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ABSTRACT

Person re-identification (Re-ID) is to match persons captured by non-overlapping
cameras. Due to the discrepancies between cameras caused by illumination,
background, or viewpoint, the underlying difficulty for Re-ID is the camera bias
problem, which leads to the large gap of within-identity features from different
cameras. With limited cross-camera annotated data, Re-ID models tend to learn
camera-related features, instead of identity-related features. Consequently, Re-ID
models suffer from poor transfer ability from seen domains to unseen domains.
In this paper, we investigate the camera bias problem in supervised learning, un-
supervised learning, and their variants. In particular, we propose a novel Camera
Bias Regularization (CBR) term to reduce the feature distribution gap between
cameras by enlarging the intra-camera distance and reducing the inter-camera dis-
tance simultaneously. Extensive experiments on person Re-ID tasks validate the
effectiveness and universality of the proposed CBR.

1 INTRODUCTION

Person re-identification (Re-ID) is to match persons across non-overlapping cameras. It has been
an active research field due to its potential in the application of smart cities. Re-ID is performed
in different settings, including supervised learning (Zhong et al. (2018); Sun et al. (2018); Wang
et al. (2018); Luo et al. (2019); Zhou et al. (2019)) and unsupervised learning (Fu et al. (2019);
Wang & Zhang (2020); Ge et al. (2020a;c); Zhai et al. (2020)), which have witnessed significant
progress in recent years. However, one of the main obstacles that limit the performance of Re-ID
models and prevent them from wide applications is the camera bias problem (Yu et al. (2017); Zhong
et al. (2018); Wu et al. (2019); Zhuang et al. (2020); Yang et al. (2021)). It comes from the large
discrepancies between different cameras. As the illumination, background and viewpoint vary from
camera to camera, it easily leads to the mismatch of feature distributions between cameras. As a
result, it inevitably forces Re-ID models to learn camera-related features rather than identity-related
features. In this way, many Re-ID tasks suffer from the problem, as the similarity measurement
between persons may be inaccurate.

To alleviate the camera bias problem, it requires a large amount of annotated cross-camera data for
supervised learning. However, the huge amount of annotated data does not lead to a model that gen-
eralizes well to an unseen domain. For example, a sharp decline of rank-1 accuracy from 94.1% to
26.7% is observed in Luo et al. (2019) when applying a well-trained model on Market-1501 (Zheng
et al. (2015)) to DukeMTMC (Ristani et al. (2016)). The problem will become worse when there
is no cross-camera data. Zhang et al. (2020) has shown that when each identity only appears in
one camera, a serious camera bias problem will occur. Without constraints, the learned features are
strongly related to cameras instead of person identities. Consequently, it shows poor performance
even in the same domain. For unsupervised learning, the similarity measurement between persons is
crucial. However, due to the camera bias problem, the measurement is usually inaccurate. Figure 1a
shows the feature visualization of a subset of MSMT17 (Wei et al. (2018)) using T-SNE (van der
Maaten & Hinton (2008)). It can be seen that intra-camera instances tend to have closer distances
than inter-camera instances. In the iterative clustering-and-finetuning state-of-the-art unsupervised
learning methods (Ge et al. (2020a;c)), errors of the clustering results based on the inaccurate simi-
larity measurement will be accumulated, leading to limited performances (Xuan & Zhang (2021)).
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Figure 1: Illustration of the camera bias problem and our proposed camera bias regularization. (a):
The positive pair (A) and (C) are far away from each other, while the negative pair (A) and (C)
are close as they share the same background. (b): The gap between intra-camera and inter-camera
distance distribution is reduced by the proposed CBR.

In this paper, we propose a Camera Bias Regularization (CBR) term to close the gap between
intra-camera and inter-camera distance distribution. It regularizes the conventional training of Re-
ID models by properly enlarging the intra-camera distance and reducing the inter-camera distance
simultaneously. By default, the distance distribution discussed in this paper is from within-identity
(for supervised learning) or within-cluster (for unsupervised learning). So, for simplicity, we will
omit within-identity and within-cluster in rest of the paper. It should be noted that the proposed
CBR works within each identity, while the conventional Re-ID loss, such as identity loss and triplet
loss, mainly works between different identities to distinguish one from others. From the perspective
of the conventional Re-ID loss, both the intra-camera and inter-camera distance will be smaller
during training, but the gap between them is ignored. Figure 1b shows an example of the distance
distribution of intra-camera and inter-camera pairs. By enlarging the farthest intra-camera distance
(blue circle) and reducing the nearest inter-camera distance (green circle), the two distributions will
get closer to each other. Consequently, the camera bias problem will be alleviated. For supervised
learning, the proposed CBR will enhance the generalization ability to unseen instances or domains.
The unsupervised learning can also benefit from more accurate similarity measurement.

