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ABSTRACT

Dense Self-Supervised Learning (SSL) creates positive pairs by building positive
paired regions or points, thereby aiming to preserve local features, for example of
individual objects. However, existing approaches tend to couple objects by leaking
information from the neighboring contextual regions when the pairs have a limited
overlap. In this paper, we first quantitatively identify and confirm the existence
of such a coupling phenomenon. We then address it by developing a remarkably
simple yet highly effective solution comprising a novel augmentation method, Re-
gion Collaborative Cutout (RCC), and a corresponding decoupling branch. Impor-
tantly, our design is versatile and can be seamlessly integrated into existing SSL
frameworks, whether based on Convolutional Neural Networks (CNNs) or Vision
Transformers (ViTs). We conduct extensive experiments, incorporating our solu-
tion into two CNN-based and two ViT-based methods, with results confirming the
effectiveness of our approach. Moreover, we provide empirical evidence that our
method significantly contributes to the disentanglement of feature representations
among objects, both in quantitative and qualitative terms.

1 INTRODUCTION

Self-supervised learning (SSL) has achieved significant progress, now surpassing traditional super-
vised pre-training when applied to diverse domains and tasks (Chaitanya et al., 2020; Ericsson et al.,
2021; Caron et al., 2021; Wu et al., 2023). SSL methods aim to maximize the similarity between the
feature representations of positive pairs. However, positive pairs are built with strong augmentation
and their features are obtained by average pooling for each view, leading to inconsistent semantic
alignment (Zhang et al., 2022) and a lack of localization information. Consequently, this approach is
most suitable for well-curated datasets and becomes problematic when applied to images containing
multiple objects or tasks that necessitate precise location information. To alleviate the constraints
imposed by SSL, recent literature has witnessed substantial efforts in the domain of dense-level SSL.
At the core of these efforts is the idea of defining positive pairs by identifying matching locations,
thereby preserving distinct semantic cues.

In the context of dense SSL, cutout and masking are pivotal components for both CNNs and ViTs,
as they contribute to the creation of meaningful positive pairs. Point-level CNN-based meth-
ods (Wang et al., 2021; Xie et al., 2021) construct positive pairs by selecting matched points in
feature space, while others, including both region-level CNN-based (Wei et al., 2021) and ViT-based
methods (Zhou et al., 2022; Xue et al., 2023), rely on image coordinates as oracle and employ vari-
ous augmentations such as cutout and masks to generate positive pairs. These pairs are subsequently
utilized in teacher-student networks for feature alignment. However, a challenge arises when there is
limited overlap between the views, often due to mismatches or over-cuts. In such cases, the features
extracted from the query view tend to take shortcuts by leveraging information from the background
to minimize the self-supervised learning (SSL) loss. This unintentional mechanism leads to closer
proximity of features from unrelated regions, ultimately resulting in less discriminative regions be-
ing dominated by their neighbors. We term this phenomenon coupling, as depicted in Fig. 1.

In this paper, we present a simple yet highly effective strategy that seamlessly integrates into recent
dense SSL methods to address the object coupling issue. We observe that existing augmentation

* These authors contributed equally to this work. ‡ Corresponding author
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Figure 1: Visualization of Coupling Effects. (a) When positive pairs are mismatched or share small
overlapping unmasked regions, the features in the query zq are pushed towards the key features zk,
causing the key feature’s semantics to propagate to a wider query semantic area (less discriminative).
(b) The visualization depicts affinity maps generated by different methods, with each map showing
feature similarity between a single point (marked by a red dot) and the rest of the image. ’-D’
denotes a model combined with our decoupling strategy.

techniques, such as blockwise masks (Zhou et al., 2022) and cutout (DeVries & Taylor, 2017), ap-
ply masks or cutouts independently to the input view, without taking into account the presence of
other masked or cut regions. This prevents the student views from providing sufficient semantic
cues to align with the teacher encoders, especially when substantial occlusions occur, e.g., due to
the overlap of multiple masked or cut regions. To address this challenge, we introduce Region Col-
laborative Cutout (RCC), a method designed to avoid creating excessively large masked areas that
could lead to information leakage from distant regions. Our approach involves creating regions uni-
formly and implementing cutouts within these regions, starting with larger ones and progressively
moving to smaller areas. The cutout operations among regions work collaboratively to ensure that
no large masks exceed a specified threshold. More importantly, we introduce a de-coupling branch
to eliminate incorrect dependencies between each region and its surroundings by adding contextual
noise to the surroundings of sampled regions within images. Specifically, we construct de-coupled
views by replacing the background regions of key views defined by RCC masks with randomly
sampled background images. We then directly apply the self-supervised learning loss to the features
extracted from the same foreground region in both the decoupled and key views. This design allows
the network to learn independently from each local region, promoting the capture of robust repre-
sentations less influenced by irrelevant context. Importantly, our de-coupling branch is compatible
with existing methods and requires only a modification of the augmentation pipeline.

In a nutshell, our contributions can be outlined as follows:

1. We tackle the challenge of coupling in dense SSL, offering quantitative empirical evidence
to validate its presence across different methods with both CNNs and ViTs.

2. We introduce a novel augmentation method tailored for dense SSL, named Region Col-
laborative Cutout (RCC). This method plays a pivotal role in reducing object coupling by
effectively reducing the difficulty of aligning features in masked regions.

3. Building upon the foundation of our new augmentation method, we further enhance feature
robustness to noise by introducing a decoupling branch. This branch ensures that features
are learned independently from their surroundings.

We showcase our contributions through comprehensive experiments and ablation studies, providing
empirical validation for the effectiveness of our entire method as well as its individual components,
namely RCC and the decoupling strategy.

2 RELATED WORK

Self-supervised Learning. With the introduction of InfoNCE (Oord et al., 2018), inspired by the
triplet loss in metric learning (Oh Song et al., 2016; Sohn, 2016), contrastive learning has become
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the dominant SSL strategy. SimCLR (Chen et al., 2020a) constructs positive pairs by applying
random data augmentations twice to the same image and treats other images as negatives. MoCo (He
et al., 2020) explores simpler architecture, and BYOL (Grill et al., 2020) starts the trend of simply
minimizing positive pairs’ distance. Other explorations include clustering-based (Asano et al., 2019;
Caron et al., 2018; 2020; Ji et al., 2017; Zhang et al., 2019b;a) and feature decorrelation (Zbontar
et al., 2021). These methods primarily focus on capturing semantic invariance through image-level
augmentation. Consequently, they are less suitable for images with multiple objects (He et al., 2019;
Zhang et al., 2022) and dense prediction tasks, where local context becomes crucial.

Dense Self-supervised Learning. Dense SSL methods aim to enhance the representation of regions
by constructing positive pairs with finer granularity. Notably, the point-level methods, including
DenseCL (Wang et al., 2021), PixPro (Xie et al., 2021), and VADeR (O Pinheiro et al., 2020),
establish positive point pairs by evaluating pairwise cosine distances among all points from two
augmented views and selecting those with higher similarity. However, these methods focus solely
on point similarity and do not consider the relationships with their neighbors, leading to inaccurate
pairings. In response, SetSim (Wang et al., 2022b) and Point-level RCL (Bai et al., 2022) seek to
refine the selection of positive pairs by taking neighboring points into account. Nonetheless, their
strategies heavily rely on image-level SSL, resulting in mismatches in the selection of positive pairs.

