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ABSTRACT

Low-rank adapters have become standard for efficiently fine-tuning large language
models (LLMs), but they often fall short of achieving the performance of full fine-
tuning. We propose a method, LoRA Silver Bullet or LORA-SB, that approximates
full fine-tuning within low-rank subspaces using a carefully designed initialization
strategy. We theoretically demonstrate that the architecture of LoORA-XS—which
inserts a learnable 7 x r matrix between B and A while keeping other matrices
fixed—provides the precise conditions needed for this approximation. We leverage
its constrained update space to achieve optimal scaling for high-rank gradient
updates while removing the need for hyperparameter tuning. We prove that our
initialization offers an optimal low-rank approximation of the initial gradient and
preserves update directions throughout training. Extensive experiments across
mathematical reasoning, commonsense reasoning, and language understanding
tasks demonstrate that our approach exceeds the performance of standard LoRA
while using 27-90 times fewer learnable parameters, and comprehensively out-
performs LoRA-XS. Our findings establish that it is possible to simulate full
fine-tuning in low-rank subspaces, and achieve significant efficiency gains without
sacrificing performance.

1 INTRODUCTION

While pre-trained foundation models excel at general-purpose capabilities (Bubeck et al., 2023; Hao
et al., 2022), adapting them to specific downstream tasks often requires fine-tuning (FT). Although
in-context learning (Brown et al., 2020; Radford et al., 2019) has gained popularity for its simplicity,
it falls short in both performance and efficiency compared to FT (Liu et al., 2022). At the same time,
full FT, while highly effective, is computationally expensive and impractical at scale.

Parameter-efficient fine-tuning (PEFT) has become vital for adapting large language models (LLMs)
under computational constraints. Low-rank methods like LoRA (Hu et al., 2021) address this
by reducing learnable parameters via low-rank updates, sparking advancements in optimization,
initialization, structured matrices, and adaptive rank selection (Zhang et al., 2023; Wang et al.,
2024b;a). Low-rank decomposition methods operate on a fundamental premise: FT requires learning
only a low-rank update to the pre-trained weights. However, the gradients computed by these methods
do not inherently possess this property. For instance, LoRA’s gradients need explicit optimization at
each step to better approximate the full FT gradient (Wang et al., 2024b). Initialization has emerged
as a critical factor in low-rank adaptation, as highlighted by recent works like Pissa-LoRA (Meng
et al., 2024) and LoRA-GA (Wang et al., 2024a).

We analyze these limitations in the context of the architecture of LoRA-XS (Batazy et al,
2024)—which inserts a learnable r x r matrix between B and A while keeping other matrices
fixed. While exploring solutions inspired by LoRA-based methods, we discover a remarkable
property unique to LoORA-XS: through careful initialization of A and B, we can simulate the full FT
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Figure 1: LoRA-SB. LoRA-XS (Batazy et al., 2024) reduces parameters compared to LoRA (Hu
et al., 2021) by inserting a learnable r x r matrix R between B and A, while keeping other matrices
fixed, leading to W = Wy + sBRA. Our method, LORA-SB, uses the same architecture. We find that
updating R using its gradients g'* is equivalent to updating the full FT matrix W with an equivalent
gradient jgp = sBg™ A. We initialize B, R, and A such that the equivalent gradient jgp provably
best approximates the full FT gradient g in low rank subspaces at each step. We simulate entire full
FT optimally within low-rank subspaces by using only the first gradient g; from full FT.

optimization in low rank subspaces through entire training, as shown in Figure 1. Our initialization
provides optimal scaling for approximating high-rank full FT gradients and eliminates need for
scaling the hyperparameter a.

Key Contributions:

* We formalize the limitations of LoRA-XS, showing how its constrained update space leads to
suboptimal gradient approximation, initialization sensitivity, and hyperparameter dependence.

* We propose an initialization derived from approximating the first step of full FT, proving it provides
optimal low-rank approximation of the initial gradient and preserves update directions throughout.

* We prove that our initialization makes gradient optimization hyperparameter-independent and
guarantees convergence, eliminating the need for any tuning of the scaling factor.

* Through extensive experiments across mathematical reasoning, commonsense reasoning, and
language understanding tasks, we demonstrate that our method surpasses LoRA’s performance
while using 27-90x less learnable parameters, and comprehensively outperforms LoRA-XS.

2 METHODOLOGY

2.1 PRELIMINARIES

In standard FT, a pre-trained weight matrix W € R™*" is updated using the update matrix AW
as: W = Wy + AW, where W) is the pre-trained weight. This requires updating mn parameters
per layer. LoRA posits that updates lie in a low-dimensional subspace, parameterizing AW as:
W = Wy + sBA, where B € R™*" and A € R"™ " are trainable low-rank matrices with rank
r < min(m,n), and s is a scaling factor («/r) to stabilize training. This reduces the number of
parameters from mn to r(m +n). LORA-XS efficiently parameterizes as: W = Wy + sBRA, where
B and A are fixed, and only R € R"" is trainable, reducing the number of parameters to r%. We
denote the full FT gradient as g = g—‘/@, and the LoRA-XS gradient as gf* g s x5 = g—é, where L is the
loss function.
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2.2 MOTIVATION

LoRA-XS (Batazy et al., 2024) has significantly fewer learnable parameters than LoRA but performs
suboptimally. LORA-XS’s architecture causes constraints on the type of updates it can learn. This
implies that while AW is constrained to be rank < r, it also needs to have column and row spaces
defined by those of B and A, respectively. In contrast, LoORA can learn any update AWV as long as
rank(AW) < r. Thus, the low expressivity of LoORA-XS as compared to LoRA can account for the
performance drop. We identify three key limitations, which arise due to this and otherwise:

1) Inadequate Gradient Approximation: LoRA optimization is mathematically equivalent to full
FT using a constrained low-rank gradient. The gradient of LoRA does not optimally approximate
the full gradient, and needs to be tuned at each step. LORA-Pro (Wang et al., 2024b) finds that this
results in suboptimal performances, and provides a closed form solution to optimize the gradients. In
LoRA-XS, the gradient updates are restricted to an even more constrained low-rank space since A
and B are fixed. We posit that the limitation becomes particularly severe when the ideal updates lie
outside the space spanned by fixed A and B, and consequently has a larger impact on performance.

