
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Peripheral Instinct: How External Devices Breach Browser
Sandboxes

Anonymous Author(s)

Abstract
Browser APIs such as WebHID, WebUSB, Web Serial, and Web

MIDI enable web applications to interact directly with external

devices. The support of such APIs in Chromium-based browsers,

such as Chrome and Edge, radically changes the threat model for

peripherals and increases the attack surface. In the past, devices

could assume a trusted host, i.e., the operating system. Now, the

host is a potentially malicious website and cannot be trusted.
We show how this changed threat model leads to security and

privacy problems, up to a complete compromise of the operating

system. While the API specifications list initial security considera-

tions, they shift the responsibility to (unprepared) device vendors.

We systematically analyze the security implications of external

devices exposed by such new APIs. By reverse-engineering periph-

eral devices of several popular widespread vendors, we show that

many vendors allow controlling devices via Web APIs up to re-

programming or even fully replacing the firmware. Consequently,

web attackers can reprogram devices with malicious payloads and

custom firmware without requiring any physical interaction. To

demonstrate the security implications, we build several full-chain

exploits, leading to arbitrary code execution on the victim sys-

tem, circumventing the browser sandbox. Our research shows that

browser security should not rely on the secure implementation of

third-party hardware.

ACM Reference Format:
Anonymous Author(s). 2025. Peripheral Instinct: How External Devices
Breach Browser Sandboxes. In Proceedings of Proceedings of the ACM
Web Conference 2025 (WWW ’25), (WWW ’25). ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Over the past years, the web has become a central platform for ap-

plications. Web browsers are among the most essential applications

for end users. With a wide range of web-based applications, includ-

ing webmail and entire office suites, users can accomplish many

tasks purely from the browser. To facilitate these tasks, browsers

introduced a range of APIs allowing websites to access various

functionalities. Hand-in-hand with the APIs, browsers also rely on

permissions for several of these APIs. Permissions protect users

from allowing websites to perform unexpected actions. While sev-

eral APIs can compromise confidentiality (e.g., webcam, or micro-

phone) when a user grants the permission, closing the browser (or

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’25, April 28–02 May, 2025, Sydney, AU
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

tab) typically mitigates the security problem. For a long time, no

permission has had permanent effects beyond the browser session,

preventing any lasting harm to the integrity of the system. While

most APIs provide functionality on a relatively high level, some

new APIs have started providing direct access to devices. Such web

APIs include WebUSB [1], WebHID [2], Web Serial [3], and Web

MIDI [4]. Although the APIs are still experimental, they are already

implemented in Google Chrome and enabled by default. Conse-

quently, these APIs are also available in Microsoft Edge, Opera, and

Electron, which rely on the Chromium engine.

In this paper, we show that adding APIs for accessing peripheral

devices (e.g.,WebHID,WebUSB,Web Serial,WebMIDI) has changed

the threat model. Although attackers lose access to the device when

the browser is closed, they can modify the device for persistence,

allowing a web attacker to infect and take control of a physical

device. Before these APIs, devices could assume that the host, i.e.,

the OS, was trusted and benign. Hence, devices assumed that all

requests stemmed from legitimate users. However, since websites

can interact with these devices, the host –now a website on the

Internet– is not necessarily trusted. Users, browser developers,

and device vendors are not sufficiently prepared for this drastic

change in the threat model.While the API specifications list security

considerations, they merely shift the responsibility of maintaining

security to device vendors, many of which have not prepared their

devices accordingly, as our analysis shows. Moreover, users are not

sufficiently aware of the threats induced by providing access to

peripherals. Current permission prompts, such as those indicating

a website “wants to connect to a HID device” in Chrome, do not

adequately convey the full security threats behind granting such

permissions. This underscores the need for scrutiny before wider

deployment of new specifications, as seen with the abuse potential

of the new File System API [5]. Concretely, we ask the following

research question in this paper:

Which security and privacy implications does the universal
deployment of peripheral access have, considering popular
peripheral devices and state-of-the-art defenses?

To answer this question, we analyze implemented Web APIs that

allow low-level access to peripheral devices. Our analysis reveals

two new attack vectors that circumvent the isolation guarantees

of browser sandboxes, undermining the system’s integrity. First,

attackers can replace the entire firmware of peripheral devices from

the browser, allowing them to repurpose a device. For example, a

non-input device can be maliciously repurposed as a keyboard, al-

lowing attackers to inject arbitrary keystrokes into the system. We

analyzeWebUSB, demonstrating that we can flash custom firmware

on peripheral devices, such as the blink(1), completely overtaking

and repurposing the device. Similarly, we analyze Web MIDI, show-

ing that we can flash firmware on MIDI devices to repurpose them

for malicious use cases. Second, attackers can abuse the existing

functionality of devices, exploiting the shifted threat model where

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, April 28–02 May, 2025, Sydney, AU Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

the host is now malicious. For example, attackers can program cus-

tom key sequences onto a mouse button and inject them into the

system whenever the victim presses the respective mouse button.

The most impactful results are from WebHID, where we analyze

keyboards and mice as prime examples of HIDs. We cover 22 device

models from 15 vendors. All these devices allow changes to per-

sistent settings, e.g., key mappings and macros, allowing attackers

to inject arbitrary keys from outside the browser sandbox. Addi-

tionally, using Web Serial, we show that websites can send text

messages via a SIM card, which can often be found in business

laptops, reviving dialers.

We build multiple exploit chains to get arbitrary code execution

on the victim system, entirely circumventing the browser sandbox.

We show that attackers can reprogram the firmware of non-input

devices and macros of input devices directly from the web. This

reprogramming is mostly persistent, even surviving a re-connect

of the device. We show that our attack is especially impactful on

input devices, even if these devices only feature minimal macro

functionality.