To conclude, our contributions can be summarized as following:

• We investigate the camera bias problem in person Re-ID tasks: by aligning the distribution
between cameras, the generalization and transfer ability of Re-ID models can be strength-
ened, thus the accuracy of similarity measurement is improved.

• We propose a Camera Bias Regularization (CBR) term to reduce the gap between intra-
camera and inter-camera distance distribution. Additionally, a Cross-Camera (CC) cluster-
ing algorithm is also designed to cooperate with CBR for unsupervised learning tasks.

• Extensive experiments on person Re-ID tasks, including fully supervised learning, direct
transfer, purely unsupervised learning and unsupervised domain adaptation, validate the
effectiveness and universality of our method.

2 RELATED WORK

In this section, we mainly discuss existing works that aim to solve the camera bias problem. For a
comprehensive Re-ID survey, please refer to Ye et al. (2021). Yu et al. (2017) projects data from dif-
ferent cameras to a unified feature space, but it is necessary to learn an individual projection function
for each camera. Zhong et al. (2018) proposes to augment data in each camera with style-transferred
data from other cameras in supervised learning. Qi et al. (2019) adopts a generative adversarial net-
work to align feature distributions from different cameras in unsupervised learning. Wu et al. (2019)
globally aligns the intra-camera and inter-camera similarity distribution by penalizing the difference
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of mean and variance of the two distributions. In addition, it also requires a strong source-domain
model to preserve the intra-camera similarity. Zhuang et al. (2020) also designs a camera-specific
batch normalization layer to normalize data from each camera to a unified space, but it requires test
data to estimate the statistics of the layer. Yang et al. (2021) proposes to use meta-learning (Finn
et al. (2017)) to learn camera-invariant features for fast adaptation to unseen domains. For this pur-
pose, the training data is split according to their camera views to form the meta-train and meta-test.
Xuan & Zhang (2021) decomposes the similarity measurement into intra-camera and inter-camera
instances, and trains the model in a two-step manner. Differently, our proposed method regularizes
the conventional training of Re-ID models by enlarging the intra-camera distance and reducing the
inter-camera distance for each identity simultaneously. It is concise, effective and universal for Re-
ID tasks. Without modifications to the original training methods or backbone models, the proposed
CBR can be easily integrated into state-of-the-arts.

3 PROPOSED APPROACH

In this section, we first review the background of person Re-ID problem (section 3.1). Then we in-
troduce our proposed Camera Bias Regularization (CBR) term (section 3.2) which aims to alleviate
the camera bias problem for person Re-ID tasks. Finally, we illustrate the application of CBR in
supervised and unsupervised learning tasks.

3.1 PRELIMINARY

For a person dataset D = {(xi, yi)|Ni=1}, where xi and yi denote the i-th training samples and
its associated identity label, N is the number of training samples. A Re-ID model M is usually
composed of a feature extraction module F and an identity classifier C. For each sample xi, the
feature extraction module outputs its feature fi, which will be further used in both training and
inference, and the identity classifier outputs its predicted identity probability ŷi. Conventional Re-
ID methods usually apply identity loss and metric loss to learn person features:

Lreid = Lid(yi, ŷi) + Ltri(xi, x
n
i , x

p
i ) (1)

The identity loss is the cross-entropy loss. The metric loss is usually the hard mining triplet loss
(Hermans et al. (2017)), where xpi and xni are the hardest positive and negative samples for xi.

