that appending such tokens can boost performance
1166 by increasing token interactions, thereby promoting deeper computation. Similarly, Dariset et al.
1167 (2024) utilized register tokens during pretraining to mitigate the emergence of high-norm artifacts.
1168 Motivated by these findings, we experiment with replacing our frozen CLIP-derived register slots with
1169 learnable ones. These slots are appended to the slot sequence but remain context-free placeholders.
11701171 Results on VOC with varying numbers of learnable register slots are shown in Table 8. The model
1172 without register slots ($R = 0$) performs the worst across all metrics (FG-ARI, mBO^i , mBO^c , $mIoU^i$,
1173 and $mIoU^c$). Interestingly, introducing just a single register slot leads to a significant performance
1174 boost. Further increasing the number of tokens to $R = 77$, matching the configuration used in
1175 CODA, yields only marginal improvements. Although more register slots could slightly increase
1176 computational cost, this is negligible as the number of register slots is relatively small. For instance,
1177 using 77 register slots increases GPU time by only 0.02% compared to the baseline without using
1178 any register slot. Interestingly, CODA achieves the best performance when using frozen register slots.
1179 These findings emphasize the effectiveness of register slots in improving the model performance.
11801181 Table 8: Ablation study on varying the number of register slots on the VOC dataset
1182

R	FG-ARI \uparrow	$mBO^i\uparrow$	$mBO^c\uparrow$	$mIoU^i\uparrow$	$mIoU^c\uparrow$
0	15.44	47.03	52.63	49.75	55.63
1	30.39	54.47	59.96	50.21	55.34
4	29.89	54.91	60.15	50.65	55.65
64	30.40	54.62	59.93	50.47	55.45
77	30.21	55.26	60.89	50.86	56.07
CODA	32.23	55.38	61.32	50.77	56.30

1188 E.3 ADDITIONAL ABLATION ON COCO
1189

1190 We further examine the contribution of frozen register slots on the COCO dataset, using pretrained
1191 SD as the slot decoder baseline. **Different** settings are evaluated: (i) adding register slots (+Reg), (ii)
1192 adding register slots combined with finetuning the key, value, and output projections in cross-attention
1193 layers (+CA), **and adding the contrastive loss (+CO)**. As shown in Table 9, register slots consistently
1194 improve performance in both cases, demonstrating their robustness and effectiveness when integrated
1195 into the slot sequence.

1196 Table 9: Ablation study on the COCO dataset
1197

Method	FG-ARI \uparrow	mBO $^i\uparrow$	mBO $^c\uparrow$	mIoU $^i\uparrow$	mIoU $^c\uparrow$
Baseline	20.99	29.77	37.21	32.16	41.25
Baseline + Reg	23.64	31.14	39.07	32.64	41.91
Baseline + CA	36.99	33.82	38.08	35.04	41.24
Baseline + CA + Reg	45.95	35.80	40.32	35.76	41.75
Baseline + CO	25.24	30.14	38.77	32.83	42.99
Baseline + CO + CA	35.84	34.36	38.67	36.28	42.85
Baseline + CA + Reg + CO (CODA)	47.54	36.61	41.43	36.41	42.64

1208 We further analyze the effect of the contrastive loss on image generation. Results are reported in
1209 Table 10. Without the contrastive loss, Reg+CA achieves slightly better FID/KID under compo-
1210 sitional generation than the full model Reg+CA+CO. This aligns with the role of CO, which is
1211 primarily intended to strengthen slot–image alignment and object-centric representations rather than
1212 to maximize image fidelity, and can therefore marginally degrade FID/KID. Overall, CO should
1213 be viewed as an optional component that further improve object discovery at a small cost in visual
1214 quality.