2) Suboptimal Initialization: While initialization impacts all low-rank methods, it becomes critical
in LoRA-XS where A and B are frozen. Unlike LoRA where poor initialization can be compensated
through training, LoORA-XS relies entirely on its initial subspace defined by A and B. Consider the
zero initialization of the B matrix, for example. While LoORA may experience some performance
degradation in this case (Wang et al., 2024a; Meng et al., 2024), the ideal low-rank update AW can
still be reached through gradient descent. In fact, zero initialization for the B matrix is commonly
used, including in the original LoRA paper (Hu et al., 2021). However, in LoORA-XS, this results
in no learning, as the product BRA remains zero. LORA-XS uses the most significant subspaces
spanned by the columns of pre-trained weights for initialization, inspired by Meng et al. (2024). This
initialization is not aligned well with FT because it fails to capture the specific subspaces relevant to
the FT task.

3) Hyperparameter Sensitivity: The scaling factor s, present in almost every LoRA based FT
method requires tuning to maintain stability during training. This factor acts as a bridge between
the low-rank and full-rank spaces, compensating for the dimensional mismatch in gradients. Poor
tuning of s can lead to unstable training or slow convergence, e.g., see rsLoRA (Kalajdzievski, 2023),
adding complexity and potentially limiting practical deployment.

2.3 LORA-SB: UPDATE APPROXIMATION INITIALIZATION IS A silver bullet

We solve each problem rigorously with proofs in Appendix B. The solutions discussed there in-
dependently address the gradient approximation and initialization problems, while also providing
hyperparameter independence. Our proposed method, LoORA-SB, elegantly combines these solutions
through a simple initialization strategy, derived from approximating the first step of full FT:

U,S, VT < SVD(AW,,,) 1)
1
Ainlt(*v[]- Z’l"], B“ut(*U[]. 27"], Rinite ;5[127',127“] (2)

By the Eckart-Young theorem (Eckart & Young, 1936; Mirsky, 1960), this gives the optimal rank-r
approximation of the full FT update. where U, .S, V are obtained from truncated SVD of the averaged
first update AW,,,. This initialization leads to several key advantages.

Simplified Gradient Optimization. Our initialization ensures Bj,;; and A;,; form orthonormal bases
in R™ and R™ respectively, leading to BT B = AAT = I. With fixed B and A matrices being
orthonormal, the need for complex matrix inversions during training is eliminated, , as the optimal
update step, derived in Equation 2, simplifies to:

1 _ _ 1
QR = ?(BTB) lgfoRAfXS(AAT) b= S*QQEORAfXS'

Optimal Update Approximation. Our initialization guarantees that the first update optimally
approximates the full FT weight updates: sBipiiRinicAinic = AWy By the Eckart-Young theorem,
this gives the optimal rank-r approximation of the initial full FT update.
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Hyperparameter Independence. As shown in Theorem 4, when gradient approximation is applied
with orthonormal B and A, the hyperparameter s can be set to 1, resulting in:

9" = gftraxs 3

This demonstrates that our initialization guarantees optimal gradient approximation at every step,
without requiring any scaling factor.

Guaranteed Loss Reduction. Since B is a tall orthonormal matrix and A is a wide orthonormal ma-
trix, they remain full rank throughout training. This ensures that dL remains negative 3, guaranteeing
stable optimization and convergence.

LoRA-SB Advantages over LoRA. Many properties described above are not achievable with
standard LoRA methods. Even if B and A are initialized as orthonormal in LoRA, subsequent updates
do not preserve this property because B and A are trainable. This results in several challenges:

* Potential instability of (BT B)~! and (AAT)~!, as they are not guaranteed to remain non-singular
during training.

* Inability to ensure consistent loss reduction due to potential rank deficiency—DB and A may not
remain full-rank throughout training.

* Necessity to fine-tune the hyperparameter a.

* Repeated re-computation of B B and AAT is required at each optimizer step for accurate gradient
approximation.

Algorithm. To optimize GPU memory usage during initialization, we hook into the backward pass
of PyTorch and compute the gradients layerwise, immediately discarding the computed gradients (Lv
et al., 2024; Wang et al., 2024a). This ensures O(1) memory usage, independent of the number of
layers, keeping memory consumption well within manageable limits and ensuring it does not exceed
the memory requirements of subsequent LoRA-SB FT. For large batch sizes, memory usage can
be further optimized through gradient accumulation and quantization. We compute the update
approximation using only 1/1000 of each dataset’s total number of samples. This ensures that
the additional training time overhead is minimal and has a negligible effect on overall efficiency.

3 EXPERIMENTS

Baselines. We compare LoRA-SB against full FT, LoRA, LoRA-XS, rsLoRA, and PiSSA. rsLoRA
introduces a rank-scaled stabilization factor («/+/7) to enhance stability, while PiSSA updates only
the principal components of the pre-trained weight W and freezes the residuals.