3.2 CAMERA BIAS REGULARIZATION FOR PERSON RE-ID

In this work, we propose a camera bias regularization term to alleviate the camera bias problem for
person Re-ID tasks. First, let xp,ci denotes the i-th instance of the person with identity label p and

camera label c. Then we define the nearest instance of xp,ci as xp,c
′

n that has the same identity label
p but a different camera label c

′
(c

′ 6= c). Similarly, we also define the farthest instance of xp,ci as
xp,cj (j 6= i) that has the same identity label and same camera label c.

xp,c
′

n = argmin
n=1...K,c′=1...C,n 6=i,c′ 6=c

d(F(xp,ci ),F(xp,c
′

n ))

xp,cj = argmax
j=1...K,j 6=i

d(F(xp,ci ),F(xp,cj ))
(2)

where K is the number of instances of person p, C is the number of cameras. It should be noted that
xp,ci , xp,cj and xp,c

′

n share the same identity label p. Then we define the Camera Bias Regularization
(CBR) term as following:

Rcbr =
1

N

N∑
i=1

log(1 + exp(d(F(xp,ci ),F(xp,c
′

n ))− d(F(xp,ci ),F(xp,cj )))) (3)

With CBR, the total loss function for person Re-ID tasks will be:

Lnew
reid = Lreid + λ ∗ Rcbr (4)
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Figure 2: The difference between conventional Re-ID loss and camera bias regularization.

Table 1: Comparison between different unsupervised Re-ID tasks.

Unsupervised Re-ID Tasks Training Data
Labeled Source Unlabeled Target

Direct Transfer (DT) " %

Purely Unsupervised Learning (PUL) % "

Unsupervised Domain Adaptation (UDA) " "

where λ is a hyper-parameter to trade off between conventional Re-ID loss Lreid and the camera
bias regularizationRcbr.

To further explain how the proposed CBR works, Figure 2 shows the difference between conven-
tional Re-ID loss and CBR. The Re-ID loss mainly works between different identities by pushing
them away from each other, but it neglects the within-identity distribution, which causes the camera
bias problem. The proposed CBR works in each identity to align the distribution of intra-camera
and inter-camera distance.

Notably, different from loss functions, the proposed CBR works as a regularization term. With-
out considering the Re-ID loss, CBR can be infinitely small by pushing the intra-camera distance
d(F(xp,ci ),F(xp,cj )) far away. But in this way, the distance distribution of positive pairs (person
images of the same identity) and negative pairs (person images of different identities) will severely
overlap, which further leads to the increase of the Re-ID loss function Lreid. So, similar to L1

and L2 regularization, the proposed CBR is beneficial to Re-ID tasks to some extent, but too much
emphasis on this term may be harmful, so the tradeoff between Lreid and Rcbr is required.

3.3 CBR FOR FULLY SUPERVISED LEARNING

As the groundtruth identity annotation is provided in Fully Supervised Learning (FSL), the overall
loss function for supervised Re-ID is the same as Equation 4.

3.4 CBR FOR UNSUPERVISED LEARNING

The unsupervised Re-ID tasks can be roughly divided into Direct Transfer (DT), Unsupervised
Domain Adaptation (UDA) and Purely Unsupervised Learning (PUL). The main difference between
them is the training data. The comparison are shown in Table 1. As there is only labeled source data
in DT, the loss function is also the same as that in FSL. In UDA and PUL, as the unlabeled target
data is available, currently the effective approach is the iterative clustering-and-finetuning pipeline,
which is adopted in most state-of-the-arts (Fu et al. (2019); Lin et al. (2019; 2020); Wang & Zhang
(2020); Zeng et al. (2020); Ge et al. (2020c;a)). The pseudo labels can be used as groundtruth
labels, so the loss function is also the same as that in FSL. Nevertheless, as pseudo labels may
not be perfect, the effect of CBR is a little different from that in FSL. Besides bridging the gap
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(a) Pair-wise distance distribution.
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(b) Intra-camera probability.
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(c) Inter-camera probability.

Figure 3: Pair-wise distance distribution from a clustering-and-finetuning based unsupervised Re-ID
learning method. The experiment is conducted on Market-1501 (Zheng et al. (2015)) dataset. The
method is based on the baseline proposed in (Ge et al. (2020a)).

between intra-camera and inter-camera distance, it also has the ability to resist noises of pseudo
labels. Within each cluster (or pseudo label), four types of pairs can be obtained by examining
their groundtruth identity labels and camera labels: intra-camera positive, intra-camera negative,
inter-camera positive and inter-camera negative. Figure 3a shows the distribution of them from
a clustering-and-finetuning baseline method. It can be found that: First, the positive and negative
distribution (including both intra-camera and inter-camera) overlap with each other. Second, the
distribution of intra-camera positive and inter-camera positive are not aligned. The mean distance
of intra-camera positive pairs is smaller than inter-camera positive pairs.

