
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISCOVERING INFLUENTIAL NEURON PATH
IN VISION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision Transformer models exhibit immense power yet remain opaque to human
understanding, posing challenges and risks for practical applications. While prior
research has attempted to demystify these models through input attribution and
neuron role analysis, there’s been a notable gap in considering layer-level infor-
mation and the holistic path of information flow across layers. In this paper, we
investigate the significance of influential neuron paths within vision Transformers,
which is a path of neurons from the model input to output that impacts the model
inference most significantly. We first propose a joint influence measure to assess
the contribution of a set of neurons to the model outcome. And we further provide
a layer-progressive neuron locating approach that efficiently selects the most in-
fluential neuron at each layer trying to discover the crucial neuron path from input
to output within the target model. Our experiments demonstrate the superiority of
our method finding the most influential neuron path along which the information
flows, over the existing baseline solutions. Additionally, the neuron paths have il-
lustrated that vision Transformers exhibit some specific inner working mechanism
for processing the visual information within the same image category. We further
analyze the key effects of these neurons on the image classification task, show-
casing that the found neuron paths have already preserved the model capability
on downstream tasks, which may also shed some lights on real-world applications
like model pruning.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) models in the vision domain, such as supervised Vision Trans-
formers (Dosovitskiy et al., 2021) (ViT) or self-supervised pretrained models (He et al., 2022; Oquab
et al., 2023), have showcased remarkable performance in various real-world tasks like image classi-
fication (Dosovitskiy et al., 2021) and image synthesis (Peebles & Xie, 2023). However, the inner
workings of these vision Transformer models remain elusive, despite their impressive achievements.
Understanding the internal mechanisms of vision models is crucial for both research and practical
applications. When confronted with the model decision outputs, one may raise some questions that,
how is the vision Transformer model processing the input information by layer, and which part of
the model is significant to derive the final outcome? Unraveling the synergy within these models is
essential for comprehending machine learning systems. The current lack of complete understanding
poses challenges and risks when deploying these models in real-world scenarios.

Literature has explored mechanism discovery and explainability on vision models. Previous works
about the explainability of vision models mostly focused on the visualization of inner patterns of
models (Zeiler & Fergus, 2014; Zhou et al., 2016), which is straightforward in demonstrating the
attention of each module in the model. However, visualization based methods are lack of theoretical
support and highly dependent on human subjective understanding, which can be ambiguous. Other
preliminary works focus on input attribution (Chattopadhay et al., 2018; Koh & Liang, 2017; Li
et al., 2016; Selvaraju et al., 2017; Sundararajan et al., 2017), trying to distinguish the influential
region of the input. However, input explanation heavily relies on input images and cannot actu-
ally reveal the interior mechanism of the target model. Nowadays, discovering and explaining the
important neuron in one trained model has drawn more and more attention. The related works ei-
ther explain the patterns obtained at different network neurons via visualization (Foote et al., 2023;
Ghiasi et al., 2022; Karpathy et al., 2015; Vig, 2019; Zeiler & Fergus, 2014), or study the effects

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Feed-Forward Network

Multi-Head Attention

L ×

Embedded Patches
…

FFN1 FFN2 FFNL−1 FFNL Neuron Path

Transformer Encoder Feed-Forward Network across different layers

Low-level information High-level information

Unselected Neuron Selected Neuron Neuron Path

Input image
Class

Quail
Pineapple

Drake
···

Input image

Class probabilties

Figure 1: The illustration of the main concept of our work, focusing on the feed-forward network
(FFN) component within a standard ViT (Dosovitskiy et al., 2021) encoder. In the left part, a typical
ViT encoder is depicted, consisting of totally L Transformer layers. The right part of the figure
illustrates the neuron path discovered by our method, which identifies a path comprising of the
neurons within the FFN module across the model layers. Each FFN in the encoder is denoted as
FFNl, l ∈ [1, L].

of individual neurons (Dai et al., 2022; Dalvi et al., 2019; Durrani et al., 2020; Huang et al., 2023).
Nevertheless, most of these methods overlook the correlation between the neurons in different layers
and have not considered the complex joint influence of various neurons.

To recognize and understand the underlying mechanisms of multiple neurons across layers in state-
of-the-art vision models, new explanation methods are needed. Inspired by the concept of visual
pathway in neuroscience (Gupta et al., 2020), our work deliberately concentrates on uncovering
the influential neuron path within the vision Transformer models, which is a sequence of neurons
within each layer tracing from input to model output, to elucidate their significance and role in
model inference. Details of neuron path are shown in Figure 1. To evaluate the importance of a
set of neurons, we initially define a comprehensive joint influence measure for the target model.
Using this measure as a guide, we demonstrate our approach using the image classification task
(Deng et al., 2009; Dosovitskiy et al., 2021; He et al., 2022), illustrating how we identify the most
influential neuron path that drive the model inference through a layer-progressive neuron locating
algorithm.

We have conducted several quantitative and qualitative experiments on the found neuron path, il-
lustrating the significant role it plays and the advantage of our solution discovering and explaining
the critical part of vision Transformer models. The initial discovery is about the effectiveness of
our proposed method and the critical impact that neuron path exerts to the model inference. What
follows is that common influential neuron paths exist in the target model for images within the same
category, and categories with similar semantic information also exhibit relatively high similarity
in their neuron paths. Furthermore, the discovered neuron paths offer potential insights for model
pruning and specialization in Vision Transformer models.

In summary, the contribution of our work is as follows. (i) We have proposed a novel method to
reveal the crucial information transmission flow within vision Transformer model, based on locating
and analyzing internal neurons as neuron path. (ii) We have performed a series of experiments, not
only demonstrating the critical influence on the model inference brought by the discovered neuron
paths, but also revealing the intrinsic potential mechanism of vision Transformer models on process-
ing semantic information. (iii) We apply the identified neurons to guide model pruning, showing that
vision Transformers exhibit redundancy and that the essential components are sparse.

2 RELATED WORK

2.1 VISION TRANSFORMER MODELS

In computer vision, various vision Transformer models (Caron et al., 2021; Dosovitskiy et al., 2021;
Oquab et al., 2023; Radford et al., 2021) have showcased superior performance in real-world tasks
such as image classification (Dosovitskiy et al., 2021). Transformer-based encoders typically consist
of multiple structural identical layers, each comprising a self-attention module and a feed-forward

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

network (FFN). Typically, vision Transformer operates by dividing input images into fixed-size
patches, treating them akin to tokens in natural language processing (NLP) (Vaswani et al., 2017),
incorporating of positional encodings, a classification token, and processing them through self-
attention mechanisms with subsequent FFNs. While vision Transformers have achieved excellent
performance , the underlying mechanisms that contribute to their effectiveness remain opaque. Sev-
eral recent works have attempted to unravel the inner workings of vision Transformer by attributing
individual neurons to different concepts using language models (Guertler et al., 2023; Hernandez
et al., 2021) or multimodal model (Oikarinen & Weng, 2023) , visualizations (Chefer et al., 2021;
Ghiasi et al., 2022) or by observing inner behaviors or properties (Naseer et al., 2021; Paul & Chen,
2022; Zimmermann et al., 2024). However, the complexity of vision Transformer’s architecture and
the interactions between its blocks pose challenges in fully comprehending its capabilities. There-
fore, our work seeks to explore the inner working of vision Transformer by investigating the role of
neuron paths, capturing essential patterns of information flow within the model.

