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Abstract

We propose Bayesian Hierarchical Invariant Predic-
tion (BHIP) reframing Invariant Causal Prediction
(ICP) through the lens of Hierarchical Bayes. We
leverage the hierarchical structure to explicitly test
invariance of causal mechanisms under heteroge-
neous data, resulting in improved computational
scalability for a larger number of predictors com-
pared to ICP. Moreover, given its Bayesian nature
BHIP enables the use of prior information. In this
paper, we test two sparsity inducing priors: horse-
shoe and spike-and-slab, both of which allow us a
more reliable identification of causal features. We
test BHIP in synthetic and real-world data showing
its potential as an alternative inference method to
ICP.

1 INTRODUCTION

Heterogeneous data is ubiquitous in real-world applications,
spanning fields such as medicine, transportation, and en-
vironmental science. Notably, our observation is that the
heterogeneous data forming the basis of Bayesian Hierar-
chical Models (BHM) corresponds to “environment data”
described in Invariant Causal Prediction (ICP) [Peters et al.|
2016]], or more generally, in the Causality literature. Both
perspectives acknowledge that real-world data often arises
from distinct underlying processes or ‘environments,” un-
derscoring the need for robust models that account for these
differences and ultimately improve out-of-distribution per-
formance. Across different demographic groups, patients
may have different responses to similar treatments, and com-
muters may have different preferences for the mode of trans-
port. Invariant mechanisms, i.e., relationships that remain
consistent across different environments, can be viewed as a
diluted form of causality and are often quite useful in many
applications [Buhlmann, [2018]].

Without specific structural assumptions observational data
can only allow inferring a Directed Acyclic Graph (DAG)
model up to the Markov Equivalence Class [[Pearl, 2000].
ICP identifies causal predictors by leveraging invariance
properties across environments, exhaustively employing
conditional independence tests to find sets of predictors
for which the target variable is independent of the envi-
ronment when conditioned on those predictors. As most
statistical methods, ICP is sample-size sensitive, but also
computationally complex since it involves testing for invari-
ance across all possible subsets of predictors, 2¢ where d
is the number of predictors. Additionally, ICP is designed
to be conservative and minimize Type I errors which often
leads to low power [Peters et al.|[2016].

Addressing these limitations, we introduce Bayesian Hi-
erarchical Invariant Prediction (BHIP), which models the
variability of predictors’ effects across environments, quan-
tifies uncertainty, and allows for the incorporation of priors,
enhancing flexibility and overall performance compared to
frequentist approaches like ICP. While BHIP utilizes es-
tablished Bayesian techniques like hierarchical models and
sparsity priors, its novelty lies not in the individual compo-
nents themselves, but in their novel synthesis and specific
application to probabilistically test causal invariance for par-
ent discovery. Specifically, this work contributes a unified
probabilistic framework. Leveraging its hierarchical struc-
ture and Bayesian nature, it simultaneously accounts for
environmental heterogeneity, allows variable selection (e.g.,
through sparsity-inducing priors), quantifies uncertainty in
estimated effects and, crucially, enables probabilistic invari-
ance testing directly within the model’s posterior analysis.

By repurposing the standard hierarchical modeling struc-
ture and combining it with specific posterior decision rules,
BHIP directly identifies invariant parents in heterogeneous
data. This targeted and integrated Bayesian approach rep-
resents a significant step beyond simply applying standard
Bayesian methods or relying solely on frequentist invariance
testing.
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Code is available at|GitHub repository.[l_]

1.1 RELATED WORK

The problem of causal feature selection or causal discov-
ery on a specific target variable has been studied as an
alternative to the more difficult problem of full causal dis-
covery. Under Pearl’s view of Causality [Pearl, 2000], ICP
laid down the foundations for causal feature selection us-
ing the idea of invariance. What differentiated ICP from
other methods for causal discovery using both interven-
tional and observational data, is that ICP does not require
the analyst to know where the interventions are performed,
but instead only to know from which setting a particular
data point comes. This powerful idea was later extended to
non-linear models [Heinze-Deml et al., 2018, dynamical
systems [Pfister et al.,[2019a], time series data [Pfister et al.,
2019b], spatio-temporal data [[Christiansen et al.| [2022] and
different outcome models [Kook et al., 2024]]. Moreover,
the invariant principle has been also used together with ad-
jacent machine learning methods: active learning [[Gamella
and Heinze-Deml, 2020]], to find the causal features with
experimental data efficiently; and reinforcement learning
[Saengkyongam et al.}|2023]], for policy learning.

Bayesian inference has also been used to for causal dis-
covery, [Heckerman et al.| 2006] being one of the earliest
examples with Monte Carlo inference on causal graphs, all
the way to recent advances, such as [Hagele et al. [2023]]
who use differentiable methods to infer causal structure in a
Bayesian way. The theoretical foundations of the bayesian
method have also helped gain insights in causality using
the invariance principle in exchangable data [|Guo et al.,
2024alb], and understanding causality in the context of hier-
archical models [Weinstein and Blei, 2024].

The relation between hierarchical Bayes and causal dis-
covery is older. |Gelman and Imbens| [2013]] talk about the
differences between asking about effects of causes (causal
inference) and causes of effects (causal discovery) and men-
tion how bayesian, and specifically hierarchical, models can
be used for the latter (they present Manton et al.|[[1989] as
an example).

2 BACKGROUND

This section establishes the foundational concepts for our
work. We first introduce graphical models and SCMs as
the framework for representing causal relationships. We
then discuss the significance of data heterogeneity and the
principles of ICP for identifying causes. Finally, we outline
BHMs, which underpin our proposed approach.

"nttps://github.com/fmfsa/bhip_paper

2.1 GRAPHICAL MODELS AND CAUSAL
INFERENCE

In this paper we use SCMs [Peters et al.,2017] to represent
causal relations.

Definition 1 (Structural Causal Model (SCM)). A
D—dimensional SCM is a tuple M := (S, P.) consisting
of a set S of structural assignments

Xd = fd(PA(Xd),é‘d)), ford = 1,...,D, (1)

where PA(X4) C {X1,...,Xp} \ {Xa} are called the
parents or causes of Xy, and a joint distribution P, =
P, ... cp over noise variables that we assume to be inde-
pendent.

We can obtain a causal graph G from the SCM by drawing
a vertex for each X and a directed edge from each vertex
X; € PA(Xy) to X ;. We assume the obtained causal graph
is a DAG. Likewise, even though the causal mechanisms
are deterministic functions of its inputs, we obtain a dis-
tribution of each of the variables of our system, Px,, by
considering the pushforward distribution of PA(X,) and &4.
We exploit the independent [Janzing and Scholkopf, 2010]
and invariant [[Aldrich, (1989, [Peters et al., 2016[] nature of
causal mechanisms to identify the causes of a target variable,
Y, using heterogeneous data.

2.2 HETEROGENEITY AND INVARIANT CAUSAL
PREDICTION

Heterogeneity refers to the non-uniformity of data-
generating processes across distinct contexts such as de-
mographic groups, geographic regions, temporal windows
or experiment settings [Betancourt, 2020]. Traditionally,
Machine Learning methods assume data is independent and
identically distributed (i.i.d), unless specified by a particular
structure like time series or graph models. However, the
i.i.d assumption can have consequences in the estimated
model, such as biased estimators when unsuitable. Recently,
research in causality has found ways of exploiting heteroge-
neous data to do causal discovery |Cooper and Yool [1999],
Mooij et al.| [2020], Brouillard et al.| [2020], Peters et al.
[2016]. In particular, ICP aims to estimate a target’s set of
causal parents by leveraging the property that the condi-
tional of Y given its direct causes PA(Y) remains invariant
across heterogeneous data collection, assuming the causal
mechanism of Y is not affected [Peters et al., [2016].

Throughout this work, the discrete heterogeneous contexts
are called environments e € £, where £ is an index set, each
consist of i.i.d data of a target variable of interest Y and D
covariates (or predictors) X = (X1,..., Xp), that is,

(Ye, X% fore € &, )
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ICP is based on a fundamental invariance assumption, along
with the notion of an invariant set of predictors, formulated
as follows.

Assumption 1. (Invariance) Given environments &, for a
subset of indices S C {1,..., D}, there exists a subset Xg
of covariates such that,

YO (Xs=a2) LY/ | (X} =0), 3)

foralle, f € £and all z, i.e., the conditionals of Y given
Xg are equal in distribution in all environments.

Any subset S C {1,..., D} for which Assumption|[I]holds,
is called invariant with respect to £ and the set of covari-
ates X g are denoted invariant predictors. The invariance
assumption can be equipped with more structure, assuming
a system induced by an SCM:

Assumption 2. (Structural invariance) For an SCM and
environments, &, the structural equation for' Y remains the
same across &, and the distribution of X is allowed to
change. That is, for all e € &,

X¢~ P%, 4
Y= fy(Xpayyev), e~P

Ey

€y AL leA(Y)’
®)

X¢€ represents the covariate X in the environment e € &,
P, remains the same and P5; can differ.

