
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

SPEED-RL: Faster Training of Reasoning Models
via Online Curriculum Learning

Anonymous Authors1

Abstract
Training large language models with reinforce-
ment learning (RL) against verifiable rewards sig-
nificantly enhances their reasoning abilities, yet
remains computationally expensive due to inef-
ficient uniform prompt sampling. We introduce
SELECTIVE PROMPTING WITH EFFICIENT ES-
TIMATION OF DIFFICULTY (SPEED), an adap-
tive online RL curriculum that selectively chooses
training examples of intermediate difficulty to
maximize learning efficiency. Theoretically, we
establish that intermediate-difficulty prompts im-
prove the gradient estimator’s signal-to-noise ra-
tio, accelerating convergence. Empirically, our
procedure leads to 2× to 6× faster training without
degrading accuracy, requires no manual tuning,
and integrates seamlessly into standard RL algo-
rithms.

1. Introduction
Training large reasoning models (LLMs) commonly em-
ploys reinforcement learning (RL) techniques (Sutton et al.,
1999) guided by automated verifiers (Ahmadian et al., 2024;
Guo et al., 2025). However, this approach is computation-
ally expensive, often surpassing the costs associated with
conventional supervised fine-tuning. The substantial com-
putational overhead constitutes a significant bottleneck for
developing bespoke reasoning models for specific down-
stream tasks. Given the increasing importance of advanced
reasoning skills across various domains, it is crucial to de-
vise more compute-efficient strategies to train models with
RL without sacrificing performance quality. This paper in-
troduces and investigates data-driven techniques aimed at
accelerating RL-based training of reasoning models.

Previous literature has demonstrated state-of-the-art reason-
ing performance by training LLMs on carefully curated
datasets (Muennighoff et al., 2025; Ye et al., 2025; Li et al.,
2025). However, these approaches predominantly depend
on extensive human manual effort during data selection,
limiting their scalability and practical flexibility. One at-
tractive way to accelerate the training of reasoning models

is to use curriculum learning, a training methodology that
progressively organizes examples from simple to difficult.
While curriculum learning has produced impressive results
in some machine learning domains, it has yielded mixed or
minimal improvements in others (Bengio et al., 2009; So-
viany et al., 2022). On the other hand, the effectiveness of
curriculum learning specifically integrated into RL training
of LLMs for reasoning tasks remains poorly understood.

In this work, we propose a data-driven online curriculum
learning strategy that dynamically prioritizes and selects
informative training samples during RL training based on
real-time estimates of difficulty. While similar insights have
been leveraged by prior literature (Yang et al., 2024; Guo
et al., 2025; Team et al., 2025; Foster and Foerster, 2025) as
well as concurrent works (Bae et al., 2025; Lin et al., 2025;
Yu et al., 2025; Xu et al., 2025; Cui et al., 2025), these
methods have not yet fully realized the primary promise of
online curriculum learning—namely, achieving a substan-
tial reduction in wall-clock RL training time of reasoning
models. To address this gap, this paper makes two primary
contributions—one theoretical and one methodological—
each reinforcing the other.

Theoretical contribution. We rigorously demonstrate
that prompts of intermediate difficulty levels provide
the strongest learning signal within RL frameworks.
Specifically, we establish a novel theoretical link between
the prompt pass rate and the signal-to-noise ratio (SNR)
of stochastic gradient estimators—a critical factor for the
convergence rate of optimization algorithms. Our analysis
reveals that the gradient estimator’s SNR significantly dete-
riorates for prompts with pass rates near 0% or 100%, where
stochastic gradients become dominated by noise, making
additional sampling meaningless. Crucially, our theoretical
findings generalize to many widely-used policy gradient
algorithms, such as REINFORCE(Sutton et al., 1999), RE-
INFORCE++(Hu, 2025), RLOO(Ahmadian et al., 2024),
GRPO(Shao et al., 2024), and PPO(Schulman et al., 2017)
, and extend to domains beyond reasoning and language
models. These insights directly inform our methodological
approach.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

Prompts

Prompt 1

Prompt 2

Prompt 1

Prompt 2

Prompt 3

Prompt 4

✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅
✅ ✅ ❌ ❌ ✅ ✅ ❌ ❌

✅ ✅ ✅ ✅
✅ ✅ ❌ ❌

❌ ❌ ❌ ❌

✅ ✅ ❌ ❌

✅ ✅
❌ ❌

✅ ✅
❌ ❌

First generation
phase

Second generation
phase

Rule-based
RL

Figure 1: An overview of Selective Prompting with Efficient Estimation of Difficulty (SPEED).

Design principle and practical implementation. Guided
by our theoretical insights, we introduce an efficient online
curriculum learning framework that dynamically selects
prompts at optimal difficulty levels for RL training. To
achieve a lightweight online curriculum implementation,
our procedure leverages the current state of the model itself
to estimate the prompt difficulty. An instantiation of this
idea is found in Foster and Foerster (2025), where many can-
didate responses per prompt are generated through full in-
ference to estimate pass rates, and only informative prompts
are selected for training. However, this naive method of-
fers limited practical acceleration, as it does not address the
heavy cost of inference, which is typically the most compu-
tationally demanding phase of RL training that dominates
other costs.

On the contrary, our design reduces inference costs and en-
hances the quality of training signals for prompts selected
during training, enabling more effective updates and faster
convergence. Practically, we implement it by screening the
prompts’ pass rates before performing expensive full infer-
ence for prompts with appropriate difficulty. Specifically,
we employ a lightweight statistical test to quickly estimate
prompt difficulty, combined with an optimized pre-fetching
mechanism that drastically reduces inference overhead. Ex-
perimental evaluations demonstrate substantial wall-clock
speedups: our method accelerates RL training by 2x to
6x compared to baseline RL algorithms to achieve the same
target performance across standard mathematical reasoning
benchmarks. Furthermore, our curriculum method requires
no manual data preprocessing or specialized auxiliary neural
components, integrates seamlessly with prevalent RL algo-
rithms (e.g., GRPO, REINFORCE, RLOO), and is broadly
applicable to many tasks with binary-verifiable rewards.

2. Problem Setup
Let πθ denote a language model parameterized by param-
eters θ. Given a prompt x ∈ X , the model produces a
response y = (y1, y2, . . .) ∈ Y auto-regressively. Formally,
each token in the response sequence is generated according
to the conditional probability:

yk+1 ∼ πθ(· | x, y≤k), (1)

where we use y≤k to refer to the first k tokens generated
by the model. For reasoning-based tasks considered here,
the model typically produces responses following a step-
by-step “chain-of-thought” reasoning approach (Wei et al.,
2022). A verification function r(y) subsequently evaluates
the correctness of the model’s response based on the ground-
truth answer, e.g.,

r(y) =

{
1 if y is correct,
0 if y is incorrect.

(2)

Our primary objective is to maximize the pass rate, defined
as the average accuracy of the model πθ across a distribution
of prompts DX . Explicitly, the optimization objective is
defined as follows:

J(θ) = Ex∼DXEy∼πθ(·|x)[r(y)], (3)

where DX is a distribution over the prompt set. Taking the
gradient of the objective (3) with respect to model param-
eters θ and employing a baseline (for variance reduction)
(Sutton et al., 1999) leads to the well-known policy gradient
formulation:

∇θJ(θ) = Ex∼DXEy∼πθ(·|x) [A(y)∇θ log πθ(y | x)] ,
(4)

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

Figure 2: Left and middle: Pass rate distribution of 1000
samples in DAPO-17k evaluated by Qwen2.5-Math-1.5B
(left) and Qwen2.5-Math-7B (middle). To evaluate the pass
rates, we sample 50 responses per prompt. Right: Average
per-step inference and training times while running RLOO
on the Qwen2.5-Math-7B model.

where the advantage function A(y) is given by:

A(y) = r(y)− Ey′∼πθ(·|x)[r(y
′)]. (5)

Here Ey′∼πθ(·|x)[r(y
′)] is the expected pass rate for prompt

x. In practice, the policy gradient in equation (4) is esti-
mated through Monte Carlo samples, yielding the classical
REINFORCE algorithm (Sutton et al., 1999). Recent works
have further modified this base policy gradient formulation
to improve its stability, efficiency, and practicality. This has
resulted in advanced methods such as REINFORCE++ (Hu,
2025), GRPO (Shao et al., 2024), PPO (Schulman et al.,
2017), and RLOO (Ahmadian et al., 2024).

