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Abstract
Training large language models with reinforce-
ment learning (RL) against verifiable rewards sig-
nificantly enhances their reasoning abilities, yet
remains computationally expensive due to inef-
ficient uniform prompt sampling. We introduce
SELECTIVE PROMPTING WITH EFFICIENT ES-
TIMATION OF DIFFICULTY (SPEED), an adap-
tive online RL curriculum that selectively chooses
training examples of intermediate difficulty to
maximize learning efficiency. Theoretically, we
establish that intermediate-difficulty prompts im-
prove the gradient estimator’s signal-to-noise ra-
tio, accelerating convergence. Empirically, our
procedure leads to 2× to 6× faster training without
degrading accuracy, requires no manual tuning,
and integrates seamlessly into standard RL algo-
rithms.

1. Introduction
Training large reasoning models (LLMs) commonly em-
ploys reinforcement learning (RL) techniques (Sutton et al.,
1999) guided by automated verifiers (Ahmadian et al., 2024;
Guo et al., 2025). However, this approach is computation-
ally expensive, often surpassing the costs associated with
conventional supervised fine-tuning. The substantial com-
putational overhead constitutes a significant bottleneck for
developing bespoke reasoning models for specific down-
stream tasks. Given the increasing importance of advanced
reasoning skills across various domains, it is crucial to de-
vise more compute-efficient strategies to train models with
RL without sacrificing performance quality. This paper in-
troduces and investigates data-driven techniques aimed at
accelerating RL-based training of reasoning models.

Previous literature has demonstrated state-of-the-art reason-
ing performance by training LLMs on carefully curated
datasets (Muennighoff et al., 2025; Ye et al., 2025; Li et al.,
2025). However, these approaches predominantly depend
on extensive human manual effort during data selection,
limiting their scalability and practical flexibility. One at-
tractive way to accelerate the training of reasoning models

is to use curriculum learning, a training methodology that
progressively organizes examples from simple to difficult.
While curriculum learning has produced impressive results
in some machine learning domains, it has yielded mixed or
minimal improvements in others (Bengio et al., 2009; So-
viany et al., 2022). On the other hand, the effectiveness of
curriculum learning specifically integrated into RL training
of LLMs for reasoning tasks remains poorly understood.

In this work, we propose a data-driven online curriculum
learning strategy that dynamically prioritizes and selects
informative training samples during RL training based on
real-time estimates of difficulty. While similar insights have
been leveraged by prior literature (Yang et al., 2024; Guo
et al., 2025; Team et al., 2025; Foster and Foerster, 2025) as
well as concurrent works (Bae et al., 2025; Lin et al., 2025;
Yu et al., 2025; Xu et al., 2025; Cui et al., 2025), these
methods have not yet fully realized the primary promise of
online curriculum learning—namely, achieving a substan-
tial reduction in wall-clock RL training time of reasoning
models. To address this gap, this paper makes two primary
contributions—one theoretical and one methodological—
each reinforcing the other.

Theoretical contribution. We rigorously demonstrate
that prompts of intermediate difficulty levels provide
the strongest learning signal within RL frameworks.
Specifically, we establish a novel theoretical link between
the prompt pass rate and the signal-to-noise ratio (SNR)
of stochastic gradient estimators—a critical factor for the
convergence rate of optimization algorithms. Our analysis
reveals that the gradient estimator’s SNR significantly dete-
riorates for prompts with pass rates near 0% or 100%, where
stochastic gradients become dominated by noise, making
additional sampling meaningless. Crucially, our theoretical
findings generalize to many widely-used policy gradient
algorithms, such as REINFORCE(Sutton et al., 1999), RE-
INFORCE++(Hu, 2025), RLOO(Ahmadian et al., 2024),
GRPO(Shao et al., 2024), and PPO(Schulman et al., 2017)
, and extend to domains beyond reasoning and language
models. These insights directly inform our methodological
approach.
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Figure 1: An overview of Selective Prompting with Efficient Estimation of Difficulty (SPEED).

Design principle and practical implementation. Guided
by our theoretical insights, we introduce an efficient online
curriculum learning framework that dynamically selects
prompts at optimal difficulty levels for RL training. To
achieve a lightweight online curriculum implementation,
our procedure leverages the current state of the model itself
to estimate the prompt difficulty. An instantiation of this
idea is found in Foster and Foerster (2025), where many can-
didate responses per prompt are generated through full in-
ference to estimate pass rates, and only informative prompts
are selected for training. However, this naive method of-
fers limited practical acceleration, as it does not address the
heavy cost of inference, which is typically the most compu-
tationally demanding phase of RL training that dominates
other costs.

On the contrary, our design reduces inference costs and en-
hances the quality of training signals for prompts selected
during training, enabling more effective updates and faster
convergence. Practically, we implement it by screening the
prompts’ pass rates before performing expensive full infer-
ence for prompts with appropriate difficulty. Specifically,
we employ a lightweight statistical test to quickly estimate
prompt difficulty, combined with an optimized pre-fetching
mechanism that drastically reduces inference overhead. Ex-
perimental evaluations demonstrate substantial wall-clock
speedups: our method accelerates RL training by 2x to
6x compared to baseline RL algorithms to achieve the same
target performance across standard mathematical reasoning
benchmarks. Furthermore, our curriculum method requires
no manual data preprocessing or specialized auxiliary neural
components, integrates seamlessly with prevalent RL algo-
rithms (e.g., GRPO, REINFORCE, RLOO), and is broadly
applicable to many tasks with binary-verifiable rewards.

2. Problem Setup
Let πθ denote a language model parameterized by param-
eters θ. Given a prompt x ∈ X , the model produces a
response y = (y1, y2, . . . ) ∈ Y auto-regressively. Formally,
each token in the response sequence is generated according
to the conditional probability:

yk+1 ∼ πθ(· | x, y≤k), (1)

where we use y≤k to refer to the first k tokens generated
by the model. For reasoning-based tasks considered here,
the model typically produces responses following a step-
by-step “chain-of-thought” reasoning approach (Wei et al.,
2022). A verification function r(y) subsequently evaluates
the correctness of the model’s response based on the ground-
truth answer, e.g.,

r(y) =

{
1 if y is correct,
0 if y is incorrect.