We also compare the distance distribution of positive and negative pairs of intra-camera and inter-
camera separately in Figure 3b and Figure 3c. For intra-camera, with the growth of distance, the
probability of negative pairs increases rapidly. For example, when the distance is larger than 0.8,
nearly all the intra-camera pairs are negative. According to Equation 3, the farthest intra-camera
distance d(F(xp,ci ),F(xp,cj )) will be pushed away. For all the intra-camera pairs in a cluster, if the
farthest distance is large enough, it is more likely to be a negative pair (as shown in Figure 3b). So it
is beneficial to push the pair away from each other. In the next clustering, they may not be grouped
together. In this way, the CBR resists the noises of pseudo labels. If the farthest distance is small,
it is more likely to be a positive pair (as shown in Figure 3b). The camera bias problem occurs
under this circumstance, so the CBR will work the same as in FSL to align the intra-/inter-camera
distribution. In a word, the proposed CBR can work properly whether the farthest intra-camera pair
is positive or negative. Similarly, as shown in Figure 3c, the nearest inter-camera pair is more likely
to be a positive pair, so it is beneficial to pull the distance d(F(xp,ci ),F(xp,c

′

n )) in Equation 3.

Cross-Camera Clustering An important prerequisite of CBR is that person images of the same la-
bel or pseudo label are required to come from at least two camera views. Otherwise, the inter-camera
instance xp,c

′

n in Equation 3 does not exist. For FSL, as each identity contains images captured from
different cameras, it naturally meets the condition. However, for unsupervised learning, the clus-
tering algorithm (such as DBSCAN (Ester et al. (1996))) cannot guarantee it. It is more likely to
cluster images from the same camera because of the large biases of features from different cam-
eras (as shown in Figure 1a). To further alleviate the camera bias problem and ensure that instances
in each cluster are at least from two cameras. We propose a DBSCAN-based Cross-Camera (CC)
clustering algorithm. It puts more emphasis on inter-camera pairs than intra-camera pairs. The pro-
posed CC is implemented by modifying ε parameter in DBSCAN. Originally, ε is the maximum
distance of two instances to be considered as the neighborhood. It is a pre-defined hyper-parameter
in DBSCAN, but it is dynamically adjusted in CC according to their camera views as:

εi,j =

{
ε, C(xi) 6= C(xj)

0, C(xi) = C(xj)
(5)

where C(x) returns camera for x. The intra-camera pairs will no longer be directly reachable,
because the minimum distance for two different instances is greater than εi,j = 0. Nevertheless,
they may be indirectly linked by the instance in another camera and finally be clustered into a group.
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Table 2: Comparison with state-of-the-arts on fully supervised setting.

Methods Market Duke MSMT
mAP Rank-1 mAP Rank-1 mAP Rank-1

CamStyle (Zhong et al. (2018)) 68.72 88.12 53.48 75.27 - -
PCB (Sun et al. (2018)) 77.40 92.30 66.10 81.70 - -
PCB+RPP (Sun et al. (2018)) 81.60 93.80 69.20 83.30 - -
MGN (Wang et al. (2018)) 86.90 95.70 78.40 88.70 52.10 76.90
OSNet (Zhou et al. (2019)) 84.90 94.80 73.50 88.60 52.90 78.70
CBN (Zhuang et al. (2020)) 77.30 91.30 67.30 82.50 42.90 72.80
BoT (Luo et al. (2019)) 85.70 94.10 75.90 86.20 - -
BoT (fast-reid) 86.30 94.27 76.52 86.27 51.15 74.70

BoT + CBR (ours) 87.44
(+1.14)

94.83
(+0.56)

77.89
(+1.37)

88.24
(+1.97)

53.43
(+2.28)

78.42
(+3.72)