2.2 EXPLAINABILITY METHODS IN VISION MODELS

Visualization based Methods. Visualization-based methods are pivotal in interpreting deep neural
networks used in vision tasks. These techniques primarily include methods like activation maximiza-
tion (Erhan et al., 2009), saliency maps (Selvaraju et al., 2017), and class activation maps (CAMs)
(Zhou et al., 2016). Activation maximization involves optimizing input images to maximize the
activation of specific neurons, thereby providing insights into what features activate particular neu-
rons. Saliency maps compute gradients of the output with respect to the input image to highlight
regions contributing most to the network’s prediction. CAMs uses the weighted sum of feature maps
to visualize class-specific regions in the input image. Despite their usefulness, these methods face
limitations. They can be computationally intensive and may produce unrealistic images that do not
correspond to natural inputs (Nguyen et al., 2016). Further, they often suffer from noise and lack
spatial localization, potentially leading to misleading interpretations (Smilkov et al., 2017). And
these methods rely on specific network architectures and may not generalize well across different
model types or tasks (Selvaraju et al., 2017). [Visualization based methods represent a distinct per-
spective on explainability other than ours. They are more inclined to intuitively display the concerns
of the visual model and succinctly represent the learning results of the model, whereas our focus
is on the intrinsic mechanism of the model and an in-depth examination of the model’s operational
mechanism from input to output.]

[Neuron based Methods. The emergence of powerful deep learning models has stimulated interest
in the study of model explainability. The concept of a neuron in machine learning, as discussed in
various works (Bau et al., 2017; Dhamdhere et al., 2019; Oikarinen & Weng, 2023), encompasses
hidden units, hidden layers, and individual latent variables. These elements are often considered
fundamental computational components that process input information. Among the explainability
approaches, neuron-based methods, a more intricate form of analysis (Fan et al., 2024), are typically
divided into gradient-based and non-gradient based methods. Non-gradient based methods generally
contain three approaches: neuron visualization (Foote et al., 2023; Karpathy et al., 2015; Li et al.,
2016; Zeiler & Fergus, 2014), concept-based methods (Bau et al., 2017; Hernandez et al., 2021;
Kim et al., 2018; Oikarinen & Weng, 2023; Panousis & Chatzis, 2024) and statistic-based meth-
ods (Ghorbani & Zou, 2020; Kwon & Zou, 2022; Shan et al., 2021; Yuan et al., 2021). However,
these methods either rely on dataset of a close set of input-concept pairs (Bau et al., 2017), limiting
their generalization ability to unseen concepts, or externally provided powerful models (Oikarinen
& Weng, 2023; Panousis & Chatzis, 2024), such as CLIP (Radford et al., 2021), rather than intrinsic
model properties. Further, some of their optimization goals focus on model output metrics, failing
to fully elucidate the circulation of model knowledge and concepts. Gradient-based methods com-
pute the attribution from output to input or target neurons (Chattopadhay et al., 2018; Dai et al.,
2022; Dhamdhere et al., 2019; Selvaraju et al., 2017) via gradient computation or integrated gradi-
ent (Sundararajan et al., 2017). Though providing quantitative results for neuron explainability, they
tend to treat all neurons equally and struggle with comparing neurons across different layers with
the gradient flow numerically equitably, despite variations in depth. To address this issue, (Lu et al.,
2020; 2021) try to discover a path of neurons rather than a cluster. However, all these methods fail to
consider the joint influence of neurons across layers. It will not only result in biased outcomes due to
the domination of a few abnormally prominent neurons, but it will also fail to consider the coherence

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

of information transmission, which makes it challenging to truly explore the intrinsic mechanism of
the model. The objective of this paper is to propose a new method that addresses this issue.]

In response to the limitations of existing methods, particularly those gradient-based methods focus-
ing on individual neurons or input features, we introduce a novel approach for interpreting vision
Transformer models (Dosovitskiy et al., 2021). Our method shifts the focus towards the collective
contribution of selected neurons across different layers, offering a more comprehensive understand-
ing of model behavior. Our method enables us to uncover influential pathways within the model,
enhancing its explainability and providing valuable insights into its decision-making process.

3 NEURON PATH

As demonstrated above, vision Transformers (Dosovitskiy et al., 2021) exhibit complex structures
and designs that present challenges for explainability. Research on vision Transformers predomi-
nantly focuses on visualization techniques related to attention maps (Caron et al., 2021; Oquab et al.,
2023), with limited exploration of their neuronal anatomy. While in recent studies, efforts have been
made to associate individual neurons with various concepts using language or multimodal models
(Guertler et al., 2023; Hernandez et al., 2021; Oikarinen & Weng, 2023) and visualization tech-
niques (Chefer et al., 2021; Ghiasi et al., 2022), the understanding of vision Transformer’s internal
neuronal organization remains relatively unexplored. Some related studies (Dai et al., 2022; Geva
et al., 2021; Mitchell et al., 2021) have suggested that the FFN component of Transformer models
can function as a memory mechanism due to its structural similarity to the attention mechanism and
they encode human-interpretable, high-level concepts, which motivated this work to focus on these
neurons in our experiments. Based on this insight, it is reasonable to hypothesize that knowledge or
information related to visual patterns in vision Transformers may also be stored within the FFN. As
stated before about the definitions of a neuron (Bau et al., 2017; Dhamdhere et al., 2019; Oikarinen
& Weng, 2023), we focus on a specific type of neuron within the vision Transformer which is the
activation of the output from the first linear layer in the FFN module of each Transformer block.

3.1 PRELIMINARY STUDY

1 2 3 4 5 6 7 8 9 10 11 12
Layer

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Pe
rc

en
ta

ge

Neuron Distribution for ViT-B-16

1 2 3 4 5 6 7 8 9 10 11 12
Layer

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Pe
rc

en
ta

ge

Neuron Distribution for MAE-B-16

Figure 2: The distribution of knowledge neu-
rons in two different pretrained vision Trans-
former models. It can be noticed that com-
paring ViT-B-16 (Dosovitskiy et al., 2021)
and MAE-B-16 (He et al., 2022), their neu-
ron attribution show completely opposite dis-
tributions across layers.

We first conduct a preliminary study on neuron im-
portance analysis for vision Transformer models to
illustrate the motivation of our method. The exist-
ing works studying neuron activities of vision model
inference (Dhamdhere et al., 2019; Sundararajan
et al., 2017) mainly focus on convolutional neural
networks (CNNs), trying to analyze convolution fil-
ter’s sensitivity to the input. To assess the impor-
tance of neurons themselves within pretrained mod-
els, the concept of knowledge attribution (Dai et al.,
2022) offers valuable insights on finding the individ-
ual neurons storing model knowledge such as “capi-
tal of country” in Transformer-based language mod-
els like BERT (Kenton & Toutanova, 2019). Inspired
by this method, we analyze the effects of individual
neurons in vision Transformer model contribution to
the model prediction, with most influential neurons
marked as “knowledge neurons”. The details about
the implementation of knowledge attribution can be
found in Appendix B. Note that, it focuses solely on
individual knowledge neurons, overlooking the joint
effects of the common neurons.

By applying the method to two types of vision Trans-
former models using different pretrain paradigms,
supervised ViT (ViT-B-16) (Dosovitskiy et al., 2021)
and self-supervised Masked AutoEncoder (MAE-B-16) (He et al., 2022), we have derived an unex-
pected discovery, as illustrated in Figure 2. Despite both models being pretrained and finetuned

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

on the same dataset (ImageNet (Deng et al., 2009)) with almost identical model structures, i.e., 12
Transformer layers with the same hidden size, and utilizing the same input process, i.e., 16-size
patching on the input, we observe that the distributions of individual knowledge neurons across
the two models are almost inverted. Moreover, numerous studies have demonstrated that, in vision
models, information is progressively aggregated from low-level visual patterns to high-level visual
concepts as the network depth increases (Bau et al., 2017; Zeiler & Fergus, 2014). This implies that,
to accurately capture high-level concepts in an image, each layer should include at least one sig-
nificant neuron to facilitate the flow of information. However, current attribution methods may fall
short in fully capturing this requirement. Consequently, there is a pressing need for a new method
that can provide deeper insights into the transmission of information by neurons within the model.
It is true that the attribution of individual neurons using integrated gradients, as shown in Figure 2,
yields clusters of neurons that are most sensitive to image information in the visual model, but this
does not capture the process of how visual information is transmitted and processed through neural
pathways. Just as that in the human visual system, nerve cells close to the retina and visual cortex
must be the most sensitive, but the visual neural pathways between the two are equally important
and worthy of study. Thus, a joint measurement of neuron path within the model is demanding.

