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ABSTRACT

Image restoration is a challenging and ill-posed problem which also has been a
long-standing issue. However, most of learning based restoration methods are
proposed to target one degradation type which means they are lack of gener-
alization. In this paper, we proposed a multi-branch restoration model inspired
from the Human Visual System (i.e., Retinal Ganglion Cells) which can achieve
multiple restoration tasks in a general framework. The experiments show that
the proposed multi-branch architecture, called CMFNet, has competitive perfor-
mance results on four datasets, including image dehazing, deraindrop, and de-
blurring, which are very common applications for autonomous cars. The source
code and pretrained models of three restoration tasks are available at https:
//github.com/publish_after_accepting/CMFNet.

1 INTRODUCTION

Image restoration is a low-level vision task, and is usually the preprocessing step to improve the
performance of the high-level vision task, such as image classification, object detection or image
segmentation. As its name implies, Image Restoration is meant to restore an image free from degra-
dation. Common degraded types include additive noise, blur, and JPEG blocking effect. However,
with the rapid development of computer vision in recent years, the types of degradation that im-
age restoration can handle are becoming more and more diverse, like super-resolution (Ledig et al.,
2017; Zhang et al., 2018c), single image dehazing (Zhang & Patel, 2018; Qin et al., 2020), image
deraining (Ren et al., 2019; Zhang et al., 2019a) or even demoireing (Yuan et al., 2019; 2020).

For decades, traditional image restoration was mostly based on external image prior (He et al., 2010;
Shi et al., 2013) or dictionary learning (Hu et al., 2010; Dong et al., 2011) which are generally called
model-based algorithms. Although these methods performed acceptably on the ill-posed problem
as above mentioned, there are some shortages for model-based optimization methods, like time-
consuming, computationally expensive and difficult to restore complex image textures. With the
success of learning-based algorithms on both high-level (Krizhevsky et al., 2012) and low-level
vision tasks, convolution neural network (CNN) is dominant in the computer vision field nowadays.

CNN-based methods not only outperform the model-based algorithms, but also have the state-of-the-
art results in lots of image restoration tasks. Numerous networks and techniques of learning-based
algorithms, including encoder-decoders (Mao et al., 2016), generative models (Ledig et al., 2017),
residual learning (Zhang et al., 2017), and attention mechanisms (Chen et al., 2016) have been
proposed to enhance the performance of image restoration tasks. In addition to different network
architectures, the complex blocks (e.g., residual block, residual dense block (RDB) (Zhang et al.,
2018c)) or modules (Convolution Block Attention Module (CBAM) (Woo et al., 2018) and Dual
Attention Units (DAU) (Zamir et al., 2020a;b)) are presented to replace the naive convolutions.

We observed that most of restoration models only focus on one degradation type to restore (Nah
et al., 2017b; Zhang et al., 2018c; Ren et al., 2019; Chen et al., 2020; Qin et al., 2020). The perfor-
mances of these restoration models are impressive, but are not able to restore other degradation tasks.
To put it another way, the generalization ability of these models has to be improved. Fortunately, all
of the aforementioned restoration tasks have common final objective (i.e., converting an image from
illegible and low-quality to satisfactory and high-quality). Thus, we proposed a general framework
inspired from the Human Visual System (HVS) which could conduct the restoration tasks, including
deblurring, dehazing and deraining. The reason why we focus on these three restoration tasks is
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because they usually occur at the environment of autonomous cars. Hence, the proposed framework
is practical and prospective in the future applications.

The proposed compound multi-branch feature fusion image restoration architecture, called CMFNet
has several important characteristics. First, inspired from the early path of the HVS, we use three
types of existing attention blocks, including channel attention, spatial attention, and pixel attention
blocks to simulate the Retina Ganglion Cells (RGCs) independently. The main idea is to separate
different attention features from stacking multiple complicated blocks to multiple branches with
simple block architecture. Second, we use the Supervised Attention Module (SAM) proposed by
Waqas Zamir et al. (2021) to improve the performance. We also remove the supervised loss between
the output images from SAM and ground truth images, because we think it would limit the learning
of network. Thirdly, we propose a mixed skip connection (MSC) to replace traditional residual
connection with a learnable constant, which makes the residual learning more flexible on different
restoration tasks. Finally, we optimize our CMFNet end-to-end by a novel loss function, which
provides more selections about the loss function rather than the common losses. All of these key
components about our architecture will be described in Section 3 in detail.