4 EXPERIMENTS

4.1 SETTINGS

Datasets The proposed CBR is evaluated on three popular benchmark datasets: Market-
1501 (Zheng et al. (2015)), DukeMTMC-reID (Ristani et al. (2016)) and MSMT17 (Wei et al.
(2018)). The Market-1501 dataset consists of 32,668 images of 1,501 identities captured from 6
cameras, where 12,936 images of 751 identities are used for training and the remaining 19,732 im-
ages of 750 identities are for testing. DukeMTMC-reID contains 16,522 images of 702 identities for
training, and the remaining images of another 702 identities are for testing. All images are collected
from 8 cameras. MSMT17 is currently the largest Re-ID dataset, which contains 32,621 images
of 4,101 identities for training and about 100,000 images for testing. For simplicity, we will use
Market, Duke and MSMT to refer to the three datasets in the rest of the paper.

Implementation Details For fully supervised learning and direct transfer, we implement CBR
based on fast-reid (He et al. (2020)). The training details are exactly the same as the commonly used
strong baseline BoT (Luo et al. (2019)). For unsupervised learning, including unsupervised domain
adaptation and purely unsupervised learning, the implementation is based on OpenUnReID (Ge
et al. (2020a;c)). ResNet-50 (He et al. (2016)) is adopted as the backbone for all tasks. For all the
compared methods, we do not make modifications to the original implementations. Please refer to
the two repositories and corresponding papers for more details.

Evaluation Protocol Mean average precision (mAP) and rank-1 accuracy are adopted to evalu-
ate the performance of the proposed CBR. No post-processing technique is adopted, such as re-
ranking (Zhong et al. (2017)) or query expansion (Chum et al. (2007)).

4.2 EVALUATION ON RE-ID TASKS

The proposed camera bias regularization is a general approach to alleviate the camera bias prob-
lem for person Re-ID tasks. In this section, we conduct extensive experiments to validate CBR in
Fully Supervised Learning (FSL), Direct Transfer (DT), Purely Unsupervised Learning (PUL) and
Unsupervised Domain Adaptation (UDA) settings.

4.2.1 FULLY SUPERVISED LEARNING

The baseline method for fully supervised learning adopts the strong baseline (BoT) proposed in Luo
et al. (2019). The original loss function of BoT is cross-entropy loss and hard-mined triplet loss.
The loss function of BoT + CBR is the same as Equation 4.

Comparison with State-of-the-arts As shown in Table 2, the performance of BoT implementation
based on fast-reid is slightly better than the reported results in the paper. With the proposed CBR,
BoT+CBR can boost the performance on all three datasets, especially on the challenging dataset
MSMT: 2.28% mAP improvement and 3.72% rank-1 improvement compared with BoT (fast-reid).
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Figure 4: Experimental results of fully supervised learning on Market.

Table 3: Experimental results on the direct transfer setting. (The numbers in parentheses denote the
improvement over BoT(fast-reid). Random erasing is turned off due to its negative effect.)

Methods Duke-Market Market-Duke Market-MSMT Duke-MSMT
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

BoT(Paper) 25.50 54.30 25.70 41.40 - - - -
BoT(fast-reid) 24.43 52.46 24.40 41.29 4.90 14.31 6.03 18.84

BoT + CBR (ours) 24.87
(+0.44)

52.58
(+0.12)

26.11
(+1.71)

43.36
(+2.07)

5.26
(+0.36)

15.02
(+0.71)

6.63
(+0.60)

19.89
(+1.05)

Impact of data size Figure 4a shows the accuracy w.r.t data percentage. CBR shows significant
improvement over BoT when the amount of data is small. It also indicates that the conventional
training requires more cross-camera labeled data to alleviate the camera bias problem, while ours
needs less. Similar results can also be obtained on Duke and MSMT datasets in Appendix A.1.

Analysis of hyper-parameter λ Figure 4c shows the mAP and rank-1 on Market dataset by varying
λ from 1.0 to 10.0. The performance first improves with increasing λ (rank-1 improves but mAP
drops), then drops when λ is too large. Similar results can also be obtained on Duke and MSMT
datasets in Appendix A.2. In practice, when the dataset is complicated, especially in the variations
of cameras, λ can be set to a large value. Nevertheless, it is generally a good choice to set λ = 1.0.