On the other hand, region-level methods focus on identifying matching regions and applying SSL
loss to features extracted from these regions. Self-EMD (Liu et al., 2020) minimizes the Earth
mover’s distance between two paired regions; InsLoc (Yang et al., 2021) utilizes pretext tasks to
facilitate region-level contrastive learning; DetCon (Hénaff et al., 2021) and SoCo (Wei et al., 2021)
employ unsupervised masks and bounding boxes, respectively, as external labor-free supervision to
build positive pairs. These region-based networks share a similarity with image-level SSL, where
only the most discriminative parts can be learned due to average pooling. In the realm of ViT
structures, recent works use masked image modeling (MIM) as augmentations to reconstruct masked
patches in color space (Xie et al., 2022; He et al., 2022) or the features of masked patches (Bao
et al., 2022; Xue et al., 2023). Among these approaches, iBOT (Zhou et al., 2022) serves as the core
component of the vision foundation model DINOv2 (Oquab et al., 2023). Despite their impressive
results, prior Dense SSL methods have overlooked the issue of feature coupling.

Augmentations. Most of the augmentations, e.g., cutout (DeVries & Taylor, 2017), gaussian blur,
and random crops, are designed for supervised image classification tasks. Some alternatives, in-
cluding mixup (Zhang et al., 2017), cutmix (Yun et al., 2019), and TokenMix(Liu et al., 2022), are
also effective for supervised semantic segmentation and object detection. SimCLR (Chen et al.,
2020b) was the first to adopt augmentation in SSL, evidencing that SSL benefits from stronger aug-
mentation. Recently, SDMP (Ren et al., 2022) integrates the mixup method into SSL frameworks.
Additionally, patch-based augmentations (Qin et al., 2022) (rotations, infill, and shuffle) have been
proposed for ViT’s pre-training robustness against noise. However, these augmentation methods are
tailored to enhance image-level discriminative features for classification tasks, often overlooking the
essential localization information due to its inherently complex nature.

While dense SSL has emerged as a promising direction, particularly replacing image-level ap-
proaches, many challenges associated with feature coupling in Dense SSL remain unaddressed,
particularly in scenarios involving images with multiple objects. We aim to tackle this problem by
introducing novel augmentations and network modules specifically designed for Dense SSL.

3 MOTIVATION: EMPIRICAL STUDY

We initiate our work with an empirical analysis that aims to shed quantitative light on the is-
sue of coupling in dense SSL. Let X ∈ RH×W×3 denote a sample image from a pre-training
dataset D, P is the region where the feature is extracted from, and PC is the surrounding region
providing contextual information. Note that each region may contain either a single or multiple
patches. Thus, the set of image patches corresponding to P is represented by XP . With an encoder
E : RH×W×3 → Rh×w×c, the feature representation ofP is computed as f(X,P) = g(E(X),P),
where g denotes feature extraction from regions. For an augmented query view Xq and a key view
Xk, we formulate dense SSL as

LDense(z
q
Pq

, zk
Pk

) = LSSL

[
fs(X

q,Pq), ft(X
k,Pk)

]
, (1)
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Figure 2: Measuring inter-object coupling in ViTs. (a) Random masking is applied to image XA

with varying ratios, combined with an image XB to create image XAB . Yellow boxes highlight
regions from which features are extracted. (b) We report the CR across different mask ratios for
ViT-based models. The -D indicates the method integrated with our decoupling strategy.

where ft, fs denote the teacher and student branch. LSSL is any existing SSL loss such as InfoNCE
and ℓ2. The primary objective of this framework is to facilitate the learning of semantically invariant
features, ensuring that the features extracted from region Pq closely correspond to those from Pk.
However, this objective also necessitates the retrieval of semantic information from the context PC

when region Pq lacks sufficient semantic cues to match region Pk.

Our intuition for measuring coupling is to examine the level of independence exhibited by local
features when exposed to varying contexts. To better investigate the coupling issue, we showcase
coupling in both inter-object and intra-object scenarios. Note that image-level SSL is obtained by
replacing the region extractor with average pooling over the entire input view. In this case, there is
no risk of information leakage through spatial shifts.

3.1 INTER-OBJECT COUPLING

We first investigate the inter-object case as depicted in Fig. 2(a), where we consider pairs of objects
(A and B) belonging to different categories. Specifically, we construct three views: XAB con-
taining both A and B, and XA and XB containing an individual object. To evaluate the extent of
entanglement between two objects, we randomly remove patches of object A with different ratios in
the image XAB , and extract their features through backbones pre-trained with different methods:

zA1 = f(XA,PA1), zA2 = f(XAB ,PA2), zB = f(XB ,PB), (2)

where PA1
,PA2

,PB are the regions containing A1, A2 and B. We then define the coupling ratio as

CR =
max (π

2
− θ(zA2 ,zB), ϵ)

max (π
2
− θ(zA1 ,zB), ϵ)

, (3)

where θ(·, ·) is the angle between two feature vectors, and ϵ is a scalar introduced for numerical
stability. CR > 1 indicates information leakage from neighbor XAB

PB
to XAB

PA
. Our findings are

presented in Figure 2(b), which illustrates the results obtained from different pre-trained models.
Specifically, when region A loses more semantic information, the feature zA2 tends to converge
towards zB , providing clear evidence of the existence of inter-object shortcuts. As expected, in the
case of image-level methods, CR tends to approach 1, as no context regions are involved during
the pre-training stage. The same trends can be found in CNNs, and more details can be found in
Appendix B.

3.2 INTRA-OBJECT COUPLING

Apart from the entanglement between objects, coupling within individual objects is also prevalent.
We begin by sampling a ground-truth object mask denoted as M along with its image X . From
this mask, we select a quarter to represent the object part, denoted as Mop. We then remove the
remaining portions of the object mask, resulting in a modified image XOP , and construct XC by
replacing the rest parts with a randomly sampled background, as shown in Fig 3(a). To extract
region-level features of the object part, we perform masked average pooling using Mop on the
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Figure 3: Measuring intra-object coupling. (a) We select a quarter of the objectMop as object
part. The views XOP ,XC are constructed by masking out the remaining object area and replacing
it with sampled backgroud. The CR is calculated between region-level features extracted using
masked average pooling. (b) We draw the CR histograms of the pre-trained models.

feature map obtained by forwarding the constructed view through the backbone network E. We
define the coupling ratio within objects as:

CR = 1− cos (zOP
Mop

, zC
Mop

). (4)

A higher value of CR indicates that the features of the object part are more inclined to the influence
of surroundings. Figure 3(b) displays histograms of the computed coupling ratios for the sampled
object parts, underscoring how irrelevant background significantly affects representations of object
parts. The mean of intra-object CR clearly decreases with our strategy.

As demonstrated by the above experiments, the region in a lack of semantics due to stronger mask-
ing tends more to retrieve information from the context. Consequently, we further verify that the
coupling will gradually increase as the augmented views become more challenging in Appendix C.1.

4 DE-COUPLING FROM DENSE-LEVEL SHORTCUTS

Our empirical studies have brought to light the existence of dense-level shortcuts that impede the
models from effectively capturing local visual semantics. In this section, we introduce our de-
coupling strategy as a solution to mitigate these challenges. Importantly, our de-coupling strategy
is designed for general applicability, and we will show how to integrate our method into existing
dense-level pre-training methods.

4.1 DE-COUPLING STRATEGY

As discussed in Section 3, strong augmentations with higher masking ratios force the student net-
works to search for shortcuts to align the features with those from the teacher branch. To counter
this, our strategy starts with proposing a new augmentation method, namely Region Collaborative
Cutout (RCC), to generate views with reduced difficulty levels to block the shortcut to contextual in-
formation. Moreover, we introduce a mixture of cropped views with various backgrounds to mitigate
the bias from the contextual information of a single image.