Overall, our main contributions of this paper can be summarized as the following:

• We propose a restoration model CMFNet inspired by the RGCs which can handle multiple
image restoration tasks, including image deblurring, dehazing and deraindrop with single
framework.

• We propose the skip connection with a learnable parameter named mixed residual mod-
ule to integrate the branch information. The experiments proved that it is better than the
monotonous residual pathway aggregation.

• A new loss function which comprises two widely used evaluation metrics (i.e., Peak Signal-
to-Noise Ratio (PSNR) and Structure Similarity (SSIM) Index) in restoration task is pro-
posed.

• We demonstrate the competitive results of our CMFNet in both synthetic and real-world
datasets for three types of restoration tasks, especially the improvements of SSIM values.
In other words, the performances of our model are closer to the human sense.

2 RELATED WORK

With the rapid development of hardware (e.g., Graphics Processing Unit (GPU)), the deep learning
methods become more and more mature, which make the computer vision prosperously grow in
recent years. However, as aforementioned, most of methods perform well in specific restoration
task. In this paper, we propose a general architecture to solve deblurring, dehazing and deraining.
Also, we are going to introduce the related works about RGCs and attention mechanism. Then, we
will describe the representative methods for each task in detail.

Retina Ganglion Cells (RGCs). Human is the final receiver of the images. The pictures we saw
were passed from the complicated visual neural network, and the early receivers from the real world
are RGCs, which is mainly composed of 3 types of cells: Parvocellular cells (P-cells), Koniocellular
cells (K-cells) and Magnocellular cells (M-cells). They are sensitive to different external stimuli.
First, P-cells are sensitive to the shape and color of images, and account for 80% of the RGCs. The
second one is the K-cells, the smallest RGCs, as small as dust, which mainly respond to changes
in color. The third one is M-cells, the biggest RGCs, and it only transmits the light/dark signal,
and is more sensitive at low spatial frequencies than high spatial frequencies. All of these cells
have independent pathways toward the Lateral Geniculate Nucleus (LGN). Some computer vision
researches such as Image Quality Assessment (IQA) (Chang et al., 2020) and Image Reconstruction
(Zhang et al., 2020) are based on RGCs, too.

Attention Mechanism. Due to the success of the application on the high-level vision tasks, like
object detection and image classification, attention mechanism can also be used in low-level vision
tasks (Anwar & Barnes, 2019). Well known attention modules or blocks are mainly distinguished
by the dimension of the generated mask, such as channel attention (Zhang et al., 2018b), spatial
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attention, pixel attention (Chen et al., 2016) and combined attention blocks (Qin et al., 2020; Zamir
et al., 2020b). Although the attention could enhance the performance in general, some researchers
consider that attention will increase the inference and training time of the model (Liu et al., 2020),
and the benefit of using it is very small.

Image Dehazing. Image dehazing has the conventional model-based methods. For example, some
researchers (Narasimhan & Nayar, 2000; 2002) provided an important model to approximate the
haze effect which is shown as: x̂ = x �m + A � (1 −m), where x̂ and x mean the degradative
images and restored images, respectively. A and m are the global atmospheric light and medium
transmission map, and � represented as pixel-wise multiplication. In addition, He et al. (2010) pro-
posed an image-prior method depends on the statistical results called Deep Channel Prior (DCP) and
has the promising results. As for learning-based methods, the techniques such as attention, feature
fusion (Qin et al., 2020) and contrastive learning (Wu et al., 2021) are widely used to ameliorate
the single image dehaze performance. Moreover, they outperform the traditional prior-based image
dehazing.