Arithmetic Reasoning. We fine-tune Mistral-7B (Jiang et al., 2023) and Gemma-2 9B (Team et al.,
2024) on 50K samples from the MetaMathQA (Yu et al., 2024) dataset and evaluate them on the
GSMSK (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) benchmarks. We apply LoRA
modules to the key, value, query, attention output, and all fully connected weight matrices, training
with ranks » = {32,64,96}. We present results in Table 1. LoRA-SB significantly outperforms
LoRA-XS across all settings. Notably, LORA-SB outperforms LoRA-based methods (r = 32) while
using 40x fewer trainable parameters for Mistral-7B and 90x fewer for Gemma-2 9B at ranks r = 96
and r = 64, respectively. We present training loss curves comparing LoORA-SB and LoRA-XS in
Figure 2. Thanks to superior initialization, LORA-SB starts with a lower initial loss compared to
LoRA-XS. Additionally, due to optimal gradient approximation, LoRA-SB maintains a consistently
better loss curve throughout and converges to a superior final value.

Commonsense Reasoning. We fine-tune Llama-3.2 3B (Dubey et al., 2024) on COMMON-
SENSE170K, a dataset with eight commonsense reasoning tasks (Hu et al., 2023). We evaluate the
model’s performance on each dataset individually, which include BoolQ (Clark et al., 2019), SIQA
(Sap et al., 2019), PIQA (Bisk et al., 2020), ARC-Challenge (Clark et al., 2018), ARC-Easy (Clark
et al., 2018), OBQA (Mihaylov et al., 2018), WinoGrande (Sakaguchi et al., 2021), and HellaSwag
(Zellers et al., 2019). LoRA modules are applied to the key, value, query, attention output, and all
fully connected weight matrices, training with ranks » = {32, 64, 96}. We present the results in Table
2. LoRA-SB consistently outperforms LoRA-XS across all settings. In addition, LoORA-SB (r = 96)
outperforms LoRA-based methods (r = 32) with 27x fewer trainable parameters.

Natural Language Understanding. We present results in Appendix C.6.
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Table 1: Accuracy comparison of FT methods on Mistral-7B and Gemma-2 9B across the arithmetic
reasoning benchmarks GSM8K and MATH, after training on MetaMathQA. # Params denotes the
number of trainable parameters. The best results among PEFT methods are highlighted in bold.

Method | Rank | Mistral-7B | Gemma-2 9B

| | #Params GSM8K MATH | #Params GSMSK MATH
Full FT - 7.24 B 63.87 17.65 9.24 B 79.23 38.02
LoRA 32 83.88 M 61.94 15.98 108.04 M 76.19 36.56
rsLoRA 32 83.88 M 62.15 16.24 108.04 M 76.84 36.88
PiSSA 32 83.88 M 62.43 16.52 108.04 M 77.12 37.04
LoRA-XS 32 0.23 M 54.28 13.36 0.30 M 74.07 34.62
LoRA-XS 64 0.92M 57.08 15.62 1.20 M 75.02 36.46
LoRA-XS 96 2.06 M 58.53 16.42 2.71M 75.21 36.98
LoRA-SB 32 0.23 M 58.91 15.28 0.30 M 75.44 36.66
LoRA-SB 64 0.92 M 60.73 16.28 1.20M 76.65 37.14
LoRA-SB 96 2.06 M 63.38 17.44 2. 71 M 78.40 37.70

—— LoRA-XS (r=96) —— LoRA-XS (r=96)

Training Loss

Steps

—— LORA-SB (r=96)

(a) Mistral-7B

Training Loss

Steps

—— LORA-SB (r=96)

(b) Gemma-2 9B

Figure 2: Training loss for Mistral-7B and Gemma-2 9B, comparing LoRA-SB and LoRA-XS.

Table 2: Accuracy comparison of FT methods on Llama-3.2 3B across eight commonsense reasoning
datasets. # Params: the number of trainable parameters. Best results among PEFT methods in bold.

Method Rank # Params ‘ Accuracy (1)
| BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.
Full FT - 3.21B | 70.43 85.64 80.45 91.92 85.02 88.52 75.29 81.88 82.39
LoRA 32  48.63M | 70.03 85.20 79.12 90.71 82.24 86.91 74.32 81.87 81.30
rsLoRA 32 48.63M | 69.81 85.05 78.92 90.45 82.02 86.71 74.18 81.72 81.11
PiSSA 32 48.63M | 70.12 85.42 79.44 90.88 82.68 87.23 74.61 81.79 81.52
LoRA-XS 32 0.20M | 65.01 82.87 76.17 87.32 80.12 84.78 70.31 75.71 T77.79
LoRA-XS 64 0.80M | 66.53 83.12 77.98 8853 81.76 85.15 72.04 77.14 79.03
LoRA-XS 96 1.81M | 67.28 83.35 78.66 88.99 82.08 85.18 72.61 78.88 79.63
LoRA-SB 32 0.20M | 66.33 84.06 78.91 89.04 81.37 86.62 72.44 76.97 79.47
LoRA-SB 64 0.80M | 68.35 84.55 79.94 91.68 83.03 87.84 74.83 80.12 81.29
LoRA-SB 96 1.81M |70.34 84.76 80.19 91.62 84.61 87.92 74.74 &81.20 81.92