1215 Table 10: Image generation results for reconstruction and compositional generalization on the COCO
1216 dataset

Metric	Reconstruction		Compositional generation	
	Reg + CA	Reg + CA + CO	Reg + CA	Reg + CA + CO
KID $\times 10^3$	0.39	0.35	27.95	30.44
FID	10.65	10.65	29.34	31.03

1224 E.4 EFFECT OF THE CONTRASTIVE LOSS WEIGHTING
1225

1226 We conduct an ablation study to analyze the impact of the weighting coefficient λ_{cl} in the contrastive
1227 loss term of our objective function in Eq. (3). Results on the COCO dataset are shown in Table 11.
1228 The study reveals that moderate values of λ_{cl} achieve the best trade-off between the denoising
1229 and contrastive objectives, yielding the strongest overall performance. In practice, very small
1230 weights underuse the contrastive signal, while excessively large weights destabilize training and
1231 harm reconstruction quality. **Although the contrastive loss shares a similar form with the diffusion**
1232 **loss, in practice, we find that it needs to be weighted by a relatively small factor λ_{cl} to obtain good**
1233 **results. Empirically, increasing λ_{cl} consistently degrades visual quality. We hypothesize that this**
1234 **happens because the contrastive term operates on slot-level features and, when heavily weighted,**
1235 **over-emphasizes alignment at the expense of the diffusion prior, leading to overspecialized and less**
1236 **realistic samples. In contrast, a small λ_{cl} acts as a weak regularizer that improves alignment while**
1237 **keeping the diffusion objective dominant.**

1238 E.5 COMBINATION RATIOS FOR NEGATIVE SLOTS
1239

1240 This section explores different combination ratios for constructing negative slots \tilde{s} . As outlined
1241 in Section 4.3, given two slot sequences s and s' from two distinct images x and x' , we randomly
replace a fraction $r \in (0, 1]$ of slots from s with those from s' . When $r = 1$, the entire set of slots s

1242 Table 11: Ablation study on varying the weighting terms in contrastive loss on the COCO dataset
1243

λ_{cl}	FG-ARI \uparrow	mBO $^i\uparrow$	mBO $^c\uparrow$	mIoU $^i\uparrow$	mIoU $^c\uparrow$
0	45.95	35.80	40.32	35.76	41.75
0.001	46.07	35.99	40.50	36.18	42.18
0.002	45.93	35.88	40.79	35.74	42.02
0.003	47.54	36.61	41.43	36.41	42.60
0.004	46.87	36.38	41.13	36.26	42.41
0.005	44.98	35.80	40.86	35.44	41.75

1253 is replaced by \mathbf{s}' , while values $0 < r < 1$ yield mixed sets of slots $\tilde{\mathbf{s}}$ that only partially mismatch the
1254 original slots \mathbf{s} . Results on VOC (Table 12) show that $r = 0.5$ performs best, whereas $r = 1$ leads to
1255 overly trivial negative slots that provide little gradient signal. Intuitively, partial mismatches act as
1256 harder negatives, forcing the model to better discriminate correct slot-image alignments.

1258 Table 12: Ablation study on varying the portion of negative slots on the VOC dataset

r	FG-ARI \uparrow	mBO $^i\uparrow$	mBO $^c\uparrow$	mIoU $^i\uparrow$	mIoU $^c\uparrow$
0.25	32.34	54.58	60.52	50.44	55.97
0.50	32.23	55.38	61.32	50.77	56.30
0.75	33.34	55.06	60.98	50.12	55.61
1.00	32.67	54.60	59.84	49.73	54.64

1266 E.6 COMPARISON WITH WEAKLY-SUPERVISED BASELINES

1268 We compare CODA to GLASS (Singh et al., 2025), a weakly supervised approach that uses a guidance
1269 module to produce semantic masks as pseudo ground truth. In particular, BLIP-2 (Li et al., 2023) is
1270 used for caption generation to create guidance signals. While this supervision helps GLASS mitigate
1271 over-segmentation, it also limits its applicability in fully unsupervised settings. In contrast, CODA
1272 does not rely on any external supervision and can distinguish between multiple instances of the same
1273 class, enabling more fine-grained object separation and richer compositional editing.

1274 Table 13 reports the results. We additionally consider GLASS † , a variant of GLASS that uses ground-
1275 truth class labels associated with the input image. While GLASS achieves stronger performance
1276 on semantic segmentation masks, it underperforms CODA on object discovery, as reflected by lower
1277 FG-ARI scores. This suggests that CODA is better at disentangling distinct object instances at a
1278 conceptual level.

1279 Table 13: Unsupervised object segmentation comparison with weakly-supervised OCL on real-world
1280 datasets, including VOC (left) and COCO (right). The results of GLASS and GLASS † are taken
1281 from (Singh et al., 2025).