Analysis of pair-wise distance distribution Figure 4b shows the comparison between pair-wise
distance distribution of BoT and BoT+CBR. The inter-camera distance distribution moves left when
applying CBR to BoT, which shrinks the distance between intra-camera and inter-camera pairs.
The mean distance between intra-camera and inter-camera pairs is reduced by CBR from 0.0998 to
0.0701. It verifies the claim that the proposed CBR can alleviate the camera bias problem by closing
the gap between intra-camera and inter-camera distance.

4.2.2 DIRECT TRANSFER

When the target domain data is unavailable, DT applies the model trained on source domain to target
domain. It tests the model’s generalization ability. As the camera bias is one of the reasons to hinder
the generalization ability (Zhuang et al. (2020)), it will be an effective approach to improve the target
domain performance by alleviating the camera bias. As shown in Table 3, compared with BoT, the
proposed CBR can boost the performance on all datasets.

4.2.3 PURELY UNSUPERVISED LEARNING

PUL is to train the model only from target domain. In practice, the model is initialized by the
ImageNet (Deng et al. (2009)) pre-trained weights. Currently, the clustering-and-finetuning-based
method is an effective approach for both PUL and UDA person Re-ID. In this section, we first adopt
a simple clustering-and-finetuning baseline to evaluate the effectiveness of the proposed CBR and
then apply CBR to state-of-the-art methods to further boost their performances.

Ablation Study Table 4 shows results of baseline and its combination with CC and CBR. First, CC
and CBR alone can already improve the mAP and rank-1. Specifically, the improvement of Base-
line+CBR over Baseline is higher than Baseline+CC. Second, when combining CC and CBR, Base-

7



Under review as a conference paper at ICLR 2022

Table 4: Ablation study of cross-camera DBSCAN (CC) and camera bias regularization (CBR).
(The numbers in parentheses denote the improvement over Baseline.)

Methods Market Duke MSMT
mAP Rank-1 mAP Rank-1 mAP Rank-1

Baseline 67.0 84.9 53.4 69.1 13.5 31.8
Baseline + CC 69.8 (+2.8) 85.3 (+0.4) 55.6 (+2.2) 71.2 (+2.1) 13.7 (+0.2) 33.5 (+1.7)
Baseline + CBR 71.7 (+4.7) 87.6 (+2.7) 57.5 (+4.1) 75.6 (+6.5) 23.0 (+9.5) 53.0 (+21.2)
Baseline + CC + CBR 73.2 (+6.2) 88.7 (+3.8) 61.5 (+8.1) 77.4 (+8.3) 22.8 (+9.3) 54.5 (+22.7)
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Figure 5: Experimental results of purely unsupervised learning on Market.

line+CC+CBR shows significant improvement over Baseline on all three datasets. It indicates that
the proposed CBR can work better with the help of CC in unsupervised learning. We also note that,
on MSMT, the improvement of CC alone is very limited. The reason may be the inaccurate similar-
ity measurement, as the rank-1 of Baseline is only 31.8%. For the same reason, Baseline+CC+CBR
shows little improvement in rank-1 over Baseline+CBR. Particularly, Baseline+CC+CBR is 0.2%
lower than Baseline+CBR in mAP. We will see in Table 5 that as the similarity measurement be-
comes more accurate, CC will boost the performance again.

Analysis of hyper-parameter λ Figure 5a shows the performance on Market by varying λ from
1.0 to 10.0. The performance first improves with increasing λ, then drops when λ is too large.
Similar results can also be obtained on Duke and MSMT dataset in Appendix B.1. Differently, λ
that corresponds to the best performance (3.0 to 5.0) is larger than that in fully supervised learning
(1.0 to 3.0). Also similarly, a more complicated dataset requires a larger λ.

Analysis of pair-wise distance distribution Figure 5b shows the comparison between the within-
cluster pair-wise distance distribution of Baseline and Ours (Baseline+CBR). CBR can close the
distance between intra-camera and inter-camera pairs. Although all four types of distributions move
to the left, the mean distance between intra-camera and inter-camera positive pairs is reduced by
CBR from 0.1429 to 0.0760. As stated in Section 3.4, another important effect of CBR in unsu-
pervised learning is to resist noises of pseudo labels. In order to validate it, Figure 5c shows the
percentage of each type of pair for Baseline and Ours. For all three datasets, the percentages of
noisy pairs, including intra-camera negative (yellow bar) and inter-camera negative pairs (red bar),
are significantly reduced.