3. What Prompts Lead to Useful Training
Signal?

Training datasets contains many “easy” and “hard”
questions. Our work builds on the observation, shared
by prior studies, that many training prompts are either too
easy or too hard, and thus contribute a limited useful learn-
ing signal. Figure 2 makes this concrete: for 1000 prompts
randomly drawn from the DAPO-17k dataset, we evalu-
ate both Qwen 2.5-Math-1.5 B and Qwen 2.5-Math-7 B
by sampling 50 completions for each prompt. Even with
this generous sampling budget, there are still 340 and 258
prompts, respectively, with exactly zero pass rate. As we
show in Section 5.1, these prompts—roughly one quarter
to one third of the data—contribute no actionable learning
signal.

In fact, in common reasoning benchmarks such as MATH
(Hendrycks et al., 2021) or GSM8k (Cobbe et al., 2021), a
large fraction of prompts are either trivially easy or effec-
tively unsolvable, leading to pass-rate spikes at 0% or 100%
(see Figure 3 of (Foster and Foerster, 2025)). (Schaeffer
et al., 2025) also showed a heavy-tailed pass rate distribu-
tion for a subset of the MATH dataset (see their Figure 4).
Additionally, as models evolve, many prompts become triv-
ial for large models. DAPO (Yu et al., 2025) reports that
late in training a 32B base model, over half of all prompts

attain a 100% pass rate and provide no signals in the training
(see their Figure 3b). These observations together motivate
an online, adaptive filtering strategy: rather than fixing a
static curriculum in advance, we continuously estimate each
prompt’s pass rate on-the-fly and retain only those whose
difficulty remains in an intermediate range.

Effect of prompt difficulty on the policy gradient: An
SNR perspective. It is natural to analyze how this skewed
difficulty distribution influences the training signals, in par-
ticular, the resulting policy gradient (4). Intuitively, prompts
that are either too simple or too difficult provide no in-
formative feedback, as the model consistently succeeds or
consistently fails, respectively. Formally, in both scenarios,
the policy gradient for prompt x (Equation (4)) vanishes
since the advantage function (Equation (5)) becomes zero:

∇θJx(θ) = Ey∼πθ(·|x)
[
A(y)︸ ︷︷ ︸
=0

∇θ log πθ(y | x)
]
= 0 (6)

if the pass rate is 0% or 100%. Thus, these prompts can
be removed without affecting the gradient. This observa-
tion leads us to develop a more solid theory, which uses
information-theory to measure the utility of a prompt. A
natural measure quantifying the informativeness of a prompt
is the Signal-to-Noise Ratio (SNR) of the policy gradient
estimate. Formally speaking, we estimate (6) via empirical
policy gradient:

∇̂θJx(θ) =
1

N

N∑
i=1

Â(yi) · ∇θ log πθ(yi | x), (7)

where y1, ..., yN
i.i.d.∼ πθ(· | x). Here, Â(yi) is the advan-

tage estimate for response yi. For example, in our experi-
ments, we adopt the RLOO estimator from Ahmadian et al.
(2024):

Â(yi) := r(yi)−
1

N − 1

∑
j ̸=i

r(yj). (8)

With this definition, the empirical policy-gradient in (7)
remains an unbiased estimator of the true gradient. The
SNR is defined as the ratio between the squared norm of the
gradient estimator and its variance:

SNR(θ) :=
∥E∇̂θJx(θ)∥2

E∥∇̂θJx(θ)− E∇̂θJx(θ)∥2
. (9)

Here, the SNR is a function of model parameter θ and
prompt x. It quantifies the amount of information carried by
a stochastic gradient, and governs the expected improvement
of methods based on stochastic gradients—such as RLOO,
PPO, REINFORCE, etc. For example, a simple connection
between the SNR and the expected improvements is revealed
in the following fact.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

Algorithm 1 Selective Prompting with Efficient Estimation of Difficulty (SPEED)

Input: Prompt set D; initial sample size Ninit; continuation sample size Ncont; difficulty thresholds Plow, Phigh; total
training steps T ; batch size B
for t = 1 to T do

Initialize Daccepted ← ∅
repeat

Sample prompt x ∈ D
Generate Ninit responses from the current model

PASSRATE(x)← 1

Ninit

∑Ninit

i=1 I
(
responsei is correct

)
if Plow < PASSRATE(x) < Phigh then
Daccepted ← Daccepted ∪ {x}

end if
until |Daccepted| = B
for each x ∈ Daccepted do

Generate an additional Ncont responses
end for
Perform one RL update step using all Ninit +Ncont responses for every x ∈ Daccepted

end for

Fact 3.1. Consider the one-step stochastic gradient update
θ+ = θ + ∇̂θJx(θ), where the empirical policy gradient is
unbiased. Assume Jx(θ) defined in (4) is 1-smooth. Then,
one has

E[Jx(θ+)]− Jx(θ) ≥
1

2
∥∇θJx(θ)∥2

(
1− 1

SNR(θ)

)
,

(10)
where SNR is defined as (9).

This can be viewed as a natural consequence of the stan-
dard analysis of SGD on smooth functions (Duchi, 2018;
Bernstein et al., 2018). We include the proof in Appendix A
for completeness. Thus, if the SNR approaches zero, the
variance completely overwhelms the signal, and negligible
improvement is expected from a single update step. Con-
versely, as the SNR increases toward infinity, we recover
the fast convergence behavior characteristic of deterministic
gradient methods.

Connections between SNR and pass rate. Typically,
common techniques to increase the SNR range from sim-
ply increasing the number of sampled rollouts to applying
variance-reduction baselines (Sutton et al., 1999), which,
in practical RL training, will be compute-heavy. In this
work, instead, we select the most informative prompts to
enhance the SNR during training, thus framing curriculum
learning as a variance reduction tehcnique. To be precise,
we establish an explicit link between the gradient estima-
tor’s SNR and the prompt pass rate, yielding the following
fundamental result. We defer the proof to Appendix A.
Theorem 3.2 (Fundamental Connection between SNR and
Pass Rate). Fix a prompt x. Let P(θ) denote the pass
rate of x under the current policy (πθ(·|x)): P(θ) =

Ey∼πθ(·|x)[I(r(y) = 1)]. Then, the SNR of its stochastic
gradient estimator (defined in (9)) satisfies

SNR ≤ f(P(θ)) :=
[
(1− P(θ))2

P(θ)
+
P(θ)2

1− P(θ)
− 1

]−1

(11)
Moreover, we have limP(θ)→1 SNR = limP(θ)→0 SNR =

0, argmaxP(θ)∈[0,1] f(P(θ)) = 1
2 .

This result is significant because it explicitly quantifies how
much informative signal (relative to noise) a single training
step provides as a direct function of pass rate. Crucially, The-
orem 3.2 confirms an important intuition: prompts with very
low (P(θ) ≈ 0%) or very high (P(θ) ≈ 100%) pass rates
both yield vanishing SNR. Such prompts provide negligible
useful training signal while potentially introducing detri-
mental variance in parameter updates. Therefore, the funda-
mental insight established by Theorem 3.2 is that optimal
curricula must explicitly prioritize intermediate-difficulty
prompts to maximize learning signal and effectiveness.

4. Algorithm
Algorithm design. In this section, we introduce SELEC-
TIVE PROMPTING WITH EFFICIENT ESTIMATION OF DIF-
FICULTY (SPEED), an online curriculum learning method
designed to feed training prompts at precisely the appropri-
ate level of difficulty. Because the model proficiency evolves
throughout training, the prompt difficulties must be contin-
uously reassessed; this motivates our adaptive, on-the-fly
curriculum design.

However, reliably identifying these prompts in a general and
computationally efficient manner is challenging. Naively

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

estimating prompt difficulties by generating multiple re-
sponses per prompt (as studied recently in Foster and Foer-
ster (2025)) and computing the pass rates quickly becomes
computationally prohibitive, as inference usually dominates
RL training time. As demonstrated in Figure 2, inference
time for methods like RLOO often exceeds the actual time
spent on gradient updates by a factor of two, even for mod-
erately lengthy responses. This imbalance arises primarily
due to the autoregressive nature of LLM inference and sig-
nificantly slows down the RL training.