3.2 JOINT ATTRIBUTION SCORE

To locate the most influential neurons, we first propose a joint influence measurement of a set of dif-
ferent neurons. Motivated by the concept of information flow (Lu et al., 2021), we introduce a novel
integrated gradient-based method to compute the joint attribution of all selected neurons, across dif-
ferent layers in vision Transformer models. Consider a vision Transformer model F consisting of
L layers. Given an input-label pair < x, y >, where x ∈ Rd and y is the related label, we begin by
denoting the output result utilizing the neurons within the first N layers as

Fx(ŵ
1
i1 , ŵ

2
i2 , ..., ŵ

N
iN) = p(y|x,w1

i1 = ŵ1
i1 , w

2
i2 = ŵ2

i2 , ..., w
N
iN = ŵN

iN) , (1)

where wl
i represents the i-th intermediate neuron in the FFN module of the l-th layer ,with 1 ≤

l ≤ N ≤ L and ŵl
i is the assigned value of wl

i. To calculate the contribution to the model output
of the selected neurons jointly, we incrementally sum the values of {w1

i1
, w2

i2
, ..., wL

iL
} from 0 to

their original values {w1
i1 , w

2
i2 , ..., w

L
iL} using a control factor α ∈ (0, 1). This process yields L

differentiations with respect to each neuron in the neuron path. By aggregating these differentiations
and integrating with respect to α, we obtain a score that represents the joint attribution of the neuron
in the model. Formally, the definition of this joint attribution score is given as follow.

Definition 1 (Joint Attribution Score) Given a model F : Rd → R containing L layers, whose
output with input x is defined as Fx, with a set of neuron {w1

i1
, w2

i2
, ..., wN

iN
}, N ≤ L, a Joint

Attribution Score is defined as

JAS(w1
i1 , w

2
i2 , ..., w

N
iN) =

N∑
n=1

wn
in

∫ 1

α=0

N∑
l=1

∂Fx(αw
1
i1 , αw

2
i2 , ..., αw

N
iN)

∂wl
il

dα . (2)

For the convenience of computation, we use the Riemann approximation to estimate the continuous
integral as follows,

J̃AS(w1
i1 , w

2
i2 , ..., w

N
iN) =

1

m

N∑
j=1

wj
ij

m∑
k=1

N∑
l=1

∂Fx(
k
mw1

i1 ,
k
mw2

i2 , ...,
k
mwN

iN)

∂wl
il

, (3)

where m is the sampling step.

With Definition 1 stated above, we propose a novel neuron-based model analysis method Neuron
Path, trying to find a path consisting at least one important neuron at each layer tracing from input
to model output to elucidate their significance and role in model inference. The formal definition is
as below.

Definition 2 (Neuron Path) Given a model F : Rd → R containing L layers, with an input x, and
a user-defined criterion S(·), a neuron path Px is defined as follow.

Px = {w1, w2, ..., wL} (4)
that maximizes the S(Px), where wl, l ∈ {1, 2, ..., L} stands for the selected neuron within layer l.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

S(·) utilizes a user-defined score to evaluate the behavior of the network with respect to the input
of interest x. When the score function is defined as the maximum activation, the path Px comprises
the neurons with the highest activation in each layer, as detailed in Appendix C.2. When Pattern
Influence (Lu et al., 2021) is applied, we obtain the path Px that maximizes the corresponding
influence score, as detailed in Appendix C.3. For our method, we use the JAS in Eq. (2).

3.3 LOCATING INFLUENTIAL NEURON PATH

To identify the neuron path within the target model F that maximizes the JAS in Definition 1, we
employ a layer-progressive neuron locating algorithm, to iteratively select neurons layer by layer,
gradually constructing the path that maximizes JAS. Utilizing the definition of the JAS provided
above, we formulate the algorithm as follows. For a vision Transformer model comprising L layers,
we enumerate each layer and add neurons to the path to maximize JAS at the current depth. The
detailed procedure of our algorithm is outlined in Algorithm 1. Time complexity analysis can be
found in Appendix A.

Algorithm 1 Layer-progressive Neuron Locating Algorithm

Input: Model F with L layers, input sample x
Output: neuron path P
Initialization: P = ∅, l = 1
while l ≤ L do
W is the set of neurons in layer l of F ; Score = 0, p = None
for w ∈ W do

if Score < J̃AS(P, w) then
Score = J̃AS(P, w); p = w

P = P ∪ {p}; l = l + 1

Comparing with existing methods that focus on individual neurons or input features (Dai et al.,
2022; Dalvi et al., 2019; Durrani et al., 2020; Huang et al., 2023; Sundararajan et al., 2017), our ap-
proach considers the collective contribution of selected neurons across different layers in the model.
By computing and maximizing the joint attribution scores, we aim to identify the most influen-
tial neuron path for the given input, which processes and conveys the most crucial information as
flow through the model layers. Some related works (Lu et al., 2020; 2021) on Transformer-based
language models also investigate neuron pathways, but they overlook the collective influence of neu-
rons across layers, resulting in suboptimal outcomes, as illustrated in the experiment. In contrast,
our approach offers several advantages. By considering the collective contribution of neurons across
layers and employing a layer-progressive neuron locating algorithm, we can effectively identify neu-
ron paths that maximize the crucial information flow. Furthermore, our method provides a holistic
view of the model’s information transmission during inference, offering valuable insights into its
inner workings.

4 EXPERIMENTS

In this section, we present both quantitative and qualitative experiments to analyze the proposed
method from multiple perspectives. In Section 4.2, we validate the neuron paths discovered by our
approach by comparing them with baseline methods through quantitative analysis and intervention
experiments. In Section 4.3, we provide in-depth statistics on the discovered neuron paths and
reveal their clustering patterns with respect to image classes. Finally, in Section 4.4, we perform
network pruning on other neurons while preserving the identified neuron paths, offering insightful
observations on classification performance and highlighting potential applications of our method.
The code will be released upon the acceptance of this paper.

4.1 IMPLEMENTATION DETAILS

Our experiments are conducted on ViT (Dosovitskiy et al., 2021) and MAE (He et al., 2022), two
widely used vision Transformer models but with different pretraining methods. For our following

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

experiments, we will mainly utilize 3 ViT settings and 1 MAE setting: ViT-B-16, ViT-B-32, ViT-
L-32 and MAE-B-16 as the target models. Details of these models are in Appendix C.1.

These models are all trained for the image classification task, they are all pretrained on ImageNet21k
and finetuned on ImageNet1k (Deng et al., 2009), whose validation set shall be the probing dataset
for the experiments below. As for the calculation of JAS, we set the sampling step m = 20 in Eq. (3)
for the following experiments.

4.2 QUANTITATIVE COMPARISON

In this section, we evaluate different neuron explainability methods and perform a neuron interven-
tion experiments according to the results of different methods. We start by presenting the different
methods of comparison, the first one is commonly utilized in literature (Dhamdhere et al., 2019; Dai
et al., 2022) and the second one is presented in previous work (Lu et al., 2021). Details of the first
two baseline methods implementation can be found in Appendix C.2 and C.3.

• Activation represents the method that locates the neuron with the largest activation at each layer.

• Influence Pattern follows the setup of the previous work (Lu et al., 2021), which utilizes the input
to build path integral and find the neuron with largest integrated gradient layer by layer.

• Neuron Path (Ours) stands for the neurons sampled by the neuron localization method we have
proposed above in Section 3.3.

Experimental settings. We assess the significance of neurons identified by different methods to
evaluate the effectiveness of the compared approaches. The first experiment measures the joint
influence of the neurons given different inputs to the model, as defined by the Joint Attribution
Score (JAS) in Section 3.2.