Under this structure, the set of direct causes PA(Y") satisfy
invariance [Buhlmann, [2018]], further explained in Appendix
[A] ICP tests the invariance of all possible covariate subsets
S. The set of identifiable causal predictors S is the inter-
section of the subsets that pass as invariant. The main the-
orem in [[Peters et al.,[2016]] states that with a controllable
coverage probability, the method recovers the set of true
causal parents, that is, with desired @ € (0,1), we have
P[S CPA(Y)] > 1 — o

The intersection controls against Type I errors and often
leads to a conservative estimate, given that in the case where
the amount of heterogeneity is insufficient, the intersection
is S = 0.In Section we introduce a Bayesian test for
invariance based on the BHIP that serves as an alternative
to the test proposed in Peters et al.|[2016]].

2.3 BAYESIAN HIERARCHICAL MODELS

Hierarchical models estimate posterior distributions, ac-
counting for structured heterogeneity [|Gelman and Hill,
2007]. With heterogeneous data as in Equation (2, a hierar-
chical model contains both parameters related to variation
within each environment, termed environmental-specific or
local-level parameters 3¢ for all e € £, and parameters re-
lated to variation between environments, termed global-level
parameters ¢.

In BHMs, we impose a distribution on the latent global
parameter ¢; the joint probability over the data and model
parameters is then given by the following factorization:

P(Y*®, X%, 3% ¢) = P(¢) [[ P(B° | ) P(Y*® | XE, 5°).

ecf
(6)

Bayesian models integrate domain knowledge through pri-
ors. With Bayesian inference of the global parameter distri-
bution jointly with local level parameters it is possible to
analyze the strength of pooling consistent with the observed
data [Betancourt, [2020]. We reinterpret this strength of pool-
ing forming an invariant perspective to estimate ICP with
a BHM: if, for a specific covariate, the global and local pa-
rameters are different from zero and ‘close’ (see Section[3.2]
for a precise definition) to each other, then we can think of
them as invariant.

3 BAYESIAN HIERARCHICAL
INVARIANT PREDICTION

Consider a dataset comprising of data from a set of environ-
ments £ as in Equation (2) induced by an SCM where As-
sumption 2] holds. The heterogeneity is modeled in a BHM
allowing global parameters to be random while simultane-
ously modeling individual-level effects. The goal of BHIP
is to identify covariates where the individual effects on Y
are non-zero and remain the same across environments; i.e,
the relevant parameters that remain invariant. In addition to
Assumption 2] BHIP relies on a set of assumptions common
in ICP and Bayesian modeling. A detailed list can be found
in Appendix D}

3.1 PROBABILISTIC MODEL

First, we specify the hierarchical model where we can draw
inferences about the influence of each covariate on the tar-
get and how it varies between environments. Assume the
data generation process of Y¢ for a given environment
e € & is governed by environment-specific parameters
B¢ = (B%,...,5%), explaining the effects of covariates
X = (X¢,...,X%) on the target Y°,

Y| X B°~P(Y°| X%, forec&.  (7)
For each covariate index d € {1,..., D}, it is assumed
that a common global-level distribution with parameters ¢q4

generates a local-level parameter 35 with regards to each
environment,

Ba | ¢a~ P(Bg | ¢a), fore € £. (®)



To obtain a hierarchical model we treat the global parameters
as unknown and impose a (hyper-)prior distribution on the
global parameters:

¢q~ P(¢), ford=1,...,D. )

A normal linear hierarchical model, is described below
as an example. We assume a Gaussian likelihood for ¥,
a Gaussian distribution for the local parameters 3¢ whose
global parameters follow a Gaussian distribution for the
mean, i and a Half-Cauchy for the scale 7 ﬂ The generative
process of BHIP model represented in Figure|l|as a Proba-
bilistic Graphical Model (PGM) can then be summarized as
follows:

eel,..., &

Figure 1: Bayesian Hierarchical PGM for a Gaussian model

1. Draw global parameters:
o p~ N (o, o)
* 7 ~ Half-Cauchy(oy)
2. For each environment e € {1,...,E}:

(a) Draw local parameters:
* B~ N(u,T)
i. For each observationn € {1,..., N }:
» Draw y5, ~ N(X{5°,0%)

3.2 INFERENCE AND TESTING PROCEDURES

This section describes how we identify invariant predictors
within the BHIP framework using our BHM. Our definition
of invariance is based upon on a predictor’s global and local
parameters being both credibly non-zero and ‘close’ to each
other.

2If y is not continuous, the likelihood in step 2.(a)i. should be
adjusted, for example:

* For categorical y, use y,, ~ Categorical(softmax (X, 5°)).

To assess this relationship formally, we employ specific
Bayesian statistical tests. This approach provides a more
integrated and potentially more efficient way to assess in-
variance directly from estimated parameter relationships, of-
fering a distinct advantage over ICP that requires exhaustive
conditional independence tests. We fit the BHM to obtain
posterior distributions for the parameters (See [B]for details),
and then apply our proposed tests to the posterior samples
for each predictor to classify them as invariant based on our
predefined criteria. We employ two key statistical tests:

HDI+ROPE Decision Rule is used for the ’effect non-zero
test, which determines whether a predictor consistently
influences the target across environments. It combines the
Highest Density Interval (HDI) with the Region of Practical
Equivalence (ROPE) [Kruschkel 2018]]. ROPE is an interval
around zero representing negligible effects. A predictor is
considered relevant if its HDI lies substantially outside this
region. For a parameter 6, the procedure follows these steps:

1. Define the ROPE as [—e, €], where ¢ = 0.1-SD and SD
is the standard deviation of the posterior distribution
of 6.

2. Compute the HDI. Calculate a standard HDI (e.g., a
95% HDI) from the posterior distribution. This gives
a specific interval [fiower, Gupper], Which represents the
most credible values for the parameter.

3. Compare the HDI to the ROPE. The position of the
computed HDI relative to the ROPE determines the
outcome of the test based on the following decision
rule:

* Rejected: The effect is considered statistically
significant if the entire HDI is outside the ROPE.

* Accepted: The effect is considered practically
equivalent to zero if the entire HDI is inside the
ROPE.

* Undecided: The test is inconclusive if the HDI
and the ROPE partially overlap.

The result from this procedure is a categorical decision (‘Re-
jected’, ‘Accepted’, or ‘Undecided’) about the predictor’s
effect. We also compute the largest probability mass outside
of ROPE, which is a value in [0, 1]. Where higher values
represent higher confidence in rejecting the hypothesis that
the predictor does not have an effect on the target variable.

Pooling Factor quantifies information sharing (pooling)
across environments in a BHM, as proposed by [|Gelman and
Pardoe, |2006]]. Define for each environment and each covari-
ate X4 the error term §¢, which is the difference between the
global mean and the local parameter, that is 35 = pq + 93
It is defined as,

Vareee [E [67]]

—— 10
E [Vareee [05]] (19)

Ya=1-



The denominator, E [Var.cg(05)], is the expected variance
in the deviations from the environment-level effect and the
global parameter. This is the unexplained component of the
variability in the 3¢’s. Interpreting the pooling factor ~4:
values close to 1 signal strong invariance, suggesting the
variable is a potential invariant predictor if its effect is non-
zero. The lower the value of v4 (i.e., the further it is below
1), the higher the indicated heterogeneity, suggesting the
variable is less likely to be invariant.

Under the invariance assumption and regularity conditions
we can guarantee that as we collect more data and environ-
ments, the pooling factor converges to 1 for those variables
that are causal parents. The full proof of our main result can
be found in Appendix [C.T).

Theorem 1. (Asymptotic behavior of pooling factor) Sup-
pose the invariance assumption (Assumption [I)) and the
Bernstein von Mises holds for a BHIP model, then

p |1 ifBer =B<* foralle,e € &
A if Bg ' q e 1)
0 otherwise.

3.3 SPARSE PRIORS: HORSESHOE AND
SPIKE-AND-SLAB

Using a BHM enables us to take advantage of adjusting
the priors of our model, for instance, to encourage sparsity
[George and McCulloch, |1997], improving the flexibility of
this work. In this work we consider two widely used priors
in Bayesian variable selection to illustrate the flexibility of
BHIP: the horseshoe prior and the spike-and-slab prior.

Horseshoe Prior [Carvalho et al., 2010], is a continuous
shrinkage prior particularly well suited for situations where
a few predictors have strong effects while many are close to
zero. It is defined as:

B85~ N(0,257%), (12)
Mg ~ Cauchy™(0, 1), (13)
7 ~ Cauchy™(0,1) (14)

The shrinkage parameter \; allows large effects to escape
strong shrinkage while small effects are pushed towards
zero. The global scale 7 controls overall sparsity, ensuring
that only a few predictors significantly influence Y.