To address this, we propose a two-phase ap-
proach—illustrated in Algorithm 1—that efficiently
filters and prioritizes prompts. Suppose the underlying
RL method generates N rollouts per prompt (typically,
N = 16 to 64 (Liu et al., 2024; Guo et al., 2025; Yu
et al., 2025)). We split this into an initial inference phase
(Ninit ≈ 4–8 ≪ N) and a continuation phase (Ncont),
where Ninit + Ncont = N . First, a limited number of
responses per prompt are generated to form a coarse
pass-rate estimate. We then select prompts whose estimated
pass rates lie distinctly away from trivial extremes (0% or
100%), defining these as qualified prompts. In the second
phase, we produce the remaining responses (Ncont) only
for these prompts, thus significantly reducing unnecessary
inference. This selective two-phase inference scheme is
compatible with common RL algorithms, such as GRPO,
PPO, RLOO, and REINFORCE and it recovers them for
appropriate choice of the hyperparameters 1.

Efficient implementation. Our algorithm involves two in-
ference phases, which in a naive implementation would sep-
arately call the inference engine (e.g., vLLM (Kwon et al.,
2023)) twice, increasing computational overhead. Since
vLLM features efficient internal batching mechanisms(e.g.,
continuous batching and chunked prefill), performing two
separate inference calls is slower than a single combined
call.

To mitigate this overhead, we design an efficient pre-
fetching mechanism. While performing the continued gen-
eration phase for accepted prompts, we simultaneously pre-
fetch a new batch of prompts and rollout initial generations
for these prompts. Responses for the new prompts are imme-
diately evaluated for pass rates, while responses for accepted
prompts are stored in the data buffer for training. This com-
bined inference significantly reduces overhead and takes one
inference call per generation step on average. Although re-
sponses for a prompt might be generated by slightly different
model versions, as there may be an intermediate RL train-
ing step between the two generation steps, we empirically
find no performance degradation, confirming the practical

1More precisely, when Plow = −∞, Phigh = +∞, Ninit =
N,Ncont = 0.

effectiveness of this approach.

Moreover, standard RL training methods typically operate
with fixed batch sizes, meaning the number of prompts
processed in each RL update step is predetermined. How-
ever, this fixed-batch restriction conflicts with the rejection-
sampling nature of our proposed curriculum algorithm, for
which the number of prompts accepted for training dynami-
cally varies and may not exactly match the required batch
size. Previous solutions either handle inference and train-
ing asynchronously (Xu et al., 2025) or resort to repeti-
tive inference passes before each training step, discard-
ing surplus prompts afterward (Yu et al., 2025). In con-
trast, we introduce a simple data buffer to temporarily store
prompts not immediately utilized due to batch-size con-
straints. This strategy enables larger inference batches with-
out data wastage, significantly increasing computational
efficiency. While buffering introduces somewhat more off-
policy training, our experimental results clearly demonstrate
that this data-buffer approach markedly improves computa-
tional efficiency without compromising performance.

The full detailed algorithm combining the data buffer and
pre-fetching mechanism is described in ??. Moreover, the
efficient implementation is compatible with more RL frame-
works, especially those that require asynchronous or multi-
stage training.

5. Experiments
In this section, we evaluate the performance of SPEED. We
first describe our experimental setup, including the models,
datasets, baseline methods, and evaluation metrics. We then
present our primary results and discussions in Section 5.1.

Training setup. Our experiments use Qwen2.5-Math-
1.5B and Qwen2.5-Math-7B models (Yang et al., 2024). We
integrate SPEED with two rule-based RL methods: RLOO
(Ahmadian et al., 2024) and DAPO (Yu et al., 2025). DAPO
serves as an important baseline for curriculum learning as it
filters all prompts with 0% or 100% pass rates after gener-
ating all responses. While our evaluation focuses on these
two algorithms, our approach is broadly applicable to any
rule-based RL method.

We train the models using three datasets: NuminaMath (Li
et al., 2024), DAPO-17k (Yu et al., 2025), and DeepScaleR
(Luo et al., 2025). NuminaMath originally contains 860k
prompts, ranging from simpler GSM8k (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) questions to challeng-
ing competition-level problems. We filter out proof-based
questions and keep only problems with integer-valued solu-
tions, which leaves us with 220k prompts. The DAPO-17k
dataset consists of 17k integer-answer prompts, of which
we reserve 1k as a held-out test set and use the remain-

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

Table 1: The wall-clock training hours needed for each model to reach a target accuracy on its respective benchmark. For the
Qwen-Math-1.5B model, the targets are 0.30 on DAPO-1k, 0.70 on MATH500, 0.4 on AMC2023, and 0.10 on AIME. For the larger
Qwen2.5-Math-7B model, the thresholds increase to 0.45, 0.80, 0.55, and 0.18 for the same datasets, respectively. Validation time and
checkpoint-saving overhead are excluded. Values in parentheses give the corresponding wall-clock speed-ups. † means the performance
has not reached the threshold during the entire training process.

Model Size Training Data Algorithm DAPO-1k MATH500 AMC2023 AIME

Math-1.5B
NuminaMath

RLOO 25.9 13.6 4.7 13.6
SPEED-RLOO 7.6 (3.4 x) 3.3 (4.1 x) 2.8 (1.7 x) 6.4 (2.1 x)

DAPO † 18.0 10.0 16.7
SPEED-DAPO 11.6 (†) 3.9 (4.6 x) 3.4 (2.9 x) 10.4 (1.6 x)

DAPO-17k RLOO † 13.8 8.0 12.8
SPEED-RLOO 4.4 (†) 4.8 (2.9 x) 2.2 (3.6 x) 4.8 (2.7 x)

Math-7B

DAPO-17k
RLOO 13.5 12.7 4.3 7.8

SPEED-RLOO 3.6 (3.8 x) 4.3 (3.0 x) 1.8 (2.4 x) 3.0 (2.6 x)
DAPO 12.1 21.8 7.6 7.6

SPEED-DAPO 5.0 (2.4 x) 6.2 (3.5 x) 2.2 (3.5 x) 2.8 (2.7 x)

DeepScaleR
RLOO 12.6 11.1 5.6 9.7

SPEED-RLOO 2.9 (4.3 x) 2.9 (3.8 x) 1.1 (5.1 x) 1.6 (6.1 x)
DAPO 17.1 16.2 7.5 11.1

SPEED-DAPO 15.1 (1.1 x) 5.7 (2.8 x) 2.2 (3.4 x) 2.2 (5.0 x)

ing prompts for training. DeepScaleR contains approxi-
mately 400k training examples derived from past AIME
(up to 2023) and AMC (prior to 2023) competitions. Be-
sides the held-out test set in DAPO-17k, we evaluate the
models’ performance on four additional standard mathemat-
ical reasoning datasets: MATH500 (Lightman et al., 2023),
AIME2024 (AIM, 2024), AIME2025 (AIM, 2024), and
AMC2023 (AMC, 2023).

5.1. Results

Efficiency evaluation. We measure SPEED’s efficiency
improvements by comparing the relative wall-clock time
needed to reach specific accuracy targets. When calculating
the training time, we include every stage in the RL training
except the time for validation and saving checkpoints. To en-
sure consistency, all experiments use a single node equipped
with four NVIDIA GH200 GPUs (with 96GB of GPU mem-
ory and 120GB CPU memory each). Our implementation
relies on the VeRL framework (Sheng et al., 2024). Un-
less otherwise specified, the training batch size (number of
prompts) is set to 16, and the generation batch size is 64
for SPEED variants. For vanilla DAPO and SPEED-DAPO,
we set εlow = 0.2, εhigh = 0.28. In every experiment, we
apply a learning rate of 10−6 with a warmup period of 10
steps and a weight decay of 0.1. Baselines generate N = 24
responses per prompt, and SPEED-RL variants use a com-
bined Ninit +Ncont = 24 generations.

Figure 3 and Table 1 illustrate that SPEED significantly

enhances training efficiency. Integrated with rule-based
RL algorithms RLOO and DAPO, SPEED achieves tar-
get validation accuracies 2–6 times faster compared with
baseline RL algorithms across nearly all benchmarks and
experimental runs. For instance, on DAPO-1k, Qwen2.5-
Math-7B reaches a validation accuracy of 0.45 in 7.6 hours
with SPEED-RLOO, whereas vanilla RLOO requires ap-
proximately 3.4 times longer. Although specific speedup
values vary by dataset and target accuracy, our results con-
sistently demonstrate substantial efficiency improvements
across multiple setups.