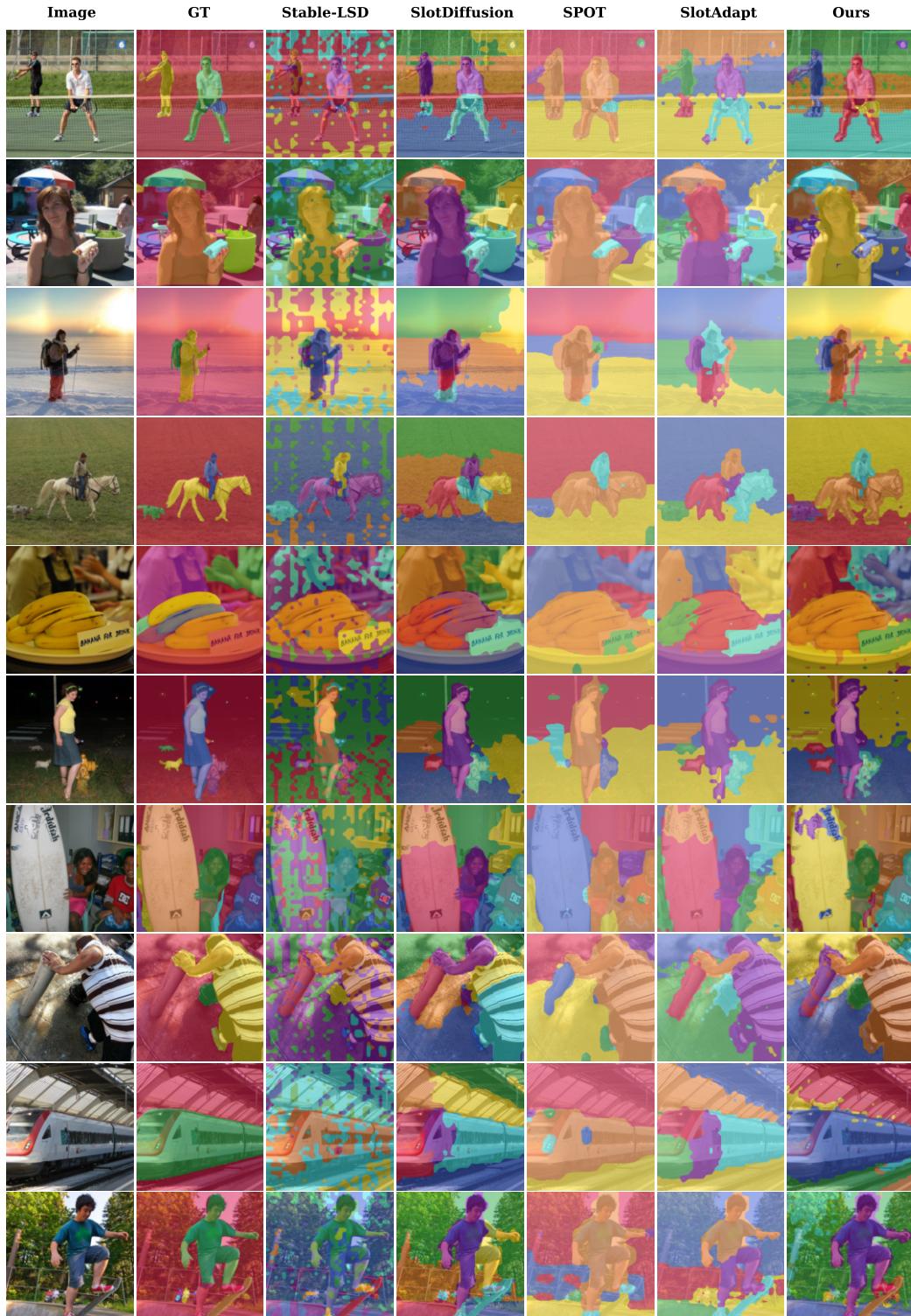
VOC	FG-ARI \uparrow	mBO $^i\uparrow$	mBO $^c\uparrow$	mIoU $^i\uparrow$	COCO	FG-ARI \uparrow	mBO $^i\uparrow$	mBO $^c\uparrow$	mIoU $^i\uparrow$
GLASS †	21.3	58.5	61.5	57.8	GLASS †	32.5	40.8	48.7	39.0
GLASS	22.5	58.9	62.2	58.1	GLASS	34.1	40.6	48.5	38.9
Ours	32.23	55.38	61.32	50.77	Ours	47.54	36.61	41.43	36.41

1289 E.7 QUALITATIVE COMPARISON

1291 To complement the quantitative results in the main paper, we present additional qualitative examples
1292 that illustrate the effectiveness of CODA. These examples provide a more complete picture of the
1293 model’s performance and highlight its advantages over previous approaches.