Image Deraining. For raining dataset, it is almost impossible to get the real-world rainy images
until now, so most of experiments are based on synthetic images. And previous tradition deraining
methods (Barnum et al., 2010; Bossu et al., 2011) almost all use linear-mapping transformations to
restore the rainy images. However, these methods are not robust when the rainy input has variations.
Thus, the learning-based model is here again (Zhang et al., 2019a; Chen et al., 2021)! But we want
to emphasize all of these methods are trained on artificial rainy images. On the other hand, the de-
raindrop restoration task which is the branch of image deraining can acquire the real-world dataset.
Qian et al. (2018) used two pieces of exactly the same glasses to obtain the real-world raindrop
dataset. Compared with the synthesized rain streaks dataset, the Raindrop dataset is closer to the
images captured from cameras.

Image Deblurring. Because the real-world supervised blur data is difficult to acquire, most of
traditional deblur methods, like deconvolution (Krahmer et al., 2006; Carasso, 2001), image prior
(Joshi et al., 2010; Shi et al., 2013) are generally tested on synthesized images from x̂ to x, which
can be represented as: x̂ = x⊗k+n, where x̂ is the blurred image generated from clean image x, k
is the blur kernel or called convolution kernel, ⊗ denotes the convolution operator and n is additive
noise. However, the model-based methods are not good at dealing with real-world blur such as hand-
shake motion blur or defocus blur. On the contrary, CNN-based methods can handle real-world blur
very well if we have the dataset of pair images (Nah et al., 2017b). Tao et al. (2018) proposed a
multi-scale method based on encoder-decoder recurrent network (SRN) which is the first method
integrating the Recursive Neural Networks (RNN) into deblur model. Some methods (Kupyn et al.,
2018; 2019) based on Generative Adversarial Network (GAN) also get the competitive evaluation
scores on real-world deblur results. Recently, multi-stage architecture network (Waqas Zamir et al.,
2021; Chen et al., 2021) have state-of-the-art results in the deblur restoration task.

3 PROPOSED METHOD

In this section, we mainly introduce the multi-branch network CMFNet, and provide more explana-
tions about the components we proposed in the following subsections.

3.1 CMFNET

The architecture of the proposed compound multi-branch feature fusion network (CMFNet) is illus-
trated in Fig. 1. CMFNet consists of three branches which simulate the P-cells, M-cells and K-cells
after receiving signals from cone and rod cells. Each branch is based on the U-Net (Ronneberger
et al., 2015), and we use different attention blocks to replace naive convolutions in each branch.
The output features of encoder-decoder branch networks will enter the Residual Attention Module
(RAM) which is obtained by removing the loss calculation from (Waqas Zamir et al., 2021). And
we replace 1 × 1 convolutions in the original SAM with 3 × 3 convolutions (Chen et al., 2021).
Then, each RAM will generate two outputs (e.g., FC and IC in the upper branch as shown in Fig.
1), where FC ∈ RH×W×C denotes the feature map generated by the mask (M) obtained by passing
the image IC through sigmoid, and IC ∈ RH×W×3 denotes the output image obtained by passing
the degraded image through 3 × 3 convolution. The IC , IP and IS from three branches will be
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Figure 1: Proposed compound multi-branch feature fusion network (CMFNet) architecture. Each
branch is based on 3 layers of U-Net with 3 attention blocks in each scale.

fed into the Mixed Skip Connection (MSC) to obtain the residual image IR. Finally, IR and the
concatenated fusion features (FC , FP , and FS) will both go through 3× 3 convolution to aggregate
the restored image.

3.2 BRANCH NETWORK

The CMFNet comprises three branch networks which are based on the U-Nets, and each of branch
network extracts shallow features by two 3 × 3 convolutions and one Parametric ReLU (PReLU).
All of the branch networks have 3 layers of U-Net architecture with 3 blocks at each scale as shown
in Fig. 2. The main difference among the three branch networks is the type of attention blocks used
in the U-Net. We will introduce each branch network in detail as below:

P-cells network. We use the pixel attention block (PAB) (Zhao et al., 2020) to simulate the P-cells,
which are sensitive to the color and shape (edge) of images. The PAB is shown in Fig. 4(b), where it
generates the 3-D attention mask (M ∈ RH×W×C) without any pooling or sampling, which means
the output feature map has local information. However, because the dimension of the mask is the
largest among the three attention blocks, the computation time is the most. On the contrary, the PAB
can acquire the most accurate attention features. We observed that the PAB and P-cells have one-
to-one correspondence: 1) the transmission speed of P-cells is the slowest since the pixel attention
map has the most parameters, and 2) the spatial resolution of P-cells is the biggest which is related
to the largest dimension of the pixel attention mask.