Spike-and-Slab Prior [Mitchell and Beauchamp, |1988|
Ishwaran and Rao), 2005]] is a discrete mixture model that
explicitly models sparsity. It assumes that each coefficient
B4 is drawn from either a spike distribution represented by a
Dirac delta function dq centered around zero (for irrelevant
predictors) or a slab distribution, allowing nonzero values,

following a Normal distribution (for relevant predictors):

zq ~ Bernoulli(r), (15)
Bi | za = 2aN(pa, 73) + (1 = za)do,  (16)
74 ~ Cauchy™(0,1) (17)

The binary inclusion variable z; determines whether the
predictor is relevant (z4 = 1) or not (z4 = 0). The prior
probability 7 controls the expected proportion of relevant
predictors.

4 EXPERIMENTS AND RESULTS

This section presents several experiments to evaluate the
performance and characteristics of BHIP. In Section [4.1]
we introduce the Bus Dwelling Problem, a controlled set-
ting where we define the SCM and its corresponding DAG,
allowing us to assess BHIP’s ability to recover causal re-
lationships. We compare its performance against ICP to
assess their respective strengths and limitations. Section4.2]
focuses on the educational attainment dataset Rouse| [1995]
that was used to introduce ICP [Peters et al., 2016]. Lastly,
in Section[4.3] we provide an analysis of the computational
scalability of BHIP compared to ICP demonstrating a key
advantage for problems with many predictors. Further ex-
periments were conducted and can be found in Appendix
and [H] The former focuses on a synthetic problem with
many different configurations for a quantitative analysis of
BHIP’s performance whilst the latter focuses on a transport-
related problem with real data, where BHIP is applied to
infer causal predictors in the choice of mode of transport.
All experiments in this work were run on a Threadripper
2950X (40M Cache, 3.4 GHz base) CPU, 16 cores, 128 GB
RAM.

4.1 CASE STUDY: THE BUS DWELLING
PROBLEM

The Bus Dwelling Problem is a controlled experiment where
we model the time a bus dwells at different bus stops as
functions of multiple factors: time of the day X, day of the
week X, traffic conditions X5, and the number of boarding
X3 and alighting passengers X4. The DAG that represents
our SCM is represented by Figure Unlike real-world
datasets, this setup allows us to define the ground-truth
causal relationships and systematically evaluate how well
BHIP recovers them.

4.1.1 Data Generation Process

The dwelling time Y is directly influenced by covariates
such as the number of boarding passengers X3, and the
number of alighting passengers X4. The generative model
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Figure 2: Bus Dwelling Problem: (a) Causal graph and (b)
Predictor time series examples.

follows:
Y = f(X3,X4) + ¢, (18)

where f represents an underlying causal function, and e is
an independent noise term. Importantly, we ensure that Xo
(traffic state) does not directly cause Y, allowing us to test
BHIP’s ability to avoid spurious correlations. Realistic tem-
poral variations and passenger counts were simulated using
modulated sinusoidal and Poisson processes, respectively,
and are represented in Figure 2b] Full generation details are
in Appendix [E]

4.1.2 Results

We apply both BHIP and ICP to infer the set of causal pre-
dictors. Since both methods rely on tests across different
environments, we define environments based on the differ-
ent bus stops, that have different data generative models but
the same underlying SCM. We try two different experiments,
one with the number of data points per bus stop N = 100
and another one with N = 500. The key question we eval-
uate is: can BHIP correctly recover X3 and X, as causal

Table 1: Sparse priors and ICP results

X N =100 N =500

zqg Aa ICP BHIP z4 Aq¢ ICP BHIP
Xo 003 050 - - 0.00 043 - -
X; 000 024 - - 0.00 0.16 - -
Xo 009 063 - - 0.00 037 - -
X3 089 732 Vv v 100 1250 Vv v
X4 057 236 - - 1.00 4.64 - v

predictors while excluding X, X; and X»? The inference
results can be found in Appendix[l]

Using non-centered parametrization, BHIP without the
inclusion of sparsity priors identified predictors X3 and Xy
as having significant invariant effects. For N = 500, X3
showed 100% HDI outside ROPE for local and 95% for
global parameters (y3 = 0.96), while X4 had 100% local
and 90% global HDI outside ROPE (4 = 0.97). Other pre-
dictors consistently showed HDIs below 65% outside ROPE,
indicating BHIP successfully identified the true causal pre-
dictors.

Table [T] compares BHIP (with sparse priors versus with-
out sparsity priors plus decision rule: HDI out of ROPE
> 85%, vq4 > 0.85) against ICP (o = 0.05). Covariates de-
tected as invariant causal predictors are marked ‘v ‘. BHIP
with spike-and-slab priors showed increasing confidence
in selecting true predictors X3 and X, (inclusion probabil-
ities 23,24 — 1) as N increased from 100 to 500, while
correctly excluding others. Similarly, the horseshoe prior
yielded higher shrinkage parameters (\;) for X3 and Xy
with N = 500, indicating stronger effects, compared to
negligible effects for X, X1, Xo.

In contrast to BHIP, ICP identified X3 but consistently
missed X, likely due to its conservative nature (type I
errors) [Peters et al.l [2016]]. Overall, BHIP demonstrated
improved power in identifying both true causal predictors
(X3, X4) while rejecting non-causal ones in this structured
setting.

4.2 CASE STUDY: EDUCATIONAL ATTAINMENT

We use the educational attainment dataset [Rousel, [1995],
which contains information on 4739 students in 1,100 high
schools in the USA. The dataset includes 13 covariates such
as gender, ethnicity, standardized test scores, parental edu-
cation levels, family income, and the binary target variable
that indicates whether a student attained a bachelor’s degree
or higher, corresponding to at least 16 years of education.
To introduce heterogeneity, we follow the environmental
split based on the distance to the nearest 4-year college, a
variable assumed to have no direct causal effect on the target.
Students who live closer than the median form one environ-
ment, while those living farther than the median form the
other.



Table 2: Sparse priors results

Predictor 2d Ad

score 1.00 3.40
unemp 0.00 0.42
wage 0.00 0.59
tuition 0.00 0.42
gender_male 0.00 0.71
ethnicity_hispanic 0.00 2.75
ethnicity_other 0.00 0.73
fcollege_yes 1.00 3091
mcollege_yes 0.00 2.66
home_yes 0.00 3.01
urban_yes 0.00 0.83
income_low 0.00 0.75
region_west 0.00 0.82

4.2.1 Methodology

We implement the BHIP framework using a hierarchical
logistic regression model. The model includes environment-
specific effects for each predictor while pooling information
across environments through global parameters. We com-
pare the results with those obtained using the ICP method.

For both methods, most predictors are encoded as dummy
variables (e.g., fcollege_yes indicates if the father attained
a college degree). The primary goal is to identify invariant
predictors with non-zero effects across environments and
quantify uncertainty in their contributions.

4.2.2 Results

We applied BHIP on the educational attainment dataset,
with some results shown in Figure [3| (additional figures and
full inference details in Appendices[Fand[J] respectively).
While direct comparison to ICP’s results is for intuition due
to lack of ground truth, we hereby show how BHIP offers a
richer analysis.

BHIP identified achievement score as a strong invariant
predictor (Figure [3), with 95% HDI outside ROPE and
v = 1, aligning with ICP findings. Father’s education (fcol-
lege_yes) local parameters do not lie completely outside the
ROPE in any environment but showed a positive, largely
invariant effect (y = 0.92), again similar to ICP’s find-
ing for the inverse predictor. Notably, BHIP identified in-
come_low as a negative invariant predictor (y = 0.99), an
effect not detected by ICP. Other predictors like region_west
and ethnicity showed more nuanced, non-invariant effects
(HDIs overlapping ROPE), consistent with ICP’s exclusions.
While both methods identified score and father’s education,
BHIP’s hierarchical modeling provided a richer analysis of
environment-specific effects and uncertainty quantification,
demonstrating its flexibility.
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Figure 3: HDI + ROPE for local parameters left (Beta score)
and global parameters right (mu score) of predictor: score.
Pooling factor of v4 = 1.

With sparse priors similar results are achieved as can be
seen on Table 2] zq values show that predictors score and
feollege_yes are selected. Similarly, then using the horseshoe
prior, the two predictors that have the strongest effects are
again score and fcollege_yes.

4.3 COMPUTATIONAL COMPLEXITY STUDY

We generated 100 random DAGs for configurations with
the number of nodes NV ranging from 3 to 20. For sim-
plicity and focus on the algorithmic scaling with N, each
problem instance used 200 samples per environment and
2 environments. Figure [] displays the distribution of the
computational times. As hypothesized based on the algo-
rithmic differences, Figure ] shows that the computational
time for ICP grows exponentially with the number of nodes.
In contrast, BHIP’s runtime increases at a much slower
rate. This empirical result strongly supports the notion that
leveraging the hierarchical Bayesian framework to assess in-
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Figure 4: Computational time distribution for ICP vs. BHIP across varying numbers of nodes.

variance through parameter relationships, rather than relying
on exhaustive conditional independence testing across all
predictor subsets, allows BHIP to remain computationally
viable for problems involving a larger number of potential
causal predictors.

In conclusion, the results reinforce the flexibility of BHIP
in identifying invariant predictors while quantifying their
uncertainty. Unlike ICP, BHIP provides a probabilistic per-
spective that is crucial for real-world applications where
heterogeneity and data limitations are prevalent and allows
for the use of priors whether to incorporate domain knowl-
edge or regularization.