(2)

Our primary objective is to maximize the pass rate, defined
as the average accuracy of the model πθ across a distribution
of prompts DX . Explicitly, the optimization objective is
defined as follows:

J(θ) = Ex∼DXEy∼πθ(·|x)[r(y)], (3)

where DX is a distribution over the prompt set. Taking the
gradient of the objective (3) with respect to model param-
eters θ and employing a baseline (for variance reduction)
(Sutton et al., 1999) leads to the well-known policy gradient
formulation:

∇θJ(θ) = Ex∼DXEy∼πθ(·|x) [A(y)∇θ log πθ(y | x)] ,
(4)
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Figure 2: Left and middle: Pass rate distribution of 1000
samples in DAPO-17k evaluated by Qwen2.5-Math-1.5B
(left) and Qwen2.5-Math-7B (middle). To evaluate the pass
rates, we sample 50 responses per prompt. Right: Average
per-step inference and training times while running RLOO
on the Qwen2.5-Math-7B model.

where the advantage function A(y) is given by:

A(y) = r(y)− Ey′∼πθ(·|x)[r(y
′)]. (5)

Here Ey′∼πθ(·|x)[r(y
′)] is the expected pass rate for prompt

x. In practice, the policy gradient in equation (4) is esti-
mated through Monte Carlo samples, yielding the classical
REINFORCE algorithm (Sutton et al., 1999). Recent works
have further modified this base policy gradient formulation
to improve its stability, efficiency, and practicality. This has
resulted in advanced methods such as REINFORCE++ (Hu,
2025), GRPO (Shao et al., 2024), PPO (Schulman et al.,
2017), and RLOO (Ahmadian et al., 2024).

3. What Prompts Lead to Useful Training
Signal?

Training datasets contains many “easy” and “hard”
questions. Our work builds on the observation, shared
by prior studies, that many training prompts are either too
easy or too hard, and thus contribute a limited useful learn-
ing signal. Figure 2 makes this concrete: for 1000 prompts
randomly drawn from the DAPO-17k dataset, we evalu-
ate both Qwen 2.5-Math-1.5 B and Qwen 2.5-Math-7 B
by sampling 50 completions for each prompt. Even with
this generous sampling budget, there are still 340 and 258
prompts, respectively, with exactly zero pass rate. As we
show in Section 5.1, these prompts—roughly one quarter
to one third of the data—contribute no actionable learning
signal.

In fact, in common reasoning benchmarks such as MATH
(Hendrycks et al., 2021) or GSM8k (Cobbe et al., 2021), a
large fraction of prompts are either trivially easy or effec-
tively unsolvable, leading to pass-rate spikes at 0% or 100%
(see Figure 3 of (Foster and Foerster, 2025)). (Schaeffer
et al., 2025) also showed a heavy-tailed pass rate distribu-
tion for a subset of the MATH dataset (see their Figure 4).
Additionally, as models evolve, many prompts become triv-
ial for large models. DAPO (Yu et al., 2025) reports that
late in training a 32B base model, over half of all prompts

attain a 100% pass rate and provide no signals in the training
(see their Figure 3b). These observations together motivate
an online, adaptive filtering strategy: rather than fixing a
static curriculum in advance, we continuously estimate each
prompt’s pass rate on-the-fly and retain only those whose
difficulty remains in an intermediate range.

Effect of prompt difficulty on the policy gradient: An
SNR perspective. It is natural to analyze how this skewed
difficulty distribution influences the training signals, in par-
ticular, the resulting policy gradient (4). Intuitively, prompts
that are either too simple or too difficult provide no in-
formative feedback, as the model consistently succeeds or
consistently fails, respectively. Formally, in both scenarios,
the policy gradient for prompt x (Equation (4)) vanishes
since the advantage function (Equation (5)) becomes zero:

∇θJx(θ) = Ey∼πθ(·|x)
[
A(y)︸ ︷︷ ︸
=0

∇θ log πθ(y | x)
]
= 0 (6)

if the pass rate is 0% or 100%. Thus, these prompts can
be removed without affecting the gradient. This observa-
tion leads us to develop a more solid theory, which uses
information-theory to measure the utility of a prompt. A
natural measure quantifying the informativeness of a prompt
is the Signal-to-Noise Ratio (SNR) of the policy gradient
estimate. Formally speaking, we estimate (6) via empirical
policy gradient:

∇̂θJx(θ) =
1

N

N∑
i=1

Â(yi) · ∇θ log πθ(yi | x), (7)

where y1, ..., yN
i.i.d.∼ πθ(· | x). Here, Â(yi) is the advan-

tage estimate for response yi. For example, in our experi-
ments, we adopt the RLOO estimator from Ahmadian et al.
(2024):

Â(yi) := r(yi)−
1

N − 1

∑
j ̸=i

r(yj). (8)

With this definition, the empirical policy-gradient in (7)
remains an unbiased estimator of the true gradient. The
SNR is defined as the ratio between the squared norm of the
gradient estimator and its variance:

SNR(θ) :=
∥E∇̂θJx(θ)∥2

E∥∇̂θJx(θ)− E∇̂θJx(θ)∥2
. (9)

Here, the SNR is a function of model parameter θ and
prompt x. It quantifies the amount of information carried by
a stochastic gradient, and governs the expected improvement
of methods based on stochastic gradients—such as RLOO,
PPO, REINFORCE, etc. For example, a simple connection
between the SNR and the expected improvements is revealed
in the following fact.
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Algorithm 1 Selective Prompting with Efficient Estimation of Difficulty (SPEED)

Input: Prompt set D; initial sample size Ninit; continuation sample size Ncont; difficulty thresholds Plow, Phigh; total
training steps T ; batch size B
for t = 1 to T do

Initialize Daccepted ← ∅
repeat

Sample prompt x ∈ D
Generate Ninit responses from the current model

PASSRATE(x)← 1

Ninit

∑Ninit

i=1 I
(
responsei is correct

)
if Plow < PASSRATE(x) < Phigh then
Daccepted ← Daccepted ∪ {x}

end if
until |Daccepted| = B
for each x ∈ Daccepted do

Generate an additional Ncont responses
end for
Perform one RL update step using all Ninit +Ncont responses for every x ∈ Daccepted

end for

Fact 3.1. Consider the one-step stochastic gradient update
θ+ = θ + ∇̂θJx(θ), where the empirical policy gradient is
unbiased. Assume Jx(θ) defined in (4) is 1-smooth. Then,
one has

E[Jx(θ+)]− Jx(θ) ≥
1

2
∥∇θJx(θ)∥2

(
1− 1

SNR(θ)

)
,

(10)
where SNR is defined as (9).

This can be viewed as a natural consequence of the stan-
dard analysis of SGD on smooth functions (Duchi, 2018;
Bernstein et al., 2018). We include the proof in Appendix A
for completeness. Thus, if the SNR approaches zero, the
variance completely overwhelms the signal, and negligible
improvement is expected from a single update step. Con-
versely, as the SNR increases toward infinity, we recover
the fast convergence behavior characteristic of deterministic
gradient methods.