4 CONCLUSION

In this work, we introduced LoRA-SB, which bridges the gap between low-rank PEFT and full FT.
This is enabled by our initialization strategy, which approximates the first step of full FT and ensures
that the most relevant subspaces for task-specific adaptation are captured. We achieve optimal gradient
scaling and preserve update directions throughout training. Our approach ensures hyperparameter
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independence by approximating the full FT gradient, thereby eliminating instability issues associated
with scaling factors. Through extensive experiments, we demonstrate that our method outperforms
LoRA while using upto 90x less parameters, and comprehensively outperforms LoRA-XS. Our work
advances PEFT while laying the groundwork for further innovations in low-rank adaptations for
neural networks. Future work includes exploring adaptive layer-wise rank settings and integrating
LoRA-SB with quantization. We also aim to evaluate its performance on other models, such as Vision
Language Models (VLMs) and Vision Transformers (ViTs).
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A RELATED WORK

PEFT. PEFT methods have become essential for adapting large pre-trained models under computa-
tional constraints. Early techniques like AdapterFusion (Pfeiffer et al., 2021) and Prefix-Tuning (Li &
Liang, 2021) enabled task-specific adaptation with minimal parameter updates. Advances like soft
prompts (Lester et al., 2021) further reduced trainable parameter counts while maintaining strong
performance. Recent approaches have explored operating directly on model representations (Wu
et al., 2024).

Low-Rank Decomposition Methods. LoRA (Hu et al., 2021) demonstrated that weight updates
during FT could be efficiently approximated using low-rank matrices, drastically reducing parameter
counts. Building on this insight, variants such as QLoRA (Dettmers et al., 2023) and AdaLLoRA
(Zhang et al., 2023) extended the paradigm through quantization and adaptive allocation strategies.
The applicability of low-rank techniques has also been explored in pretraining with GaLore (Zhao
et al., 2024) and ReLoRA (Lialin et al., 2023), highlighting the versatility of low-rank adaptation
methods. LoRA-based methods have also been applied in other domains, such as efficient federated
FT (Sun et al., 2024; Singhal et al., 2024).

Enhancing LoRA Performance. Recent efforts have focused on optimizing LoRA’s performance.
PiSSA (Meng et al., 2024) demonstrated improvements by initializing matrices with principal
components of pre-trained weights. LoRA-Pro (Wang et al., 2024b) and LoRA-GA (Wang et al.,
2024a) improved gradient approximation, aligning low-rank updates more closely with full FT.
Methods like DoRA (Liu et al., 2024) and rsLoRA (Kalajdzievski, 2023) introduced decomposition-
based and scaling stabilization techniques to enhance learning stability and expand LoRA’s utility.

Improving Efficiency in LoRA Variants. Efficiency-focused innovations have pushed LoRA toward
more parameter savings. LORA-XS (Batazy et al., 2024) achieves this by inserting a small trainable
weight matrix into frozen low-rank matrices. VeRA (Kopiczko et al., 2024) shares low-rank matrices
across layers, relying on scaling vectors for task-specific adaptation. Tied-LoRA (Renduchintala
et al., 2024) leverages weight tying to reduce parameter usage at higher ranks, while HydralLoRA
(Tian et al., 2024) introduces an asymmetric architecture for improvement.

B SOLVING EACH PROBLEM OF LORA-XS

B.1 APPROXIMATION OF THE FULL FT GRADIENT

As mentioned, LoRA optimization is mathematically equivalent to full FT using a constrained low-
rank gradient. However, the update generated using the gradients of LORA does not result in the same
update which the low-rank gradient would have generated. The following holds true for LoORA-XS as
well. To understand this, let us look at the change in weight W and its relationship with changing of
low-rank matrix R, which can be simply given by dWW = —sB(dR)A. This implies that updating
R with gradient g% is equivalent to updating W with low rank equivalent gradient § in full FT as
described in Definition 1.

Definition 1. We define the equivalent gradient as:
§=sBgfA

where gt is the gradient of L with respect to R.

The equivalent gradient describes the virtual low-rank gradient of matrix W in LoRA-XS optimization
process, despite W not being directly trainable. This gradient determines how updates to R affect V.
To bridge the performance gap between LoRA-XS and full FT, we aim to minimize the discrepancy
between the equivalent gradient g and the full gradient g. First, we establish the relationship between
gradients in LoRA-XS optimization in Lemma 1.
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Lemma 1. The gradient of the loss with respect to matrix R can be expressed in terms of the
gradient with respect to the weight matrix W as:

R T AT
9LorA-xs =SB gA

Proof. See Appendix C.1. O

We can now formulate our objective to minimize the distance between the equivalent gradient and
the full gradient. We do not have access to the full FT gradient g during LORA-XS based FT. Thus
we need to find the ideal gradient with respect to R, given by g%, and subsequently the optimal
approximation g, in terms of the gradient which is available to us during training: gF p._ -
Fortunately, this optimization problem admits a closed-form solution independent of g as described
in Theorem 2.

Theorem 2. The optimal solution for the objective minyr||g — g |2, such that g = sBg® A,
is:

1 _ _
QR:;Q(BTB) 1gEoRA—XS(AAT) ! “4)

Proof. See Appendix C.2. O

The closed-form solution in Theorem 2 solves the optimization problem min,=||g — g%, but by
itself doesn’t ensure the loss will decrease when updating R. Through Theorem 3, we prove that
the change in loss is non-positive (AL < 0). This property is fundamental to optimization as it
guarantees consistent loss minimization throughout training.

Theorem 3. Consider the update for matrix R using the solution derived in Theorem 2:
R« R —ngf

where 1 > 0 is the (sufficiently small) learning rate. This update guarantees a reduction in
the loss AL, given by:

AL = —n(g1ora—xs,9")F + 0(n) <0.
Proof. See Appendix C.3. O

B.2 INITIALIZATION USING UPDATE APPROXIMATION

In FT, the primary goal is to update weights to better suit the target task. The initial gradient steps are
particularly informative, as they indicate the direction of desired adaptation. We leverage this insight
by using the first update step from full FT for initialization.