S DISCUSSION AND CONCLUSION

Our study presents the BHIP framework, a novel approach
for identifying invariant predictors across heterogeneous en-
vironments. While BHIP builds upon established techniques
such as BHMs and invariance testing, its novelty lies in its
specific synthesis and targeted application to probabilisti-
cally test causal invariance for parent discovery.

Despite its significant strengths, BHIP also presents some
limitations. As a Bayesian method relying on MCMC for
inference, it incurs a higher computational overhead cost
compared to frequentist alternatives like ICP. It also as-
sumes that the defined environments capture meaningful
heterogeneity reflective of underlying causal structure, an
aspect that may not always hold perfectly in real-world ap-

plications. Moreover, while offering flexibility, the effective-
ness of BHIP depends on appropriate model specification,
selection of priors, and careful interpretation of the rich
posterior outputs, requiring a degree of understanding of
BHMs. Nonetheless, our analysis demonstrated that BHIP
effectively identifies strong invariant predictors while com-
prehensively quantifying the uncertainty of their effects and
invariance. This enables a more nuanced and informative
analysis of predictors than a simple binary classification
approach. Furthermore, while ICP is limited by the curse of
dimensionality, BHIP scales more effectively and remains
computationally tractable even with a significantly larger
number of predictors p.

BHIP’s capacity for probabilistic invariance testing, rigorous
uncertainty quantification, and identification of robust causal
predictors represents a significant step forward for causal
discovery in complex, real-world scenarios. Future research
could explore several directions. One avenue is developing
more computationally efficient inference algorithms and
extending the framework to capture more intricate forms of
heterogeneity and non-linear causal relationships. Another is
investigating how an active learning approach could leverage
the extra information from BHIP to perform interventions
that generate ideal environments. Overall, BHIP contributes
a principled, probabilistic approach to discovering invariant
causal relationships across diverse environments.
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A INVARIANCE PROPOSITION AND PROOF

Full proposition and proof [Buhlmann, 2018]:

Proposition 1. Assume an SCM as in Assumption[2|and let the set of environments £ be such that Assumption[2 holds. Then, the set of
direct causes PA(Y') is invariant with respect to € and Assumptionholds.

Proof. In Assumption|2|it is seen that the conditional distribution of Y © given leA(Y) is fully determined by the structural equation fy
and the noise distribution Fg, both remaining the same Ve € &, thus Assumptionis satisfied and PA(Y) is invariant w.r.t E.

B NON-CENTERED PARAMETRIZATION AND INFERENCE METHODOLOGY

Bayesian inference often uses Markov Chain Monte Carlo (MCMC) methods to explore the posterior distribution of the model. When
sampling from a hierarchical parameter space, the convergence of MCMC methods can depend crucially on the parameterization of
unknown quantities [Papaspiliopoulos and Roberts} 2003].

A typical parametrization of the hierarchical model is the non-centered parametrization, capturing the interdependent relationship between
the global and local latent parameters, and can be useful in moderating degeneracies inherent to sampling from a hierarchical latent
parameters space [Betancourt, 2020].

The normal probability density functions are closed under translation and scaling, so in a normal hierarchical model, the non-centered
parametrization generates the local-level parameters from a parametrization of an independent standard normally distributed parameter
n® ~ N(0,1), where 3¢ then is deterministically reconstructed as

B =p+71-1°~N(,T) 19)

We implement the BHM with the aforementioned non-centered parametrization using NumPyro [[Phan et al 2019|] and No-U-turn
Hamiltonian Monte Carlo sampler (NUTS) [Hoffman and Gelman, 2014]. NumPyro provides a backend for Pyro, developed by [Bingham
et al.| 2018]], powered by JAX, developed by [Frostig et al., |2018]], and is thus a lightweight probabilistic programming library. To
efficiently sample both continuous and discrete parameters when using the spike-and-slab prior, we combine NUTS with a Gibbs sampler
[Casella and George, [1992]], which iteratively samples inclusion indicators z4 and coefficients 3. This improves convergence and
computational efficiency.

C ASYMPTOTIC GUARANTEES

BHIP’s ability to recover the true invariant parent set PA(Y") asymptotically (as sample size N — o) is motivated by Bayesian
posterior consistency. While BHIP’s specific posterior-based decision rules differ from ICP’s frequentist tests, we argue for its asymptotic
correctness. Under standard regularity conditions, Bayesian posterior distributions concentrate around true parameter values, often
approximating normality centered at efficient estimators (as suggested by the Bernstein-von Mises (BvM) theorem [Vaart, |1998]]). We
expect this concentration for BHIP’s hierarchical parameters (4, 74, 37). Furthermore, the use of appropriate sparsity priors yields
posterior consistency for variable selection in high-dimensional regression settings. This expected posterior concentration implies specific
asymptotic behavior for BHIP’s tests:
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» HDI+ROPE Tests: For true parents d € PA(Y) (with non-zero effects), the concentrating posteriors for p4 and 33 will eventually
place the HDIs entirely outside a fixed ROPE, leading to inclusion with probability approaching 1. For non-parents with zero effects,
the HDIs will concentrate within the ROPE, ensuring exclusion.

* Pooling Factor: For true parents d € PA(Y'), invariance (Assumption [I)) implies identical 33. Posterior concentration on this
common value should lead the pooling factor -4 posterior to concentrate near 1. For non-invariant non-parents, differing true 85 will
keep the pooling factor below asymptotically. See Proof [C.T] below.

The combination of asymptotic posterior concentration, consistent sparsity priors, and the logic of the invariance tests provides strong
theoretical motivation for BHIP’s ability to correctly identify PA(Y") asymptotically under the assumed assumptions.

C.1 POOLING FACTOR CONSISTENCY

Let X1, X2, ..., X, be ii.d observations from a parametric model {Ps : § € ©}, where © C R” and the true parameter 6* € ©.

For a Bayesian approach, the parameter 6 is treated as random and encodes our prior beliefs about the value of the parameter in a
distribution 7, i.e the setup is:

0~ m,
{X1,...,Xn} |60~ Py.
Using Bayes’ Theorem the posterior distribution of  can be computed as:

L0 X, .., Xn)T(0)
- S, £(0; X1, ..., Xp)w(0)d6

p(0] X1,...,X) x L(0)7(0). (20)

The Bernstein—von Mises (BvM) theorem guarantees us that in fixed-dimensional problems, under the assumption that the prior is
continuous and strictly positive in a neighborhood around 0%, the posterior distribution converges in total-variation distance to a Gaussian
distribution centered around the Maximum Likelihood Estimator (MLE) 6,,, i.e.

Hp(g |X17~“7X7L)_N<07L7%I(én)_l> _>07 (21)

vV

where Z(0,,) is the Fisher information matrix around the MLE estimate. Assuming a regular parametric model and that the BvM theorem
holds, the posterior distribution converges in probability to a Gaussian distribution around the true parameter with rapid shrinkage, that is,
asn — 0o

pu(0] X™) Y A7 (én, %rl(e*)) 22)

which implies that the posterior is a consistent estimator for 6™ as

E[g | X™] = /den(e | XMy 2, g 23)

with variance shrinking at a rate of 1/n

1
Var(0 | X™) L ~I70) (24)
hence as n — oo, we have
Var(0 | X™) L0 (25)
Consider the hierarchical Bayesian BHIP model where for each covariate X4, d = 1, ..., D we have:
¢~ (global parameter)
B o~ p(B°] o) (parameter in environment €)

X | B° ~p(X°| B9 (observed data for environment e),



where e € £ is environment with |€] = E, X is the observed data and we denote the size N®and N = 3 __. N°.

The Pooling Factor quantifies information sharing (pooling) across environments in a Bayesian hierarchical model, |Gelman and Pardoe;
[2006]. Define for each environment and each covariate X the error term §3, which is the difference between the global and the local
parameters, that is 8 = ¢4 + d5. For each predictor X4, the pooling factor is defined as,

_ Vareee [E 03]

E [Vareee [05]]°
Lemma 1. Assume the BvM theorem holds for both ¢ and ¢ for all e € E, then their deviations B¢ — ¢ concentrates around the true
difference 3¢ — ¢* with uncertainty shrinking to zero as N°, E — oo.

=1 26)

Proof. Assume the BvM theorem holds for both ¢ and B¢ (we need sufficient data per environment N¢ — 0o and sufficient number of
environments 2 — oo, regular parametric model, etc), then the posterior distributions are asymptotically normal:

. 1 B .
0 1%) & (6, 100 @)
p(B° | X) > N (Be, - Igel(ﬁe*)) (28)

With (;AS, Be being consistent estimators for the true parameters ¢~ Be* and I14(¢™) the Fisher information for ¢, based on the marginal
model p(X | ¢) and Ig(B8° ) the Fisher information for 3¢, from the environment-specific likelihood p(X°¢ | B°).