Connections between SNR and pass rate. Typically,
common techniques to increase the SNR range from sim-
ply increasing the number of sampled rollouts to applying
variance-reduction baselines (Sutton et al., 1999), which,
in practical RL training, will be compute-heavy. In this
work, instead, we select the most informative prompts to
enhance the SNR during training, thus framing curriculum
learning as a variance reduction tehcnique. To be precise,
we establish an explicit link between the gradient estima-
tor’s SNR and the prompt pass rate, yielding the following
fundamental result. We defer the proof to Appendix A.
Theorem 3.2 (Fundamental Connection between SNR and
Pass Rate). Fix a prompt x. Let P(θ) denote the pass
rate of x under the current policy (πθ(·|x)): P(θ) =

Ey∼πθ(·|x)[I(r(y) = 1)]. Then, the SNR of its stochastic
gradient estimator (defined in (9)) satisfies

SNR ≤ f(P(θ)) :=
[
(1− P(θ))2

P(θ)
+
P(θ)2

1− P(θ)
− 1

]−1

(11)
Moreover, we have limP(θ)→1 SNR = limP(θ)→0 SNR =

0, argmaxP(θ)∈[0,1] f(P(θ)) = 1
2 .

This result is significant because it explicitly quantifies how
much informative signal (relative to noise) a single training
step provides as a direct function of pass rate. Crucially, The-
orem 3.2 confirms an important intuition: prompts with very
low (P(θ) ≈ 0%) or very high (P(θ) ≈ 100%) pass rates
both yield vanishing SNR. Such prompts provide negligible
useful training signal while potentially introducing detri-
mental variance in parameter updates. Therefore, the funda-
mental insight established by Theorem 3.2 is that optimal
curricula must explicitly prioritize intermediate-difficulty
prompts to maximize learning signal and effectiveness.

4. Algorithm
Algorithm design. In this section, we introduce SELEC-
TIVE PROMPTING WITH EFFICIENT ESTIMATION OF DIF-
FICULTY (SPEED), an online curriculum learning method
designed to feed training prompts at precisely the appropri-
ate level of difficulty. Because the model proficiency evolves
throughout training, the prompt difficulties must be contin-
uously reassessed; this motivates our adaptive, on-the-fly
curriculum design.

However, reliably identifying these prompts in a general and
computationally efficient manner is challenging. Naively
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estimating prompt difficulties by generating multiple re-
sponses per prompt (as studied recently in Foster and Foer-
ster (2025)) and computing the pass rates quickly becomes
computationally prohibitive, as inference usually dominates
RL training time. As demonstrated in Figure 2, inference
time for methods like RLOO often exceeds the actual time
spent on gradient updates by a factor of two, even for mod-
erately lengthy responses. This imbalance arises primarily
due to the autoregressive nature of LLM inference and sig-
nificantly slows down the RL training.

To address this, we propose a two-phase ap-
proach—illustrated in Algorithm 1—that efficiently
filters and prioritizes prompts. Suppose the underlying
RL method generates N rollouts per prompt (typically,
N = 16 to 64 (Liu et al., 2024; Guo et al., 2025; Yu
et al., 2025)). We split this into an initial inference phase
(Ninit ≈ 4–8 ≪ N ) and a continuation phase (Ncont),
where Ninit + Ncont = N . First, a limited number of
responses per prompt are generated to form a coarse
pass-rate estimate. We then select prompts whose estimated
pass rates lie distinctly away from trivial extremes (0% or
100%), defining these as qualified prompts. In the second
phase, we produce the remaining responses (Ncont) only
for these prompts, thus significantly reducing unnecessary
inference. This selective two-phase inference scheme is
compatible with common RL algorithms, such as GRPO,
PPO, RLOO, and REINFORCE and it recovers them for
appropriate choice of the hyperparameters 1.

Efficient implementation. Our algorithm involves two in-
ference phases, which in a naive implementation would sep-
arately call the inference engine (e.g., vLLM (Kwon et al.,
2023)) twice, increasing computational overhead. Since
vLLM features efficient internal batching mechanisms(e.g.,
continuous batching and chunked prefill), performing two
separate inference calls is slower than a single combined
call.

To mitigate this overhead, we design an efficient pre-
fetching mechanism. While performing the continued gen-
eration phase for accepted prompts, we simultaneously pre-
fetch a new batch of prompts and rollout initial generations
for these prompts. Responses for the new prompts are imme-
diately evaluated for pass rates, while responses for accepted
prompts are stored in the data buffer for training. This com-
bined inference significantly reduces overhead and takes one
inference call per generation step on average. Although re-
sponses for a prompt might be generated by slightly different
model versions, as there may be an intermediate RL train-
ing step between the two generation steps, we empirically
find no performance degradation, confirming the practical

1More precisely, when Plow = −∞, Phigh = +∞, Ninit =
N,Ncont = 0.

effectiveness of this approach.

Moreover, standard RL training methods typically operate
with fixed batch sizes, meaning the number of prompts
processed in each RL update step is predetermined. How-
ever, this fixed-batch restriction conflicts with the rejection-
sampling nature of our proposed curriculum algorithm, for
which the number of prompts accepted for training dynami-
cally varies and may not exactly match the required batch
size. Previous solutions either handle inference and train-
ing asynchronously (Xu et al., 2025) or resort to repeti-
tive inference passes before each training step, discard-
ing surplus prompts afterward (Yu et al., 2025). In con-
trast, we introduce a simple data buffer to temporarily store
prompts not immediately utilized due to batch-size con-
straints. This strategy enables larger inference batches with-
out data wastage, significantly increasing computational
efficiency. While buffering introduces somewhat more off-
policy training, our experimental results clearly demonstrate
that this data-buffer approach markedly improves computa-
tional efficiency without compromising performance.

The full detailed algorithm combining the data buffer and
pre-fetching mechanism is described in ??. Moreover, the
efficient implementation is compatible with more RL frame-
works, especially those that require asynchronous or multi-
stage training.

5. Experiments
In this section, we evaluate the performance of SPEED. We
first describe our experimental setup, including the models,
datasets, baseline methods, and evaluation metrics. We then
present our primary results and discussions in Section 5.1.

Training setup. Our experiments use Qwen2.5-Math-
1.5B and Qwen2.5-Math-7B models (Yang et al., 2024). We
integrate SPEED with two rule-based RL methods: RLOO
(Ahmadian et al., 2024) and DAPO (Yu et al., 2025). DAPO
serves as an important baseline for curriculum learning as it
filters all prompts with 0% or 100% pass rates after gener-
ating all responses. While our evaluation focuses on these
two algorithms, our approach is broadly applicable to any
rule-based RL method.