4.1.1 DECOUPLED VIEWS GENERATION

To create the decoupled view, we leverage RCC to generate masks for extracting foreground in-
formation from the key view while filling the unmasked region with a randomly sampled image as
background context information. Without loss of generality, we first divide the input into N × N
grids and randomly create a single bounding box with a pre-determined range of scale and aspect
ratio within each grid as regions, yielding {bi}N×N

i=1 regions with diverse scales and positioned uni-
formly across the image. Each box is then used as anchor to collaboratively perform cutout to obtain
the mask MRCC . Unlike blockwise mask (Zhou et al., 2022) and cutout on proposal (Wei et al.,
2021), where undesirable large masks or cuts can be attained, RCC initiates mask generation in a
descending order based on the bounding box region size, simultaneously addressing overcut regions
caused by larger ones. For the i-th step, we calculate the actual cutout ratio rci incurred by the pre-
vious steps. If it is higher than pre-defined rc, we will restore the region and perform a new random
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Figure 4: Structure of RCC and decoupling strategy. Our RCC is applied in the augmentation
stage to replace previous masking methods. Given an input image X with generated proposal re-
gions, we replace the original mask strategy with our RCC , leading to masked view XM for student
encoder. We construct the de-coupled view XD with X and randomly sampled XB as an additional
student branch. {Pi} denotes the regions that we used to constrcut positive pairs, which can be ei-
ther single patches or regions. Note that, the decoupling does not reconstruct the background in
de-coupling branch.

cutour with ratio rc. Otherwise, another cutout region with ratio rc − rci will be applied. We defer
the pseudo-code in Alg. 2

(a) Cutout (b) RCC
Figure 5: Cutout vs. RCC. Masks
are generated for each bounding box.

The MRCC masks provide effective augmentation for
dense SSL when pre-trained on multi-object datasets. Fig. 5
shows the difference between the Cutout and our RCC. Our
method prevents masks of different regions from being con-
nected in the same place, which blocks the semantic infor-
mation for the student encoder. Comparison with blockwise
masking and additional results can be found in Appendix D.

We then generate the de-coupled view XD of an image X
with a randomly sampled background image XB and the binary matrix MRCC ofMRCC :

XD = X ⊙ (I −MRCC) +XB ⊙MRCC . (5)

4.1.2 DE-COUPLING LOSS

In the de-coupled view XD, each region is surrounded by the remaining unmasked context and con-
text noise controlled byMRCC . For a feature extraction region P that has overlap with unmasked
regionMC

RCC , we directly align the dense-level feature defined by P∩MC
RCC to the corresponding

one on original view X . This can be expressed as

LDC = LSSL(z
D
P , zF

P ) ,with zD
P = fs(X

D,P ∩MC
RCC), z

F
P = ft(X,P). (6)

Note that P can be a bounding box, a single patch token in ViTs, or a point in CNNs. Then, we
apply the SSL loss to each P to achieve de-coupling. With the above objective, the dense-level
feature zD

P is tasked with distinguishing between incomplete yet relevant context and introduced
noise while predicting zF

P with a global context. This both de-couples the model from entangled
irrelevant contexts and enhances the out-of-context learning capacity.

4.2 COMBINATION WITH DENSE-LEVEL SSL

Our decoupling strategy seamlessly integrates into existing dense-level frameworks, as illustrated in
Fig. 4. In addition to the query view Xq and key view Xk, we generate a decoupled view XD using
the key view Xk and masksMRCC generated by RCC. It’s important to note that the background
image XB is randomly selected from each batch. Given the set of feature extraction positions Pi as
positive pairs, the dense SSL objective with decoupling is expressed as:

LDense−D(Xq,Xk,XD) =
1− λDC

|{Pi}|
∑
Pi

LDense(z
q

Pq
i
, zkPk

i
) +

λDC

|PD|
∑

Pk
j ∈PD

LDC(z
D
Pk

j
, zkPk

j
), (7)
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where λDC represents the de-coupling weight, PD is defined as the set of feature extraction positions
that are covered by Pk

j and intersect with the foreground MC
RCC . The notation | · | denotes the

cardinality of the set, which can correspond to either the number of patches (in the context of point-
level methods) or regions (for region-level methods). LDC applies the same type of loss as LDense

and thus requires no further modification. More details and examples of combining our strategy with
other dense SSL frameworks are provided in Appendix E.1.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

De-coupling Setting. To demonstrate the effectiveness and generalization capability of our de-
coupling strategy, we apply our module on DenseCL (Wang et al., 2021), SoCo (Wei et al., 2021),
Leopart (Ziegler & Asano, 2022), iBOT (Zhou et al., 2022) and MaskAlign (Xue et al., 2023), which
include both CNN-based and ViT-based methods. With the exception of SoCo, which utilizes Selec-
tive Search to generate proposals as region prior, we apply 3× 3 grids to randomly generate regions
for the other methods. For the backbone, we employ ResNet-50 (He et al., 2016) on CNN-based
methods and ViT-S/16 (Dosovitskiy et al., 2021) on Vit-based methods. We defer the evaluation of
Leopart to Appendix F as it aims for unsupervised segmentation and has different evaluation metrics.

Pre-training Setting. In the pre-training stage, we sample only 25% images from a batch to con-
struct the de-coupling branch. Note that the de-coupled views will only be forwarded to the student
encoder, with acceptable additional computational costs (reported in Appendix F). As we target SSL
on the multi-object datasets, following the protocol of (Bai et al., 2022; Wang et al., 2021), we
pre-train each model on COCO train2017 for 800 epochs. For a fair comparison, we adopt the same
hyper-parameter for every method with or without the de-coupling strategy.

5.2 DENSE PREDICTION

Evaluation Protocols. For CNN-based methods, we follow the dense prediction protocols of
MoCo-v2. On VOC (Everingham et al., 2010) detection tasks, we fine-tune a Faster R-CNN struc-
ture Ren et al. (2015), whereas on COCO (Lin et al., 2014) detection and instance segmentation, we
adopt a Mask R-CNN (He et al., 2017) structure. For ViT-based methods, we follow the same proto-
col as iBOT, where we apply Cascade Mask R-CNN (Cai & Vasconcelos, 2019) for object detection
and instance segmentation on COCO. For semantic segmentation on ADE20K (Zhou et al., 2017),
we employ the task layer in UperNet (Xiao et al., 2018) and fine-tune the whole network.

Table 1: Main results pre-training with CNN-based methods. ’-D’ denotes combining with de-
coupling strategy. We pre-train models marked by † with their official codes and setting on COCO.

Method
VOC Det. COCO Det. COCO ISeg.

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

MoCo v2† 54.6 81.0 60.4 37.8 57.4 41.0 32.9 54.1 35.2
ReSim† 56.6 81.7 63.5 38.3 57.8 41.4 33.5 54.4 35.6

DenseCL 56.7 81.7 63.0 38.5 58.1 41.5 33.6 54.8 35.7
DenseCL-D 57.2 82.2 63.7 39.3 58.7 42.6 34.2 55.7 36.5

PLRC 57.1 82.1 63.8 39.8 59.6 43.7 35.9 56.9 38.6
SoCo† 56.8 81.7 63.5 38.5 57.9 41.5 33.4 54.6 35.4

SoCo-D 57.8 82.5 64.4 40.3 60.1 44.0 35.1 56.9 37.6

Results of CNN-based Methods. Tab. 1 reports the performance on CNN-based methods. We com-
pare three types of methods according to feature extraction strategy: 1) Image-level, i.e., directly
perform average pooling on the whole feature map, like MoCo v2 (Chen et al., 2020b); 2) Point-
level, i.e., every feature vector as positive pairs are used for SSL, including DenseCL (Wang et al.,
2021) and PLRC (Bai et al., 2022); 3) Region-level, which uses a set of features from the feature
map followed by average pooling, such as ReSim (Xiao et al., 2021) and SoCo (Wei et al., 2021).
Considering the substantial memory requirements of PLRC, we demonstrate the integration of our
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method into DenseCL as a representative point-level approach. Additionally, we select SoCo as a
representative region-level method for evaluation. It’s important to note that all dense SSL methods
consistently outperform image-level SSL methods in downstream tasks. Particularly noteworthy is
the impressive performance improvement achieved by both DenseCL and SoCo when incorporating
our de-coupling strategy, surpassing their original results.