Under BvM the posterior distributions of ¢ and 3¢ each become independent Gaussians in the limit, so their difference is also approximately
Gaussian, with variance equal to the sum of variances, that is

-~ ~ 1 —1 1 —1
P(ﬁe—¢|$)—>/\/(ﬂe—¢7 ﬁ(fﬁe +EI¢ )) (29)
Thus, as N¢, E — oo the posterior for the difference between local and global parameters converges to a degenerate distribution at the
true difference 3¢ — ¢*.

Lemma 2 (Asymptotic behaviour of the posterior deviation ratio). Assume a BHIP model. Under regularity conditions and the BvM
theorem applied to ¢ and B° then the posterior deviation ratio converges to

_w%mwwmzﬁlﬁwﬂw—fbo

B= ENar09) [ X] 7 (0 if5 = o foralle

(30)

as N — oo and optionally as E — oo.

Proof. The numerator Var. (E[6° | X]) is the posterior-estimated between-environment variance in deviations and the denominator is
the total posterior variance across environments. From the law of total variance we have that

E[Vare(8° — ¢) | X] = Ec [Var.(8° — ¢) | X] + Var. (E[3° — ¢ | X])

where E. [Var.(8° — @) | X] is the posterior within-environment variance, so the ratio R is the proportion of posterior variability in the
deviations 0¢ that comes from differences in posterior means across environments.

Under regularity conditions and the BvM theorem applied to ¢ and 3°, then as for Lemma the deviation is a consistent estimator with
shrinking uncertainty, so

E[5° ~ ¢ | X] 5 " — ¢ (31
Var(8° — ¢ | X) 50 (32)
as N — oo and optionally E — co. Consequently:
Vare (E[5° — ¢ | X]) = Vare (5 — ¢7) (33)
E. [Var(3° — ¢ | X)] 2 0. (34)

Lets consider the limit of the ratio for two cases:

. B Vare (3 — ¢*)
N,IEHEOO R= Vare (8¢ — ¢*) + limy, 500 Ee [Var(8¢ — ¢ | x)]



(i) Heterogeneous true effects:
’
There exist environments e, €' such that 3°* # 3 *, and Var.(8* — ¢*) > 0 which implies that

lim R=1 (35)

N,E—o00

(ii) Homogeneous true effects
For all e € € we have that 3°* = ¢* so Var. (8" — ¢*) = 0 then,

lim R=0 (36)

N,E—o0

Hence the posterior deviation ratio, converges as N — oo and optionally as E — oo to

(37)

E [Vare (8¢ — ¢ | X)

_ Varc (B[ —¢ | X]) p |1 if Vare(5” —¢%) >0
B ] 0 if B = ¢* foralle

Our main result arises as a Corollary to Lemma 2}

Theorem. (Asymptotic behavior of pooling factor) Suppose the invariance assumption (Assumption[l) and the Bernstein von Mises holds
for a BHIP model, then

Ya =1

 Vareee [E[85]] . [1 ifB5 =55 " foralle,e €&
E [Vareee [05]] 0 otherwise.

D KEY ASSUMPTIONS

This section outlines the key assumptions required for the BHIP framework. These assumptions stem from those commonly made in
Causal Discovery, while also including assumptions specific to our Bayesian modeling approach.

BHIP relies on the following assumptions:
Causal and Graphical Model Assumptions

These assumptions are standard in many causal discovery methods, including ICP.

 Acyclicity: The underlying causal system relating the variables X and Y can be represented by a DAG.

¢ SCM Representation: The data is assumed to be generated by an underlying SCM, where each variable is a function of its direct
causes (parents) and an independent noise term [Pearl, [2009].

 Faithfulness: The conditional independence relationships observed in the data from each environment precisely correspond to the
d-separation properties in the true causal graph, and vice versa [Spirtes et al.l|1993].

« Causal Sufficiency (relative to X, Y): There is no unobserved confounding between the predictor variables X and the target
variable Y that would create spurious invariant associations across the observed environmental changes.

Invariance Assumptions

These assumptions are central to the principle of identifying causal relationships by leveraging heterogeneity across environments, as in
ICP.

* Heterogeneous Environments: The data is observed across distinct environments e € £, where the distributions of the predictor
variables P(X*®) are allowed to change.

¢ Structural Invariance (Assumption 2): The conditional distribution of the target variable given its true causal parents,
P(Y|PA(Y)), remains invariant across all environments e € £. The distribution of the noise term ey for the target variable
is also assumed to be the same across environments.

BHIP Statistical Model and Inference Assumptions

These assumptions pertain specifically to the statistical modeling choices and inference procedure employed by BHIP.

* Correct Likelihood & Functional Form: The chosen likelihood function (e.g., Gaussian for continuous Y, Logistic for binary
Y) and the functional form of the relationship between Y™ and its predictors within each environment (e.g., linear Y ~ X3°)
accurately model P(Y'|X, 8¢). While the model is presented with a linear form, the framework can be extended to handle non-linear
relationships, similar to extensions in the frequentist ICP [Heinze-Deml et al.,|2018].



 Correct Hierarchical Structure: The assumption that the environment-specific coefficients 37 for a given predictor d are drawn
from a common distribution (e.g., Normal(q, 73 )) across environments adequately captures the underlying structure of parameter
variation and sharing.

Reasonable Priors: The prior distributions selected for the model parameters are chosen such that they allow the posterior distribution
to concentrate correctly on the true parameter values, particularly in the large sample limit. Sparsity-inducing priors (like Horseshoe
or Spike-and-Slab) are assumed to appropriately reflect beliefs about the sparsity of the true parent set and facilitate variable selection.

* Independent Noise: The noise term ey is assumed to be independent across individual observations and across environments
(conditional on the parent variables).

« MCMC Convergence: The Markov Chain Monte Carlo (MCMC) algorithm used for posterior inference is assumed to have
converged, providing samples that accurately represent the true posterior distribution. (As verified for the experiments presented in
Appendices[lland[J).

Assumptions for Asymptotic Guarantees

These conditions are typically required for theoretical results regarding the asymptotic behavior and consistency of Bayesian estimators
and variable selection procedures.

» Standard Regularity Conditions: Standard technical conditions necessary for Bayesian asymptotic theorems (such as the Bernstein-
von Mises theorem or results on posterior consistency for hierarchical and sparse models) are assumed to hold for the specific model
and data.

* Sufficient Heterogeneity: The changes in the predictor distributions P (X¢) across environments must be sufficiently diverse and
informative to allow the true invariant parent set S™ to be reliably distinguished from non-invariant predictors.

* Appropriate Thresholds: The decision thresholds used for variable selection based on posterior summaries (e.g., ROPE sizes for
HDI tests, the threshold value for the pooling factor) are assumed to be set at appropriate values relative to the scale of the true effects
and the rate of posterior concentration.

Note on Identifiability:

Given the aforementioned assumptions the true invariant parent set PA(Y") is identifiable from the data. BHIP’s statistical framework is
designed to leverage this identifiability property and recover PA(Y") from the data by identifying variables whose relationship with Y is
invariant across the observed environments.

E BUS DWELLING PROBLEM: DATA GENERATION

To introduce realistic temporal variations, we employ sinusoidal functions for both daily and weekly patterns: The daily pattern captures
the daily fluctuations in boarding and alighting passengers over the course of a day as well as the traffic state. It is parameterized by the
peak hour, which determines the time of day when passenger activity is highest and the amplitude which controls the magnitude of daily
variation. The weekly pattern reflects weekly variations in traffic conditions. It is parameterized by the peak day which specifies the day of
the week with the highest traffic impact and the amplitude that controls the magnitude of weekly variation. These patterns allow us to
simulate realistic fluctuations in passenger activity and traffic conditions over time. Each bus stop in our experiment is characterized by
specific parameters that influence dwell time:

Traffic State, X»: Simulates traffic conditions at a given bus stop, including daily and weekly fluctuations. It does not directly cause
dwell time.

Boarding, X3, and Alighting, X4, Passengers: Modeled as Poisson random variables, these parameters capture the stochastic nature of
passenger arrivals and departures at a bus stop. Daily and weekly patterns modulate their base rates and peak times.

On a randomized setup, the aforementioned predictors can be represented by the data represented in Figure[2b]with N = 500 for each bus
stop. Using the parameters described above, dwell time Y is generated as a function of boarding passengers X3 and alighting passengers
Xa. The function f (X3, X4) incorporates coefficients that scale with the number of boarding and alighting passengers. These coefficients
are specific to each bus stop and reflect how passenger activity influences dwell time. The noise term € represents independent noise in
dwell time, capturing unpredictable factors not accounted for by the model.

This setup ensures that we can systematically evaluate BHIP’s ability to identify and distinguish causal factors influencing bus dwell time
from observational noise and spurious correlations.

F EDUCATIONAL ATTAINMENT ADDITIONAL RESULTS

This section serves to present additional figures of the Bayesian Hierarchical inference on the educational attainment case study.
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Figure 6: HDI + ROPE for local parameters left (Beta score) and global parameters right (mu score) of predictor:
income_low. Pooling factor of v4 = 0.99.