We train the models using three datasets: NuminaMath (Li
et al., 2024), DAPO-17k (Yu et al., 2025), and DeepScaleR
(Luo et al., 2025). NuminaMath originally contains 860k
prompts, ranging from simpler GSM8k (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) questions to challeng-
ing competition-level problems. We filter out proof-based
questions and keep only problems with integer-valued solu-
tions, which leaves us with 220k prompts. The DAPO-17k
dataset consists of 17k integer-answer prompts, of which
we reserve 1k as a held-out test set and use the remain-
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Table 1: The wall-clock training hours needed for each model to reach a target accuracy on its respective benchmark. For the
Qwen-Math-1.5B model, the targets are 0.30 on DAPO-1k, 0.70 on MATH500, 0.4 on AMC2023, and 0.10 on AIME. For the larger
Qwen2.5-Math-7B model, the thresholds increase to 0.45, 0.80, 0.55, and 0.18 for the same datasets, respectively. Validation time and
checkpoint-saving overhead are excluded. Values in parentheses give the corresponding wall-clock speed-ups. † means the performance
has not reached the threshold during the entire training process.

Model Size Training Data Algorithm DAPO-1k MATH500 AMC2023 AIME

Math-1.5B
NuminaMath

RLOO 25.9 13.6 4.7 13.6
SPEED-RLOO 7.6 (3.4 x ) 3.3 (4.1 x) 2.8 (1.7 x) 6.4 (2.1 x)

DAPO † 18.0 10.0 16.7
SPEED-DAPO 11.6 (†) 3.9 (4.6 x) 3.4 (2.9 x) 10.4 (1.6 x)

DAPO-17k RLOO † 13.8 8.0 12.8
SPEED-RLOO 4.4 (†) 4.8 (2.9 x) 2.2 (3.6 x) 4.8 (2.7 x)

Math-7B

DAPO-17k
RLOO 13.5 12.7 4.3 7.8

SPEED-RLOO 3.6 (3.8 x) 4.3 (3.0 x) 1.8 (2.4 x) 3.0 (2.6 x)
DAPO 12.1 21.8 7.6 7.6

SPEED-DAPO 5.0 (2.4 x) 6.2 (3.5 x) 2.2 (3.5 x) 2.8 (2.7 x)

DeepScaleR
RLOO 12.6 11.1 5.6 9.7

SPEED-RLOO 2.9 (4.3 x) 2.9 (3.8 x) 1.1 (5.1 x) 1.6 (6.1 x)
DAPO 17.1 16.2 7.5 11.1

SPEED-DAPO 15.1 (1.1 x) 5.7 (2.8 x) 2.2 (3.4 x) 2.2 (5.0 x)

ing prompts for training. DeepScaleR contains approxi-
mately 400k training examples derived from past AIME
(up to 2023) and AMC (prior to 2023) competitions. Be-
sides the held-out test set in DAPO-17k, we evaluate the
models’ performance on four additional standard mathemat-
ical reasoning datasets: MATH500 (Lightman et al., 2023),
AIME2024 (AIM, 2024), AIME2025 (AIM, 2024), and
AMC2023 (AMC, 2023).

5.1. Results

Efficiency evaluation. We measure SPEED’s efficiency
improvements by comparing the relative wall-clock time
needed to reach specific accuracy targets. When calculating
the training time, we include every stage in the RL training
except the time for validation and saving checkpoints. To en-
sure consistency, all experiments use a single node equipped
with four NVIDIA GH200 GPUs (with 96GB of GPU mem-
ory and 120GB CPU memory each). Our implementation
relies on the VeRL framework (Sheng et al., 2024). Un-
less otherwise specified, the training batch size (number of
prompts) is set to 16, and the generation batch size is 64
for SPEED variants. For vanilla DAPO and SPEED-DAPO,
we set εlow = 0.2, εhigh = 0.28. In every experiment, we
apply a learning rate of 10−6 with a warmup period of 10
steps and a weight decay of 0.1. Baselines generate N = 24
responses per prompt, and SPEED-RL variants use a com-
bined Ninit +Ncont = 24 generations.

Figure 3 and Table 1 illustrate that SPEED significantly

enhances training efficiency. Integrated with rule-based
RL algorithms RLOO and DAPO, SPEED achieves tar-
get validation accuracies 2–6 times faster compared with
baseline RL algorithms across nearly all benchmarks and
experimental runs. For instance, on DAPO-1k, Qwen2.5-
Math-7B reaches a validation accuracy of 0.45 in 7.6 hours
with SPEED-RLOO, whereas vanilla RLOO requires ap-
proximately 3.4 times longer. Although specific speedup
values vary by dataset and target accuracy, our results con-
sistently demonstrate substantial efficiency improvements
across multiple setups.

Informativeness measures. To understand why SPEED
improves efficiency, we examine the informativeness of gra-
dients produced during training. As depicted in Figure 4,
SPEED-RLOO consistently maintains training accuracies
much closer to 0.5 compared to vanilla RLOO, particularly
in early training stages. According to our theoretical anal-
ysis (Theorem 3.2), prompts with pass rates close to 0.5
generally yield higher SNR, which enhances training effi-
ciency. Additionally, gradient norms from SPEED-RLOO
are substantially larger than those from baseline methods,
aligning well with our theoretical predictions discussed in
Section 3.

Effect of Ninit. The initial inference stage generation count
(Ninit) is the only additional hyperparameter introduced by
our method, and setting Ninit = N and Ncont = 0 recovers
the original RL method. A larger Ninit increases the like-
lihood of selecting prompts with more extreme pass rates,

6
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Figure 3: Validation accuracy on various mathematical reasoning benchmarks for SPEED-variants of RL algorithms, and base RL
algorithms. Top: RLOO versus SPEED-RLOO; bottom: DAPO versus SPEED-DAPO. The initial model used is Qwen2.5-Math-7B,
trained on the DeepScaleR dataset. The lighter curves represent raw accuracy results, while the bold curves indicate smoothed results
obtained via an exponential moving average.

Figure 4: Average training accuracy (left) and gradient norm (right) comparison between RLOO and SPEED-RLOO during training of
Qwen2.5-Math-7B. For the SPEED variants, the reported accuracies on the training set are calculated exclusively using the qualified
prompts that are selected in the actual training process.

potentially reducing gradient informativeness. Figure 5 com-
pares setups with Ninit = 4, 6, 8 under identical conditions.
Results show that larger Ninit values lead to smaller average
gradient norms and push training accuracies away from 0.5.
This aligns with our theoretical insights that the prompts
with pass rates near 0.5 can provide stronger learning sig-
nals. As a result, increasing Ninit tends to slow down the
performance rise and reduce the efficiency improvements
compared to baselines.