Additionally, we will conduct a more in-depth comparison of the three methods through manipula-
tion experiments by intervening in the identified neurons. These experiments involve two operations
on the selected neurons: removal (zeroing out) and enhancement (doubling) on the values of the
selected neurons. For each image input, neurons in the target model are identified using the three
approaches, and manipulation experiments are conducted. By analyzing the changes in model out-
puts after these operations, we can observe in finer detail the impact of these neurons on the model’s
classification ability. Two metrics, Removal Accuracy Deviation and Enhancement Accuracy De-
viation, are used to quantify the experimental results of the operations. These metrics measure the
change in model accuracy after the corresponding operation. Further details about these metrics
are provided in Appendix C.5. Moreover, we statistically analyze the deviations of the predicted
probability regarding the ground-truth image class after performing the two operations. Additional
details regarding the probability deviation metrics can be found in Appendix C.4. The quantitative
results are presented in Table 1, and the statistical analyses are presented in Figure 3.

Metrics Methods Target Models
ViT-B-16 ViT-B-32 ViT-L-32 MAE-B-16

Joint Attribution Score ↑
Activation -0.0034 0.0288 -0.0065 0.0013

Influence Pattern 0.0412 0.0841 0.1227 0.0030
Neuron Path (ours) 0.4078 0.6610 1.0086 0.0095

Removal Accuracy Deviation ↓
Activation 0.07% -0.15% 0.16% -2.80%

Influence Pattern -0.50% -1.24% -1.41% -15.67%
Neuron Path (ours) -2.40% -3.81% -5.28% -26.50%

Enhancement Accuracy Deviation ↑
Activation -0.33% -0.45% -0.86% -1.00%

Influence Pattern 0.46% 0.83% 1.12% 4.15%
Neuron Path (ours) 2.04% 3.06% 5.02% 7.28%

Table 1: Three different metrics were used to measure the neurons obtained using three different
methods. ↑ (↓) means that the higher (lower), the better. The best results are in bold font.

Finding 1: The Neuron Path method more effectively identifies the influential neurons within
the model. In Table 1, our proposed Neuron Path method demonstrates a superior ability to identify
neurons that have a more significant impact on model outputs, as indicated by larger JAS values.
This is expected, as our method directly maximizes the joint contribution of the selected neurons.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Activation Influence
Pattern

Ours
-40%

-20%

0%

20%

40%

Pr
ob

ab
ilit

y
De

vi
at

io
n

af
te

r Z
er

oi
ng

 O
ut ViT-B_16

Activation
Influence Pattern
Ours
Reference Line

Activation Influence
Pattern

Ours
-40%

-20%

0%

20%

40%
ViT-B_32

Activation
Influence Pattern
Ours
Reference Line

Activation Influence
Pattern

Ours
-40%

-20%

0%

20%

40%
ViT-L_32

Activation
Influence Pattern
Ours
Reference Line

Activation Influence
Pattern

Ours
-100%

-50%

0%

50%

100%
MAE-B-16

Activation
Influence Pattern
Ours
Reference Line

Activation Influence
Pattern

Ours

0%

20%

40%

60%

80%

100%

Pr
ob

ab
ilit

y
De

vi
at

io
n

af
te

r D
ou

bl
in

g

Activation
Influence Pattern
Ours
Reference Line

Activation Influence
Pattern

Ours

0%

20%

40%

60%

80%

100%
Activation
Influence Pattern
Ours
Reference Line

Activation Influence
Pattern

Ours

0%

20%

40%

60%

80%

100%
Activation
Influence Pattern
Ours
Reference Line

Activation Influence
Pattern

Ours

100%

300%

500%

700%

900%
Activation
Influence Pattern
Ours
Reference Line

Figure 3: The relative deviation in the model’s predicted probability of the ground-truth label when
the value of neurons selected by different methods is either removed (zeroed out) or enhanced (dou-
bled).

We further quantify the impacts of the neurons discovered by the Neuron Path method and other
compared methods by measuring the deviation in model accuracy of classification when manipulat-
ing the value of neurons identified by different methods. As shown in the lower part of Table 1, the
removal and enhancement of neurons identified by our Neuron Path method result in significantly
larger drops and improvements in model performance, illustrating the effectiveness.

Finding 2: The discovered neuron paths play a vital role in model inference . Above results im-
ply that the intrinsic neurons of the model significantly affects prediction performance. In order to
explore in depth how the model’s output probability is affected by the internal neurons, we count the
relative deviation in prediction probability caused by manipulating the values of the discovered neu-
rons. As illustrated in Figure 3, our method results in significantly larger positive contributions when
enhancing neuron values, and more substantial negative effects when removing neurons comparing
to other two methods. It indicates that neurons selected by our methods can significantly affect the
model prediction, which demonstrates the crucial role these neurons play in model inference.

4.3 CLASS-LEVEL ANALYSIS

In this subsection, we aim to understand the internal workings of vision model predictions and
determine if neuron paths reflect the intrinsic mechanisms of the model architecture that critically
contribute to predictions. To this end, we analyze the common characteristics of neuron paths at
the class level. Interestingly, this analysis reveals clustering properties within the same class and
semantic relationships across different classes.

Intra-class analysis on neuron paths. We aggregated the neuron paths for images of the same
category and compiled statistics on the frequency of each neuron selected by our proposed method.
Figure 4 shows the frequency distribution of each neuron (vertical axis) across different layers (hor-
izontal axis) in the discovered neuron paths for four different classes. The width of the violin plot
indicates the frequency with which a neuron is selected. The most frequently used neuron at each
layer is connected with a dotted line. Due to the restriction that a category only contains limited
number of images, the length of the violin plot is shortened if the the ends of neuron index are not
sampled. See Appendix D.1 for more details and results.

Finding 3: Some certain neurons contribute more at each layer to specific classes. From Fig-
ure 4, it is evident that at most layers, certain neurons are selected with significantly higher frequency
in neuron paths corresponding to images of the same class. These highly selective neurons exhibit
clear clustering properties. This phenomenon reveals the intrinsic functioning of each layer in the
vision model (ViT-B-16 (Dosovitskiy et al., 2021) in this experiment) in responding to inputs from
specific classes.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12

Layer

Ne
ur

on
 In

de
x

Class: albatross

1 2 3 4 5 6 7 8 9 10 11 12

Layer

Ne
ur

on
 In

de
x

Class: Weimaraner

1 2 3 4 5 6 7 8 9 10 11 12

Layer

Ne
ur

on
 In

de
x

Class: Border collie

1 2 3 4 5 6 7 8 9 10 11 12

Layer

Ne
ur

on
 In

de
x

Class: Eskimo dog

Figure 4: The frequency of each neuron at each layer occurred in the discovered neuron paths.

Inter-class analysis on neuron paths. We extend our analysis to the inter-class level by examining
the above stated neuron frequency distribution, which reflects neuron utilization in the neuron paths,
to gain insights into the intrinsic working mechanisms of the vision model. We gather neuron uti-
lization data — specifically, the frequency statistics of each neuron in the discovered paths — and
construct a neuron utilization matrix Mc ∈ RL×n, where L is the number of layers and n is the
number of neurons per layer, for each class c ∈ C. We then calculate the cosine similarity between
Mc1 and Mc2 for two different classes c1, c2 ∈ C. More details are in Appendix D.2.

Finding 4: Neuron paths reveals semantic similarity. The matrix Mc reflects the neuron uti-
lization of the neuron paths for image class c, highlighting the model’s internal working properties
for that class. As illustrated in Figure 5, semantically similar image classes exhibit similar neuron
utilization patterns. This indicates that the discovered neuron paths tend to carry the semantic infor-
mation corresponding to the category, suggesting that the vision model utilizes specific functional
components in response to inputs from particular classes. It further implies that other than directly
using visualization tools (Erhan et al., 2009; Selvaraju et al., 2017; Zhou et al., 2016) to subjec-
tively illustrate the focus of model’s each part, our method tends to localize the concept neurons
straightaway. More examples can be found in Appendix D.3.