G SYNTHETIC RESUTLS

To rigorously validate BHIP’s capability to recover the invariant parental set for each node, we conducted a significantly expanded suite
of simulation experiments comparing its performance against ICP. The experimental design encompassed 18 distinct configurations,
systematically varying the number of nodes N € {4, 5, 6}, the number of samples per environment S € {50, 500, 2000}, and the number
of environments £ € {2, 3}. Each setup included one observational environment and E — 1 interventional environments, where each
intervention consisted of a distinct single-node manipulation.

For each of the 18 configurations (N, S, E), we generated 1000 random DAGs. Corresponding SCMs were generated based on Linear
Gaussian Additive Noise Models (LGANMs). Following the setup, we employed noise variance, drawn from a U (0, 0.3) distribution, and
causal effects, drawn from a U (1, 5) distribution [Gamella et al., [2025]].

For BHIP’s evaluation specific decision rules were employed. To assess parameter stability across environments, we utilized the HDI+ROPE
method both on local and on global parameters. The ROPE was defined symmetrically around zero as the interval [—0.15D, +0.15D],
where SD represents the standard deviation of the target variable. A parameter stability test was considered ‘passed if the posterior
probability of the parameter value falling outside this ROPE was greater than 0.95. This is equivalent to ensuring that 95% of the posterior
HDI mass lies outside the ROPE. Separately, a decision rule based on a pooling factor was employed, requiring this factor to exceed a
threshold of 0.85 to pass. The final acceptance of a candidate parent set in these simulations required satisfying criteria based on both the
HDI+ROPE rule and the pooling factor rule. For comparison, ICP was evaluated using a standard significance level of o = 0.05.



Performance was quantified by evaluating the recovery of the true parental set for each node, using the F1 score, Recall, Precision, and
Specificity metrics. The reported results for each configuration represent the average performance across the 1000 independent runs. The
comparative performance metrics for BHIP and ICP across all configurations are presented in Table [3]and several key observations can be
made:

BHIP generally outperforms ICP in terms of F1 score, Recall, and Precision across a majority of the configurations (14 out of 18). The
advantage of BHIP is particularly pronounced in scenarios with larger sample sizes (S = 500 or S = 2000). As expected, performance
for both methods improves significantly with increasing sample size per environment. BHIP’s relative advantage over ICP often widens as
S increases, suggesting BHIP benefits more effectively from larger datasets within each environmental context. Increasing the number of
environments from E=2 (one observational, one interventional) to E=3 (one observational, two distinct interventions) generally boosts
performance for both methods.

In summary, the simulation results indicate that BHIP offers a substantial improvement over ICP for invariant parent set recovery under a
wide range of conditions, particularly demonstrating robustness with fewer environmental interventions £ = 2 and leveraging increased
sample sizes S more effectively.

Table 3: Comparison of BHIP vs ICP Metrics

Config f1_score Recall Precision
BHIP ICP BHIP ICP BHIP ICP

4,5S=50,E=2 0.2003 0.1538 0.1898 0.1391 0.2225 0.1857
4,5=50,E=3 0.3830 0.4536 0.3693 0.4295 0.4110 0.5035
4,S=500,E=2  0.3755 0.1659 0.3600 0.1525 0.4123 0.1959
4,S=500,E=3  0.5621 0.5035 0.5397 0.4837 0.6088 0.5438
4,5=2000,E=2 0.4948 0.1928 0.4790 0.1762 0.5338 0.2277
4,S=
5,5=
5,5=
5

s
s

s

2000,E=3 0.6411 0.5310 0.6282 0.5132 0.6695 0.5680
50,E=2 0.0732 0.0830 0.0675 0.0711 0.0860 0.1123
,S=50,E=3 0.2313 0.2436 0.2176 0.2177 0.2615 0.3029
,S5=500,E=2  0.2258 0.0907 0.2122 0.0786 0.2560 0.1171
5,5=500,E=3  0.3690 0.2673 0.3548 0.2478 0.4053 0.3090
N=5,S=2000,E=2 0.3073 0.1139 0.2948 0.1018 0.3399 0.1404
N=5,5=2000,E=3 0.4574 0.3145 0.4444 0.2898 0.4967 0.3692
N=6,5=50,E=2 0.0241 0.0302 0.0219 0.0241 0.0290 0.0470
N=6,5=50,E=3 0.1595 0.1234 0.1512 0.1035 0.1793 0.1717
N=6,5=500,E=2  0.1113 0.0419 0.1024 0.0346 0.1325 0.0596
N=6,S=500,E=3  0.2529 0.1671 0.2424 0.1454 0.2866 0.2182
N=6,5=2000,E=2 0.1924 0.0661 0.1777 0.0560 0.2306 0.0903
N=6,5=2000,E=3 0.3383 0.2250 0.3254 0.2000 0.3812 0.2813

s

s

N=
N=
N=
N=
N=
N=
N=
N=
N=
N=

H TU DATASET RESULTS

BHIP was also applied to the TU Danish Travel Survey Datase which surveys the transport behaviour of Danish people residing in
Denmark (Christiansen and Skougaard|[2015]]. The research question can be described as: what are the causal predictors of the primary
mode of transportation choice?

After some data cleaning and feature selection, the predictors considered the respondant’s age, sex, education level, purpose of trip as well
as if the respondent has a bicycle. The data was split in two environments depending on the correspondents distance from work to home.
Additionally, the number of cars and the income of the respondent’s household is also considered.

When using BHIP the most relevant results are described by Figure[/] Both the possession of a bicycle as well as the number of cars of the
respondent’s household are predictors with a considerable effect on the primary transport mode of choice of the respondents. Furthermore,
RespHasBicycle has a pooling factor of 0.98 and HousehNumcars has a pooling factor of 0.99. When considering sparse priors these
results are validated and both spike-and-slab as well as horseshoe prior models select these variables as the most relevant, as seen on Table

2]
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Figure 7: Combined HDI + ROPE for local parameters (Beta score) of predictor RespHasBicycle on the left and House-
hNumcars on the right.

Table 4: Sparse priors variable selection results for the TU dataset

Predictor Z4 Ad

RespHasBicycle 0.82 3.92
HousehNumcars 0.62 2.69

IncHouseh 0.05 046
RespAgeSimple 0.14 0.88
RespSex 0.15 0.56

DiaryDaytype 0.14 047
RespEdulevel 0.01 0.76

I BUS DWELLING PROBLEM INFERENCE RESULTS

The MCMC inference results summary for the Bus Dwelling problem are described on tables[5] [6] and[7]

J SCHOOL PROBLEM INFERENCE RESULTS

The MCMC inference results summary for the School problem are described on tables[8][0] and[I0] The parameters subscripts related to
the covariates respect the following associations:

[‘score‘=0, ‘unemp‘= 1, ‘wage‘= 2, ‘tuition‘ = 3, ‘gender_male‘= 4, ‘ethnicity_hispanic‘ = 5, ‘ethnicity_other‘ = 6, ‘fcollege_yes‘=7,
‘mcollege_yes‘= 8, ‘home_yes‘ =9, ‘urban_yes‘= 10, ‘income_low‘= 11, ‘region_west‘= 12]



Table 5: Non-Centered, N = 500

Parameter mean std median 5.0% 95.0% Thoff That
Bdecentered[0,0]  0.07  0.78 0.06 -1.15 1.42 859.13  1.00
Bdecentered[0,1]  -0.03 073 -0.03  -1.15 1.20 1011.10 1.00
Bdecentered[0,2]  -0.10  0.80  -0.09 -1.45 1.12 767.38  1.00
Bdecentered|0,3]  -0.14 0.78  -0.09 -142 1.07 882.98 1.00
Bdecentered|0,4]  0.28  0.75 0.26 -090 1.56 635.29 1.00
Bdecentered[1,0]  -0.09 082  -0.09 -1.43 1.27 1086.58 1.00
Bdecentered[1,1]  0.01 074  -0.00 -1.15 1.27 859.41 1.00
Bdecentered[1,2]  0.08  0.78 0.06 -1.09 145 912.16 1.00
Bdecentered[1,3] 043  0.74 0.44 -0.70  1.75 900.59 1.00
Bdecentered|1,4]  -023 078  -0.19  -1.48 1.05 61244 1.00
[0] -0.03 026 -0.03 -0.39 0.38 461.37 1.00
w[1] 0.00 0.12 -0.00 -0.22 0.20 350.16 1.00
(2] 0.01 0.29 0.01 -048 0.46 520.81 1.01
(3] 0.78 0.38 0.86 0.16 1.32 442.60 1.00
wl4] 0.32 0.29 0.32 -0.18  0.77 323.08 1.00
710] 0.30 0.40 0.16 0.00 0.78 657.13 1.00
7[1] 0.16 0.22 0.07 0.00 0.49 44488 1.00
T[2] 0.38 0.49 0.21 0.00 0.88 731.61  1.00
7[3] 0.48 0.58 0.30 0.00 1.10 769.77 1.00
T[4] 0.38 0.46 0.23 0.00 0.87 734.67 1.00
Table 6: Horseshoe, N = 500
Parameter mean std median 5.0% 95.0% Teff That
8]0, 0] -0.01  0.02 -0.01 -0.04 0.02 1164.89 1.00
810, 1] -0.00 0.01 -0.00 -0.01 0.00 1166.78 1.00
210, 2] -0.01  0.02 -0.00 -0.05 0.03 1058.76  1.00
BI0, 3] 0.81 0.03 0.80 0.76 0.86 115247 1.00
510, 4] 0.38 0.02 0.38 0.34 0.42 1354.86  1.00
B[1,0] -0.02  0.02 -0.02  -0.06 0.01 474.08 1.00
BI1,1] -0.00 0.01 -0.00 -0.01 0.01 1142.38 1.00
BI1,2] 0.01 0.02 0.00 -0.03  0.04 588.71 1.00
Bl1, 3] 0.98 0.02 0.98 0.94 1.02  1057.67 1.00
B1,4] 0.27 0.02 0.27 0.23 0.30 952.89  1.00
Aocal [0] 0.43 0.56 0.26 0.00 0.99 719.61  1.00
Alocat[1] 0.16 0.26 0.07 0.00 0.38 723.90 1.00
Alocat[2] 0.37 0.76 0.17 0.00 0.85 870.60 1.00
Xocal[3] 12.50 24.82 6.46 0.66 2741 69640 1.00
Nocal [4] 464 644 2.70 0.23 9.74 523.64 1.00
Oobs 0.37 0.01 0.37 0.35 0.39 1442.02 1.00
Tglobal 0.18 0.17 0.13 0.01 0.38 462.47 1.00