6. Additional Related Works
Large reasoning models and reinforcement learning.
Large language models (LLMs) have achieved remarkable
performance on mathematical reasoning and code genera-

tion (Achiam et al., 2023; Yang et al., 2024; Jaech et al.,
2024; Hurst et al., 2024; Lambert et al., 2024; Guo et al.,
2025; Team et al., 2025). Fine-tuning these pretrained mod-
els often relies on reinforcement learning (RL) methods
such as Proximal Policy Optimization (PPO) (Schulman
et al., 2017; Hu et al., 2025). However, PPO updates can
be computationally expensive and prone to reward hack-
ing, limiting rapid iteration and deployment. To address
these issues, several rule-based RL variants have been pro-
posed. DeepSeek, for example, introduces Group Relative
Policy Optimization (GRPO) (Shao et al., 2024; Guo et al.,
2025). Other extensions—such as REMAX (Li et al., 2023),
RLOO (Ahmadian et al., 2024), and REINFORCE++ (Hu,
2025; Xie et al., 2025)—further demonstrate the benefits of
rule-based RL.
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Figure 5: The validation accuracy on DAPO-1k (left), the average gradient norm (middle), and the average training accuracy (right) of
RLOO and SPEED-RLOO with different Ninit. We train Qwen2.5-Math-1.5B on the training split of DAPO-17k.

Difficulty-based curriculum learning. Training large rea-
soning models is often computationally expensive. Cur-
riculum learning arranges training examples by increasing
difficulty to guide model learning from moderately difficult
examples (Bengio et al., 2009). Several open-source LLMs
(e.g., Qwen2.5 (Yang et al., 2024), Kimi-1.5 (Team et al.,
2025)) mention curricula without publishing details. Some
static methods sort data offline—using pass-rate estimates
(Wen et al., 2025), human difficulty labels (Lee et al., 2023),
or software metrics for coding tasks (Naïr et al., 2024)—and
then apply sequential supervised or RL fine-tuning. Re-
cently, (Shi et al., 2025) estimates the question difficulty
offline via the pass rates or from more capable models, and
adaptively updates the target difficulty to select proper data
in the training stage. In contrast, our method estimates
prompt difficulty on the fly, yielding more accurate and
timely example selection. Recent work on online filtering
adapts the curricula to the model’s current performance.
DAPO (Yu et al., 2025) dynamically samples prompts and
discards those with uniformly correct or incorrect responses.
Bae et al. (2025); Lin et al. (2025); Meng et al. (2025) fur-
ther restrict training to prompts with moderate pass rates.
(Foster and Foerster, 2025) select the prompts with maximal
reward variance. (Xu et al., 2025) adopts a similar idea and
further decouples the inference and training phases to boost
the efficiency. (Cui et al., 2025) uses a separately trained
process reward model to gauge difficulty. They estimate the
question difficulty via the pass rate after all responses are
generated. Unlike these methods, we use a lightweight hypo-
thetical generation step to infer difficulty, reducing compute
and boosting the inference efficiency.

More methods for efficient reasoning. Beyond curriculum
learning, researchers have explored data selection and in-
ference optimizations for reasoning models. Curating high-
quality chain-of-thought data can boost training efficiency
(Muennighoff et al., 2025; Ye et al., 2025; Li et al., 2025),
and token-level filtering can further reduce cost (Lin et al.,
2024b). Another class of methods is based on early stopping
or rejection sampling, such as RAFT (Dong et al., 2023)
and speculative rejection (Sun et al., 2024). Our method
effectively combines early stopping with difficulty filter-

ing. Other approaches compresses chain-of-thoughts via
prompt engineering (Han et al., 2024; Nayab et al., 2024),
conditional training (Deng et al., 2024; Kang et al., 2025)
or RL (Arora and Zanette, 2025; Fatemi et al., 2025). Addi-
tionally, efficient serving systems like vLLM (Kwon et al.,
2023), speculative decoding (Leviathan et al., 2023; Liu
et al., 2023), weight pruning (Liu et al., 2018), and quanti-
zation (Lin et al., 2024a) further cut runtime and memory
requirements. These methods are orthogonal to our pro-
posed algorithm and can be seamlessly combined with our
method.

7. Conclusion and Future Directions
In this paper, we introduce SPEED, a method to accelerate
the rule-based RL training of large reasoning models via on-
line curriculum learning. By adaptively prioritizing prompts
of intermediate difficulty, estimated by the pass rates over
initially generated responses, SPEED selects prompts at the
right level of difficulty on the fly to enhance the gradient
informativeness. Our theory also shows that moderately
difficult prompts can maximize the upper bound of Signal-
to-Noise Ratio. Experiments demonstrated that SPEED
significantly accelerates training, achieving between two to
six times speedups across various datasets and tasks.

Future Directions. We identify several promising direc-
tions for future research:

• Although SPEED accelerates training efficiency, it does
not necessarily enhance peak performance. Future work
could explore methods that achieve rapid initial learning
and superior final performance simultaneously.

• Our curriculum selects prompts based on difficulty esti-
mates from the pass rates. Future research could explore
alternative criteria for adaptive data selection. For exam-
ple, for value-based RL algorithms, the value function
may provide an efficient difficulty estimation.

• Future research could integrate reward evaluation directly
into existing efficient inference servings like vLLM, allow-
ing immediate, on-the-fly prompt filtering, which would
further enhance the efficiency of training large reasoning
models.
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A. Omitted proof in Section 3
Proof of Fact 3.1. From the definition of 1−smoothness, we know −Jx(θ) is 1-smooth if Jx(θ) is 1-smooth. We have

−Jx(θ + v) ≤ −Jx(θ) +∇(−Jx(θ))⊤v +
1

2
∥v∥2

for any vector v ∈ Rd and parameter θ ∈ Rd. This implies

Jx(θ + v) ≥ Jx(θ) +∇Jx(θ)⊤v −
1

2
∥v∥2.

Let ĝ := ∇̂θJx(θ) be an unbiased stochastic gradient so that E[ĝ] = ∇Jx(θ). Applying this with v = ĝ and taking
expectation,

E
[
Jx(θ

+)
]
− Jx(θ) ≥ ∇Jx(θ)⊤E[ĝ]−

1

2
E
[
∥ĝ∥2

]
= ∥∇Jx(θ)∥2 −

1

2

(
E∥ĝ − Eĝ∥2 + ∥Eĝ∥2

)
=

1

2
∥∇Jx(θ)∥2 −

1

2
E∥ĝ − Eĝ∥2

=
1

2
∥∇Jx(θ)∥2

(
1− E∥ĝ − Eĝ∥2

∥∇Jx(θ)∥2

)
.

Invoking the definition of the Signal-to-Noise ratio in (9), we complete the proof.

Now let’s prove Theorem 3.2. Before proving it, we first provide a formal version of the theorem presented in the main text.

Theorem A.1 (Fundamental Connection between SNR and Pass Rate, Formal). Fix a prompt x. Let P(θ) denote the pass
rate of x under the current policy (πθ(·|x)): Px(θ) = Ey∼πθ(·|x)[I(r(y) = 1)]. Consider a random response y ∈ Y with
binary reward r(y). The advantage of this response is

A(y) := r(y)− Px(θ).

The (stochastic) gradient is thus
ĝ := A(y) · ∇θ log πθ(y | x).