1294 **Object segmentation.** We visualize segmentation results in Fig. 9. CODA consistently discovers
1295 objects and identifies semantically meaningful regions in a fully unsupervised manner. Compared to

1296 diffusion-based OCL baselines such as Stable-LSD and SlotDiffusion, CODA produces cleaner masks
 1297 with fewer fragmented segments, leading to more coherent object boundaries.
 1298
 1299



1350
1351 Reconstruction. Figs. 10 and 11 show reconstructed images generated by CODA. The results
1352 demonstrate that CODA produces high-quality reconstructions when conditioned on the learned slots.
1353 Importantly, the generated images preserve semantic consistency while exhibiting visual diversity,
1354 indicating that the slots capture abstract and meaningful representations of the objects in the scene.
1355

1356 **1357 Compositional generation.** Fig. 12 showcases COCO image edits based on CODA’s learned slots,
1358 including object removal, replacement, addition, and background modification. We find that the
1359 editing operations are highly successful, introducing only minor adjustments while consistently
1360 preserving high image quality.
1361

1362 F LIMITATIONS AND FUTURE WORK

1363 While CODA achieves strong performance across synthetic and real-world benchmarks, it has several
1364 limitations that open avenues for future research. (i) CODA relies on DINOv2 features and SD
1365 backbones, which may inherit dataset-specific biases and limit generalization to domains with
1366 very different visual statistics. (ii) While our contrastive loss improves slot–image alignment, full
1367 disentanglement in cluttered or ambiguous scenes remains an open challenge. (iii) Inherited from
1368 SA, CODA still requires the number of slots to be specified in advance. This restricts flexibility in
1369 scenes with a variable or unknown number of objects, and can lead to either unused slots or missed
1370 objects (Fan et al., 2024). In our implementation, CODA uses a fixed number of semantic slots
1371 plus a small number of register slots. Note that the register slots do not reduce semantic capacity
1372 but also cannot resolve the fundamental bottleneck when the true number of objects exceeds the
1373 available semantic slots, in which case objects may still be merged into the same slot despite reduced
1374 background entanglement. This is because the contrastive alignment is defined only for semantic
1375 slots, which encourages them to explain object-level content, while register slots are discouraged
1376 from encoding object-like structure.
1377

1378 Despite our improvements in object discovery and compositional control, faithfully preserving fine-
1379 grained images in reconstructions and compositional edits remains challenging, as also observed in
1380 prior slot diffusion models (e.g., SlotAdapt). We attribute this to several factors: (i) slot representations
1381 act as a low-dimensional bottleneck that must compress both geometry and detailed appearance;
1382 (ii) the diffusion backbone is pretrained to model images (and text–image pairs) but not to decode
1383 from slot-based object latents; and (iii) our training objective emphasizes object-centric grouping and
1384 controllability rather than exact pixel-level reconstruction. Improving image reconstruction in OCL
1385 is an important direction for future work.
1386

1387 Although CODA is conceptually compatible with a wide range of diffusion backbones, in this work
1388 we restrict ourselves to a relatively small, widely used backbone to ensure fair comparison with
1389 prior object-centric methods (e.g., SlotAdapt, LSD) and to keep computational and memory require-
1390 ments manageable. We do not explore scaling CODA to larger, more recent architectures such as
1391 SDXL (Podell et al., 2024) or FLUX (Labs, 2024), which would require substantially more resources
1392 and additional engineering effort to handle larger feature maps, model sizes, and more sophisticated
1393 text-conditioning pipelines (e.g., multiple text encoders and auxiliary pooled text embeddings). De-
1394 spite these limitations, we believe that CODA offers a scalable and conceptually simple foundation for
1395 advancing OCL. A promising direction for future work is extending CODA to Diffusion Transformers
1396 (DiTs) (Peebles & Xie, 2023), where slot representations could naturally replace or complement
1397 text embeddings in cross-attention, enabling richer and more flexible compositional control, as well
1398 as investigating integrations with larger backbones such as SDXL/FLUX to more fully assess the
1399 generality of our approach.
1400