Table 7: Spike-and-Slab, N = 500

Parameter mean std median 5.0% 95.0% Neff That
u[0] -0.08 092 -0.08 -1.47 1.47 24632 1.00
(1] -0.01 089 -0.04 -1.42 155 286.54 1.00
(2] 0.07 0091 0.08 -1.41 1.50 262.60 1.00
(3] 0.80 0.32 0.85 0.23 1.25 85.86 1.01
4] 0.27  0.36 0.32 -0.23 0.79 62.50 1.00
Dstab|0] 033 0.24 0.29 0.00 0.70  293.99 1.00
Dstab[1] 032 0.23 0.27 0.00 0.65 319.94 1.00
Dslab|2) 031 0.23 0.26 0.00 0.63  255.00 1.00
Dslab|3] 0.67 0.23 0.72 0.31 1.00  280.05 1.01
Dsiab|4] 0.69 0.24 0.74 0.32 0.99 287.82 1.02
Tobs 0.37  0.01 0.37 0.35 039 32230 1.00
slabBeta[0,0]  -1.34 12.12 -024 498 487 9790 1.01
slabBeta[0,1]  -1.67 1598 -0.13 -1143 949 213.18 1.00
slabBeta[0, 2] 020 3.38 0.07 -3.14 413 24580 1.00
slabBeta[0, 3] 0.81 0.03 0.81 0.76 0.86  225.15 1.00
slabBetal0, 4] 0.38  0.03 0.38 0.33 0.42 29542 1.00
slabBeta[l, 0] 037 632 -000 458 4.08 172.04 1.0l
slabBeta[1,1]  -1.12 11.73  -0.09 -1643 7.79 271.65 1.00
slabBeta][l, 2] 032 3.19 0.21 -3.53 5.70 85.71 1.02
slabBeta][l, 3] 0.99  0.02 0.99 0.94 1.02 22795 1.01
slabBeta]1, 4] 0.27  0.02 0.27 0.23 0.31 26224 1.01
spikeBeta[0,0] -0.01 0.02 -001 -0.05 0.02 101.73 1.0l
spikeBeta[0,1] -0.00  0.01 -0.00  -0.01  0.01 222.09 1.00
spikeBeta[0,2] -0.01 0.02 -001 -0.05 0.03 17375 1.0l
spikeBeta[0,3] -0.14  1.27 0.00 -1.29 1.43 88.29 1.00
spikeBeta[0,4]  0.34 1.99 -0.01 -1.24 1.13 26.28 1.03
spikeBeta[1,0] -0.03 0.03 -0.03 -0.08 0.01 15224 1.00
spikeBeta[l,1] -0.00 0.01 -0.00  -0.01 0.01  269.31 1.00
spikeBeta[1,2] 0.01  0.02 0.00 -0.03  0.04 189.59 1.01
spikeBeta[1,3]  0.05 1.26 0.01 -1.07 1.11 25495 1.00
spikeBeta[1,4] 0.37  3.57 -0.01 -1.43 1.46 50.06 1.01
spike_scale[0] 0.07  0.09 0.04 0.00 0.16  207.03 1.00
spike_scale[1]  0.02  0.04 0.01 0.00 0.04  202.01 1.00
spike_scale[2]  0.05  0.06 0.03 0.00 0.13  189.53 1.00
spike_scale|[3] 0.68 1.23 0.28 0.01 1.61 3531 1.01
spike_scale[4] 1.11 3.54 0.33 0.00 1.78 30.68 1.03
7[0] 347 10.54 0.91 0.14 6.30 45.84  1.05
T[1] 6.25 1690  1.69 021 1322 7293 1.00
7[2] 224 4.06 0.99 0.02 520 50.07 1.01
T[3] 0.56 1.23 0.29 0.06 1.10  270.01 1.00
4] 043 055 024 002 1.0 9580 1.00
z[0] 0.00  0.00 0.00 0.00 0.00 nan nan
z[1] 0.00  0.00 0.00 0.00 0.00 nan nan
z[2] 0.00  0.00 0.00 0.00 0.00 nan nan
z[3] 1.00  0.00 1.00 1.00 1.00 nan nan
z[4] 1.00  0.00 1.00 1.00 1.00 nan  nan




Table 8: Non-Centered Hierarchical Logistic Model

Parameter mean std median 5.0% 95.0% Theff That
Baecenterea|0, 0] 0.12 0.76 0.16 -1.21 1.30 2260.42 1.00
Baecenterea|0, 1] 0.25 0.78 0.24 -1.07 1.49 210698 1.00
Becentered [0, 2] 0.20 0.78 0.19 -1.04 1.53 2160.71 1.00
Becentered [0, 3] 1.20 0.61 1.14 0.27 2.18 247327 1.00
Baecentered |0, 4] -0.09 075 -0.08 -1.25 1.22 229325 1.00
Baecenterea |0, 5] 0.02 1.00 0.01 -1.64  1.61 414821 1.00
Baecenterea|0, 6] -0.39 079 -036 -1.80 0.76  2537.15 1.00
Becentered [0, 7] -0.62 0.71 -0.56  -1.80 0.52 2160.50 1.00
Becentered [0, 8] -043 082 -045 -1.75 096 2209.34 1.00
Baecentered |0, 9] -0.21 080 -0.16 -1.60 1.04 1847.23 1.00
Baecenterea0,10]  0.35  0.76 0.34 -0.93 1.51 2484.12 1.00
Bdecenterea]0, 11]  -0.38  0.77  -0.34  -1.55 097 2355.09 1.00
Bdecentered[0,12]  0.15  0.80 0.14 -1.19 1.41  2469.72 1.00
Becentered[1; 0] 0.14 0.79 0.16 -1.16 1.41  2470.50 1.00
Becentered|1, 1] -0.19 0.78 -0.17 -144 1.03 2156.65 1.00
Baecentered|1, 2] -025 077 -022 -1.56 096 2119.88 1.00
Buecentered|1, 3] -054 058 -044 -1.39 041 1832.87 1.00
Baecentered| 1, 4] 0.01 0.76 0.01 -1.28 1.23  2486.62 1.00
Becentered |1, D] -0.89 0.70 -0.85 -2.08 0.06 214742 1.00
Becentered |1, 6] 0.35 0.77 0.34 -0.88 1.64  2037.62 1.00
Becentered |1, 7] 0.64 0.71 0.61 -0.53 1.79 257234 1.00
Baecentered|1, 8] 0.18 0.83 0.17 -1.14  1.55 2209.33 1.00
Baecenterea|1, 9] 0.38 0.80 0.37 -0.93 1.68  2271.08 1.00
Bdecentered[1,10]  -0.32 079  -029 -1.66 0.93 234034 1.00
Bdecenterea[1, 11]  0.37  0.79 0.36 -0.99 1.62 2414.14 1.00
Bdecentered[1,12]  -0.22  0.85  -0.25 -1.54 123  2460.90 1.00
1[0] 0.87 0.33 0.93 0.39 1.38 1259.49 1.00
w[1] 0.16 0.31 0.17 -0.28  0.66 1187.79 1.00
(2] -0.06 032 -0.07 -0.57 040 1487.73 1.00
(3] 041 0.85 0.45 -090 191 2270.78 1.00
4] -023 030 -024 -074 021 1194.55 1.00
w[5] -0.89 1.02 -097 -2.67 062 2317.09 1.00
6] -0.11 041 -0.13 -0.76  0.53 1510.57 1.00
w[7] -0.00 057 -0.03 -0.85 1.01 1986.12 1.00
1[8] 053 049 -0.60 -1.23 0.35 1581.16  1.00
u[9] 0.38 041 0.40 -024  1.05 1550.32  1.00
w[10] 0.12 042 0.12 -0.57 0.83 1723.80 1.00
w[11] -0.07 046 -0.10 -0.75 0.71 1545.34 1.00
w[12] -0.25 041 -0.25 -094 0.35 1961.88 1.00
7[0] 0.40 0.52 0.21 0.00 0.97 1618.31 1.00
7[1] 0.38 045 0.23 0.00 0.89  1580.49 1.00
7[2] 041 0.50 0.25 0.00 0.95 1411.64 1.00
7[3] 231 148 1.92 0.70 3.97 1608.51 1.00
7[4] 0.39 0.53 0.22 0.00 0.92 1748.74  1.00
7[5] 2.01 1.73 1.55 0.01 425 2358.80 1.00
7[6] 0.58 0.64 0.39 0.00 1.24  1763.99 1.00
7[7] 0.99 0.84 0.79 0.03 1.83  2201.35 1.00
7[8] 0.65 0.71 0.46 0.00 1.37 2044.09 1.00
7[9] 0.53 0.59 0.37 0.00 1.14 207098 1.00
7[10] 0.58 0.60 0.41 0.00 1.23 1832.88 1.00
7[11] 0.64 0.66 0.46 0.00 1.36 194270 1.00
T[12] 0.54 0.65 0.37 0.00 1.13 224749 1.00