Results of ViT-based Methods. In Tab.2, we present a comparison between dense SSL approaches
utilizing ViTs, both with and without our de-coupling strategy. The results show significant im-
provements when employing our strategy. Specifically, iBOT with our de-coupling achieves signif-
icant performance gains, surpassing its original baseline by a large margin of 2.8 AP, 2.1 AP, and
1.7 mIoU across three tasks. Similarly, MaskAlign-D also demonstrates remarkable performance
enhancements compared to its original version. These comparisons underscore the efficacy of our
de-coupling strategy in aiding dense SSL methods to more effectively capture dense semantics while
mitigating the issues associated with coupling. Importantly, our approach exhibits versatility, as it
can be readily applied to various SSL strategies and backbone architectures.

Table 2: Main results pre-training with ViT-based methods. ’-D’ denotes combining with de-
coupling strategy.

Method
COCO Det. COCO ISeg. ADE Seg.

AP AP50 AP75 AP AP50 AP75 mIoU

iBOT 42.3 61.2 45.6 37.0 58.3 39.4 39.9
iBOT-D 45.1 64.3 48.7 39.1 61.2 41.7 41.6

MaskAlign 45.6 65.2 49.7 39.6 62.0 42.4 43.7
MaskAlign-D 46.7 66.4 50.5 40.5 63.2 43.5 44.3

5.3 OBJECT-LEVEL KNN

We appreciate the simplicity and effectiveness of k-NN, which directly reflect the quality of learned
image-level representations, so we extend it to dense-level tasks and obtain object-level k-NN
(OKNN). Concretely, we extract object-level features from the final feature map with ground-truth
bounding boxes using RoIAlign and average pooling. We extract N object features per image from
the training set along with corresponding labels. Similar to image-level k-NN, we predict the label
for each object in the evaluation set by finding the k-nearest object-level features in the training set.

Table 3: Main Results of OKNN
and OKNN-D. We evaluate models on
COCO and report the top-1, top-5 accu-
racy.

Method
OKNN OKNN-D

Top.1 Top.5 Top.1 Top.5

DenseCL 72.5 89.6 41.5 59.9
DenseCL-D 74.5 91.2 45.1 63.9

SoCo 73.5 89.7 43.7 61.2
SoCo–D 75.8 90.8 47.8 65.0

iBOT 75.2 90.8 45.8 68.3
iBOT-D 78.7 93.3 52.1 71.9

MaskAlign 77.4 91.6 53.8 74.0
MaskAlign-D 79.0 92.7 55.2 76.1

Disturbed OKNN. To quantify the influence of cou-
pling for multi-object images, we further conduct dis-
turbed OKNN (OKNN-D) by replacing the region of
each image uncovered by N selected bounding boxes
with randomly sampled background images. The feature
extraction and prediction protocols are kept the same.

Comparison. Tab. 3 shows the O-KNN and OKNN-
D accuracy on COCO using train2017 for feature ex-
traction and val2017 for evaluation. The proposed de-
coupling strategy boosts the performance of both OKNN
and OKNN-D when combined with other dense SSL
methods. The improvement on OKNN-D is more ob-
vious, demonstrating the effectiveness of our approach
to improving model robustness for irrelevant contexts.

6 ABLATION STUDY

We dissect our de-coupling strategy and study the impact of each to reveal the strengths of our
designs here. In ablation studies, we pre-trained iBOT and DenseCL on COCO for 200 epochs.
More details and analysis of our RCCand ablation results of DensCL are in Appendix D and G.

6.1 MASK-TYPE FOR DE-COUPLING
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Table 4: Comparison of mask types for de-
coupling. iBOT is used as a baseline, we only
change the masking strategy for de-coupling.

Method COCO Det. OKNN CRInter CRIntra

iBOT 38.7 69.9 1.80 0.17
+DCRec 39.3 69.3 1.32 0.15
+DCRan 39.9 70.9 1.25 0.10
+DCBlc 41.1 72.9 1.28 0.09
+DCCutout 39.2 67.7 1.26 0.10
+DCRCC 42.0 74.1 1.16 0.04

To demonstrate the effectiveness of our RCC, we
conducted experiments utilizing various types of
masking for de-coupling,including: a) DCRec: Uti-
lizing a random rectangular region as the fore-
ground; b) DCRan: Randomly mask out patches;
c) DCBlc: Employing blockwise masks like
BEiT (Bao et al., 2022); d) DCCutout: Replacing
our RCC with Cutout. In Tab. 4, we report the re-
sults, including the Top-1 accuracy of OKNN, AP
in COCO detection, and the average coupling ra-
tio for both inter-object and intra-object levels, as
introduced in Section 3. Our method, when combined with all of these masking techniques, demon-
strates substantial improvements in de-coupling, as evidenced by the enhanced detection and OKNN
accuracy. This provides strong validation for the effectiveness of our loss design. Notably, the orig-
inal Cutout method, which tends to overcut, leads to a degradation in recognition and classification
performance. Among all the augmentation techniques tested, DCRCC consistently achieves the best
performance across all metrics, further affirming the overall effectiveness of our strategy.

6.2 LOSS COMPARISON

Table 5: Comparison with other copy-paste
objectives. iBOT is used as baseline.

Method COCO Det. OKNN CRInter CRIntra

iBOT 38.7 69.9 1.80 0.17
+DCAvg 38.0 69.0 1.51 0.36
+DCp−a 37.2 66.7 1.48 0.45
+DCp−p 39.3 69.3 1.32 0.15

In Table 5, we conduct a comparative analysis of
our de-coupling loss with the objectives employed
in InsLoc (Yang et al., 2021) and CP2 (Wang et al.,
2022a). These methods also utilize the copy-paste
strategy with a rectangular mask to define the fore-
ground region. The primary distinction among
these approaches lies in their strategies for aligning
positive pairs during the pre-training stage. Specif-
ically, InsLoc employs average pooling on the foreground region, denoted as DCavg. CP2 matches
each point feature from the query view to all the foreground point features from the key view, termed
as DCp−a (point-to-all). In contrast, our approach simply matches features with the same position,
denoted as DCp−p (point-to-point). It’s important to note that we use rectangular masks for all
types of loss for fairness in this comparison. Both DCavg and DCp−a result in inferior intra-object
coupling and a decrease in performance on downstream tasks. We attribute this to the observation
that dense-level SSL benefits from fine-grained and accurate positive pair matching, rather than em-
ploying a global or coarse-grained matching strategy. Our point-to-point approach aligns better with
the nature of dense SSL, leading to improved coupling and performance.

6.3 AUGMENTATION: APPLYING RCC TO MASK-BASED SSL

Table 6: Comparison of mask types for dense
SSL. We replace existing mask strategies of
SoCo and iBOT with RCC, denoting as ’-RCC’.