Reference

Nile crocodile

Sim: 0.194 Sim: 0.144

Sim: 0.501 Sim: 0.448 Sim: 0.205 Sim: 0.209

Sim: 0.623 Sim:0.558 Sim: 0.178 Sim: 0.188

Komodo lizard

quail

Yorkshire terrier

Top Similarity

Top Similarity

Top Similarity

Sim: 0.594 Sim: 0.372

alligator lizard

hornbill drake

Norwich terrier Irish wolfhound

Bottom
Similarity

Bottom
Similarity

Bottom
Similarity

Kakatoe galerita mileometer

smoothing iron St Bernard

American robin fireguard

Figure 5: Examples of category similarity analysis. Using ViT-B-16 as target model, we randomly
select three categories and calculate the similarity with others using the neuron utilization matrices
and sample the top 5% and bottom 5% similar items. Through visualization we can see that cate-
gories with high (low) neuron path similarity tend to be also high (low) in semantic similarity.

4.4 MULTI-NEURON MODEL PRUNING

In this section, we explore potential applications of our neuron path method in model compression.
Drawing inspiration from the Mixture-of-Depths approach (Raposo et al., 2024), we hypothesize that
neurons in Vision Transformer models may exhibit redundancy. We propose that by retaining only
the most significant neuron paths, the model can sustain comparable performance, even when other
neurons are randomly masked. To test this, we designed the following experiment. For a selected
model, we retain the top t ∈ {1, 5, 10, 30, 50} most influential neurons per layer within the neuron

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

paths discovered by our Neuron Path method. Following the statistical procedure outlined in Section
4.3, we identified neuron paths for each category using the 80% of the image data, and transfer the
results and conduct the pruning experiment on the rest 20% image data, establishing a generalization
setting. During the pruning phase, we randomly zero out p ∈ {10%, 30%, 50%, 100%} of the neu-
rons, excluding the selected ones, to measure the effect on classification accuracy. The experimental
results are presented in Figure 6, with experiment details in Appendix E.

Finding 5: Neurons within Vision Transformer models are largely redundant, with only a
sparse subset significantly impacting model performance. Our results in Figure 6 indicate that
by retaining the critical neurons identified through our method, the model’s performance remains
robust, even when a significant percentage of other neurons are zeroed out. This implies that aside
from a few key neurons, most neurons are either redundant or may even negatively affect the model’s
performance. Moreover, the results show that the number of important neurons is limited; the top
five neurons deliver the best performance during pruning, while increasing the number of retained
neurons leads to a decline in performance. This experiment also demonstrates the strong general-
ization ability of our approach. Also combining the results of important neuron value intervention
in Section 4.2, we can conclude that our method can locate the most influential neurons conveying
critical information flows across layers within the model.

top1 top5 top10 top30 top50
65%

66%

67%

68%

69%

70%

Vi
T-

b1
6

m
ea

n
ac

cu
ra

cy

Retain neurons

Pruning 10% other neurons.
baseline

top1 top5 top10 top30 top50
65%

66%

67%

68%

69%

70%

Retain neurons

Pruning 30% other neurons.
baseline

top1 top5 top10 top30 top50
65%

66%

67%

68%

69%

70%

Retain neurons

Pruning 50% other neurons.
baseline

top1 top5 top10 top30 top50
65%

66%

67%

68%

69%

70%

Retain neurons

Pruning 100% other neurons.
baseline

top1 top5 top10 top30 top50
46%

48%

50%

52%

54%

Vi
T-

b3
2

m
ea

n
ac

cu
ra

cy

Retain neurons

baseline

top1 top5 top10 top30 top50
46%

48%

50%

52%

54%

Retain neurons

baseline

top1 top5 top10 top30 top50
46%

48%

50%

52%

54%

Retain neurons

baseline

top1 top5 top10 top30 top50
46%

48%

50%

52%

54%

Retain neurons

baseline

Figure 6: Model performance after different proportions of neuron pruning using ViT-B-16 and ViT-
B-32. The dotted line represent the original performance of the used model, the y-axis represent the
mean accuracy of the edited model and the x-axis represent the number of neuron in each layer we
preserved. Baseline means the performance of the original model.

5 CONCLUSION AND FUTURE WORKS

In this study, we aim to unveil the intrinsic working mechanisms of vision Transformer models by
locating and analyzing the crucial neurons at each layer that have the most significant impact on
model inference. We introduce a novel approach called Neuron Path, guided by a newly proposed
joint neuron attribution measure, to progressively identify the neurons that play key roles in informa-
tion processing and transmission through model layers. Our series of analytical experiments reveal
not only the importance of the discovered neuron paths in model inference but also illustrate some
valuable insights into the internal workings of vision Transformers. Our work contributes to a more
nuanced understanding of how these models manage visual information, expecting to advance the
field of model explainability and facilitate future research on safely deploying vision models.

However, our method has certain limitations, which point to directions for future work. First, ex-
panding the analysis beyond neurons in the FFN components to encompass the entire Transformer
block could provide deeper insights into Vision Transformers. Second, extending our approach from
discriminative tasks to the generative paradigm of vision models offers a promising avenue for future
research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 6541–6549, 2017.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018
IEEE winter conference on applications of computer vision (WACV), pp. 839–847. IEEE, 2018.

Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
782–791, 2021.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
in pretrained transformers. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8493–8502, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.581. URL https://aclanthology.org/
2022.acl-long.581.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, and James Glass.
What is one grain of sand in the desert? analyzing individual neurons in deep nlp models. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 6309–6317, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Kedar Dhamdhere, Mukund Sundararajan, and Qiqi Yan. How important is a neuron. In Interna-
tional Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=SylKoo0cKm.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and Yonatan Belinkov. Analyzing individual neu-
rons in pre-trained language models. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu
(eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 4865–4880, Online, November 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-main.395. URL https://aclanthology.org/2020.
emnlp-main.395.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing the hidden layers
of deep networks. In Proceedings of the International Conference on Machine Learning (ICML),
2009.

Yimin Fan, Fahim Dalvi, Nadir Durrani, and Hassan Sajjad. Evaluating neuron interpretation meth-
ods of nlp models. Advances in Neural Information Processing Systems, 36, 2024.

Alex Foote, Neel Nanda, Esben Kran, Ioannis Konstas, Shay Cohen, and Fazl Barez. Neuron to
graph: Interpreting language model neurons at scale. arXiv preprint arXiv:2305.19911, 2023.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott

11

https://aclanthology.org/2022.acl-long.581
https://aclanthology.org/2022.acl-long.581
https://openreview.net/forum?id=SylKoo0cKm
https://openreview.net/forum?id=SylKoo0cKm
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://aclanthology.org/2020.emnlp-main.395
https://aclanthology.org/2020.emnlp-main.395

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
https://aclanthology.org/2021.emnlp-main.446.

Amin Ghiasi, Hamid Kazemi, Eitan Borgnia, Steven Reich, Manli Shu, Micah Goldblum, An-
drew Gordon Wilson, and Tom Goldstein. What do vision transformers learn? a visual explo-
ration. arXiv preprint arXiv:2212.06727, 2022.

Amirata Ghorbani and James Y Zou. Neuron shapley: Discovering the responsible neurons. Ad-
vances in neural information processing systems, 33:5922–5932, 2020.

Leon Guertler, M Ganesh Kumar, Anh Tuan Luu, and Cheston Tan. Tellme what you see: Using
llms to explain neurons in vision models. 2023.

Mohit Gupta, Ashley C Ireland, and Bruno Bordoni. Neuroanatomy, visual pathway. 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba, and Jacob
Andreas. Natural language descriptions of deep visual features. In International Conference on
Learning Representations, 2021.

Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and Christopher Potts. Rigor-
ously assessing natural language explanations of neurons. In Yonatan Belinkov, Sophie Hao,
Jaap Jumelet, Najoung Kim, Arya McCarthy, and Hosein Mohebbi (eds.), Proceedings of the 6th
BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pp. 317–331,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
blackboxnlp-1.24. URL https://aclanthology.org/2023.blackboxnlp-1.24.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078, 2015.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning, pp. 2668–2677. PMLR, 2018.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Yongchan Kwon and James Y Zou. Weightedshap: analyzing and improving shapley based feature
attributions. Advances in Neural Information Processing Systems, 35:34363–34376, 2022.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. Visualizing and understanding neural models
in NLP. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.), Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 681–691, San Diego, California, June 2016. Association for
Computational Linguistics. doi: 10.18653/v1/N16-1082. URL https://aclanthology.
org/N16-1082.