1401
1402
1403

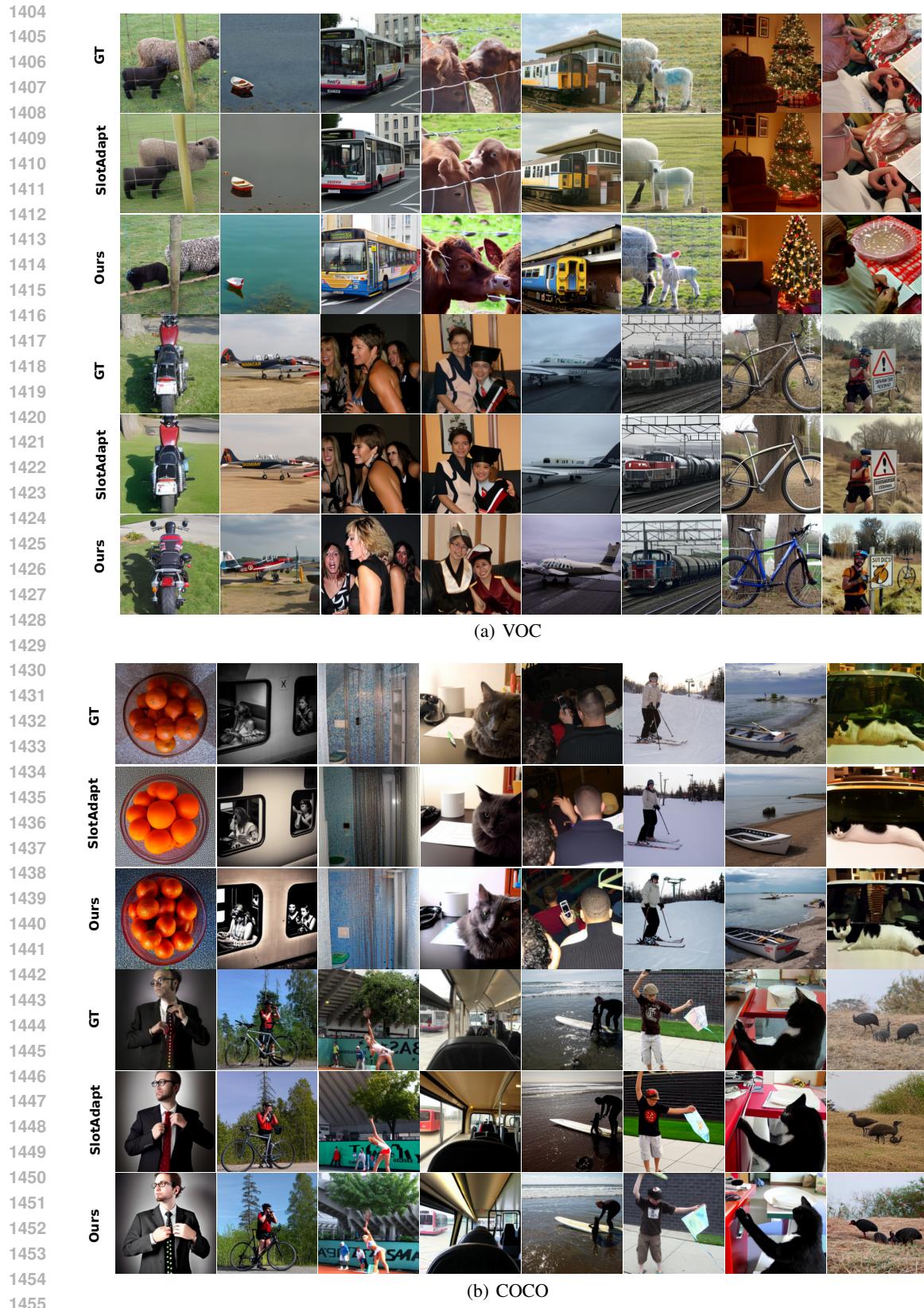


Figure 10: Reconstructed images on real-world datasets. **Top:** ground-truth (GT) images. **Middle:** images reconstructed by SlotAdapt. **Bottom:** images reconstructed by CODA.