Method COCO Det. COCO ISeg. OKNN CRInter

SoCo 38.5 33.4 73.5 1.15
SoCo-RCC 38.9 33.9 74.4 1.10

iBOT 42.3 37.0 75.2 1.43
iBOT-RCC 43.1 37.6 76.8 1.35

To demonstrate the effectiveness of RCC as an
augmentation for both CNNs and ViTs, we se-
lect SoCo which utilizes proposal-level Cutout,
and iBOT which utilizes Blockwise mask, and re-
place their original mask strategy with RCC. Each
model is pre-trained on COCO for 800 epochs
without the de-coupling branch. As shown in
Tab. 6, all models using RCC outperform those
employing the original strategy, with a lower coupling ratio, verifying the strength of RCC.

7 CONCLUSION

In this paper, we have dedicately designed experiments that have unveiled the dual impact of aug-
mentation, both as a tool for enhancing feature representations and as a cause of feature coupling.
To tackle this challenge, we introduced RCC, a novel augmentation technique, alongside a dedicated
de-coupling branch for dense SSL pre-training. Our extensive experiments and comprehensive ab-
lation studies have confirmed the superiority of RCC and our de-coupling strategy within dense SSL
frameworks, and we have shown that our de-coupling strategy seamlessly integrates into various
frameworks without imposing excessive computational overhead.
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A ALGORITHM

A.1 ORIGINAL CUTOUT FOR DENSE SSL

Algorithm 1 Proposal-level Cutout (DeVries & Taylor, 2017)

Input: Proposals {bi = (xi1, yi1, xi2, yi2)}Ki=0, cutout ratio rc.
Output: Masked positionsM
M← {}
for i < K do

t← Rand(xi1 − d, xi2); l← Rand(yi1 − d, yi2)
M←M∪ {(x, y) : x ∈ [t, t+ a), y ∈ [l, l + b)} ▷ Performing cutout

end for

A.2 REGION COLLOABORATIVE CUTOUT

Algorithm 2 Region Collaborative Cutout

Input: Proposals {bi = (xi1, yi1, xi2, yi2)}Ki=0, cutout ratio rc.
Output: Masked positionsM
M← {}
B ← Sort({bi}) ▷ Region set of proposals sorted from large to small
for i < K do

rci ← |B(i)|−|M∩B(i)|
|B(i)| ▷ Actual ratio of B(i) being covered

if rci > rc then
M←M\{(x, y) : x ∈ [xi1, xi2), y ∈ [yi1, yi2)} ▷ Recover overcut proposal
rci ← 0

end if
a← (xi2 − xi1) · (rc − rci); b← (yi2 − yi1) · (rc − rci)
t← Rand(xi1 − a, xi2); l← Rand(yi1 − b, yi2)
M←M∪ {(x, y) : x ∈ [t, t+ a), y ∈ [l, l + b)} ▷ Performing cutout

end for

B DETAILS FOR MEASURING COUPLING

Inter-object coupling. As illustrated in Fig 6, we calculate the CR for the backbone pre-trained
with various methods. For CNN-based models, we reduce the scale of object A with different
reduction ratios. For ViT-based models, we apply random masking on patches of object A with
different mask ratios. To extract the region-level features, we apply RoIAlign on the final feature
map output by the pre-trained backbone with given bounding boxes. All the features used for cal-
culating CR values are extracted from images that are sampled from COCO train2017 with single
object.

Intra-object coupling. The CR histograms of iBOT (Zhou et al., 2022) and DenseCL (Wang
et al., 2021) are reported in Fig 3(b), and we also report the results of SoCo(Wei et al., 2021) and
MaskAlign(Xue et al., 2023) in Fig. 7. The object part Mop is the intersection of a randomly
selected quarter region on the bounding box and the segmentation mask of the sampled object. For
feature extraction, we perform average pooling with maskMop on the final feature map. The CR
values are calculated with images sampled from COCO train2017 with ground-truth annotations.

C THE CAUSES OF COUPLING

A challenging pretext benefits image-level pre-training for learning more generalizable semantics
for curated datasets and images containing one object. However, the same rule does not apply to
dense SSL, and we demonstrate that challenging pretext tasks can lead to coupling in dense SSL.
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Figure 6: Measuring inter-object coupling on CNNs. (a) For CNN-based models, we reduce the
scale of object A with different ratios to calculate the CR. (b) We report the CR of CNN-based
models. ’-D’ denotes method combined with our decoupling strategy.

(a) CR of SoCo (Wei et al., 2021) (b) CR of MaskAlign (Xue et al., 2023)

Figure 7: Intra-object coupling of SoCo and MaskAlign. We draw the histogram in terms of the
coupling ratio. ’-D’ denotes those methods combined with our de-coupling strategy.

C.1 STRONGER AUGMENTATION.

In image-level SSL, data augmentation helps to drop redundancy and keep the most discriminative
information for an image. Nevertheless, it is necessary to keep essential semantic information for
aligning zq

Pq with zk
Pk. As an illustrative example, we employ masking with different sizes to verify

that the coupling is caused by strong augmentation. Specifically, we conduct experiments with two
mask-involving methods: SoCo which utilizes Cutout, and iBOT with Blockwise Mask. We pre-
train each model on COCO for 200 epochs with varying mask ratios and use the inter-object CR as
an indicator to assess the extent of coupling. For iBOT, we calculate CR on masked patches. As
shown in Fig. 8, a strong correlation exists between the masking ratio and extent coupling, which
validates our assumption.

C.2 ALIGNING STRATEGY.

Apart from masking complexity, we investigate the influence of alignment accuracy on coupling. We
pair features with varying alignment accuracies to demonstrate how misalignment affects coupling
in DenseCL and iBOT.

DenseCL. For a pair of views Xq,Xk, and corresponding point-level features {zq
i }Ni=1, {zk

i }Ni=1,
DenseCL aligns each zq

i with the nearest one in the key view:

LDenseCL(z
q
i ) = L(z

q
i , z

k
j ), j = argmax

l
cos(zq

i , z
k
l ). (8)

To establish an imprecise alignment, we align each zq
i to its n-th nearest key, denoted as S-T/@n

(S-T/@1 represents the original strategy). We also provide the result with S-T/Rand that randomly
aligns each query to arbitrary key.

iBOT aligns the feature zq
i of each masked patch with the teacher output zk

i at the same position
as the reconstruction loss, which we denote as T@1. For a less precise aligning strategy denoted as
T@n, we align the zq

i with zk
l , with zk

l being the n-nearest neighbor of zk
i .
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(a) SoCo (b) iBOT

Figure 8: Coupling ratio with different Mask Ratio. Both SoCo and iBOT are pre-trained on
COCO for 200 epochs with varying mask ratios. ’Coupling Ratio’ denotes the inter-object CR.

(a) DenseCL (b) iBOT

Figure 9: Coupling ratio with different aligning strategy. ’Coupling Ratio’ denotes the inter-
object CR. The horizontal axis of each method represents the increasingly imprecise aligning strate-
gies from left to right.

In Fig. 9, we present the inter-object CR of each model pre-trained on COCO for 200 epochs,
illustrating that less accurate alignment of positive pairs tends to lead to more significant coupling.

D MORE ANALYSIS OF MASKS

As one of the core designs of our de-coupling strategy, the proposed RCC is designed specifically
for dense SSL. We thus further explore the effects of RCC compared to other masking strategies.

D.1 RCC VS. CUTOUT

RandomResizeCrop plays a crucial role in image-level SSL and enhances the network’s ability to
capture robust semantic representations, however, there has been a lack of region-specific masking
strategies for dense SSL. This naturally leads to the idea of Cutout(DeVries & Taylor, 2017), which
randomly cuts out square regions of the image for each region. However, there are typically over-
lapping areas of cutout between adjacent regions, which results in over-cutout, i.e., regions that are
largely covered by the cutout from other regions. To verify the effectiveness of our method in solv-
ing this issue, we provide an additional experiment. Specifically, we generate N RCC and Cutout
masks with a cutout ratio of 0.4 and calculate the average proportion of the actual cutout area in
each proposal region. As shown in Fig. 11, when the number of proposals in each image increases,
Cutout masks suffer from severe over-cutout issues, and the actual cutout ratio is much greater than
0.4. Our RCC stabilizes at the preset cutout ratio.