This approach offers two key advantages. First, it ensures the low-rank space captures the most
relevant subspace for the target task rather than relying on pre-trained properties. Second, since A
and B are fixed, initializing them to span the subspace of early adaptation increases the likelihood of
capturing useful updates throughout training. This also ensures that the final update is learnt in the
correct subspace, of which we have no apriori information besides the first full FT step. Our method
is summarized as: set such initialization that best approximates the first step of full FT. Given a full
FT update AW ¢;yst—step, OUr initialization satisfies:

SBinitRinitAinit ~ AWfirstfstep (5)
The first step of full FT, for Adam-based optimizers such as AdamW, for sample z; is:

AWfirstfstep =-nX Sign<vW‘C(WO’$i)) (6)
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However, the usage of a single sample may lead to noisy estimates. Instead, we compute a more
stable initialization by averaging gradients over a subset of the training data:

n<[X|
AWeapg = —nsign( Z VwL(Wo,xi)), x; €X )
i=0

This better captures the general direction of adaptation required for the target task while being less
sensitive to individual sample variations. We can then use truncated SVD to obtain a low-rank
approximation of AWj, and express it as sBRA. There exist infinite combinations of B and A
which can obey this relationship. For instance, we can initialize B and A as US and V' " and keep R
as I /s. This is equivalent to the B and A initialization in LoORA-XS but by approximating the update
rather than the pre-trained matrix. We note that the above process can be computed for any optimizer,
by approximating the corresponding first step. We compute this specifically for AdamW since we use
1t.

B.3 HYPERPARAMETER INDEPENDENCE

The hyperparameter « is used in LORA and other decomposition-based method to tackle the issue
of instability caused to improper scaling of the updates. The gradient scaling is accounted for, by
adding a hyperparameter to normalize the updates. The importance of scaling is shown in methods
like rank stabilization (Kalajdzievski, 2023). However, the full FT gradient g needs no such tuning.
We claim that approximating the full FT gradient removes the need for introducing a scaling factor,
as shown in Theorem 4.

Theorem 4. The equivalent gradient § is hyperparameter s independent for § = sBg® A,
but not for G = sBg¥ ., gA

Proof. See Appendix C.4. O

The hyperparameter independence of the equivalent gradient eliminates the need for manual gradient
scaling. Updates to W depend solely on this gradient (modulo learning rate), making any additional
scaling redundant. This can be understood by examining the relationship with the full FT gradient g.
Since g is naturally scaled for optimal weight updates, and our method approximates g in a constrained
subspace, the equivalent gradient inherits appropriate scaling automatically. This property is unique
to our gradient approximation approach and does not hold for standard LoRA-XS.

B.4 ADDITIONAL BENEFITS OF LORA-SB

Another heuristic which might lead to a good initialization is setting the weights B and A, such that
they match the first update also approximately matches the direction of AW

A(8BinitRinit Ainit) = YAW ®

Thankfully, we don’t have to choose between the two. For SGD, we prove that setting B;,;; and
A;nqit using Equation 1, results in the first update of LoRA-XS to best approximate the direction of
the update of full FT (Theorem 5).

Theorem 5. If A;,;; and B;y;; are initialized using LoRA-SB for the first step of SGD
optimizer, then

A(BinitRinit Ainit) = AW
Proof. See Appendix C.5. O

C MATHEMATICAL PROOFS

In all the proofs below, we will use the notations defined in Section 2.
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C.1 PROOF OF LEMMA 1

Lemma. The gradient of the loss with respect to matrix R can be expressed in terms of the
gradient with respect to the weight matrix W as:

R T 4T
9LorA-xs =SB gA

Proof. Let L be the loss function. We have already defined g and g{% , s as:

oL oL
g = W & g]_I,%ORA—XS = @ (9)

The chain rule gives

oL  OL oW oL  OL OW 0X

R~ W OR  OR OWOX 9R (10
We know that for W = sBX:
oL oW ¢ oL  _+ 0X
Waix_ng:ﬁ_sB 9I3R (11)
Let sB g = 3. We know that when X = RA:
0X OL
yﬁ = yAT = BT = yAT = SBTgAT (12)
Therefore, |gfigaxs =SB gA" (13)
O

C.2 PROOF OF THEOREM 2

Theorem. The optimal solution for the objective mingr||g — g| 2, such that § = sBg® A, is:

1 _ _
gR = Sj(BTB) lgfoRAfXS(AAT) ! (14)

Proof. Since we already defined the equivalent gradient § := sBg* A, the minimization problem
can be denoted as:

argmin F = ||sBg®A — g% (15)
gR
For differentiable F',
OF _ g R d(sBgftA)
— =0 = 2(g—¢g)- === =0 = 2(sBg*A—¢g)- —————= =0 16
a7 ) DT (sBg 9) 97 (16)

Using the same trick from before and substituting g% A = X, we get:

2sBT (sBg®"A — g)AT =0 = BT (sBg"A - 9)AT =0 = B'sBg"AAT = BTgAT
a7

From Lemma 1, we get:

BTgAT = gfieaxs/s = BTsBgRAAT = gz, xs/s = BT BgRAAT = gflp, xs/5°
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Now since B and A are full rank, multiplying both sides by (BT B)~! and (AAT)~! on the left and
right side respectively gives:

(B'B)"{(B"Bg"AAT)(AAT)™! = (B B) 'g{igaxs(4AT) 7" /s? (19)
Therefore, |g" = %(BTB)*lgﬁ)R/,‘_XS(AAT)*1 (20)
O