Informativeness measures. To understand why SPEED
improves efficiency, we examine the informativeness of gra-
dients produced during training. As depicted in Figure 4,
SPEED-RLOO consistently maintains training accuracies
much closer to 0.5 compared to vanilla RLOO, particularly
in early training stages. According to our theoretical anal-
ysis (Theorem 3.2), prompts with pass rates close to 0.5
generally yield higher SNR, which enhances training effi-
ciency. Additionally, gradient norms from SPEED-RLOO
are substantially larger than those from baseline methods,
aligning well with our theoretical predictions discussed in
Section 3.

Effect of Ninit. The initial inference stage generation count
(Ninit) is the only additional hyperparameter introduced by
our method, and setting Ninit = N and Ncont = 0 recovers
the original RL method. A larger Ninit increases the like-
lihood of selecting prompts with more extreme pass rates,

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

Figure 3: Validation accuracy on various mathematical reasoning benchmarks for SPEED-variants of RL algorithms, and base RL
algorithms. Top: RLOO versus SPEED-RLOO; bottom: DAPO versus SPEED-DAPO. The initial model used is Qwen2.5-Math-7B,
trained on the DeepScaleR dataset. The lighter curves represent raw accuracy results, while the bold curves indicate smoothed results
obtained via an exponential moving average.

Figure 4: Average training accuracy (left) and gradient norm (right) comparison between RLOO and SPEED-RLOO during training of
Qwen2.5-Math-7B. For the SPEED variants, the reported accuracies on the training set are calculated exclusively using the qualified
prompts that are selected in the actual training process.

potentially reducing gradient informativeness. Figure 5 com-
pares setups with Ninit = 4, 6, 8 under identical conditions.
Results show that larger Ninit values lead to smaller average
gradient norms and push training accuracies away from 0.5.
This aligns with our theoretical insights that the prompts
with pass rates near 0.5 can provide stronger learning sig-
nals. As a result, increasing Ninit tends to slow down the
performance rise and reduce the efficiency improvements
compared to baselines.

6. Additional Related Works
Large reasoning models and reinforcement learning.
Large language models (LLMs) have achieved remarkable
performance on mathematical reasoning and code genera-

tion (Achiam et al., 2023; Yang et al., 2024; Jaech et al.,
2024; Hurst et al., 2024; Lambert et al., 2024; Guo et al.,
2025; Team et al., 2025). Fine-tuning these pretrained mod-
els often relies on reinforcement learning (RL) methods
such as Proximal Policy Optimization (PPO) (Schulman
et al., 2017; Hu et al., 2025). However, PPO updates can
be computationally expensive and prone to reward hack-
ing, limiting rapid iteration and deployment. To address
these issues, several rule-based RL variants have been pro-
posed. DeepSeek, for example, introduces Group Relative
Policy Optimization (GRPO) (Shao et al., 2024; Guo et al.,
2025). Other extensions—such as REMAX (Li et al., 2023),
RLOO (Ahmadian et al., 2024), and REINFORCE++ (Hu,
2025; Xie et al., 2025)—further demonstrate the benefits of
rule-based RL.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

Figure 5: The validation accuracy on DAPO-1k (left), the average gradient norm (middle), and the average training accuracy (right) of
RLOO and SPEED-RLOO with different Ninit. We train Qwen2.5-Math-1.5B on the training split of DAPO-17k.

Difficulty-based curriculum learning. Training large rea-
soning models is often computationally expensive. Cur-
riculum learning arranges training examples by increasing
difficulty to guide model learning from moderately difficult
examples (Bengio et al., 2009). Several open-source LLMs
(e.g., Qwen2.5 (Yang et al., 2024), Kimi-1.5 (Team et al.,
2025)) mention curricula without publishing details. Some
static methods sort data offline—using pass-rate estimates
(Wen et al., 2025), human difficulty labels (Lee et al., 2023),
or software metrics for coding tasks (Naïr et al., 2024)—and
then apply sequential supervised or RL fine-tuning. Re-
cently, (Shi et al., 2025) estimates the question difficulty
offline via the pass rates or from more capable models, and
adaptively updates the target difficulty to select proper data
in the training stage. In contrast, our method estimates
prompt difficulty on the fly, yielding more accurate and
timely example selection. Recent work on online filtering
adapts the curricula to the model’s current performance.
DAPO (Yu et al., 2025) dynamically samples prompts and
discards those with uniformly correct or incorrect responses.
Bae et al. (2025); Lin et al. (2025); Meng et al. (2025) fur-
ther restrict training to prompts with moderate pass rates.
(Foster and Foerster, 2025) select the prompts with maximal
reward variance. (Xu et al., 2025) adopts a similar idea and
further decouples the inference and training phases to boost
the efficiency. (Cui et al., 2025) uses a separately trained
process reward model to gauge difficulty. They estimate the
question difficulty via the pass rate after all responses are
generated. Unlike these methods, we use a lightweight hypo-
thetical generation step to infer difficulty, reducing compute
and boosting the inference efficiency.

More methods for efficient reasoning. Beyond curriculum
learning, researchers have explored data selection and in-
ference optimizations for reasoning models. Curating high-
quality chain-of-thought data can boost training efficiency
(Muennighoff et al., 2025; Ye et al., 2025; Li et al., 2025),
and token-level filtering can further reduce cost (Lin et al.,
2024b). Another class of methods is based on early stopping
or rejection sampling, such as RAFT (Dong et al., 2023)
and speculative rejection (Sun et al., 2024). Our method
effectively combines early stopping with difficulty filter-

ing. Other approaches compresses chain-of-thoughts via
prompt engineering (Han et al., 2024; Nayab et al., 2024),
conditional training (Deng et al., 2024; Kang et al., 2025)
or RL (Arora and Zanette, 2025; Fatemi et al., 2025). Addi-
tionally, efficient serving systems like vLLM (Kwon et al.,
2023), speculative decoding (Leviathan et al., 2023; Liu
et al., 2023), weight pruning (Liu et al., 2018), and quanti-
zation (Lin et al., 2024a) further cut runtime and memory
requirements. These methods are orthogonal to our pro-
posed algorithm and can be seamlessly combined with our
method.

7. Conclusion and Future Directions
In this paper, we introduce SPEED, a method to accelerate
the rule-based RL training of large reasoning models via on-
line curriculum learning. By adaptively prioritizing prompts
of intermediate difficulty, estimated by the pass rates over
initially generated responses, SPEED selects prompts at the
right level of difficulty on the fly to enhance the gradient
informativeness. Our theory also shows that moderately
difficult prompts can maximize the upper bound of Signal-
to-Noise Ratio. Experiments demonstrated that SPEED
significantly accelerates training, achieving between two to
six times speedups across various datasets and tasks.

Future Directions. We identify several promising direc-
tions for future research:

• Although SPEED accelerates training efficiency, it does
not necessarily enhance peak performance. Future work
could explore methods that achieve rapid initial learning
and superior final performance simultaneously.

• Our curriculum selects prompts based on difficulty esti-
mates from the pass rates. Future research could explore
alternative criteria for adaptive data selection. For exam-
ple, for value-based RL algorithms, the value function
may provide an efficient difficulty estimation.

• Future research could integrate reward evaluation directly
into existing efficient inference servings like vLLM, allow-
ing immediate, on-the-fly prompt filtering, which would
further enhance the efficiency of training large reasoning
models.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

References
American mathematics competitions (amc

10/12), 2023, February 2023. URL https:
//artofproblemsolving.com/wiki/index.
php/AMC_12_Problems_and_Solutions.
Problems and solutions.

American invitational mathematics examination (aime) i
and ii, 2024, February 2024. Problems and solutions.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-
mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh
Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet Üstün,
and Sara Hooker. Back to basics: Revisiting reinforce
style optimization for learning from human feedback in
llms. arXiv preprint arXiv:2402.14740, 2024.

Daman Arora and Andrea Zanette. Training language mod-
els to reason efficiently. arXiv preprint arXiv:2502.04463,
2025.

Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim,
JeongYeon Nam, and Donghyun Kwak. Online difficulty
filtering for reasoning oriented reinforcement learning.
arXiv preprint arXiv:2504.03380, 2025.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and
Jason Weston. Curriculum learning. In Proceedings
of the 26th annual international conference on machine
learning, pages 41–48, 2009.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzade-
nesheli, and Animashree Anandkumar. signsgd: Com-
pressed optimisation for non-convex problems. In Interna-
tional Conference on Machine Learning, pages 560–569.
PMLR, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark
Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al.
Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi
Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin Xu,
Weize Chen, et al. Process reinforcement through implicit
rewards. arXiv preprint arXiv:2502.01456, 2025.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit
cot to implicit cot: Learning to internalize cot step by
step. arXiv preprint arXiv:2405.14838, 2024.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang,
Winnie Chow, Rui Pan, Shizhe Diao, Jipeng Zhang,
Kashun Shum, and Tong Zhang. Raft: Reward ranked
finetuning for generative foundation model alignment.
arXiv preprint arXiv:2304.06767, 2023.

John C Duchi. Introductory lectures on stochastic optimiza-
tion. The mathematics of data, 25:99–186, 2018.

Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kar-
tik Talamadupula. Concise reasoning via reinforcement
learning. arXiv preprint arXiv:2504.05185, 2025.

Thomas Foster and Jakob Foerster. Learning to reason at the
frontier of learnability. arXiv preprint arXiv:2502.12272,
2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reason-
ing capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao,
Shiqing Ma, and Zhenyu Chen. Token-budget-aware llm
reasoning. arXiv preprint arXiv:2412.18547, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. Measuring mathematical problem solving
with the math dataset. arXiv preprint arXiv:2103.03874,
2021.

Jian Hu. Reinforce++: A simple and efficient approach
for aligning large language models. arXiv preprint
arXiv:2501.03262, 2025.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xi-
angyu Zhang, and Heung-Yeung Shum. Open-reasoner-
zero: An open source approach to scaling up rein-
forcement learning on the base model. arXiv preprint
arXiv:2503.24290, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perel-
man, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila
Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o
system card. arXiv preprint arXiv:2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson,
Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander
Madry, Alex Beutel, Alex Carney, et al. Openai o1 system
card. arXiv preprint arXiv:2412.16720, 2024.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot:
Generating shorter chain-of-thought without compromis-
ing effectiveness. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pages 24312–24320,
2025.

9

https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng,
Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management
for large language model serving with pagedattention. In
Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester
James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu,
et al. T\" ulu 3: Pushing frontiers in open language model
post-training. arXiv preprint arXiv:2411.15124, 2024.

Bruce W Lee, Hyunsoo Cho, and Kang Min Yoo. In-
struction tuning with human curriculum. arXiv preprint
arXiv:2310.09518, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast
inference from transformers via speculative decoding. In
International Conference on Machine Learning, pages
19274–19286. PMLR, 2023.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Ro-
man Soletskyi, Shengyi Huang, Kashif Rasul, Longhui
Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The
largest public dataset in ai4maths with 860k pairs of com-
petition math problems and solutions. Hugging Face
repository, 13:9, 2024.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less
is more for rl scaling. arXiv preprint arXiv:2502.11886,
2025.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu,
Ruoyu Sun, and Zhi-Quan Luo. Remax: A simple,
effective, and efficient reinforcement learning method
for aligning large language models. arXiv preprint
arXiv:2310.10505, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison
Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s ver-
ify step by step. In The Twelfth International Conference
on Learning Representations, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming
Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang,
Chuang Gan, and Song Han. Awq: Activation-aware
weight quantization for on-device llm compression and
acceleration. Proceedings of Machine Learning and Sys-
tems, 6:87–100, 2024a.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong
Shen, Ruochen Xu, Chen Lin, Yujiu Yang, Jian Jiao, Nan
Duan, et al. Rho-1: Not all tokens are what you need.
arXiv preprint arXiv:2404.07965, 2024b.

Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji.
Cppo: Accelerating the training of group relative policy
optimization-based reasoning models. arXiv preprint
arXiv:2503.22342, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao
Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical
report. arXiv preprint arXiv:2412.19437, 2024.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Cheung,
Zhijie Deng, Ion Stoica, and Hao Zhang. Online specula-
tive decoding. arXiv preprint arXiv:2310.07177, 2023.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
arXiv preprint arXiv:1810.05270, 2018.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi,
William Tang, Manan Roongta, Colin Cai, Jeffrey Luo,
Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Sto-
ica. Deepscaler: Surpassing o1-preview with a 1.5b
model by scaling rl, 2025.

Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou,
Quanfeng Lu, Daocheng Fu, Tiancheng Han, Botian Shi,
Wenhai Wang, Junjun He, et al. Mm-eureka: Exploring
the frontiers of multimodal reasoning with rule-based
reinforcement learning. arXiv preprint arXiv:2503.07365,
2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa
Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettle-
moyer, Percy Liang, Emmanuel Candès, and Tatsunori
Hashimoto. s1: Simple test-time scaling, 2025. URL
https://arxiv.org/abs/2501.19393.

Marwa Naïr, Kamel Yamani, Lynda Said Lhadj, and Riyadh
Baghdadi. Curriculum learning for small code language
models. arXiv preprint arXiv:2407.10194, 2024.

Sania Nayab, Giulio Rossolini, Marco Simoni, Andrea Sara-
cino, Giorgio Buttazzo, Nicolamaria Manes, and Fabrizio
Giacomelli. Concise thoughts: Impact of output length on
llm reasoning and cost. arXiv preprint arXiv:2407.19825,
2024.

Rylan Schaeffer, Joshua Kazdan, John Hughes, Jordan Ju-
ravsky, Sara Price, Aengus Lynch, Erik Jones, Robert
Kirk, Azalia Mirhoseini, and Sanmi Koyejo. How do
large language monkeys get their power (laws)? arXiv
preprint arXiv:2502.17578, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

10

https://arxiv.org/abs/2501.19393

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junx-
iao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models. arXiv
preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu,
Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and
Chuan Wu. Hybridflow: A flexible and efficient rlhf
framework. arXiv preprint arXiv: 2409.19256, 2024.

Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou,
and Jieyu Zhao. Efficient reinforcement finetuning
via adaptive curriculum learning. arXiv preprint
arXiv:2504.05520, 2025.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu
Sebe. Curriculum learning: A survey. International
Journal of Computer Vision, 130(6):1526–1565, 2022.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang,
Jiahao Qiu, Ming Yin, Mengdi Wang, Peter Bartlett, and
Andrea Zanette. Fast best-of-n decoding via speculative
rejection. arXiv preprint arXiv:2410.20290, 2024.

Richard S Sutton, Andrew G Barto, et al. Reinforcement
learning. Journal of Cognitive Neuroscience, 11(1):126–
134, 1999.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu
Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chen-
zhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scal-
ing reinforcement learning with llms. arXiv preprint
arXiv:2501.12599, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large
language models. Advances in neural information pro-
cessing systems, 35:24824–24837, 2022.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An,
Zhenyu Duan, Yimin Du, Junchen Liu, Lifu Tang, Xi-
aowei Lv, et al. Light-r1: Curriculum sft, dpo and rl
for long cot from scratch and beyond. arXiv preprint
arXiv:2503.10460, 2025.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian
Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhirong Wu,
and Chong Luo. Logic-rl: Unleashing llm reasoning
with rule-based reinforcement learning. arXiv preprint
arXiv:2502.14768, 2025.

Yixuan Even Xu, Yash Savani, Fei Fang, and Zico Kolter.
Not all rollouts are useful: Down-sampling rollouts in llm
reinforcement learning. arXiv preprint arXiv:2504.13818,
2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen
Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jingren
Zhou, Junyang Lin, et al. Qwen2. 5-math technical report:
Toward mathematical expert model via self-improvement.
arXiv preprint arXiv:2409.12122, 2024.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia,
and Pengfei Liu. Limo: Less is more for reasoning. arXiv
preprint arXiv:2502.03387, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xi-
aochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun
Liu, Xin Liu, et al. Dapo: An open-source llm re-
inforcement learning system at scale. arXiv preprint
arXiv:2503.14476, 2025.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

A. Omitted proof in Section 3
Proof of Fact 3.1. From the definition of 1−smoothness, we know −Jx(θ) is 1-smooth if Jx(θ) is 1-smooth. We have

−Jx(θ + v) ≤ −Jx(θ) +∇(−Jx(θ))⊤v +
1

2
∥v∥2

for any vector v ∈ Rd and parameter θ ∈ Rd. This implies

Jx(θ + v) ≥ Jx(θ) +∇Jx(θ)⊤v −
1

2
∥v∥2.