M-cells network. As for M-cells, it is almost exactly the opposite of the P-cells. M-cells have the
fastest transmission speed and the smallest spatial resolution, which can be explained by the channel
attention block (CAB). The CAB (Fig. 4(c)) is proposed by (Zhang et al., 2018b) and is widely used
on a lot of restoration tasks (Zamir et al., 2020b; Zhao et al., 2020; Waqas Zamir et al., 2021). It
uses global average pooling (GAP) to squeeze the input features from 3-dimension to 1-dimension,
and then generates the 1-D attention mask (M ∈ RC). Because of the GAP, the output features have
non-local (global) information, corresponding to the response to the luminance of images for the
M-cells.

K-cells network. In either transmission speed or spatial resolution, K-cells are in the medium
among the three. We simulate it by the spatial attention block (SAB) illustrated in Fig. 4(d) which
can generate the 2-D attention mask (M ∈ RH×W ). The same as channel attention, spatial attention
is also operated by the GAP or max average pooling (MAP) to squeeze features to 2-dimension.
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Because of the pooling, the output features have non-local (global) information. In other words, the
K-cells mainly responds to changes in color which also belongs to the global information.

Figure 2: Branch network architecture Figure 3: Mixed Skip Connection (MSC).

3.3 MIXED SKIP CONNECTION

Residual connection was first proposed by (He et al., 2016) in image recognition tasks. There are
countless deep learning models using it nowadays. In our CMFNet, we proposed a mixed skip
connection (MSC) which integrates the output images from RAM of each branch. Fig. 3 is the
framework of MSC, which has three input pathways and uses a learnable constant a(θ) to optimize
the whole architecture by the backward propagation. The main pathway (output image of Pixel
branch network) multiplies by the parameter a(θ), and the others (output images of both Channel
and Spatial branch networks) multiply by (1 − a(θ))/2. As a result, the output residual image IR
from MSC can be represented as:

IR = MSC(IC , IP , IS) = (
1− a(θ)

2
) ∗ IC + a(θ) ∗ IP + (

1− a(θ)

2
) ∗ IS , (1)

where IC , IP and IS are the output images from channel, pixel and spatial branch networks, respec-
tively. a(θ) is a learnable parameter from sigmoid activation function which is bounded from 0 to 1
by parameter θ. We can also think of it as a weighted average skip connection, and we will prove
the proposed MSC is effective in enhancing the performance by the ablation study in Section 4.6.

(a) Attention Blocks (b) Pixel attention (c) Channel attention (d) Spatial attention

Figure 4: Attention blocks framework (a) and different attentions modules (b), (c) and (d).

3.4 LOSS FUNCTION

In the image restoration task, we usually used the Mean Absolute Error (MAE) or Mean Square
Error (MSE) as a loss function to optimize the network. However, both L1 and L2 losses belong
to pixel loss which did not consider the global information, so it is usually suffered from the over-
smoothing problem. There were many loss functions proposed, such as perceptual loss or even
compound loss that combines several loss functions together to solve the problem. To focus on the
tradeoff between human sense and metric scores, we propose the new loss function to optimize our
CMFNet end-to-end as shown below:

Ltotal = Lps(X,Y ) + αLedge(X,Y ), (2)

where X ∈ RB×C×H×W denotes the degradation images, B is the batch size of training data, C is
the number of feature channels, H andW are the size of images. And Y represents the ground-truth
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data. The total loss function is composed of two terms, Lps and Ledge. The Lps is the loss which is
comprised of Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity (SSIM) Index as follows:

Lps =
1− SSIM(X,Y )

PSNR(X,Y ) + ω
, (3)

where the parameter ω is a small constant which is empirically set to 0.005. It is used to stabilize
the value which can prevent the occurrence of Not a Number (NaN) or infinity when PSNR is
extremely small. Our proposed PS loss has two advantages. First, it is suitable for different image
restoration tasks because it adopts two standard metrics as the loss function. The other advantage is
PS loss does not need additional parameters compared to simply combining different loss functions
in several terms with weighting parameters. In other words, it will save time in finding the optimal
parameter values by performing many experiments. The second term Ledge is the edge loss which
refers to (Jiang et al., 2020) and can be represented as:

Ledge =
√
||∆(X)−∆(Y )||2 + ε2, (4)

where ∆ means the Laplacian operator. The constants α in Eq. (2) and ε in Eq. (4) are set to 0.05
and 10−3, the same as (Waqas Zamir et al., 2021).