Comparison with State-of-the-arts We integrate our method into the recent state-of-the-art
MMT (Ge et al. (2020a)), and compare MMT+CC, MMT+CBR and MMT+CC+CBR with oth-
ers in Table 5. First, our three methods outperform the original MMT by a large margin. Second,
except for CAP, our full method, MMT+CC+CBR, also outperforms all other baselines that adopt
the general clustering and training method. Third, for CAP, a specialized camera-based clustering
and training method is designed, and it also adopts a stronger base method SpCL. Ours still shows
competitive performance with CAP. Moreover, ours can work with a variety of methods on Re-ID
tasks, which can not be easily done for CAP.
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Table 5: Comparison with state-of-the-arts on purely unsupervised setting.

Methods Market Duke MSMT
mAP Rank-1 mAP Rank-1 mAP Rank-1

BUC (Lin et al. (2019)) 38.3 66.2 27.5 47.4 - -
SSL (Lin et al. (2020)) 37.8 71.7 28.6 52.5 - -
MMCL (Wang & Zhang (2020)) 45.5 80.3 40.2 65.2 11.2 35.4
HCT (Zeng et al. (2020)) 56.4 80.0 50.7 69.6 - -
SpCL (Ge et al. (2020c)) 72.6 87.7 65.3 81.2 19.1 42.3
MetaCam (Yang et al. (2021)) 61.7 83.9 53.8 73.8 15.5 35.2
IICS (Xuan & Zhang (2021)) 72.9 89.5 64.4 80.0 26.9 56.4
CAP (Wang et al. (2021)) 79.2 91.4 67.3 81.1 36.9 67.4
MMT (Ge et al. (2020b)) 69.9 85.1 59.7 73.5 18.3 39.5
MMT + CC 75.0 88.5 62.5 76.0 27.7 53.3
MMT + CBR 76.9 90.5 61.8 76.1 23.4 48.9
MMT + CC + CBR 78.2 92.0 67.0 81.4 31.2 60.2

Table 6: Comparison with state-of-the-arts on unsupervised domain adaptation setting.

Methods Duke-Market Market-Duke Duke-MSMT Market-MSMT
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

SPGAN (Deng et al. (2018)) 22.8 51.5 22.3 41.4 - - - -
UCDA-CCE (Qi et al. (2019)) 34.5 64.3 36.7 55.4 - - - -
CASCL (Wu et al. (2019)) 35.6 64.7 30.5 51.5 - - - -
SSG (Fu et al. (2019)) 58.3 80.0 53.4 73.0 13.3 32.2 13.2 31.6
AD-Cluster (Zhai et al. (2020)) 68.3 86.7 54.1 72.6 - - - -
MMT (Ge et al. (2020a)) 73.8 89.5 62.3 76.3 25.1 52.9 24.0 50.1
SpCL (Ge et al. (2020c)) 76.7 90.3 68.8 82.9 26.5 53.1 25.4 51.6
ECN++ (Zhong et al. (2021)) 63.8 84.1 54.4 74.0 16.0 42.5 15.2 40.4
HGA (Zhang et al. (2021)) 70.3 89.5 67.1 80.4 26.8 58.6 25.5 55.1
UNRN (Zheng et al. (2021)) 78.1 91.9 69.1 82.0 26.2 54.9 25.3 52.4
MMT+ (Ge et al. (2020b)) 76.7 89.7 65.4 78.2 23.4 47.6 22.2 46.3
MMT+ + CC 79.7 91.9 67.7 80.2 32.3 59.0 31.8 58.7
MMT+ + CBR 79.4 90.8 65.8 79.0 26.2 52.6 26.7 53.0
MMT+ + CC + CBR 81.0 91.7 69.2 81.4 35.0 63.7 33.1 61.9