D.2 COMPARSION OF DIFFERENT MASKING STRATEGIES

To illustrate the distinctions between masking strategies, we employ four different methods for gen-
erating masks, as depicted in Fig. 12. We partition an image into 2 × 2 regions and generate one
bounding box for each region with a predefined cut ratio. It’s important to note that the center of each
bounding box is randomly selected within its respective region, potentially causing overlap between
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Mask Generation Overcut Recovery Mask Generation

Box#1

Box#2

Mask Generation Mask Generation

Box#1

Box#2

(a) RCC in overcut condition (b) RCC without overcut

Figure 10: Illustration of RCC algorithm. RCC iteratively recovers the overcut region caused by
the larger bounding boxes. We display the example with 2 boxes.

Figure 11: Actual cutout ratio of RCC and Cutout in different numbers of regions. We set the
cutout ratio for each region to 0.4 for both methods. The X-axis is the number of proposed regions
and Y-axis is the average cutout ratio. All the cutouts are applied to each region, which is generated
randomly with scale [0.2, 1.0] and aspect ratio [0.5, 2], and mask size is set to 224 × 224. The
experiment is repeated 500 times.

masks from different regions. In comparison to the other three methods, our approach generates
masks with fewer overlaps and more extensive coverage across the entire image.

(a) Random Mask (b) Blockwise Mask

(c) Cutout (d) RCC

Figure 12: Examples of different masking strategies. We generate masks utilizing different strate-
gies with a mask ratio of 0.4. For Cutout and RCC, we generate regions on 2× 2 grids.

E IMPLEMENTATION DETAILS

E.1 DENSE-LEVEL OBJECTIVE WITH DE-COUPLING

We will explain how we incorporate the de-coupling strategy with different methods.

Point-level/Patch-level methods. Point-level methods directly perform SSL on each point-level
feature from the output feature map. For de-couping, we first generate a de-coupled view XD with
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the background maskMRCC and the key view X . We align the point-level features locating on the
foreground region with the output of teacher model with corresponding coordinate. The implemen-
tations of de-coupling on DenseCL(Wang et al., 2021), iBOT(Zhou et al., 2022) and MaskAlign(Xue
et al., 2023) follow the above setting. For brevity, we define the mask as the index set of patches it
covers in the case of point-level methods. As the details:

a) DenseCL implements infoNCE loss on pair-wise point-level features extracted from view Xq

and Xk, which leads to objective:

LDenseCL = (1− λ)LNCE(q,k, {k−}; τ) +
λ

|{qi}|
∑
i

LNCE(q
i,ki, {ki

−}; τ), (9)

where LNCE is the infoNCE loss with temperature τ . Denote point-level features from view XD

as kj
D, the de-coupling version of DenseCL is then defined as:

LDenseCL−D = (1− λDC)LDenseCL +
λDC

|MC
RCC |

∑
j∈MC

RCC

LNCE(k
j
D,kj , {kj

−}; τ). (10)

b) iBOT adopts the same image-level distillation loss as DINO (Caron et al., 2021), but introduces
a novel pixel-level distillation loss on masked patches, as a reconstruction loss. In this paper, we
apply iBOT without multi-crop. This leads to the objective:

LiBOT = −f [CLS]
t (Xk)T log f [CLS]

s (Xq)− 1

|M|
∑
i∈M

ft(X
k,Pi)

T log fs(X
M ,Pi), (11)

where M represents the mask for reconstruction. The masked view, denoted as XM , is created
using Xk, and Pi indicates the position of each patch. We construct the de-coupled view XD with
Xk, which leads to iBOT-D as :

LiBOT−D = (1− λDC)LiBOT −
λDC

|MC
RCC |

∑
j∈MC

RCC

ft(X
k,Pj)

T log fs(X
D,Pj). (12)

c) MaskAlign applies a pre-trained encoder as a frozen teacher and directly aligns the visible fea-
tures with a smooth L1 loss to the corresponding features output by the teacher model. This leads to
the objective:

LL1(z1, z2) =

{
1
2 ∥z1 − z2∥2 , ∥z1 − z2∥1 ≤ 1

∥z1 − z2∥1 −
1
2 , otherwise

, (13)

LMaskAlign =
1

|MC |
∑
i/∈M

LL1

[
fs(X

M ,Pi), ft(X,Pi)
]
. (14)

We then generate de-coupled view XD from X and combine de-coupling strategy as

LMaskAlign−D = (1− λDC)LMaskAlign +
λDC

|MC
RCC |

∑
j∈MC

RCC

LL1

[
fs(X

D,Pj), ft(X,Pj)
]
.

(15)
Region-level methods. Region-level methods define regions as the collections of point-level fea-
tures, serving as object priors. To incorporate with such setting, we perform our de-coupling loss on
the intersection of the selected region and foregroundMC

RCC . The implementations of SoCo(Wei
et al., 2021) and Leopart(Ziegler & Asano, 2022) follow the above setting. Specifically:

a) SoCo apply two types of framework for extracting region-level features: an R50-C4 structure that
leverages conv5 block with RoiAlign on feature map output by conv4; an R50-FPN structure that
extracts multi-scale region-level features with an extra FPN. We adopt R50-C4 for its simplicity.
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Note that SoCo applies selective search to generate K proposals for each view as object prior, we
thus use the same proposals to obtain background maskMRCC . For two augmented view Xq, Xk

and corresponding proposal region {Pq
i }Ki=1, {Pk

i }Ki=1, the objective of SoCo-C4 is defined as:

LSoCo =
1

K

∑
i

cos (fs(X
q,Pq

i ), ft(X
k,Pk

i )). (16)

We extract region-level de-coupled features on the intersection ofMC
RCC and each proposal, i.e.:

LSoCo−D = (1− λDC)LSoCo +
λDC

K

∑
j

cos (fs(X
D,Pk

j ∩MC
RCC), ft(X

k,Pk
j )). (17)

b) Leopart applies a SwAV-like prototype-based loss(Caron et al., 2020) on region-level features. It
generates V views with vg global views and aligns region-level features masked by the global view’s
attention, which leads to the objective with 2D cross-entropy loss l as:

LLeopart =

vg∑
j=0

V∑
i=0

1i ̸=j

[
Maij

⊙ l (fs(Xi,Pi), ft(Xj ,Pj))
]
, (18)

where Maij
is the binary mask of global view’s attention to the intersection with view Xj . Pi,Pj

is the corresponding pairwise intersection between Xi,Xj . Because local views typically provide
incomplete semantics, We only perform de-coupling on global views to avoid a difficult pretext that
leads to coupling. With the de-coupled view XD

j generated by the global view Xj , we define the
de-coupling objective as:

LLeopart−D = (1− λDC)LLeopart + λDC

vg∑
j=0

(Maj
⊙MF,j)⊙ l

(
fs(X

D
j , I), ft(Xj , I)

)
, (19)

where the binary mask MF,j ,Maj
are the foreground defined by RCC and attention mask corre-

sponding to Xj respectively.

E.2 PRE-TRAINING DETAILS

De-coupling. For region generation and RCC mask, we divide the input view into 3 × 3 grids
and create a single bounding box in each grid with the scale in (0.15, 4) and aspect ratio in the
range (0.5, 2). The RCC cutout ratio is selected from the range [0.3, 0.5]. The de-coupled views
are generated with the augmented key views, which are processed with the standard augmentation
pipeline such as crop, jittering and gaussian filtering. We set the de-coupling weight λDC to 0.3.