Let ĝ := ∇̂θJx(θ) be an unbiased stochastic gradient so that E[ĝ] = ∇Jx(θ). Applying this with v = ĝ and taking
expectation,

E
[
Jx(θ

+)
]
− Jx(θ) ≥ ∇Jx(θ)⊤E[ĝ]−

1

2
E
[
∥ĝ∥2

]
= ∥∇Jx(θ)∥2 −

1

2

(
E∥ĝ − Eĝ∥2 + ∥Eĝ∥2

)
=

1

2
∥∇Jx(θ)∥2 −

1

2
E∥ĝ − Eĝ∥2

=
1

2
∥∇Jx(θ)∥2

(
1− E∥ĝ − Eĝ∥2

∥∇Jx(θ)∥2

)
.

Invoking the definition of the Signal-to-Noise ratio in (9), we complete the proof.

Now let’s prove Theorem 3.2. Before proving it, we first provide a formal version of the theorem presented in the main text.

Theorem A.1 (Fundamental Connection between SNR and Pass Rate, Formal). Fix a prompt x. Let P(θ) denote the pass
rate of x under the current policy (πθ(·|x)): Px(θ) = Ey∼πθ(·|x)[I(r(y) = 1)]. Consider a random response y ∈ Y with
binary reward r(y). The advantage of this response is

A(y) := r(y)− Px(θ).

The (stochastic) gradient is thus
ĝ := A(y) · ∇θ log πθ(y | x).

Define the Signal-to-Noise Ratio (SNR) of the stochastic gradient as

SNR :=
∥Eĝ∥2

E∥ĝ − Eĝ∥2
=

∥Eĝ∥2

Tr
[
Cov[ĝ]

] .
Then, the SNR satisfies

SNR ≤ f(P(θ)) :=
[
(1− Px(θ))

2

Px(θ)
+
Px(θ)

2

1− Px(θ)
− 1

]−1

. (12)

Moreover, we have

lim
P(θ)→1

SNR = lim
P(θ)→0

SNR = 0, argmax
P(θ)∈[0,1]

f(P(θ)) = 1

2
.

Proof of Theorem A.1. Let πθ be the LLM and fix a prompt x ∈ X . For responses y ∈ Y ∼ πθ(·), we let r(y) denote the
binary reward which will be one if y is correct and zero otherwise. Let C ⊂ Y be the set of correct responses, and IC ⊂ Y
be the set of incorrect responses.

Define the pass rate of prompt x, evaluated by the model πθ, as

Px(θ) := Py∼πθ(·|x)
(
r(y) = 1

)
=
∑
y∈C

πθ(y | x).

From the definition of ĝ, we know that

E[ĝ | r(y) = 1] =
∑
y∈C

πθ(y | x)
Px(θ)

· (1− Px(θ))
∇θπθ(y | x)
πθ(y | x)

=
1− Px(θ)

Px(θ)
· ∇θPx(θ),

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

and

E[ĝ | r(y) = 0] =
∑
y∈IC

πθ(y | x)
1− Px(θ)

· (−Px(θ))
∇θπθ(y | x)
πθ(y | x)

=
Px(θ)

1− Px(θ)
· ∇θPx(θ).

Therefore, one has

Eĝ = Px(θ) · E[ĝ | r(y) = 1] + (1− Px(θ)) · E[ĝ | r(y) = 0] = ∇θPx(θ),

and

E
[
E
[
ĝ
∣∣r(y)] · E[ĝ∣∣r(y)]⊤] = ((1− Px(θ))

2

Px(θ)
+
Px(θ)

2

1− Px(θ)

)
· ∇θPx(θ)∇θPx(θ)

⊤.

Then, we can lower bound the covariance matrix of ĝ by

Cov[ĝ] ⪰ Cov
[
E[ĝ | r(y)]

]
= E

[
E
[
ĝ
∣∣r(y)] · E[ĝ∣∣r(y)]⊤]− E

[
ĝ
]
· E
[
ĝ
]⊤

=

(
(1− Px(θ))

2

Px(θ)
+
Px(θ)

2

1− Px(θ)
− 1

)
· ∇θPx(θ)∇θPx(θ)

⊤.

Invoking the definition of SNR, we complete the proof

B. A Fine-grained Analysis on the Signal-to-Noise Ratio
In this section, we provide a fine-grained analysis on the connection between the SNR and the pass rate. We focus on the
SNR defined as the (9) with an empirical advantage estimate Â(y) in (8), defined as the difference between the reward of a
certain response and the averaged reward of all other responses.

Theorem B.1 (Fundamental Connection between SNR and Pass Rate, Fined-grained Analysis). Fix a prompt x. Let P(θ)
denote the pass rate of x under the current policy (πθ(·|x)): Px(θ) = Ey∼πθ(·|x)[I(r(y) = 1)]. For the prompt x, we
generate y1, y2, ..., yN i.i.d. from πθ(· | x) and the gradient estimate is defined as

∇̂θJx(θ) =
1

N

N∑
i=1

Â(yi) · ∇θ log πθ(yi | x),

where the advantage estimate is from the RLOO estimate:

Â(yi) := r(yi)−
1

N − 1

∑
j ̸=i

r(yj).

Then, the SNR of its stochastic gradient estimator (defined in (9)) satisfies

SNR ≤ f(P(θ)) :=
[
1

N
· 1

Px(θ)(1− Px(θ))
+

(N − 2)(N − 3)

N(N − 1)
− 1

]−1

(13)

Moreover, for fixed N , we have

lim
P(θ)→1

SNR = lim
P(θ)→0

SNR = 0, argmax
P(θ)∈[0,1]

f(P(θ)) = 1

2
.

Proof of Theorem B.1. Let πθ be the LLM and fix a prompt x ∈ X . For responses y ∈ Y ∼ πθ(·), we let r(y) denote the
binary reward which will be one if y is correct and zero otherwise. Let C ⊂ Y be the set of correct responses, and IC ⊂ Y
be the set of incorrect responses.

Define the pass rate of prompt x, evaluated by the model πθ, as

Px(θ) := Py∼πθ(·|x)
(
r(y) = 1

)
=
∑
y∈C

πθ(y | x).

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

We define the SNR as in Equation (9), where ∇̂θJx(θ) is defined as

∇̂θJx(θ) =
1

N

N∑
i=1

Â(yi) · ∇θ log πθ(yi | x), where y1, ..., yN
i.i.d.∼ πθ(· | x).

Here, Â(yi) is the advantage estimate for the response yi. In RLOO, this is defined as

Â(yi) := r(yi)−
1

N − 1

∑
j ̸=i

r(yj).

A simple fact is that the gradient estimate ∇̂θJx(θ) is unbiased:

E∇̂θJx(θ) = E
[
Â(y1) · ∇θ log πθ(y1 | x)

]
= E

[
r(y1) · ∇θ log πθ(y1 | x)

]
− 1

N − 1

∑
i̸=1

E
[
r(yi) · ∇θ log πθ(y1 | x)

]
=
∑
y1∈C

πθ(y1 | x) ·
∇θπθ(y1 | x)
πθ(y1 | x)

− 1

N − 1

∑
i ̸=1

E[r(yi)] · E[∇θπθ(y1 | x)]︸ ︷︷ ︸
=0

= ∇θPx(θ).

We define R := (r(y1), r(y2), r(y3),, r(yN))⊤ ∈ {0, 1}N as the random reward vector and W :=
∑N

i=1 r(yi) as the
empirical pass rate of the prompt x. Now let’s consider the covariance matrix of ∇̂θJx(θ). From the law of total variance,
we know

Cov

[
∇̂θJx(θ)

]
= Cov

[
E
[
∇̂θJx(θ)

∣∣∣∣R(x)

]]
+ E

[
Cov

[
∇̂θJx(θ)

∣∣∣∣R(x)

]]
⪰ Cov

[
E
[
∇̂θJx(θ)

∣∣∣∣R(x)

]]
.