4.2.4 UNSUPERVISED DOMAIN ADAPTATION

This setting aims to transfer the knowledge on source domain to target domain. MMT+ (Ge
et al. (2020b)) is used as our base method, which improves original MMT (Ge et al. (2020a)) by
jointly training on source domain labeled data and target domain pseudo-labeled data. The com-
parisons of its variants and state-of-the-arts are listed in Table 6. First, ours, including MMT++CC,
MMT++CBR and MMT++CC+CBR, improves over the original MMT+ by a large margin. Second,
compared with the best baseline, ours show competitive results on Duke-Market and Market-Duke.
Third, on the more challenging Duke-MSMT and Market-MSMT, ours outperform the best baseline
by 8.2% and 7.6% in terms of mAP, which is a new state-of-the-art on UDA person Re-ID.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present a camera bias regularization (CBR) solution to alleviate the camera bias
problem for person Re-ID. It significantly boosts the performance of several common Re-ID tasks,
including fully supervised learning, direct transfer, purely unsupervised learning, and unsupervised
domain adaptation. As the proposed CBR is concise, effective and universal, we believe it will be
commonly adopted as identity and triplet loss in Re-ID. In the future, we will evaluate CBR on more
vehicle Re-ID datasets and also generalize it to more side information other than camera views.
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Figure 6: Accuracy w.r.t data percentage for fully supervised learning.
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Figure 7: Analysis of hyper-parameters λ for fully supervised learning.

A MORE EXPERIMENTS ON FULLY SUPERVISED LEARNING

A.1 IMPACT OF DATA SIZE

Figure 6 shows the accuracy w.r.t data percentage. CBR shows significant improvement over BoT
when the amount of data is small. It also indicates that conventional training requires more cross-
camera labeled data to alleviate the camera bias problem. For example, ours can achieve similar
results with 60% data (Rank-1 74.58) to BoT with all data (Rank-1 74.7) on MSMT.

A.2 ANALYSIS OF HYPER-PARAMETER λ

Figure 7 shows the mAP and rank-1 on Duke and MSMT datasets by varying λ from 1.0 to 10.0.
The performance first improves with increasing λ, then drops when λ is too large. In practice, when
the dataset is complicated, especially in the variations of cameras, λ can be set to a large value.
Nevertheless, it is generally a good choice to set λ = 1.0.

A.3 ANALYSIS OF PAIR-WISE DISTANCE DISTRIBUTION

Figure 8 shows the comparison between pair-wise distance distribution of BoT and BoT+CBR. The
inter-camera distance distribution moves left when applying CBR to BoT. It makes the intra-camera
and inter-camera distance closer. The mean distance between intra-camera and inter-camera pairs
is reduced by CBR from 0.0695 to 0.0219 on Duke (from 0.1681 to 0.1136 on MSMT). It verifies
the claim that the proposed CBR can alleviate the camera bias problem by closing the gap between
intra-camera and inter-camera distance.
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Figure 8: Comparison of distance distribution between BoT and BoT + CBR. The mean distances
between intra-camera and inter-camera positive pairs of BoT and BoT + CBR are on the left and
right side of→, respectively.
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Figure 9: Analysis of hyper-parameters λ for purely unsupervised learning.

B MORE EXPERIMENTS ON PURELY UNSUPERVISED LEARNING

B.1 ANALYSIS OF HYPER-PARAMETER λ

Figure 9 shows the performance on Duke and MSMT by varying λ from 1.0 to 10.0. The perfor-
mance first improves with increasing λ, then drops when λ is too large. Differently, λ that corre-
sponds to the best performance (3.0 to 5.0) is larger than that in fully supervised learning (1.0 to
3.0). Also similarly, a more complicated dataset requires a larger λ.

B.2 ANALYSIS OF PAIR-WISE DISTANCE DISTRIBUTION

Figure 10 shows the comparison between pair-wise distance distribution of Baseline and Ours (Base-
line+CBR). CBR can close the distance between intra-camera and inter-camera pairs. Although all
four types of distributions move to the left, the mean distance between intra-camera and inter-camera
positive pairs is reduced by CBR from 0.1614 to 0.0843 on Duke (from 0.2026 to 0.1544 on MSMT).
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Figure 10: Comparison of distance distribution between baseline and ours (baseline + CBR). The
mean distances between intra-camera positive pairs and inter-camera positive pairs of baseline and
ours are on the left and right side of→, respectively.
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