Optimization hyper-parameters. For DenseCL, we follow the same setting to adopt an SGD
optimizer with the base learning rate lrbase of 0.3. For SoCo, we adopt LARS (You et al., 2017)
with lrbase as 2.0 and batch size of 1024. For Leopart, we keep all the same. For iBOT, we utilize
AdamW (Loshchilov & Hutter, 2017) and set the lrbase to 1× 10−3 and the batch size of 512. For
MaskAlign, we use AdawW with lrbase = 3× 10−4 and the batch size of 1024.

Pre-training schedule. For models with ResNet-50, to compare with the existing baseline, we
follow the common schedule of 800-epoch pre-training adopt in (Wang et al., 2021; Bai et al.,
2022). For models with ViT-S/16, since we mainly focus on the comparisons between same models
with and without de-coupling, we adopt the 800-epoch pre-training schedule for both iBOT and
MaskAlign.

E.3 EVALUATION PROTOCOLS.

Here, we will explain the implementation details of the evaluation protocols in our paper.
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Table 7: Semantic segmentation results of model pre-trained with Leopart. ’-D’ denotes com-
bining with de-coupling strategy, ’LC’ denotes finetuning a linear classifier, ’FCN’ denotes fine-
tuning an FCN model, and ’K=500’ denotes over-clustering with K set as 500.

Method
VOC12 COCO-Stuff

LC FCN K=500 LC K=500

Leopart 65.0 67.2 45.2 52.5 44.4
Leopart-D 66.5 68.9 48.2 53.2 45.3

E.3.1 FINETUNING FOR DOWNSTREAM TASKS

CNN-based evaluation We compare models using a ResNet-50 backbone on three dense-level
benchmarks: Pascal VOC detection, COCO detection, and instance segmentation. For VOC de-
tection, we fine-tune a Faster R-CNN detector (C4-backbone) on the combined set of trainval2007
and trainval2012. As the variation on Pascal VOC is large, following (He et al., 2020), we run 5
trials and compute means. We then report AP, AP50, and AP75 on the test2007 set. For COCO de-
tection and instance segmentation, we fine-tune a Mask R-CNN detector (C4-backbone) on COCO
train2017 with 1× schedule. The evaluation is performed on the COCO val2017 split.

ViT-based evaluation We compare models using a ViT-S/16 backbone on three benchmarks: COCO
detection and instance segmentation, and ADE20K semantic segmentation following (Zhou et al.,
2022). For COCO detection and segmentation, we fine-tune a Cascade Mask R-CNN framework
with a 1× schedule on the train2017 split. For ADE20K segmentation, we adopt the task layer in
UPerNet and fine-tune the entire network for 160k iterations on the training split.

E.3.2 DETAILS OF OKNN AND OKNN-D

OKNN. We obtain object-level features from the output feature map by using ground-truth bounding
boxes. We achieve this using RoI Align with a size of 7 × 7 and average pooling. Specifically, we
resize each input image to 224 × 224. For ResNet50, we upsample the output of conv4 to 28 × 28
and obtain a 14 × 14 feature map output by conv5. Meanwhile, we directly utilize the 14 × 14
output of ViT-S/16. For the training set, we extract N object-level features per image to store the
features and labels in a memory bank because choosing all the objects in the dataset will lead to
imbalanced numbers across the categories in the training set, which will lead to the results being
biased. Similarly to image-level KNN, we predict the label for each object in the evaluation set
by finding the k-nearest object-level features in the training set. For evaluation on COCO, we set
N = 3 and k = 20. The above process does not need further training and is much faster. More
importantly, compared to the evaluation with a fine-tuning stage, O-KNN directly reflects how well
the features from the same class are preserved instead of favoring the mask or detection prediction.

OKNN-D. OKNN-D Follows the same pipeline for feature extraction and label prediction as OKNN.
The difference is that for every input image, we directly replace the regions uncovered by the selected
bounding boxes with arbitrary background images. When a pre-trained model encounters severe
coupling issues, it tends to intertwine each selected object with irrelevant background bias, resulting
in a more significant degradation of recognition.

F ADDITIONAL RESULTS

Evaluation of Leopart. The evaluations of Leopart(Ziegler & Asano, 2022) follow its original pro-
tocols. Specifically, we utilize three techniques for evaluation: a) linear classifier (LC): we fine-tune
a 1× 1 convolutional layer on top of the spatial output of the frozen backbone following (Van Gans-
beke et al., 2021); b) over-clustering, we evaluate the frozen feature using spatially dense clustering
and Hungarian matching (Kuhn, 1955); c) FCN, we fine-tune a FCN model (Long et al., 2015) fol-
lowing same setting as (Wang et al., 2021). We report results on Pascal VOC and COCO-Stuff in
Tab. 7. Our model advances original Leopart significantly in transfer learning on VOC. On COCO-
Stuff, Leopart-D also achieves an improvement of 0.7 on LC and 0.9 on over-clustering. Note that
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Table 8: Training time of different models. We detail the actual training time of different models.
Each model is pre-trained on COCO for 800 epochs with an 8-GPU 3090 machine. B denotes the
batch size, ’-D’ denotes models with de-coupling. For de-coupling, we sample 25% key views to
construct the de-coupled views which are only forwarded to the student encoder.

Method Total Crops Number Backbone Training Time

SoCo B×2×2242 ResNet-50 27h
SoCo-D B×2×2242+B×0.25×2242 ResNet-50 30h
DenseCL B×2×2242 ResNet-50 29h
DenseCL-D B×2×2242+B×0.25×2242 ResNet-50 32h
iBOT B×2×2242 ViT-S/16 24h
iBOT-D B×2×2242+B×0.25×2242 ViT-S/16 27h
MaskAlign B×1×2242 ViT-S/16 10h
MaskAlign-D B×1×2242+B×0.25×2242 ViT-S/16 13h

Table 9: Different pre-training schedules. We report COCO detection and instance segmentation
performance. ’-MC’ denotes iBOT with a multi-crop stratigy.

Method Epoch COCO Det. COCO Iseg.

AP AP50 AP75 AP AP50 AP75

iBOT 800 42.3 61.2 45.6 37 58.3 39.4
iBOT 900 42.7 61.9 45.8 37.2 58.6 39.6

iBOT-MC 800 43.7 62.8 47.0 38.1 59.6 40.7
iBOT-D 800 45.1 64.3 48.7 39.1 61.2 41.7

Leopart is only pre-trained for 50 epochs, following the original setting. It demonstrates that our
de-coupling strategy can also work with a short pre-training schedule.

Training time and learning efficiency. In Tab. 8, we provide the training times for each method
when pre-trained on COCO for 800 epochs. To maintain a balance between the de-coupling effect
and additional computational costs, we employ a strategy where we sample 25% of key views to
create the de-coupled views without introducing extra augmentations. These de-coupled views are
exclusively forwarded to the student encoder. Across most dense SSL methods, the inclusion of a
de-coupling branch results in an approximately 10% increase in training time.

Learning efficiency.To investigate whether the observed benefits of our de-coupling strategy are
solely due to an increase in the number of views, we conducted a comparison using different pre-
training schedules for iBOT. a) In the first schedule, we used 25% of query views to create de-
coupled views and pre-trained iBOT for 900 epochs on COCO, maintaining the same total number of
views. b) In the second schedule, we employed a multi-crop strategy for iBOT’s pre-training, which
included two global views sized at 2242 and four local views sized at 962, denoted as iBOT-MC. As
shown in Tab. 9, our iBOT-D outperformed all other models by a significant margin, demonstrating
that the advantages of our approach extend beyond the increase in the number of views.