C.3 PROOF OF THEOREM 3

Theorem. Consider the update for matrix R using the solution derived in Theorem 2:
R+ R—ngt

where 1 > 0 is the (sufficiently small) learning rate. This update guarantees a reduction in
the loss AL, given by:

AL = L(Wo + sB(R — ng™)A) — L(Wy + sBRA) = —n{9f,ra_xs5,9")F +0(n) <0

Proof. Assuming that L is differentiable, we use Taylor’s theorem and get

AL = L(Wy + sB(R — ng™)A) — L(W, + sBRA)

oL
= <8R7_779 >F+0(’7)
n _ _
= _?<9§,RA-XS> (B"B) 'gftraxs(AAT) ) r +o(n), (21)

where in the last step we also used the definition of g{?, v and the result of Theorem 2. To prove
AL < 0 for small enough 1, it is sufficient to show that

<gl{%oRA—XS7 (BTB)_lgszA-xs (AAT)_1>F > 0. (22)

Next, we note that matrices B'B € R"*" and AA"T € R"" are positive definite since they
are positive semi-definite and matrices B and A are full-rank (i.e., with rank r) matrices, which
means that BT B and AAT have non-zero eigenvalues. Therefore, (BT B)~! and (AAT)~! are
also positive definite, implying that there exist matrices U and V such that (BT B)~! = VV T and
(AAT")"1 =UUT (e.g., one can find such matrices using Cholesky decomposition). Then, we have

<91§)RA-XS7 (BTB)_linRA—XS(AAT)_1>F = <950RA-x57 VVTQI{ERA-XSUUT>F
1
2 <VT9§,RA-XS U, VTQEBRA-XS U)r

HVTQII;RA-XSUHQF > 0.

This concludes the proof. O

For our specific initialization where (BT B) = I, (AAT) = I, and s = 1, the result simplifies to:
AL = —1{g{raxs: Gioraxs) F + 0(n) < 0. (23)

C.4 PROOF OF THEOREM 4

Theorem. The equivalent gradient g is hyperparameter s independent when

G=sBg"A butnotwhen §=sBgE n, xsA
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Proof. Let g be the full fine-tuning gradient. We want to prove that g does not depend on s, so
we try to express it in terms of g which does not depend on the LoRA-XS training process or
reparameterization.

1) For § = sBgT*A:
gt = SLQ(BTB)ilgI{?{)RA-XS(AAT)il — g= S%B(BTBil)gII}ORA-XS(AAT)ilA 24)
Now since g{tzaxs = B gAT:
§= éB(BTB‘l)sBTgAT(AAT)‘lA =B(B'B )BT TgAT(AAT) 1A (25)
which is s-independent.

2) For j = sBgfipaxsA

gl{%oRA_XS =sBTgAT — §= sB(sBTgAT)A — §=s’BBTgA"A (26)

which is not s-independent. O

C.5 PROOF OF THEOREM 5

Theorem. If A;,;: and Bi,;: are initialized using LORA-SB for the first step of SGD optimizer,
then

A(BinitRinit Ainit) = AW

Proof. Consider a gradient descent step with learning rate 1 and updates for R:

AR = -nVgL(R) = BARA = —nBVgrL(R)A. (27)
To measure its approximation quality of update of the weights in full finetuning:
AW = —nVw L(W)). (28)
We use Frobenius norm of the difference between these two updates as a criterion:
| BARA — ¥ Ly (Wo) | p = nl| BYRL(R)A — V Ly (Wo) | . (29)
We have shown before that:
VeL=DB"VwLAT. (30)
The problem now becomes:
min |[BT(B'"VwLAT)A -~ VwL|r where ViyL=USV". (31)

Ainit, Binit
Using our initialization, we get:
|IBB'ViwLATA—VwL|p = ||UrURUSV T VigV,h —USV T ||p. (32)

Moreover, we also have

UrrUrUSV VIRV = > owuiv] . (33)
i=1
The rank of W' such that
W' = UrrURUSV " Vig ViR (34)

is < r, since the corresponding ranks of By, and Ay is 7. Using the Eckart-Young Theorem, we
find the optimal low-rank solution as:

-
W™ = argmin |W' — Vi L|r = Zoiuiv; (35)

rank(W')=r i=1
Since we also get an identical expression, our solution is optimal. [
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C.6 NATURAL LANGUAGE UNDERSTANDING

We fine-tune RoBERTa-large (Liu et al., 2019) on GLUE, a popular language understanding classifi-
cation benchmark that contains several datasets. The datasets we evaluate on are: CoLA (Warstadt
etal., 2019), RTE, MRPC (Dolan & Brockett, 2005), SST-2 (Socher et al., 2013), QNLI (Rajpurkar
etal., 2018), and STS-B (Cer et al., 2017). LoRA modules are applied only to the self-attention layers,
with ranks r = {8, 16,24}. The results are shown in Table 3. LoRA-SB consistently outperforms
LoRA-XS across all configurations. Additionally, LORA-SB (r = 24) outperforms LoRA-based
methods (r = 8) with 39x lesser trainable parameters.

Table 3: Comparison of FT methods on RoBERTa-large across the GLUE benchmark datasets. #
Params denotes the number of trainable parameters. The best results among PEFT methods are
highlighted in bold. We use Pearson correlation for STS-B, Matthew’s correlation for CoLA, and
accuracy for others. Higher is better for each metric.