Here, A ⪰ B means A−B is positive semi-definite (PSD) for two PSD matrices A and B. Now we calculate the conditional
expectation. We have

E
[
∇̂θJx(θ)

∣∣∣∣R(x)

]
=

W

N

(
1− W − 1

N − 1

)
· Ey∼πθ(·|x)

[
∇θ log πθ(y | x)

∣∣r(y) = 1
]

+
N −W

N

(
0− W

N − 1

)
· Ey∼πθ(·|x)

[
∇θ log πθ(y | x)

∣∣r(y) = 0
]

=
W

N

(
1− W − 1

N − 1

)
·
∑
y∈C

πθ(y | x)
Px(θ)

· ∇θπθ(y | x)
πθ(y | x)

+
N −W

N

(
0− W

N − 1

)
·
∑
y∈IC

πθ(y | x)
1− Px(θ)

· ∇θπθ(y | x)
πθ(y | x)

=
W (N −W)

N(N − 1)
· 1

Px(θ)(1− Px(θ))
· ∇θPx(θ).

Note that W follows a binomial distribution with parameters N and Px(θ). Recall the moments of binomial random
variables, we have

E
[
E
[
∇̂θJx(θ)

∣∣∣∣R(x)

]]
= E∇̂θJx(θ) = ∇θPx(θ)

and

Cov

(
E
[
∇̂θJx(θ)

∣∣∣∣R(x)

])

=
E
(
W 2(N −W)2

)
N2(N − 1)2

· 1

Px(θ)2(1− Px(θ))2
· ∇θPx(θ)∇θPx(θ)

⊤ −∇θPx(θ)∇θPx(θ)
⊤

=

(
1

N
· 1

Px(θ)(1− Px(θ))
+

(N − 2)(N − 3)

N(N − 1)
− 1

)
· ∇θPx(θ)∇θPx(θ)

⊤.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

Therefore, we can upper bound the SNR via

SNR =
∥E∇̂θJx(θ)∥2

Tr
[
Cov

[
∇̂θJx(θ)

]] ≤ ∥E∇̂θJx(θ)∥2

Tr
[
Cov

[
∇̂θJx(θ)

∣∣R(x)
]]

=

[
1

N
· 1

Px(θ)(1− Px(θ))
+

(N − 2)(N − 3)

N(N − 1)
− 1

]−1

.

Invoking the fact that Px(θ)(1− Px(θ)) is maximized when Px(θ) = 1/2, we complete the proof.

C. A theoretical justification of SPEED
SPEED filters part of the prompts based on the pass rates estimated via initially generated responses for every prompt, and
feeds the current model with precisely moderately difficult prompts. The following theorem shows that SPEED essentially
optimizes a transformed objective function, and this objective function is maximized when the pass rate of every prompt is
equal to one.

Theorem C.1. Consider SPEED-RLOO algorithm (Algorithm 1) with Ninit ≥ 1, Ncont ≥ 1, and the empirical advantage
estimate (8). Assume we sample x ∼ DX and for every prompt, y1, y2,, yN

i.i.d.∼ πθ(· | x) with N = Ninit +Ncont, and
then we use y1, ..., yNinit to perform the hypothetical generation. Then, the SPEED-RLOO algorithm optimizes the following
objective function

J(θ) = Ex∼DX

[
Φ(Ey∼πθ(·|x)[r(y)])

]
, (14)

where

Φ(p) = p− Ncont

N(Ninit + 1)

(
pNinit+1 − (1− p)Ninit+1

)
+

Ncont

N(N − 1)(Ninit + 1)

((
1 +Ninitp

)(
1− p

)Ninit − pNinit
(
Ninit

(
1− p

)
+ 1
))

.

Moreover, the objective function is maximized when Ey∼πθ(·|x)[r(y)] = 1 for every prompt x ∈ X .

The theorem show that the SPEED-variants can be viewed as optimizing over a converted objective function. The link
function Φ(·) converts the original pass rate Ey∼πθ(·|x)[r(y)] monotonically. Essentially, SPEED converts the optimized
objective function via reweighting different propmts according to their pass rates.

Proof of Theorem C.1. Fix Ninit and Ncont with N = Ninit +Ncont. Let J(θ) denote the equivalent objective function of
SPEED-RLOO and Jx(θ) denote the objective function fo prompt x. We have J(θ) = Ex∼DX [Jx(θ)] by definition and
analogously for their gradient. Now we are going to determine the concrete expression of ∇θJx(θ). From Algorithm 1, we
have

∇θJx(θ) = Ey1,y2,...yN

[
I
(Ninit∑

i=1

r(yi) /∈ {0, Ninit}
)
· 1
N

N∑
j=1

Â(yj)∇ log πθ(yj | x)
]
, (15)

where the expectation is over y1, y2, ..., yN
i.i.d.∼ πθ(· | x), and Â(yj) is the advantage estimate for yj given by

Â(yj) = r(yj)−
1

N − 1

∑
k ̸=j

r(yk).

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

Denote the pass rate to x, evaluated by the model πθ, as Px(θ). Now we decompose (15) as

∇θJx(θ) = Ey1,y2,...yN

[
Â(y1)∇ log πθ(y1 | x)

]
︸ ︷︷ ︸

I

− Ey1,y2,...yN

[
I
(Ninit∑

i=1

r(yi) = 0

)
· 1
N

N∑
j=1

Â(yj)∇ log πθ(yj | x)
]

︸ ︷︷ ︸
II

− Ey1,y2,...yN

[
I
(Ninit∑

i=1

r(yi) = Ninit

)
· 1
N

N∑
j=1

Â(yj)∇ log πθ(yj | x)
]

︸ ︷︷ ︸
III

.

From the independence among all responses, one has

I = Ey1,y2,...yN

[
r(y1)∇θ log πθ(y1 | x)

]
− 1

N − 1

∑
k ̸=1

Ey1,y2,...yN

[
r(yk)∇θ log πθ(y1 | x)

]
= ∇θPx(θ)−

1

N − 1

∑
k ̸=1

Ey1,y2,...yN

[
r(yk)

]
· Ey1,y2,...yN

[
∇θ log πθ(y1 | x)

]︸ ︷︷ ︸
=0

= ∇θPx(θ).

The expectand in II vanishes if
∑Ninit

i=1 r(yi) ̸= 0. Analogously, the expectand in III vanished if
∑Ninit

i=1 r(yi) ̸= Ninit. Let’s
denote

E0 :=

{Ninit∑
i=1

r(yi) = 0

}
, E1 :=

{Ninit∑
i=1

r(yi) = Ninit

}
.

We have

E
[
∇θ log πθ(y1 | x)

∣∣E0] = − ∇θPx(θ)

1− Px(θ)
, E

[
∇θ log πθ(y1 | x)

∣∣E1] = ∇θPx(θ)

Px(θ)
,

E
[
∇θ log πθ(yN | x)

∣∣E0] = 0, E
[
∇θ log πθ(yN | x)

∣∣E1] = 0,

E
[
r(yN)∇θ log πθ(yN | x)

∣∣E0] = ∇θPx(θ), E
[
r(yN)∇θ log πθ(yN | x)

∣∣E1] = ∇θPx(θ). (16)

Therefore, one has

Ey1,y2,...yN

[
I
(Ninit∑

i=1

r(yi) = 0

)
· 1
N

N∑
j=1

Â(yj)∇ log πθ(yj | x)
∣∣∣∣E0]

= Ey1,y2,...yN

[
1

N

N∑
j=1

r(yj)

(
∇θ log πθ(yj | x)−

1

N − 1

∑
k ̸=j

∇θ log πθ(yk | x)
)∣∣∣∣E0]

= E
[
1

N

N∑
j=Ninit+1

r(yj)∇θ log πθ(yj | x)
∣∣∣∣E0]− E

[
1

N(N − 1)

N∑
j=Ninit+1

r(yj)
∑
k ̸=j

∇θ log πθ(yk | x)
)∣∣∣∣E0]

=
Ncont

N
∇θPx(θ)−

Ncont

N(N − 1)
E
[
r(yN)

∣∣E0] · E[∑
k ̸=N

∇θ log πθ(yk | x)
∣∣E0]

=
Ncont

N
∇θPx(θ) +

NcontNinit

N(N − 1)

Px(θ)

1− Px(θ)
· ∇θPx(θ).