G ADDITIONAL ABLATIONS

G.1 ABLATION ON CNNS

Mask types. In Section 6, we conducted ablation experiments to assess the impact of different
components of the de-coupling strategy using iBOT. Following the same experimental setup, we pre-
trained DenseCL on COCO for 200 epochs and examined the effects of our RCC and de-coupling
loss. The results are presented in Table 10. For the details of the masking strategy: a) DCRec: We
generated rectangular masks within the scale range of [0.2, 0.6] and aspect ratio range of [2/3, 3/2].
b) DCRan: We randomly masked out patches as background with a mask ratio sampled from the
range [0.4, 0.6]. c) For other methods, we sampled the mask/cutout ratio from the range [0.3, 0.5].
Similar to our findings with iBOT, we observed that the presence of a copy-paste branch aids in
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Table 10: Comparison of mask types.
DenseCL is used as a baseline, we only change
the masking strategy for de-coupling.

Method VOC Det. OKNN CRInter CRIntra

DenseCL 55.0 67.5 1.64 0.31
+DCRec 55.2 66.7 1.25 0.24
+DCRan 55.5 69.3 1.22 0.17
+DCCutout 54.6 65.1 1.30 0.25
+DCBlc 55.3 69.0 1.16 0.20
+DCRCC 55.9 70.0 1.18 0.12

Table 11: Comparison with copy-paste meth-
ods. DenseCL is used as baseline.

Method VOC Det. OKNN CRInter CRIntra

DenseCL 55.0 67.5 1.64 0.31
+DCAvg 54.4 65.2 1.33 0.33
+DCp−a 54.1 63.5 1.41 0.40
+DCp−p 55.2 66.7 1.25 0.24

de-coupling at the inter-object level. However, only masks that introduce context noise at a finer
granularity can effectively mitigate intra-object coupling. Masks generated with RCC outperformed
all other strategies in both downstream performance and de-coupling effects

Loss types. Table 11 presents a comparison of different types of de-coupling loss using a rectangular
mask. The results demonstrate that aligning each decoupled dense-level feature directly to the key
with the corresponding position is an effective approach without performance degradation.

G.2 ABLATION ON HYPER-PARAMETERS

Number of grids. The input view is divided into Ngrid×Ngrid grids to generate a single bounding
box in each grid. We use varying values of Ngrid and pre-train iBOT-D on COCO for 200 epochs to
investigate its influence on RCC for decoupling. Results in Tab. 12 indicate a low number of grids
which prevents RCC from effectively generating cutout regions in various positions and will weaken
the effectiveness of de-coupling, resulting in lower performance on downstream tasks. In practice,
we set Ngrid to 3 for computational efficiency.

Figure 13: Background mask with different
numbers of grids.

Table 12: Ablation on the number of grids.
We report AP of COCO detection and cou-
pling ratio with models pre-trained with dif-
ferent numbers of grids.

Ngrid 1 2 3 4

COCO Det. 39.4 41.2 42.0 42.1
CRInter 1.42 1.10 1.15 1.14
CRIntra 0.16 0.08 0.04 0.03

de-coupling weight. We pre-train the iBOT-D with different de-coupling weights λDC with results
shown in Tab. 13. A high λDC will disturb the original pre-training objective, leading to worse
performance on downstream tasks. We thus set the λDC to 0.3 for the balance of de-coupling and
dense SSL objectives.

Table 13: Ablation on λDC . We report AP of COCO detection and coupling ratio with models
pre-trained with different de-coupling weights λDC .

λDC 0.1 0.2 0.3 0.4 0.6
COCO Det. 40.5 41.6 42.0 41.2 38.4
CRInter 1.25 1.18 1.15 1.12 1.16
CRIntra 0.07 0.03 0.04 0.02 0.02
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Figure 14: Pipeline of calculating LSC. We sample a small crop XCij
from the origninal view

X with the center lying on the patch of i-th row and j-th column. XCij
and X are respectively

forwarded to the encoder. We calculate the cosine similarity between the image-level feature of
XCij and the corresponding region-level feature of X as the value of LSC(i, j).

H VISUALIZATION

H.1 POINT AFFINITIES

Previous work Bai et al. (2022) provides a simple yet intuitive visualization technique to show how
well the SSL model learns from an image. We adopt a similar approach to visualize the feature
similarity maps generated by different pre-training methods, which intuitively demonstrates the ef-
fectiveness of our de-coupling strategy. We sample images from COCO for visualization and resize
them to the size of 448×448. The feature maps are obtained by the interpolation of the output fea-
ture map from the final layer to 56×56. For each image, a specific feature was selected (marked as
a red dot), and its cosine similarity to the remaining features in other locations from the feature map
was calculated. The models used for visualization are pre-trained on COCO for 800 epochs. The
results of CNN-based and ViT-based models are shown in Fig. 15 and 16.

H.2 LOCAL SEMANTICS CONSISTENCY

As depicted in Fig. 14, we argue that a network effectively capturing local semantics should be able
to maintain consistency with or without neighboring context. Based on this assumption, we verify
the effectiveness of the de-coupling paradigm through a new type of visualization. For a given image
X of size 512× 512, we first patchify it with a patch size of 16, yielding 32× 32 patches Pij . We
define crop region Cij whose center lies on Pij , containing 5 × 5 patches. The local semantics
consistency map is defined as:

zlocal
Cij

= E(XCij ), z
context
Cij

= f(X, Cij), LSC(i, j) = cos (zlocal
Cij

, zcontext
Cij

). (20)

We directly pass a local crop, denoted as XCij , through the encoder to obtain the local feature at Cij .
Simultaneously, we send the entire image X to the backbone network E and extract region-level
features corresponding to the area Cij , resulting in zcontext

Cij
. A higher value in the LSC map shows

that the representation of the local region is resilient to the absence of contextual information, rather
than being overwhelmed by its neighboring context, indicating a robust local feature. The results for
both CNN-based and ViT-based models are illustrated in Figure 17 and Figure 18.

H.3 FURTHER DISCUSSION WITH DINO V2

DINO v2(Oquab et al., 2023) applies iBOT loss for dense-level pre-training. To further investigate
the model’s behavior of capturing local semantics when pre-trained on large-scale curated datasets,
we visualize DINO v2 following the same pipeline adopted in Appendix H.1 with the officially
released ViT-S/14 and ViT-B/14 distilled models. We show the failure cases in Fig. 19 where the
model entangles the features of sub-discriminative objects with their surroundings. We hypothesize
that even the foundation model pre-trained at a dense level without the de-coupling constraint can
suffer from the coupling issue. We will leave further discussion on this issue for future work.
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SoCo SoCo-D PLRC DenseCL DenseCL-D

Figure 15: Point affinity visualization on CNN-based models. The selected point-level feature is
marked as a red dot.
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iBOT iBOT-D MaskAlign MaskAlign-D

Figure 16: Point affinity visualization on ViT-based models. The selected point-level feature is
marked as a red dot.
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SoCo SoCo-D DenseCL DenseCL-D

Figure 17: Visualization of LSC map on CNN-based models. Brighter colors denote higher LSC.
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iBOT iBOT-D MaskAlign MaskAlign-D

Figure 18: Visualization of LSC map on ViT-based models. Brighter colors denote higher LSC.
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DINO v2(S) iBOT-D(S)DINO v2(B) DINO v2(S) iBOT-D(S)DINO v2(B)

Figure 19: Point affinity visualization on DINO v2 and iBOT-D. The selected point-level feature
is marked as a red dot. ’(S)’ denotes the backbone of ViT-S and ’B’ denotes ViT-B.
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