Kaiji Lu, Piotr Mardziel, Klas Leino, Matt Fredrikson, and Anupam Datta. Influence paths for
characterizing subject-verb number agreement in LSTM language models. In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp. 4748–4757, Online, July 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.430. URL https:
//aclanthology.org/2020.acl-main.430.

12

https://aclanthology.org/2021.emnlp-main.446
https://aclanthology.org/2023.blackboxnlp-1.24
https://aclanthology.org/N16-1082
https://aclanthology.org/N16-1082
https://aclanthology.org/2020.acl-main.430
https://aclanthology.org/2020.acl-main.430

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kaiji Lu, Zifan Wang, Piotr Mardziel, and Anupam Datta. Influence patterns for explaining infor-
mation flow in bert. Advances in Neural Information Processing Systems, 34:4461–4474, 2021.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. In International Conference on Learning Representations, 2021.

Muhammad Muzammal Naseer, Kanchana Ranasinghe, Salman H Khan, Munawar Hayat, Fahad
Shahbaz Khan, and Ming-Hsuan Yang. Intriguing properties of vision transformers. Advances in
Neural Information Processing Systems, 34:23296–23308, 2021.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Steerable search for interpretable machine learning.
Nature Communications, 7:12216, 2016.

Tuomas Oikarinen and Tsui-Wei Weng. CLIP-dissect: Automatic description of neuron representa-
tions in deep vision networks. In The Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?id=iPWiwWHc1V.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learn-
ing robust visual features without supervision. Transactions on Machine Learning Research,
2023.

Konstantinos Panousis and Sotirios Chatzis. Discover: Making vision networks interpretable via
competition and dissection. Advances in Neural Information Processing Systems, 36, 2024.

Sayak Paul and Pin-Yu Chen. Vision transformers are robust learners. In Proceedings of the AAAI
conference on Artificial Intelligence, volume 36, pp. 2071–2081, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
guage models. arXiv preprint arXiv:2404.02258, 2024.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, and Dongsheng Li. Reinforcement learning en-
hanced explainer for graph neural networks. Advances in Neural Information Processing Systems,
34:22523–22533, 2021.

Daniel Smilkov, Sam Greydanus, Jonathon J. Shlens, et al. Smoothgrad: Removing noise by adding
noise. In Proceedings of the International Conference on Machine Learning (ICML), 2017.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jesse Vig. A multiscale visualization of attention in the transformer model. In Marta R. Costa-
jussà and Enrique Alfonseca (eds.), Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics: System Demonstrations, pp. 37–42, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-3007. URL https:
//aclanthology.org/P19-3007.

13

https://openreview.net/forum?id=iPWiwWHc1V
https://aclanthology.org/P19-3007
https://aclanthology.org/P19-3007

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In International conference on machine learning, pp. 12241–
12252. PMLR, 2021.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part I 13, pp. 818–833. Springer, 2014.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2921–2929, 2016.

Roland S Zimmermann, Thomas Klein, and Wieland Brendel. Scale alone does not improve mech-
anistic interpretability in vision models. Advances in Neural Information Processing Systems, 36,
2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A LAYER-PROGRESSIVE NEURON LOCATING ALGORITHM ANALYSIS

Here is the estimation of the computing complexity of our proposed searching algorithm. We firstly
define some notations of the model:

• L: Number of model layers
• n: Number of neuron in each layer
• m: Sampling step
• d: Feature dimension
• T : Transformer token number

In each layer, we will firstly iterate each neuron, whose complexity is O(n), then for the calculation
of JAS as Definition 1, the complexity of forward pass is O(T · d2). And for backward propagation,
the complexity is also O(T · d2). Since we have m sampling steps and n neurons, the whole
complexity is O(m ·n ·T ·d2), and for the addition operation, the complexity is O(m ·n). Therefore,
for one layer, the computing complexity is

O(N) +O(m · n · T · d2) +O(m · n) ≈ O(m · n · T · d2).

And for L layers, the whole complexity is

O(L ·m · n · T · d2).

In the implementation, we can parallelly compute the integrated gradient, the detail of hardware and
run time is shown in Appendix C.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B PRELIMINARY EXPERIMENT METHOD

Given a pretrained model F with sample input x, we can calculate the attribution score for the
i-th neuron in the l-th layer wl

i, which is called Knowledge Attribution (Dai et al., 2022), by the
following formula

Attr(wl
i) = wl

i

∫ 1

α=0

∂Fx(αw
l
i)

∂wl
i

dα (5)

where wl
i is the original value of the i-th neuron in layer l. For the sake of easy calculation, we use

the Riemann approximation instead

Ãttr(wl
i) =

wl
i

m

m∑
k=1

∂Fx(
k
mwl

i)

∂wl
i

, (6)

where m stands for the sampling step, and for this experiment, we set m = 20. For each sample
input, we can compute the attribution of each neuron and select the 5 neurons with the largest
attribution as the significant neurons for that sample.

C QUANTITATIVE EXPERIMENT DETAILS

All the experiments are run on NVIDIA A40 GPUs with batch size equals to 10 and sampling step
m equals to 20, using ImageNet1k validation set. The estimated time for an experiment is about
10-20 hours based on the size of target model.

C.1 TARGET MODEL SETTING DETAILS

ViT-B-16 stand for containing 12 Transformer blocks with patch size equals to 16; ViT-B-32 stand
for containing 12 Transformer blocks with patch size equals to 32; ViT-L-32 stand for containing 24
Transformer blocks with patch size equals to 32 and MAE-B-16 stand for containing 12 Transformer
blocks with patch size equals to 16. For ViT-B-16, ViT-B-32, MAE-B-16, their hidden sizes are all
768 and FFN inner sizes are all 3072, which stands for 3072 different neurons per layer; and for ViT-
L-32, its hidden size is 1024 and FFN inner size is 4096, which stands for 4096 different neurons
per layer.

C.2 ACTIVATION

The activation method represents a path sampling technique that locates the neuron with the largest
original activation value in each layer. The key idea is to trace the most activated neurons across
layers, assuming that the most significant information flow is through these highly activated neurons.
To find the Neuron Path Px = {w1, w2, ..., wL} in Definition 2, for an input sample x, we first
initialize the path Px as an empty set and then start a layer-wise neuron selection. For each layer l
from FFN of vision Transformer model, we compute the original values for all neurons in the layer,
which is denoted as

Al = {wl
i}, i ∈ {1, 2, . . . , n} , (7)

where wl
i is the original value of the i-th neuron in layer l and n is the number of neurons per layer.

To identify the neuron in each layer, we pick the neuron with the largest activation, and add this to
the path and finally we obtain

Px = {wl|wl = argmax
w

(Al)}, l ∈ {1, 2, . . . , L} . (8)

After iterating through all layers, the path contains the most activated neurons from each layer,
representing the route with the highest neuron activation. The resulting path highlights the neurons
with the highest activation at each layer, suggesting a direct route of significant information flow
through the network.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.3 INFLUENCE PATTERN

The Influence Pattern method, based on (Lu et al., 2021), utilizes the input to build path integrals
and identifies the neuron with the largest integrated gradient in each layer. This method focuses on
the influence of input features on neuron activations, tracing the path that maximizes the integrated
gradient layer by layer. Their core algorithm is greedy search with key metric is Pattern Influence.
With a target model F with L layers, we present

I(x,Px) =

∫ 1

0

L∏
l=1

∂wl(x′ + α(x− x′))

∂wl−1(x′ + α(x− x′))
dα (9)

where x′ is the all zero base input, wl(·) is the activation value of selected neuron of the l-th layer
with respect to the input, Px is the path containing the neurons across all the layers. With the
definition above we can now form the greedy search-based algorithm as follows.