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Implementation Details. Our CMFNet is an end-to-end trainable model without any pretrained
networks and implemented by PyTorch 1.8.0 with one NVIDIA GTX 1080Ti GPU. We train separate
models for three different tasks and the feature channel numbers are all set to 96. The models are
trained using Adam optimizer with initial learning rate of 2 × 10−4, and decreased to 1 × 10−6

by cosine annealing strategy. Because of the limitation of the hardware equipment, we train our
network on 256 × 256 patches with a batch size of only 2 for 4 × 104iterations. Random flip and
rotation are applied as data augmentation.

Evaluation Metrics. As mentioned in Section 3.4, PSNR is widely used in evaluating the quality of
restored images. However, it is sometimes not close to real human perception when PSNR metric is
high. Therefore, we also consider the SSIM index in our experiments, which can represent human
perceptual feelings more accurately. Note that both PSNR and SSIM values are all the higher the
better, and the unit of PSNR is decibel (dB). The training datasets for each restoration task are
described as follows.

4.2 EXPERIMENT DATASETS

Image Dehazing. Since we want our proposed CMFNet could handle the real-world haze, we
use the I-Haze (Ancuti et al., 2018a) and O-Haze (Ancuti et al., 2018b) which contain 30 and 45
real-world high definition hazy pair images for training, respectively. And we test the proposed
CMFNet on real-world haze dataset D-haze (Ancuti et al., 2019) that contains 55 pair images with
the resolution of 1600× 1200.

Image Deraindrop. We use the DeRainDrop dataset (Qian et al., 2018) for training and testing. It
provides 861 image pairs for training and has two testing datasets (i.e., testA and testB). TestA is a
subset of testB, which contains 58 pairs of good aligned images. TestB has 249 image pairs with a
small portion of images which are not perfectly aligned.

Image Deblurring. For image deblurring, we train the images on the synthesized GoPro dataset
(Nah et al., 2017a) as most deblur methods Waqas Zamir et al. (2021); Chen et al. (2021) did.
GoPro dataset has 3,124 pair blurred images with the size of 1280 × 720, including 2,013 images
for training and 1,111 blurred/sharp images for testing. As in Waqas Zamir et al. (2021), we also
use the model pretrained on GoPro to test the HIDE (Shen et al., 2019) dataset which contains 2,025
test images by human-aware motion blur.
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4.3 IMAGE DEHAZING PERFORMANCE

For image dehazing task, we compare the proposed method with the prior-based method (He et al.,
2010), learning-based methods (Cai et al., 2016; Li et al., 2017; Liu et al., 2019a; Hong et al., 2020;
Qin et al., 2020; Dong et al., 2020), and the contrastive learning method (Wu et al., 2021). Table
1 shows that our method achieves the best SSIM score (0.533) on D-Haze dataset (Ancuti et al.,
2019), which means our restored images are closer to human perception. It should be noted that
other proposed dehazing methods could not restore the real-world hazy images very well as shown
in Fig. 5.

Table 1: Image Dehazing results on Dense-
Haze (D-Haze) dataset (Ancuti et al., 2019).
Best and second best scores are highlighted
and underline, respectively.

D-Haze (Ancuti et al., 2019)
Method PSNR SSIM

DCP (He et al., 2010) 10.06 0.386
AOD-Net (Li et al., 2017) 13.14 0.414
GridDehazeNet (Liu et al., 2019a) 13.31 0.368
DehazeNet (Cai et al., 2016) 13.84 0.425
KDDN (Hong et al., 2020) 14.28 0.407
FFA-Net (Qin et al., 2020) 14.39 0.452
MSBDN (Dong et al., 2020) 15.37 0.486
AECR-Net (Wu et al., 2021) 15.80 0.466

CMFNet (Ours) 14.46 0.533

Table 2: Image Deraindrop results on DeRain-
Drop test dataset (Qian et al., 2018). Best
and second best scores are highlighted and
underlined, respectively.