Therefore, we have

II =
(
1− Px(θ)

)Ninit

(
Ncont

N
+

NcontNinit

N(N − 1)
· Px(θ)

1− Px(θ)

)
· ∇θPx(θ).

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

Analogously, we have

Ey1,y2,...yN

[
I
(Ninit∑

i=1

r(yi) = Ninit

)
· 1
N

N∑
j=1

Â(yj)∇ log πθ(yj | x)
∣∣∣∣E1]

= Ey1,y2,...yN

[
1

N

N∑
j=1

r(yj)

(
∇θ log πθ(yj | x)−

1

N − 1

∑
k ̸=j

∇θ log πθ(yk | x)
)∣∣∣∣E1]

=
Ninit

N
E
[
∇θ log πθ(y1 | x)

∣∣E1]− Ninit

N(N − 1)

∑
k ̸=1

E
[
∇θ log πθ(yk | x)

∣∣E1]
+

Ncont

N
E
[
r(yN)∇θ log πθ(yN | x)

∣∣E1]− Ncont

N(N − 1)

∑
k ̸=N

E
[
r(yN)∇θ log πθ(yk | x)

∣∣E1]
=

(
Ninit

N
− Ninit(Ninit − 1)

N(N − 1)

)
· ∇Px(θ)

Px(θ)

+
Ncont

N
∇θPx(θ)−

Ncont

N(N − 1)
Px(θ) ·

∑
k ̸=N

E
[
∇θ log πθ(yN | x)

∣∣E1]
=

NinitNcont

N(N − 1)
· ∇θPx(θ)

Px(θ)
+

Ncont

N
∇θPx(θ)−

NinitNcont

N(N − 1)
· ∇θPx(θ)

=
Ncont

N
∇θPx(θ) +

NinitNcont

N(N − 1)
· 1− Px(θ)

Px(θ)
· ∇θPx(θ).

Therefore, one has

III = Px(θ)
Ninit

(
Ncont

N
+

NinitNcont

N(N − 1)

1− Px(θ)

Px(θ)

)
· ∇θPx(θ).

This indicates

∇θJx(θ) =

[
1− Ncont

N

(
Px(θ)

Ninit +
(
1− Px(θ)

)Ninit

)

− NinitNcont

N(N − 1)

(
Px(θ)

(
1− Px(θ)

)Ninit−1
+
(
1− Px(θ)

)
Px(θ)

Ninit−1

)]
∇θPx(θ).

Integrating the gradient gives:

Jx(θ) = Φ(Px(θ)),

where

Φ(p) = p− Ncont

N(Ninit + 1)

(
pNinit+1 − (1− p)Ninit+1

)
+

Ncont

N(N − 1)(Ninit + 1)

((
1 +Ninitp

)(
1− p

)Ninit − pNinit
(
Ninit

(
1− p

)
+ 1
))

+ Const.

Moreover, since

Φ′(p) = 1− Ncont

N

(
pNinit + (1− p)Ninit

)
− NinitNcont

N(N − 1)

(
p(1− p)Ninit−1 + (1− p)pNinit−1

)
≥ 1− Ncont

N
− NinitNcont

N(N − 1)

≥ 1− Ncont

N
− Ninit

N
= 0. (Ncont ≤ N − 1)

Therefore, Φ(·) is monotonically increasing and hence, for every prompt x ∈ X , one has

Ey∼πθ(·|x)[r(y)] = 1 maximizes Φ(Ey∼πθ(·|x)[r(y)]).

This completes the proof.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

Algorithm 2 Selective Prompting with Efficient Estimation of Difficulty (SPEED)

Input: generative model πθ; binary reward model r; difficulty thresholds Plow, Phigh; generation counts Ninit, Ncont; total
training steps T ; batch size B
Initialize buffer Dbuffer ← ∅, cache Daccepted ← ∅, step counter t← 0
repeat

if |Dbuffer| < B then
Fetch a new batch of prompts Dnew from the data loader
Dinfer ← Dnew ∪ Daccepted

Generate Ninit responses for each x ∈ Dnew and Ncont responses for each x ∈ Daccepted

Dbuffer ← Dbuffer ∪ Daccepted

for all x ∈ Dnew do
PASSRATE(x)← 1

Ninit

∑Ninit

i=1 I
(
responsei correct

)
end for
Daccepted ← Daccepted ∪ {x ∈ Dnew | Plow < PASSRATE(x) < Phigh}

else
Sample Dtrain ⊂ Dbuffer with |Dtrain| = B
Perform one RL update step on Dtrain

Dbuffer ← Dbuffer \ Dtrain

t← t+ 1
end if

until t = T
Output: trained model πθ

D. Full Algorithm
Now we describe our full algorithm combined with the data buffer and the pre-fetching mechanism.

E. Figures of More Experimental Results

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning

0 10 20

0.2

0.3

0.4

0.5

7B
 +

 D
ee

pS
ca

le
R

 +
 R

LO
O

A
cc

ur
ac

y

0 10 20
0.4

0.5

0.6

0.7

0.8

0 10 20

0.3

0.4

0.5

0.6

0 10 20

0.10

0.15

0.20

0.25

0 10 20

0.2

0.3

0.4

0.5

7B
 +

 D
ee

pS
ca

le
R

 +
 D

A
PO

A
cc

ur
ac

y

0 10 20
0.4

0.5

0.6

0.7

0.8

0 10 20

0.3

0.4

0.5

0.6

0 10 20

0.10

0.15

0.20

0.25

0 10 20

0.2

0.3

0.4

0.5

7B
 +

 D
A

PO
17

k
+

 R
LO

O
A

cc
ur

ac
y

0 10 20
0.4

0.5

0.6

0.7

0.8

0 10 20

0.3

0.4

0.5

0.6

0 10 20

0.10

0.15

0.20

0 10 20

0.2

0.3

0.4

0.5

7B
 +

 D
A

PO
17

k
+

 D
A

PO
A

cc
ur

ac
y

0 10 20
0.4

0.5

0.6

0.7

0.8

0 10 20

0.3

0.4

0.5

0.6

0 10 20

0.10

0.15

0.20

0.25

0.0 2.5 5.0 7.5 10.0

0.15

0.20

0.25

0.30

0.35

1.
5B

 +
 D

A
PO

17
k

+
 R

LO
O

A
cc

ur
ac

y

0.0 2.5 5.0 7.5 10.0
0.4

0.5

0.6

0.7

0.0 2.5 5.0 7.5 10.0
0.2

0.3

0.4

0.5

0.0 2.5 5.0 7.5 10.0

0.05

0.10

0.15

0 5 10

0.15

0.20

0.25

0.30

0.35

1.
5B

 +
 N

um
in

aM
at

h
+

 R
LO

O
A

cc
ur

ac
y

0 5 10
0.4

0.5

0.6

0.7

0 5 10
0.2

0.3

0.4

0.5

0 5 10

0.05

0.10

0.15

0 5 10

0.15

0.20

0.25

0.30

1.
5B

 +
 N

um
in

aM
at

h
+

 D
A

PO
A

cc
ur

ac
y

0 5 10
0.4

0.5

0.6

0.7

0 5 10
0.2

0.3

0.4

0 5 10

0.025

0.050

0.075

0.100

0.125

Training Time (hours) SPEED Base RL Algorithm

Figure 6: Validation accuracy on various mathematical reasoning benchmarks for SPEED-variants of RL algorithms, and base RL
algorithms. The initial model used is Qwen2.5-Math-7B (for the top 4 rows) and Qwen2.5-Math-1.5B (for the bottom 3 rows). Y-axis
labels follow the pattern ‘Model size + Training set + Base RL algorithm’. We use three training dataset: NuminaMath (Li et al., 2024),
DAPO-17k (without 1k held-out validation set) (Yu et al., 2025), and DeepScaleR (Luo et al., 2025), and we use 2 base RL algorithms:
RLOO (Ahmadian et al., 2024) and DAPO (Yu et al., 2025). The lighter curves represent raw accuracy results, while the bold curves
indicate smoothed results obtained via an exponential moving average.

19