Define the Signal-to-Noise Ratio (SNR) of the stochastic gradient as

SNR :=
∥Eĝ∥2

E∥ĝ − Eĝ∥2
=

∥Eĝ∥2

Tr
[
Cov[ĝ]

] .
Then, the SNR satisfies

SNR ≤ f(P(θ)) :=
[
(1− Px(θ))

2

Px(θ)
+
Px(θ)

2

1− Px(θ)
− 1

]−1

. (12)

Moreover, we have

lim
P(θ)→1

SNR = lim
P(θ)→0

SNR = 0, argmax
P(θ)∈[0,1]

f(P(θ)) = 1

2
.

Proof of Theorem A.1. Let πθ be the LLM and fix a prompt x ∈ X . For responses y ∈ Y ∼ πθ(·), we let r(y) denote the
binary reward which will be one if y is correct and zero otherwise. Let C ⊂ Y be the set of correct responses, and IC ⊂ Y
be the set of incorrect responses.

Define the pass rate of prompt x, evaluated by the model πθ, as

Px(θ) := Py∼πθ(·|x)
(
r(y) = 1

)
=
∑
y∈C

πθ(y | x).

From the definition of ĝ, we know that

E[ĝ | r(y) = 1] =
∑
y∈C

πθ(y | x)
Px(θ)

· (1− Px(θ))
∇θπθ(y | x)
πθ(y | x)

=
1− Px(θ)

Px(θ)
· ∇θPx(θ),

12
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and

E[ĝ | r(y) = 0] =
∑
y∈IC

πθ(y | x)
1− Px(θ)

· (−Px(θ))
∇θπθ(y | x)
πθ(y | x)

=
Px(θ)

1− Px(θ)
· ∇θPx(θ).

Therefore, one has

Eĝ = Px(θ) · E[ĝ | r(y) = 1] + (1− Px(θ)) · E[ĝ | r(y) = 0] = ∇θPx(θ),

and

E
[
E
[
ĝ
∣∣r(y)] · E[ĝ∣∣r(y)]⊤] = ( (1− Px(θ))

2

Px(θ)
+
Px(θ)

2

1− Px(θ)

)
· ∇θPx(θ)∇θPx(θ)

⊤.

Then, we can lower bound the covariance matrix of ĝ by

Cov[ĝ] ⪰ Cov
[
E[ĝ | r(y)]

]
= E

[
E
[
ĝ
∣∣r(y)] · E[ĝ∣∣r(y)]⊤]− E

[
ĝ
]
· E
[
ĝ
]⊤

=

(
(1− Px(θ))

2

Px(θ)
+
Px(θ)

2

1− Px(θ)
− 1

)
· ∇θPx(θ)∇θPx(θ)

⊤.

Invoking the definition of SNR, we complete the proof

B. A Fine-grained Analysis on the Signal-to-Noise Ratio
In this section, we provide a fine-grained analysis on the connection between the SNR and the pass rate. We focus on the
SNR defined as the (9) with an empirical advantage estimate Â(y) in (8), defined as the difference between the reward of a
certain response and the averaged reward of all other responses.

Theorem B.1 (Fundamental Connection between SNR and Pass Rate, Fined-grained Analysis). Fix a prompt x. Let P(θ)
denote the pass rate of x under the current policy (πθ(·|x)): Px(θ) = Ey∼πθ(·|x)[I(r(y) = 1)]. For the prompt x, we
generate y1, y2, ..., yN i.i.d. from πθ(· | x) and the gradient estimate is defined as

∇̂θJx(θ) =
1

N

N∑
i=1

Â(yi) · ∇θ log πθ(yi | x),

where the advantage estimate is from the RLOO estimate:

Â(yi) := r(yi)−
1

N − 1

∑
j ̸=i

r(yj).

Then, the SNR of its stochastic gradient estimator (defined in (9)) satisfies

SNR ≤ f(P(θ)) :=
[
1

N
· 1

Px(θ)(1− Px(θ))
+

(N − 2)(N − 3)

N(N − 1)
− 1

]−1

(13)

Moreover, for fixed N , we have

lim
P(θ)→1

SNR = lim
P(θ)→0

SNR = 0, argmax
P(θ)∈[0,1]

f(P(θ)) = 1

2
.

Proof of Theorem B.1. Let πθ be the LLM and fix a prompt x ∈ X . For responses y ∈ Y ∼ πθ(·), we let r(y) denote the
binary reward which will be one if y is correct and zero otherwise. Let C ⊂ Y be the set of correct responses, and IC ⊂ Y
be the set of incorrect responses.

Define the pass rate of prompt x, evaluated by the model πθ, as

Px(θ) := Py∼πθ(·|x)
(
r(y) = 1

)
=
∑
y∈C

πθ(y | x).

13
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We define the SNR as in Equation (9), where ∇̂θJx(θ) is defined as

∇̂θJx(θ) =
1

N

N∑
i=1

Â(yi) · ∇θ log πθ(yi | x), where y1, ..., yN
i.i.d.∼ πθ(· | x).

Here, Â(yi) is the advantage estimate for the response yi. In RLOO, this is defined as

Â(yi) := r(yi)−
1

N − 1

∑
j ̸=i

r(yj).

A simple fact is that the gradient estimate ∇̂θJx(θ) is unbiased:

E∇̂θJx(θ) = E
[
Â(y1) · ∇θ log πθ(y1 | x)

]
= E

[
r(y1) · ∇θ log πθ(y1 | x)

]
− 1

N − 1

∑
i̸=1

E
[
r(yi) · ∇θ log πθ(y1 | x)

]
=
∑
y1∈C

πθ(y1 | x) ·
∇θπθ(y1 | x)
πθ(y1 | x)

− 1

N − 1

∑
i ̸=1

E[r(yi)] · E[∇θπθ(y1 | x)]︸ ︷︷ ︸
=0

= ∇θPx(θ).

We define R := (r(y1), r(y2), r(y3), ...., r(yN ))⊤ ∈ {0, 1}N as the random reward vector and W :=
∑N

i=1 r(yi) as the
empirical pass rate of the prompt x. Now let’s consider the covariance matrix of ∇̂θJx(θ). From the law of total variance,
we know

Cov

[
∇̂θJx(θ)

]
= Cov

[
E
[
∇̂θJx(θ)

∣∣∣∣R(x)

]]
+ E

[
Cov

[
∇̂θJx(θ)

∣∣∣∣R(x)

]]
⪰ Cov

[
E
[
∇̂θJx(θ)

∣∣∣∣R(x)

]]
.