DeRainDrop (Qian et al., 2018)
Method PSNR SSIM

Eigen13 (Eigen et al., 2013) 23.74 0.799
Pix2Pix (Isola et al., 2017) 27.73 0.876
DeRaindrop (w/o GAN) 29.25 0.785
D-DAM (Zhang et al., 2021) 30.63 0.927
A2Net (Lin et al., 2020) 30.79 0.926
BPP (Michelini et al., 2021) 30.85 0.918
DuRN (Liu et al., 2019b) 31.24 0.926
DeRaindrop (Qian et al., 2018) 31.57 0.902

CMFNet (Ours) 31.49 0.933

11.673/0.5477
Hazy

10.074/0.5088
DCP

12.819/0.5749
DehazeNet

13.024/0.5708
GridDehazeNet

12.207/0.5565
FFA-Net

15.494/0.5841
AOD-Net

16.477/0.5827
MSBDN

18.846/0.5873
AECR-Net

18.721/0.6949
CMFNet (Ours)

PSNR/SSIM
GT

Figure 5: Visual comparisons for image dehazing on the D-Haze dataset (Ancuti et al., 2019) .

4.4 IMAGE DERAINING PERFORMANCE

In Table 2, we report the PSNR/SSIM scores of deraindrop task compared with several deraindrop
methods on the DeRainDrop testA dataset. We follow Qian et al. (2018)’s quantitative evaluation
which transforms the testing images from RGB to YCbCr color space to calculate PSNR and SSIM
metrics. Our CMFNet achieves the best SSIM score (0.933) and second best PSNR score (31.49
dB). Fig. 6 illustrates visual results on DeRainDrop testB images. We are not able to generate the
deraindrop images of both BPP(Michelini et al., 2021) and D-DAM (Zhang et al., 2021) methods
because the source codes are not available yet when we submit our paper. However, it still shows
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our method effectively removes raindrops and restored images are visually closer to the ground-truth
than the other models.

18.13/0.699
Raindrop Image

18.13/0.699
Raindrop

17.05/0.580
Eigen

25.24/0.831
DeRainDrop

25.61/0.846
DuRN

26.85/0.875
CMFNet (Ours)

PSNR/SSIM
GT

21.54/0.788
Raindrop

18.686/0.686
Eigen

27.89/0.874
DeRainDrop

28.14/0.883
DuRN

28.83/0.895
CMFNet (Ours)

PSNR/SSIM
GT

Figure 6: Visual comparisons for image deraindrop on the DeRainDrop dataset (Qian et al., 2018) .

4.5 IMAGE DEBLURRING PERFORMANCE

As for deblurring, Table 3 shows the results with both synthetic and real-world dataset. In Table 3,
although our CMFNet does not achieve the best performance, the evaluation scores are still accept-
able (ranked in the middle). It means the proposed model could handle the degradations occurred on
the images taken by cameras of autonomous cars. Due to page limit, visual comparison of deblurring
results are provided in the appendix.

Table 3: Image Deblurring results on GoPro (Nah et al., 2017a), HIDE (Shen et al., 2019) datasets.

GoPro (Nah et al., 2017a) HIDE (Shen et al., 2019)
Methods PSNR SSIM PSNR SSIM

Xu et al. (2013) 21.00 0.741 - -
DeblurGAN(Kupyn et al., 2018) 28.70 0.858 24.51 0.871
Nah et al. (2017a) 29.08 0.914 25.73 0.874
DeblurGAN-v2 (Kupyn et al., 2019) 29.55 0.934 26.61 0.875
Zhang et al. (2018a) 29.19 0.931 - -
SRN (Tao et al., 2018) 30.26 0.934 28.36 0.915
DMPHN (Zhang et al., 2019b) 31.20 0.940 29.09 0.924
MPRNet (Waqas Zamir et al., 2021) 32.66 0.959 30.96 0.939