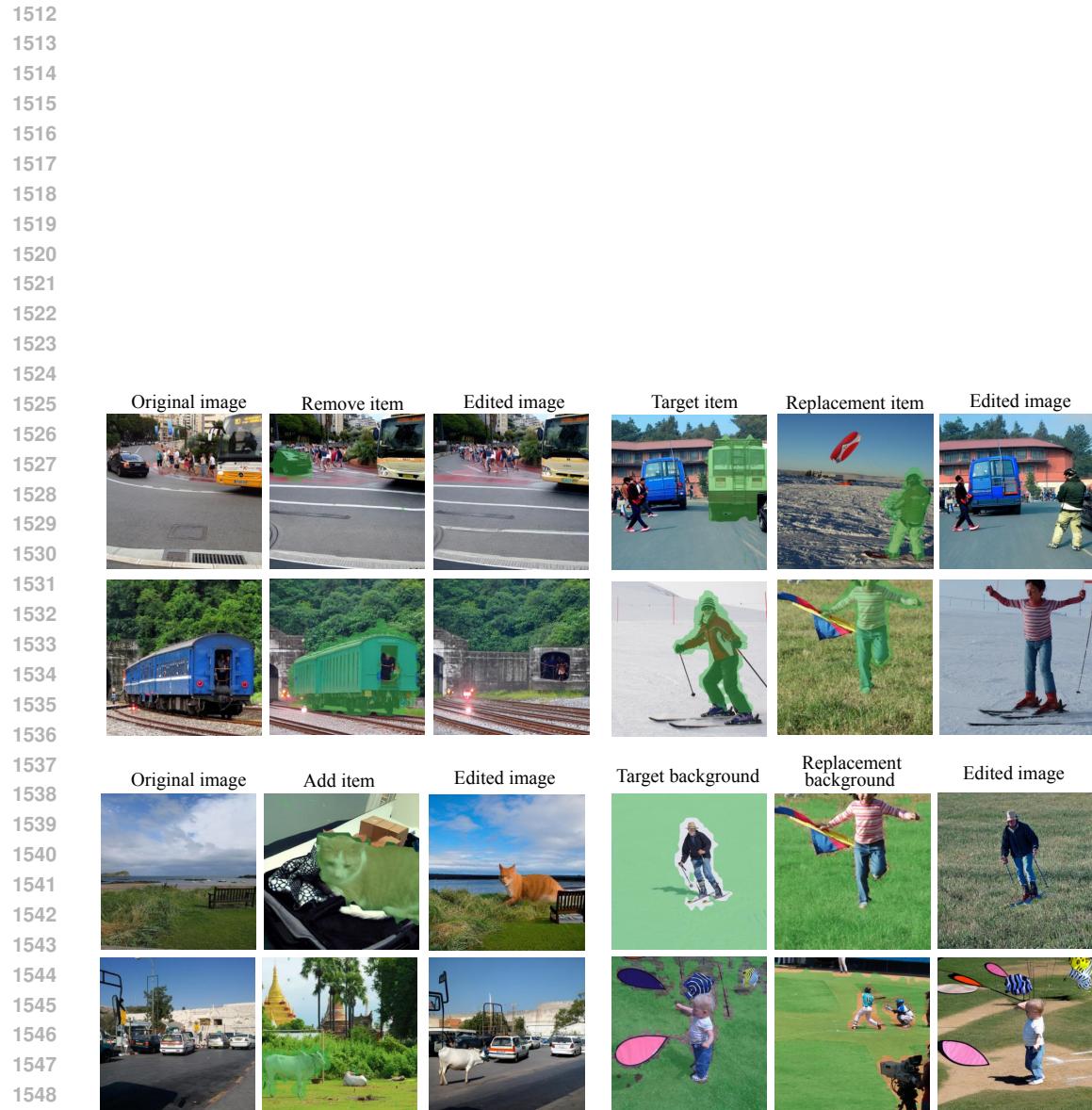


Figure 12: **Illustration of compositional editing.** CODA composes novel scenes from real-world images by removing (top left), swapping (top right), and adding (bottom left) slots, as well as changing the background (bottom right). The masked objects indicate the slots that are added, removed, or replaced relative to the original image.