Algorithm 2 Greedy Search-Based Influence Pattern Algorithm

Input: Model F with L layers, input sample x
Output: neuron path P
Initialization: P = ∅, l = 1
while l ≤ L do
W is the set of neurons in layer l of F ; Score = 0, p = None
for w ∈ W do

if Score < Ĩ(x,P ∪ {w}) then
Score = Ĩ(x,P ∪ {w}); p = w

P = P ∪ {p}; l = l + 1

After iterating all the layers in model F , we will have a neuron path sampled based on Influence
Pattern.

C.4 PROBABILITY DEVIATION

Suppose we have a model F : Rd → R, a neuron path Px = {w1, w2, ..., wL} where wl, l ∈
{1, 2, ..., L} stands for the selected neuron in layer l. Given a input pair < xi, yi >, we can have the
output probability as

Pxi
= Fxi

(ŵ1, ŵ2, ..., ŵL) = p(yi|xi, w
1 = ŵ1, w2 = ŵ2, ..., wN = ŵL) , (10)

We conduct manipulation experiments by manipulating the intermediate neurons within the neuron
path, resulting in manipulated intermediate neurons w̃l. The output probability with the manipulated
intermediate neurons and the input sample xi are then

P̃xi
= Fxi

(w̃1, w̃2, . . . , w̃L) (11)

Then, the Probability Deviation with the input < xi, yi > pair ∆Pxi
/Pxi

is defined as a ratio

∆Pxi

Pxi

=
P̃xi − Pxi

Pxi

(12)

The average Probability Deviation of the dataset is defined as the average of the individual proba-
bility deviations

∆Paverage =
1

N

N∑
i=1

∆Pxi

Pxi

(13)

The median Probability Deviation of the dataset is defined as the median of the individual probability
deviations

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

∆Pmedian = median
{
∆Pxi

Pxi

| ⟨xi, yi⟩
}

(14)

C.5 ACCURACY DEVIATION

Suppose we have a model F : Rd → R, a neuron path Px = {w1, w2, ..., wL} where wl, l ∈
{1, 2, ..., L} stands for the neuron in layer l. Given a dataset D represented by < xi, yi > pairs,
where xi denotes the input of the i-th sample and yi represents its target label. The accuracy,
denoted by Acc, is defined as

Acc =
1

|D|

|D|∑
i=1

I(ŷi = yi) (15)

where ŷi is defined as

ŷi = argmax(Pxi
) (16)

In this context, Pxi represents the output probability of the model. After manipulating the interme-
diate neurons within the neuron path as demonstrated in Appendix C.4, the output probability with
the input sample xi become P̃xi , and ỹi changes to

ỹi = argmax(P̃xi
) (17)

The accuracy also changes to

Ãcc =
1

|D|

|D|∑
i=1

I(ỹi = yi) (18)

Then, the Accuracy Deviation ∆Acc is defined as

∆Acc = Ãcc − Acc (19)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D MORE EXAMPLES AND IMPLEMENTATION DETAILS ABOUT CLASS-LEVEL
ANALYSIS

D.1 MORE FREQUENCY PLOT VISUALIZATIONS

In this section, we show more examples about the statistic visualization for four different models.
In figures some violin plot may be shorter than others, this is due to the fact that, constrained by the
limited number of image samples within a category, the length of the violin plot is shortened if the
neurons at the ends of index are never selected in the neuron paths.

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: spiny lobster

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: tick

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: vulture

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: sulphur butterfly

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: hen

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: keeshond

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: fountain

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: wreck

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: sarong

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: indigo bunting

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: Gila monster

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: bluetick

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: beagle

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: marimba

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: ballplayer

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: washer

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: Indian cobra

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: French bulldog

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: slug

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: barracouta

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: mask

Figure 7: More Path Statistic Visualization for ViT-B-16

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: bonnet

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: limpkin

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: weasel

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: rock python

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: lotion

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: barrel

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: goldfish

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: agama

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: racer

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: neck brace

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: daisy

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: slug

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: dalmatian

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: barometer

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: pretzel

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: African grey

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: American lobster

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: Old English sheepdog

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: pretzel

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: leatherback turtle

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: triumphal arch

Figure 8: More Path Statistic Visualization for ViT-B-32

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: cricket

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: fox squirrel

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: lionfish

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: paintbrush

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: submarine

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: Old English sheepdog

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: green lizard

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: Boston bull

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: ladybug

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: Arctic fox

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: spider monkey

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: wallaby

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: digital watch

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: liner

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: damselfly

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: spindle

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: Pekinese

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: briard

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: rock beauty

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: tree frog

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Layer

Ne
ur

on
 In

de
x

Class: triumphal arch

Figure 9: More Path Statistic Visualization for ViT-L-32

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: Angora

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: disk brake

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: terrapin

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: sea snake

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: loupe

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: baseball

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: stingray

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: cairn

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: hartebeest

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: necklace

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: ballplayer

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: Dandie Dinmont

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: collie

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: dial telephone

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: bassoon

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: partridge

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: Japanese spaniel

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: Sussex spaniel

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: bee eater

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: hog

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Ne
ur

on
 In

de
x

Class: tricycle

Figure 10: More Path Statistic Visualization for MAE-B-16

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.2 NEURON UTILIZATION MATRIX

For a category c ∈ C, it will contain I different images, and in our setting, we use the Ima-
geNet1k(Deng et al., 2009) validation set, so I = 50, |C| = 1000. Each image will have its
Neuron Path Pi, so that we can have a matrix f ∈ RL×n to count the number of times each neuron
index occurs in each layer, where L represents the number of layers and n stands for the number of
neuron in each layer. By dividing the total number of neuron selections in each layer, we can define
a neuron utilization matrix corresponding to category c as

Mc ∈ RL×n , (20)

and for every pairs of neuron utilization matrix Mci , fcj , we can calculate their cosine similarity s
through following approaches.

si,j =
Mci ·Mcj

||Mci || × ||Mcj ||
, (21)

since we will have |C|×|C| pairs, we can have a similarity matrix S ∈ R|C|×|C|, where Si,j represents
the cosine similarity between ci and cj , that is si,j

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.3 MORE SEMANTIC SIMILARITY VISUALIZATION