CoLA RTE MRPC STS-B QNLI SST-2 All
MceT Acc? Acct CorrtT AcctT AccT Avg T

Full FT - 355.36 M | 68.44  83.42 90.21 91.76 93.92 96.21 87.33
LoRA 8 2162.69K | 68.02  82.98 90.05 91.43 93.42  95.98  86.98
rsLoRA 8 2162.69K | 67.87 82.84 89.97 91.30 93.29 95.87 86.85
8

8

Method Rank # Params

PiSSA 2162.69K | 68.22 83.14 90.10 91.59  93.55 96.03  87.10

LoRA-XS 6.14 K 61.07  75.23 86.21 89.29 92.44  94.72  83.16
LoRA-XS 16 24.57K 63.32  79.06 86.28 90.36 93.69 95.76  84.70
LoRA-XS 24 55.20 K 66.27  80.14 88.48 90.77  93.21 95.89  85.79

LoRA-SB 8 6.14 K 63.57  78.43 88.72 90.59 9295 95.07 84.88
LoRA-SB 16 24.57K 64.36  82.31 89.71 91.24 93.89 9587 86.23
LoRA-SB 24 55.20 K 68.28 83.03 90.12 91.65 93.75 96.11 87.16

D ANALYSIS

D.1 OPTIMAL INITIALIZATION IS IMPORTANT!

To isolate the impact of initialization, we take truncated SVD on various matrices, including Kaiming
initialization (He et al., 2015) and AW, with varying levels of Gaussian noise, as shown in Table
4. By applying truncated SVD, we ensure optimal gradient approximation, leading to initialization
matrices By and Ajpy that form orthonormal bases in R” and R”, respectively. This results in
BTB = AAT = I, allowing us to isolate the effect of initialization. The results clearly demonstrate
the significance of initialization—our approach consistently outperforms other variants.

Table 4: Comparison of initialization strategies using Mistral-7B on GSM8K and MATH. All methods
ensure optimal gradient approximation, with differences arising solely from the initialization.

Initialization Method | Accuracy (1)

| GSMSK  MATH
trunc_SVD (Kaiming) 00.00 00.00
trunc_SVD (AWavg + Ny_1o-2) | 00.00  00.00
trunc_SVD (AWapg + N1 5) | 58.83 14.76
trunc_SVD (AWavg + Noo—yo-4) |  60.19 15.96
trunc_SVD (AWaug + Ny _19-5) |  60.65 15.98
LoRA-SB; trunc_SVD (AWq.g) 63.38 17.44
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D.2 OPTIMAL GRADIENT APPROXIMATION IS IMPORTANT!

We aim to examine the effect of optimal gradient approximation. Specifically, we want
Binit Rinit Ainit & AWg,4 without enforcing BTB = AAT = I. We achieve this through:

U, S, VT < SVD(AW,,,) (36)
Bigit <~ U[1:7]S[1:7,1:7] 37
Ainit < V[1:7] (38)

Rinie <= 1 (39)

This construction ensures that BigicRinitAinit & AW,yg, but only AAT = I, while BB # 1.
The setup is suboptimal for gradient approximation since we do not explicity use the closed-form
solution derived in Theorem 2. We compare the resulting loss curves against LoRA-SB (which uses
optimal gradient approximation) for Mistral-7B on MetaMathQA, as shown in Figure 3. Although
both start similarly due to effective initialization, LORA-SB converges to significantly better values,
demonstrating the advantage of optimal gradient approximation. Furthermore, LoRA-SB achieves
higher accuracies on GSM8K and MATH, with scores of 63.38 and 17.44 compared to 55.87 and
12.74, respectively.

—— Suboptimal Grad. Apprx.
LoRA-SB: Optimal Grad. Apprx.

Training Loss

Steps

Figure 3: Training loss for Mistral-7B on MetaMathQA, highlighting the impact of optimal gradient
approximation.

D.3 TRAINING TIME OVERHEAD VS LORA-XS

As previously mentioned, we compute the update approximation using only 1/1000 of the total
training samples for each dataset. Table 5 presents the associated training time overhead for these
computations, compared to LoRA-XS. The results show that the additional overhead is negligible,
adding just 2-4 minutes compared to the total training time of 3-5 hours per epoch (=~ 1.1% to 1.3%).
Additionally, the update computation is performed only once, at the beginning of the first epoch, prior
to training.

D.4 INFERENCE OVERHEAD VS LORA

LoRA-SB introduces a minimal inference cost overhead due to the insertion of the r x r matrix R
between B and A, and the need for higher ranks to achieve comparable performance to LoORA. We
benchmark the inference-time FLOPs and MACs across various models and find that the overhead
is negligible. This comparison is presented in Table 6, showing that the additional overhead of
LoRA-SB is negligible.
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Table 5: Training time overhead due to the initialization for various models on their respective tasks.

Model | Overhead Training Time/Epoch
Mistral 7B 0:02:01 3:03:57
Gemma-2 9B 0:03:46 4:13:24
Llama-3.2 3B 0:03:54 4:54:31

Table 6: Inference cost comparison between LoRA-SB and LoRA across various models for a
sequence length of 256. The minimum rank at which LoRA-SB matches or exceeds LoRA’s perfor-
mance is highlighted in bold.