Table 9: Horseshoe

Parameter mean std median 5.0% 95.0% Theff That
510, 0] 0.05 0.01 0.05 0.04 0.06 231522 1.00
310, 1] 0.00 0.00 0.00 -0.00 0.01 94522  1.00
BI0, 2] -0.00 0.00 -0.00 -0.01 0.00 2011.16 1.00
2I0, 3] 0.00 0.00 0.00 -0.01 0.01 1354.22  1.00
£l0,4] 0.00 0.01 0.00 -0.01  0.01 139494 1.00
810, 5] 0.02 0.01 0.02 0.00 0.04 1377.88 1.00
310, 6] 0.00 0.01 0.00 -0.01 0.01 1021.18 1.00
B0, 7] 0.05 0.01 0.05 0.02 0.07 161537 1.00
2I0, 8] 0.04 0.02 0.04 0.02 0.07 1399.71 1.00
50,9 0.04 0.01 0.04 0.03 0.06 1262.31 1.00
810, 10] 0.01 0.01 0.01 -0.00  0.02 1010.98 1.00
B0, 11] 0.01 0.01 0.01 -0.00 0.02 731.71  1.00
B0, 12] -0.01 0.01 -0.00 -0.03 0.01 797.65 1.00
BI1,0] 0.04 0.01 0.04 0.03 0.05 2093.09 1.00
BI1,1] -0.00 0.00 -0.00 -0.01 0.00 2228.90 1.00
Bl1, 2] -0.01 0.01 -0.01 -0.01  0.00 989.89  1.00
BI1, 3] -0.00 0.00 -0.00 -0.01 0.01 1289.04 1.00
BI1,4] 0.01 0.01 0.01 -0.00 0.02 1175.38 1.00
BI1, 5] 0.04 0.02 0.04 0.01 0.07 878.25 1.00
BI1, 6] 0.01 0.01 0.00 -0.01 0.02 742.61  1.00
BI1, 7] 0.06 0.02 0.06 0.03 0.08 1797.09 1.00
BIL, 8] 0.01 0.02 0.01 -0.02 0.04 171777 1.00
BI1,9] 0.03 0.01 0.04 0.02 0.05 1023.19 1.00
BI1,10] -0.00 0.01 -0.00 -0.02 0.02 1124.81 1.00
B1,11] -0.00 0.01 -0.00  -0.01 0.01 1417.99 1.00
B1,12] -0.00 0.01 -0.00 -0.02 0.01 1239.66 1.00
Alocal [0] 340 324 2.58 0.60 6.27 953.27 1.00
Alocal[1] 042 0.55 0.26 0.00 0.96 70693  1.00
Aocal[2] 0.59 0.61 0.40 0.01 1.29 723.46  1.00
Aocal [3] 042 0.64 0.26 0.01 0.94 1327.38 1.00
Aocal [4] 0.71 0.81 0.48 0.01 1.55 898.57 1.00
Alocal [5] 275  3.12 2.06 0.36 5.32 898.76  1.00
Alocal [6] 0.73 0.81 0.51 0.01 1.56 999.66  1.00
Alocal[7] 391 344 2.96 0.71 7.72 687.46 1.00
Aocal [8] 2.66 2.56 1.91 0.27 5.12 628.88 1.01
Aocal [9)] 301 2385 2.25 0.56 5.73 920.50 1.00
Alocal[10] 0.83 1.04 0.58 0.01 1.68 1066.74  1.00
Alocat [11] 0.75 0.82 0.53 0.01 1.59 73129 1.00
Alocat [12] 0.82 1.01 0.57 0.01 1.71 896.37 1.00

Oobs 024 0.00 0.24 024 025 2019.26 1.00
Telobal 0.02 0.01 0.02 0.01 0.03 671.80 1.00




Table 10: Spike-and-slab

mean std median 5.0% 95.0% Theff That

[0] 005 0.17 0.04 -0.19 026 89.24  1.00
w[1] 0.04 1.08 0.01 -1.68 1.77 33376 1.00
(2] 0.01 0.97 -0.02  -1.53 1.59 42151 1.00
(3] 0.04  0.99 0.04 -1.50 1.72  387.19 1.00
4] 0.02  1.06 0.02 -2.03 147 38229 1.00
w[5] 0.05 1.01 0.04 -1.46  1.60 37238 1.00
6] -0.11  1.05 -0.13  -2.01 1.49 44059 1.00
w[7] 0.07  0.19 0.06 -0.18 035 188.24 1.00
(8] 0.05 1.04 0.04 -1.62 1.83 303.14 1.00
(9] -0.00 1.14 0.00 -1.90 1.82 258.05 1.00
w1 -0.03  1.01 0.02 -1.82  1.56  489.45 1.00
w1 0.04 1.04 0.07 -1.44  1.85 248.68 1.00
u[l 0.03 1.05 0.06 -1.79  1.56  232.69 1.00
. 0.66 0.25 0.70 0.26 1.00  391.60 1.00
0.34 0.25 0.30 0.01 0.73  771.08 1.00

035 0.24 0.30 0.00 071 42551 1.00

034 023 0.31 0.03 0.72  368.03 1.00

032 023 0.28 0.00 0.66 53754 1.00

034 025 0.29 0.00 0.72  412.18 1.00

033 0.24 0.29 0.00 0.70  620.74 1.00

0.69 0.24 0.74 0.33 1.00  421.20 1.00

032 022 0.28 0.01 0.63 451.14 1.00

034 023 0.31 0.00 0.71 459.26 1.00

036  0.25 0.32 0.00 071 381.15 1.00

034 0.24 0.29 0.00 0.69 37452 1.00

0.34  0.26 0.28 0.00 0.73 274.01 1.00

0.24  0.00 0.24 024 025 571.19 1.00

0.19  0.32 0.06 0.00 053 13457 1.00

[1] 295 7.53 1.03 0.01 5.99 35.13  1.01
[2] 231 3.93 0.93 0.02 5.99 53.94 1.01
7[3] 2.71 542 0.97 0.04 6.56 47.35 1.04
7[4] 1.60 224 0.84 0.03 4.10 69.56  1.03
7[5] 3.67 824 1.26 0.04 7.82 67.19  1.00
7[6] 238  7.03 0.81 0.03 4.21 45.16 1.03
7[7] 020 0.36 0.08 0.00 053 17374 1.02
7[8] 4.09 11.11 1.09 0.04 6.38 2575 1.06
719] 224 424 0.89 0.03 5.16 52.02  1.00
7[10] 1.54 255 0.87 0.03 3.16 103.13 1.01
T[11] 1.58 1.96 0.88 0.03 3.63 101.50 1.00
T[12] 1.73  3.60 0.84 0.01 3.03 44.04 1.01
z[0] 1.00  0.00 1.00 1.00  1.00 nan nan
z[1] 0.00  0.00 0.00 0.00 0.00 nan nan
z[2] 0.00 0.00 0.00 0.00 0.00 nan nan
z[3] 0.00  0.00 0.00  0.00 0.00 nan nan
z[4] 0.00  0.00 0.00 0.00  0.00 nan nan
z[5] 0.00  0.00 0.00 0.00 0.00 nan nan
z[6] 0.00  0.00 0.00  0.00 0.00 nan nan
2[7] 1.00  0.00 1.00 1.00  1.00 nan nan
z[8] 0.00  0.00 0.00  0.00 0.00 nan nan
z[9] 0.00  0.00 0.00 0.00  0.00 nan nan
z[10] 0.00  0.00 0.00 0.00  0.00 nan nan
z[11] 0.00  0.00 0.00 0.00  0.00 nan nan
z[12] 0.00  0.00 0.00 0.00 0.00 nan nan
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