Sim: 0.440 Sim: 0.448 Sim: 0.155 Sim: 0.148

Goldfinch

Top Similarity

Water Ouzel Indigo Bunting

Bottom
Similarity

Tabby Tiger cat

Reference

Beach Wagon

Sim: 0.212 Sim: 0.137

Convertible

Top Similarity

Sim: 0.559 Sim: 0.532

Pelican

Bottom
Similarity

St Bernard Staffordshire

Sim: 0.456 Sim:0.387 Sim: 0.156 Sim: 0.129

Goose

Top Similarity

Black Swan Red-breasted Merganser

Bottom
Similarity

Microwave Oven Milometer

Sim: 0.514 Sim: 0.499 Sim: 0.158 Sim: 0.150

Shih-Tzh

Top Similarity

Retriever Chow

Bottom
Similarity

American robin Letter Opener

Hen

Sim: 0.170 Sim: 0.132

Ostrich

Top Similarity

Sim: 0.584 Sim: 0.459

Pelican

Bottom
Similarity

St Bernard Staffordshire

Sim: 0.438 Sim:0.372 Sim: 0.161 Sim: 0.127

Vulture

Top Similarity

Bald eagle Albatross

Bottom
Similarity

Cocker Spaniel Staffordshire

Sim: 0.494 Sim: 0.460 Sim: 0.194 Sim: 0.209

Hoopskirt

Top Similarity

Maillot Cloak

Bottom
Similarity

Horizontal Bar Cocker Spaniel

Lemon

Sim: 0.190 Sim: 0.139

Granny Smith

Top Similarity

Sim: 0.650 Sim: 0.591

Spaghetti

Bottom
Similarity

Bakery Odometer

Figure 11: More examples of category similarity for ViT-B-16

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Reference

Siamese Cat

Sim: 0.352 Sim: 0.272

Sim: 0.739 Sim: 0.547 Sim: 0.303 Sim: 0.295

Sim: 0.723 Sim:0.624 Sim: 0.346 Sim: 0.307

Egyptian Cat

Indigo bunting

Italian
Greyhound

Top Similarity

Top Similarity

Top Similarity

Sim: 0.632 Sim: 0.617

Snow Leopard

Chickadee Oystercatcher

Border Terrier Golden Retriever

Bottom
Similarity

Bottom
Similarity

Bottom
Similarity

Bell Pepper Conch

Fountain Chain Saw

Oxcard Scoreboard

Lynx

Sim: 0.299 Sim: 0.289

Sim: 0.521 Sim: 0.511 Sim: 0.286 Sim: 0.284

Sim: 0.562 Sim:0.549 Sim: 0.307 Sim: 0.255

Meerkat

Lion

Kerry Blue
Terrier

Top Similarity

Top Similarity

Top Similarity

Sim: 0.515 Sim: 0.512

Howler Monkey

Cougar Leopard

Norfolk Terrier Dandie Demont

Bottom
Similarity

Bottom
Similarity

Bottom
Similarity

Drop Fountain

Wing Maze

Cliff Fire Screen

Convertible

Sim: 0.335 Sim: 0.319

Sim: 0.722 Sim:0.577 Sim: 0.323 Sim: 0.296
Moving Van

Norwich Terrier

Top Similarity

Top Similarity

Sim: 0.636 Sim: 0.628

Racer

Yorkshire Terrier Borzoi

Bottom
Similarity

Bottom
Similarity

Conch Space Shuttle

Brambling Space Shuttle

Figure 12: More examples of category similarity for ViT-B-32

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Sim: 0.314 Sim: 0.306 Sim: 0.144 Sim: 0.140

Ostrich

Top Similarity

Flamingo Red-backed Sandpiper

Bottom
Similarity

Cardoon Daisy

Reference

Redshank

Sim: 0.175 Sim: 0.164

Cock

Top Similarity

Sim: 0.365 Sim: 0.355

Hen

Bottom
Similarity

Tape Player Yellow Lady’s Slipper

Sim: 0.333 Sim:0.280 Sim: 0.147 Sim: 0.137

Goldfinch

Top Similarity

Chickadee Indigo bunting

Bottom
Similarity

Water jug Refrigerator

Sim: 0.408 Sim: 0.371 Sim: 0.160 Sim: 0.159

Bluetick

Top Similarity

Basset Pekinese

Bottom
Similarity

King Snake Broccoli

Toy Terrier

Sim: 0.183 Sim: 0.156

Shih-Tzu

Top Similarity

Sim: 0.583 Sim: 0.524

Rhodesian Ridgeback

Bottom
Similarity

Jean Scuba Diver

Sim: 0.409 Sim:0.389 Sim: 0.168 Sim: 0.160

Curly-coated
Retriever

Top Similarity

white terrier black-and-tan coonhound

Bottom
Similarity

mashed potato Bakery

Sim: 0.447 Sim: 0.422 Sim: 0.198 Sim: 0.179

Vine Snake

Top Similarity

Horned Viper Diamondback

Bottom
Similarity

Bathtub Ski Mask

Harvestman

Sim: 0.150 Sim: 0.125

Scorpion

Top Similarity

Sim: 0.484 Sim: 0.473

Black Window

Bottom
Similarity

Motor Scooter Lakeside

Figure 13: More examples of category similarity for ViT-L-32

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

ReferenceSim: 0.294 Sim: 0.257 Sim: 0.074 Sim: 0.074

Apron

Top Similarity

bonnet velvet

Bottom
Similarity

binoculars paddlewheel
Sim: 0.160 Sim:0.130 Sim: 0.041 Sim: 0.037

coffee mug

Top Similarity

water bottle soup bowl

Bottom
Similarity

banjo sweatshirt

cauliflower

Sim: 0.054 Sim: 0.032

head cabbage

Top Similarity

Sim: 0.216 Sim: 0.167

broccoli

Bottom
Similarity

castle refrigerator
Sim: 0.157 Sim: 0.111 Sim: 0.039 Sim: 0.033

mashed
potato

Top Similarity

mushroom alligator lizard

Bottom
Similarity

banjo fire screen
Sim: 0.108 Sim:0.106 Sim: 0.022 Sim: 0.022

scuba diver

Top Similarity

trimaran boat paddle

Bottom
Similarity

oxcart schipperke

cliff dwelling

Sim: 0.037 Sim: 0.035

valley

Top Similarity

Sim: 0.120 Sim: 0.114

cliff

Bottom
Similarity

cannon acorn squash
Sim: 0.143 Sim: 0.130 Sim: 0.053 Sim: 0.049

whiskey jug

Top Similarity

soup bowl water bottle

Bottom
Similarity

scoreboard snowplow
Sim: 0.095 Sim:0.093 Sim: 0.028 Sim: 0.022

Windsor tie

Top Similarity

jersey Christmas stocking

Bottom
Similarity

conch brambling

Figure 14: More examples of category similarity for MAE-B-16

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E IMPLEMENTATION DETAILS OF MODEL PRUNING

E.1 TOP T NEURONS PRESERVING ALGORITHM

The calculation of accuracy change is using the same implementation of Appendix C.5.

For the choice of top t of neurons, we use the same definition 1 of JAS and instead of only keeping
the top score neuron path, we keep the paths with top x scores. The detailed procedure of our
algorithm is outlined in Algorithm 3.

Algorithm 3 Layer-progressive Neuron Locating Algorithm Maintaining Top t Neurons

Input: Model F with L layers, input sample x, top number t
Output: neuron path Pt

Initialization: Pt = ∅, l = 1
while l ≤ L do
W is the set of neurons in layer l of F ; Score = ∅, p = None
for w ∈ W do

Score = TopKK=t(J̃AS(Pt, w))
p = arg(Score)

Pt = Pt ∪ {p}; l = l + 1

E.2 PROBING AND TEST SET SPLITTING IN PRUNING EXPERIMENT

To evaluate the performance of the pruned models, we utilize the validation set, which consists of
50 images per class. For each class, we randomly select 80% of it, which is 40 images, to identify
the top t neurons in each layer using the proposed Neuron Path methods. The process is as follows:
for each of these 40 images, we apply the neuron locating algorithm described in Algorithm 3 to
compute the top t neurons per image. Once the top neurons for each image are identified, we
aggregate the results across the 40 images, yielding a set of 40 × t neurons for each class in each
layer. Next, we calculate the frequency of each neuron in this aggregated set to determine the most
frequently activated neuron paths across the 40 images, same way described in Section 4.3. The
neurons that appear most often are considered to be the most important for the specific class. From
this frequency distribution, we select the top t neurons with the highest frequency in each layer as
the representative top neurons for the class.

After determining the top neuron paths for each class, we perform the pruning operation using
the remaining 20% of the dataset, which is 10 images, as inputs. For these remaining images, the
pruning process is carried out by deactivating a percentage of neurons that are not part of the selected
top t neurons in each layer.

This validation approach ensures that the pruning operation is tailored to each class, with the most
relevant neurons retained based on their frequency of occurrence in the validation subset. By testing
on the remaining images, we assess the effectiveness of this pruning strategy in preserving the
model’s classification accuracy while significantly reducing its complexity.

28

	Introduction
	Related Work
	Vision Transformer Models
	 Explainability Methods in vision Models

	Neuron Path
	Preliminary Study
	Joint Attribution Score
	Locating Influential Neuron Path

	Experiments
	Implementation Details
	Quantitative Comparison
	Class-level Analysis
	Multi-neuron Model Pruning

	Conclusion and Future Works
	Layer-progressive Neuron Locating Algorithm Analysis
	Preliminary Experiment Method
	Quantitative Experiment Details
	Target Model Setting Details
	Activation
	Influence Pattern
	Probability Deviation
	Accuracy Deviation

	More Examples and Implementation Details about Class-level Analysis
	More Frequency Plot Visualizations
	Neuron Utilization Matrix
	More Semantic Similarity Visualization

	Implementation details of model pruning
	Top t neurons preserving algorithm
	Probing and Test set splitting in Pruning Experiment