CMFNet (Ours) 30.54 0.913 28.23 0.882

4.6 ABLATION STUDY

To demonstrate the contribution of each component of the proposed CMFNet, we present ablation
studies to analyze different elements, including multi-branch, proposed PS loss and MSC. The abla-
tion studies are experimented on the GoPro dataset (Nah et al., 2017a) with training image patches
of size 128× 128 for 2× 104 iterations. The whole ablation study results are shown in Table 4.
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Number of branches. We set our model from single branch to triple branch framework, which
proves that the multi-branch architecture is effective in improving the performance (from 28.00 dB
to 28.88 dB).

Attention blocks of branch networks. Because each U-Net branch network is comprised of differ-
ent attention blocks to simulate the RGCs, we present the experiments of different attention blocks,
and validate the pixel attention block has better performance (28.63 dB) than channel and spatial
attention blocks (28.00 dB and 28.26 dB, respectively).

Choices of loss functions. As for the choice of the loss functions, we provide the results of widely
used MAE (L1 loss) and proposed PS loss. We could observe that the result with PS loss has
a maximum growth in SSIM metrics (+0.008) without any additional parameters. It shows the
proposed PS loss is good at restoring perceptually-faithful images.

Skip connection. The last component is the skip connection. We can observe the CMFNet with
proposed MSC yields the best performance (29.16 dB), which also validates the effectiveness of
our MSC design. In the process of our experiments, the gradient exploding problem occurs, so we
decrease the initial learning rate from 2×10−4 to 10−4. However, the network with skip connection
in the last two rows can successfully be trained with the initial learning rate of 2× 10−4.

Table 4: Ablation study results of CMFNet. The last two columns are the average PSNR and SSIM
of GoPro testing images.

# of Branch Attention block Loss SC PSNR SSIM

1 Channel attention (CA) L1 loss % 28.00 0.858
1 Spatial attention (SA) L1 loss % 28.26 0.859
1 Pixel attention (PA) L1 loss % 28.63 0.868

2 CA+ SA L1 loss % 28.58 0.873
2 CA+ PA L1 loss % 28.76 0.870
2 SA+ PA L1 loss % 28.81 0.872

3 CA+ PA+SA L1 loss % 28.88 0.873
3 CA+ PA+SA PS loss % 28.90 0.881
3 CA+ PA+SA PS loss "(ASC) 29.08 0.886
3 CA+ PA+SA PS loss "(MSC) 29.16 0.887

5 CONCLUSION

In this paper, we proposed a general framework for image restoration which mimics the multi-path
RGCs, called CMFNet. It could restore the degradation types, including blur, haze and rain, which
usually occur on the images taking by the camera of self-driving. Besides, we proposed a novel loss
function for general restoration tasks and the MSC to replace the traditional skip connection. Both of
them are proved that they are effective in improving the restoration performance. Furthermore, our
model achieves significant SSIM gain for four different datasets with different degradation types,
which demonstrates the perceptually-faithful restored images. In the future, we are going to attempt
more different restoration tasks, such as low-light image enhancement, streak rain removal, and the
defocus blur. Additionally, we will also focus on balancing the trade off between the accuracy and
computational efficiency.
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A APPENDIX

A.1 DEBLUR VISUAL PERFORMANCE

Figs. 7, 8 show the visual deblur performances on the GoPro, HIDE datasets by our proposed
CMFNet. Although our average PSNR and SSIM are not the best, it still has the competitive perfor-
mance in deblurring.

A.2 DEBLUR DISCUSSION

Fig. 9 reports our training loss and validation performance for deblur training process. We can see
that the loss does not converge yet, and the validation score (PSNR) is also growing. We train our
deblurring model for 10 days by one 1080Ti GPU, and just stop at 94 epochs. In the future, we will
keep training till the loss is convergent in order to obtain the best performance for the deblurring
task.
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Figure 7: Visual performances for image deblurring on the GoPro dataset.
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Figure 8: Visual performances for image deblurring on the HIDE dataset.
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Figure 9: Training loss and validation curve for deblurring.
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