Model Method  Rank | MACs FLOPs

LoRA 8 77.86G 155.79G
RoBERTa-large =~ LoRA-SB 16 7842G 156.91G
LoRA-SB 24 78.97G 158.01G

LoRA 32 0.84T 1.67T
LlaMA-3.2 3B LoRA-SB 64 0.85T 1.70 T
LoRA-SB 96 0.86 T 1.72T

LoRA 32 1.84T 3.69T

Mistral 7B LoRA-SB 64 1.86 T 3.73T
LoRA-SB 92 1.88T 3.77T

LoRA 32 3.89T 707 T

Gemma-2 9B LoRA-SB 64 3.93T 7.86 T
LoRA-SB 96 397T 7.94T

E EXPERIMENT DETAILS

We evaluate our method over 16 different datasets on three widely-used NLP benchmarks, using
models ranging from the 355 M-parameter RoBERTa-large model to the 9 B-parameter Gemma-2
model. Our setup spans both masked and autoregressive architectures, allowing us to comprehensively
assess the effectiveness of our approach. We fine-tune RoBERTa-large (Liu et al., 2019), Llama-3.2
3B (Dubey et al., 2024), Mistral-7B (Jiang et al., 2023), and Gemma-2 9B (Team et al., 2024),
showcasing our method’s adaptability across a variety of tasks and model architectures.

We use PyTorch (Paszke et al., 2019) and the HuggingFace Transformers library (Wolf et al., 2020)
for our implementations. We run all experiments on a single NVIDIA A6000 GPU and report
results as the average of three random seeds. We trained all models using the AdamW optimizer
(Loshchilov & Hutter, 2019). To save memory, we initialize base models in torch.bfloatl16
precision. Appendix F provides detailed information on the datasets used. We compute the update
approximation using only 1/1000 of each dataset’s total number of samples. This ensures that
the additional training time overhead is minimal and has a negligible effect on overall efficiency. The
samples are randomly selected from the training set in each run.

For arithmetic and commonsense reasoning tasks, we set up Mistral-7B, Gemma-2 9B, and Llama-3.2
3B with hyperparameters and configurations listed in Table 7. We adopted most settings from previous
studies (Hu et al., 2023) but conducted our own learning rate sweep. Following LoRA-XS guidelines,
we set o = r for their baseline configuration.

For the GLUE benchmark using RoBERTa-large, you can find the hyperparameter details in Table 8.
We mostly adhered to the original configurations from the LoRA paper (Hu et al., 2021) but adjusted
the learning rate through a sweep. In line with LoORA-XS settings, we fixed « at 16 for their baseline.

For all tasks, we followed the baseline configurations provided in the PiSSA (Meng et al., 2024) and
rsLoRA (Kalajdzievski, 2023) papers for our comparisons.
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| Mistral-7B / Gemma-2 9B  Llama-3.2 3B

Optimizer AdamW AdamW
Batch size 1 6
Max. Seq. Len 512 256
Grad Acc. Steps 32 24
Epochs 1 2
Dropout 0 0.05
Learning Rate 1x 1074 2x 1073
LR Scheduler Cosine Linear
Warmup Ratio 0.02 0.02

Table 7: Hyperparameter settings for training Mistral-7B and Gemma-2 9B on MetaMathQA, and
Llama-3.2 3B on COMMONSENSE170K.

| COLA RTE MRPC SST-2 QNLI STS-B

Optimizer AdamW

Batch size 128

Max Seq. Len. 256

Epochs 30 30 30 15 15 30
Dropout 0

Learning Rate 1x1073

LR Scheduler Linear

Warmup Ratio 0.06

Table 8: hyperparameter settings for RoBERTa-large on GLUE.

F DATASET DETAILS

The MetaMathQA dataset (Yu et al., 2024) creates mathematical questions by rephrasing existing
ones from different viewpoints, without adding new information. We assess this dataset using two
benchmarks: GSM8K (Cobbe et al., 2021), which consists of grade-school math problems requiring
multi-step reasoning, and MATH (Hendrycks et al., 2021), which presents difficult, competition-level
math problems. Evaluation focuses solely on the final numeric answer.

COMMONSENSE170K is a comprehensive dataset that consolidates eight commonsense reasoning
datasets (Hu et al., 2023). Each example is framed as a multiple-choice question where the model
generates the correct answer without explanations. We use the prompt template from (Hu et al., 2023).
The individual datasets used are described below:

1.

HellaSwag (Zellers et al., 2019) challenges models to select the most plausible continuation
of a given scenario from multiple possible endings.

. ARC Easy (or ARC-e) (Clark et al., 2018) includes basic science questions at a grade-school

level, offering simpler tasks to assess fundamental reasoning abilities.

. PIQA (Bisk et al., 2020) evaluates physical commonsense reasoning, where models must

choose the best action to take in a hypothetical scenario.

. SIQA (Sap et al., 2019) tests social commonsense reasoning by asking models to predict

the social consequences of human actions.

. WinoGrande (Sakaguchi et al., 2021) presents sentence completion tasks requiring com-

monsense reasoning to select the correct binary option.

. ARC Challenge (or ARC-c) (Clark et al., 2018) consists of more complex science questions

designed to challenge models with sophisticated reasoning, beyond simple co-occurrence
patterns.

. OBQA (Mihaylov et al., 2018) features open-book, knowledge-intensive QA tasks that

require multi-hop reasoning across multiple information sources.
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8. BoolQ (Clark et al., 2019) involves answering yes/no questions based on real-world, natu-
rally occurring queries.

The GLUE Benchmark is a comprehensive collection of tasks designed to evaluate natural language
understanding (NLU) abilities. It included various datasets, including STS-B for measuring semantic
textual similarity (Cer et al., 2017), RTE for recognizing textual entailment, MRPC for detecting
paraphrases (Dolan & Brockett, 2005), CoLA for assessing linguistic acceptability (Warstadt et al.,
2019), SST-2 for sentiment analysis (Socher et al., 2013), and QNLI for question-answer inference
(Rajpurkar et al., 2018). GLUE’s broad scope makes it a standard benchmark for evaluating models
like RoBERTa.
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