Here, A ⪰ B means A−B is positive semi-definite (PSD) for two PSD matrices A and B. Now we calculate the conditional
expectation. We have

E
[
∇̂θJx(θ)

∣∣∣∣R(x)

]
=

W

N

(
1− W − 1

N − 1

)
· Ey∼πθ(·|x)

[
∇θ log πθ(y | x)

∣∣r(y) = 1
]

+
N −W

N

(
0− W

N − 1

)
· Ey∼πθ(·|x)

[
∇θ log πθ(y | x)

∣∣r(y) = 0
]

=
W

N

(
1− W − 1

N − 1

)
·
∑
y∈C

πθ(y | x)
Px(θ)

· ∇θπθ(y | x)
πθ(y | x)

+
N −W

N

(
0− W

N − 1

)
·
∑
y∈IC

πθ(y | x)
1− Px(θ)

· ∇θπθ(y | x)
πθ(y | x)

=
W (N −W )

N(N − 1)
· 1

Px(θ)(1− Px(θ))
· ∇θPx(θ).

Note that W follows a binomial distribution with parameters N and Px(θ). Recall the moments of binomial random
variables, we have

E
[
E
[
∇̂θJx(θ)

∣∣∣∣R(x)

]]
= E∇̂θJx(θ) = ∇θPx(θ)

and

Cov

(
E
[
∇̂θJx(θ)

∣∣∣∣R(x)

])

=
E
(
W 2(N −W )2

)
N2(N − 1)2

· 1

Px(θ)2(1− Px(θ))2
· ∇θPx(θ)∇θPx(θ)

⊤ −∇θPx(θ)∇θPx(θ)
⊤

=

(
1

N
· 1

Px(θ)(1− Px(θ))
+

(N − 2)(N − 3)

N(N − 1)
− 1

)
· ∇θPx(θ)∇θPx(θ)

⊤.
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Therefore, we can upper bound the SNR via

SNR =
∥E∇̂θJx(θ)∥2

Tr
[
Cov

[
∇̂θJx(θ)

]] ≤ ∥E∇̂θJx(θ)∥2

Tr
[
Cov

[
∇̂θJx(θ)

∣∣R(x)
]]

=

[
1

N
· 1

Px(θ)(1− Px(θ))
+

(N − 2)(N − 3)

N(N − 1)
− 1

]−1

.

Invoking the fact that Px(θ)(1− Px(θ)) is maximized when Px(θ) = 1/2, we complete the proof.

C. A theoretical justification of SPEED
SPEED filters part of the prompts based on the pass rates estimated via initially generated responses for every prompt, and
feeds the current model with precisely moderately difficult prompts. The following theorem shows that SPEED essentially
optimizes a transformed objective function, and this objective function is maximized when the pass rate of every prompt is
equal to one.

Theorem C.1. Consider SPEED-RLOO algorithm (Algorithm 1) with Ninit ≥ 1, Ncont ≥ 1, and the empirical advantage
estimate (8). Assume we sample x ∼ DX and for every prompt, y1, y2, ...., yN

i.i.d.∼ πθ(· | x) with N = Ninit +Ncont, and
then we use y1, ..., yNinit to perform the hypothetical generation. Then, the SPEED-RLOO algorithm optimizes the following
objective function

J(θ) = Ex∼DX

[
Φ(Ey∼πθ(·|x)[r(y)])

]
, (14)

where

Φ(p) = p− Ncont

N(Ninit + 1)

(
pNinit+1 − (1− p)Ninit+1

)
+

Ncont

N(N − 1)(Ninit + 1)

((
1 +Ninitp

)(
1− p

)Ninit − pNinit
(
Ninit

(
1− p

)
+ 1
))

.

Moreover, the objective function is maximized when Ey∼πθ(·|x)[r(y)] = 1 for every prompt x ∈ X .

The theorem show that the SPEED-variants can be viewed as optimizing over a converted objective function. The link
function Φ(·) converts the original pass rate Ey∼πθ(·|x)[r(y)] monotonically. Essentially, SPEED converts the optimized
objective function via reweighting different propmts according to their pass rates.

Proof of Theorem C.1. Fix Ninit and Ncont with N = Ninit +Ncont. Let J(θ) denote the equivalent objective function of
SPEED-RLOO and Jx(θ) denote the objective function fo prompt x. We have J(θ) = Ex∼DX [Jx(θ)] by definition and
analogously for their gradient. Now we are going to determine the concrete expression of ∇θJx(θ). From Algorithm 1, we
have

∇θJx(θ) = Ey1,y2,...yN

[
I
(Ninit∑

i=1

r(yi) /∈ {0, Ninit}
)
· 1
N

N∑
j=1

Â(yj)∇ log πθ(yj | x)
]
, (15)

where the expectation is over y1, y2, ..., yN
i.i.d.∼ πθ(· | x), and Â(yj) is the advantage estimate for yj given by

Â(yj) = r(yj)−
1

N − 1

∑
k ̸=j

r(yk).

15
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Denote the pass rate to x, evaluated by the model πθ, as Px(θ). Now we decompose (15) as

∇θJx(θ) = Ey1,y2,...yN

[
Â(y1)∇ log πθ(y1 | x)

]
︸ ︷︷ ︸

I

− Ey1,y2,...yN

[
I
(Ninit∑

i=1

r(yi) = 0

)
· 1
N

N∑
j=1

Â(yj)∇ log πθ(yj | x)
]

︸ ︷︷ ︸
II

− Ey1,y2,...yN

[
I
(Ninit∑

i=1

r(yi) = Ninit

)
· 1
N

N∑
j=1

Â(yj)∇ log πθ(yj | x)
]

︸ ︷︷ ︸
III

.

From the independence among all responses, one has

I = Ey1,y2,...yN

[
r(y1)∇θ log πθ(y1 | x)

]
− 1

N − 1

∑
k ̸=1

Ey1,y2,...yN

[
r(yk)∇θ log πθ(y1 | x)

]
= ∇θPx(θ)−

1

N − 1

∑
k ̸=1

Ey1,y2,...yN

[
r(yk)

]
· Ey1,y2,...yN

[
∇θ log πθ(y1 | x)

]︸ ︷︷ ︸
=0

= ∇θPx(θ).

The expectand in II vanishes if
∑Ninit

i=1 r(yi) ̸= 0. Analogously, the expectand in III vanished if
∑Ninit

i=1 r(yi) ̸= Ninit. Let’s
denote

E0 :=

{Ninit∑
i=1

r(yi) = 0

}
, E1 :=

{Ninit∑
i=1

r(yi) = Ninit

}
.

We have

E
[
∇θ log πθ(y1 | x)

∣∣E0] = − ∇θPx(θ)

1− Px(θ)
, E

[
∇θ log πθ(y1 | x)

∣∣E1] = ∇θPx(θ)

Px(θ)
,

E
[
∇θ log πθ(yN | x)

∣∣E0] = 0, E
[
∇θ log πθ(yN | x)

∣∣E1] = 0,

E
[
r(yN )∇θ log πθ(yN | x)

∣∣E0] = ∇θPx(θ), E
[
r(yN )∇θ log πθ(yN | x)

∣∣E1] = ∇θPx(θ). (16)

Therefore, one has

Ey1,y2,...yN

[
I
(Ninit∑

i=1

r(yi) = 0

)
· 1
N

N∑
j=1

Â(yj)∇ log πθ(yj | x)
∣∣∣∣E0]

= Ey1,y2,...yN

[
1

N

N∑
j=1

r(yj)

(
∇θ log πθ(yj | x)−

1

N − 1

∑
k ̸=j

∇θ log πθ(yk | x)
)∣∣∣∣E0]

= E
[
1

N

N∑
j=Ninit+1

r(yj)∇θ log πθ(yj | x)
∣∣∣∣E0]− E

[
1

N(N − 1)

N∑
j=Ninit+1

r(yj)
∑
k ̸=j

∇θ log πθ(yk | x)
)∣∣∣∣E0]

=
Ncont

N
∇θPx(θ)−

Ncont

N(N − 1)
E
[
r(yN )

∣∣E0] · E[ ∑
k ̸=N

∇θ log πθ(yk | x)
∣∣E0]

=
Ncont

N
∇θPx(θ) +

NcontNinit

N(N − 1)

Px(θ)

1− Px(θ)
· ∇θPx(θ).

Therefore, we have

II =
(
1− Px(θ)

)Ninit

(
Ncont

N
+

NcontNinit

N(N − 1)
· Px(θ)

1− Px(θ)

)
· ∇θPx(θ).

16
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Analogously, we have

Ey1,y2,...yN

[
I
(Ninit∑

i=1

r(yi) = Ninit

)
· 1
N

N∑
j=1

Â(yj)∇ log πθ(yj | x)
∣∣∣∣E1]

= Ey1,y2,...yN

[
1

N

N∑
j=1

r(yj)

(
∇θ log πθ(yj | x)−

1

N − 1

∑
k ̸=j

∇θ log πθ(yk | x)
)∣∣∣∣E1]

=
Ninit

N
E
[
∇θ log πθ(y1 | x)

∣∣E1]− Ninit

N(N − 1)

∑
k ̸=1

E
[
∇θ log πθ(yk | x)

∣∣E1]
+

Ncont

N
E
[
r(yN )∇θ log πθ(yN | x)

∣∣E1]− Ncont

N(N − 1)

∑
k ̸=N

E
[
r(yN )∇θ log πθ(yk | x)

∣∣E1]
=

(
Ninit

N
− Ninit(Ninit − 1)

N(N − 1)

)
· ∇Px(θ)

Px(θ)

+
Ncont

N
∇θPx(θ)−

Ncont

N(N − 1)
Px(θ) ·

∑
k ̸=N

E
[
∇θ log πθ(yN | x)

∣∣E1]
=

NinitNcont

N(N − 1)
· ∇θPx(θ)

Px(θ)
+

Ncont

N
∇θPx(θ)−

NinitNcont

N(N − 1)
· ∇θPx(θ)

=
Ncont

N
∇θPx(θ) +

NinitNcont

N(N − 1)
· 1− Px(θ)

Px(θ)
· ∇θPx(θ).

Therefore, one has

III = Px(θ)
Ninit

(
Ncont

N
+

NinitNcont

N(N − 1)

1− Px(θ)

Px(θ)

)
· ∇θPx(θ).

This indicates

∇θJx(θ) =

[
1− Ncont

N

(
Px(θ)

Ninit +
(
1− Px(θ)

)Ninit

)

− NinitNcont

N(N − 1)

(
Px(θ)

(
1− Px(θ)

)Ninit−1
+
(
1− Px(θ)

)
Px(θ)

Ninit−1

)]
∇θPx(θ).

Integrating the gradient gives:

Jx(θ) = Φ(Px(θ)),

where

Φ(p) = p− Ncont

N(Ninit + 1)

(
pNinit+1 − (1− p)Ninit+1

)
+

Ncont

N(N − 1)(Ninit + 1)

((
1 +Ninitp

)(
1− p

)Ninit − pNinit
(
Ninit

(
1− p

)
+ 1
))

+ Const.

Moreover, since

Φ′(p) = 1− Ncont

N

(
pNinit + (1− p)Ninit

)
− NinitNcont

N(N − 1)

(
p(1− p)Ninit−1 + (1− p)pNinit−1

)
≥ 1− Ncont

N
− NinitNcont

N(N − 1)

≥ 1− Ncont

N
− Ninit

N
= 0. (Ncont ≤ N − 1)

Therefore, Φ(·) is monotonically increasing and hence, for every prompt x ∈ X , one has

Ey∼πθ(·|x)[r(y)] = 1 maximizes Φ(Ey∼πθ(·|x)[r(y)]).

This completes the proof.
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Algorithm 2 Selective Prompting with Efficient Estimation of Difficulty (SPEED)

Input: generative model πθ; binary reward model r; difficulty thresholds Plow, Phigh; generation counts Ninit, Ncont; total
training steps T ; batch size B
Initialize buffer Dbuffer ← ∅, cache Daccepted ← ∅, step counter t← 0
repeat

if |Dbuffer| < B then
Fetch a new batch of prompts Dnew from the data loader
Dinfer ← Dnew ∪ Daccepted

Generate Ninit responses for each x ∈ Dnew and Ncont responses for each x ∈ Daccepted

Dbuffer ← Dbuffer ∪ Daccepted

for all x ∈ Dnew do
PASSRATE(x)← 1

Ninit

∑Ninit

i=1 I
(
responsei correct

)
end for
Daccepted ← Daccepted ∪ {x ∈ Dnew | Plow < PASSRATE(x) < Phigh}

else
Sample Dtrain ⊂ Dbuffer with |Dtrain| = B
Perform one RL update step on Dtrain

Dbuffer ← Dbuffer \ Dtrain

t← t+ 1
end if

until t = T
Output: trained model πθ

D. Full Algorithm
Now we describe our full algorithm combined with the data buffer and the pre-fetching mechanism.

E. Figures of More Experimental Results
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Figure 6: Validation accuracy on various mathematical reasoning benchmarks for SPEED-variants of RL algorithms, and base RL
algorithms. The initial model used is Qwen2.5-Math-7B (for the top 4 rows) and Qwen2.5-Math-1.5B (for the bottom 3 rows). Y-axis
labels follow the pattern ‘Model size + Training set + Base RL algorithm’. We use three training dataset: NuminaMath (Li et al., 2024),
DAPO-17k (without 1k held-out validation set) (Yu et al., 2025), and DeepScaleR (Luo et al., 2025), and we use 2 base RL algorithms:
RLOO (Ahmadian et al., 2024) and DAPO (Yu et al., 2025). The lighter curves represent raw accuracy results, while the bold curves
indicate smoothed results obtained via an exponential moving average.
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