Our attack scenario for theWeb-based attacks resembles BadUSB [6]

while reducing requirements and limitations. We do not rely on

known bugs or vulnerabilities to exploit USB devices [7, 8] and do

not need to attach custom USB devices to the victim machine [9].

We solely rely on the well-defined and voluntarily-provided inter-

face of the already-attached device. When reprogramming macros,

our attack does not change any device or device descriptor from the

operating system’s perspective, circumventing software [10–13]

and hardware [14, 15] solutions to prevent BadUSB attacks. Even

worse, as soon as a user allows a website to access peripherals,

our attack can be mounted by a malicious website directly from

the browser without requiring any download or browser vulnera-

bility. Consequently, countermeasures against such an attack are

challenging without sacrificing functionality.

To mitigate peripheral-based attacks, we advocate for an ad-

ditional opt-in mechanism on the device that is honored by the

browser. Vendors could use it to indicate that they are aware of the

changed threat model of the APIs allowing peripheral access. As

a result, browsers would know it is safe to expose this device to

the web. We implemented our proposal as a proof of concept in

Chromium and a programmable open-source HID. We show that

only minimal changes are required to Chrome, with a total patch

of a single line of code. Most importantly, our proposal is fully

compatible with the HID specification and does not break existing

functionality.

While minor changes to devices and browsers would make

peripheral-based attacks more complex, we show that exposing

devices to the web poses a significant threat. Our research demon-

strates that the new threat model with a malicious host that these

Web APIs introduce is often not considered during the design of pe-

ripherals. Given the wide distribution of Chromium-based browsers

and affected peripheral devices, we consider this problematic as it af-

fects a large user base. We hope our insights raise awareness among

device vendors, leading to more secure devices. Moreover, our re-

search shows that browser security should not rely on third-party

hardware vendors alone, and novel web APIs cannot simply shift

the responsibility to third parties without compromising security.

Contributions. We summarize our contributions as follows.

• We analyze the attack surface of Web APIs that provide

low-level access to peripheral devices.

• We present novel attacks on the host via browser-based

APIs, entirely circumventing the browser sandbox and lead-

ing to arbitrary code execution.

• We demonstrate systemic improvements to the security of

the vulnerable API specifications.

Responsible Disclosure. We have received positive feedback

from Chromium and Logitech. The Chromium team collaborates

with device vendors to implement some of our recommendations,

such as the requirement for physical user interaction during re-

programming. They also aim to improve the clarity of permission

prompts. Logitech acknowledged our findings and plans to imple-

ment our proposal of configuration functionality on a separate

usage.

Availability. We open source all our experiments and proofs-of-

concept on acceptance of the paper.

2 Background
In this section, we cover relevant device protocols, including current

implementations as Web APIs and known security considerations.

2.1 Device Protocols
Devices connect to a host system via various protocols. Some pro-

tocols are general-purpose carrier protocols, such as USB or Serial,

while others are specialized protocols, such as HID or MIDI.

USB& Serial. Universal Serial Bus (USB) is a wired communication

protocol for high-speed data transfer and power delivery. It is the

de facto standard for connecting peripherals to computers. USB is a

general-purpose protocol that supports various device classes, such

as Human Interface (HID), Mass Storage, and Audio Devices.

A serial port is a communication interface that transfers infor-

mation sequentially, one bit at a time. Serial ports have been com-

monly used in personal computers to transfer data to devices such

as modems, terminals, peripherals, and between computers. While

USB has largely replaced serial ports, they are still used to control

embedded systems or interact with legacy devices (e.g., modems).

HID&MIDI. TheHuman Interface Device (HID) protocol is a stan-
dardized protocol for communication between devices and hosts. It

is transmitted via USB or Bluetooth and used for devices to interact

with a human operator [16]. Data packets exchanged between the

host and device are called HID Reports [17]. Devices send input
reports to the host, while hosts send output reports to the devices.
Additionally, there are bi-directional feature reports intended to con-
figure a device. HID report descriptors describe the binary format

of reports supported by a device and can be enumerated by the

host [17]. The Usage describes the intended use of a device and the

purpose of reports. OSs ship with default drivers for many standard-

ized classes of HIDs, such as keyboards and mice [18]. A Musical
Instrument Digital Interface (MIDI) allows electronic musical in-

struments and computers to communicate and synchronize [19]. It

can operate over various transport protocols, including USB and

Bluetooth. Data packets, known as MIDI messages, carry musical

parameters (channel messages) or system settings (system messages).
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Peripheral Instinct: How External Devices Breach Browser Sandboxes WWW ’25, April 28–02 May, 2025, Sydney, AU

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2.2 Device Browser APIs
The web platform already supports input from some device types

(e.g., HIDs) via OS drivers that provide an abstraction of a device

[2]. However, some devices lack OS support (e.g., gamepads). Fur-

thermore, device-specific communication or configuration is not

exposed to web pages. Device Browser APIs bridge this gap [2] and

allow web pages to communicate with devices directly.

2.2.1 Browser Support. Currently, five device APIs are available
in Chromium-based browsers: WebHID, Web MIDI, Web Serial,

Web Bluetooth, and WebUSB [20]. The respective API standards

are currently drafts at the World Wide Web Consortium (W3C).

They have not received formal reviews and are not endorsed by

the W3C, and thus no official standards [21]. Still, the APIs are im-

plemented and enabled by default in Google’s Chrome for desktop

and Chromium-based desktop browsers [20], including Microsoft

Edge and Opera since March 2021. Together, they account for over

80 % of the desktop browser market share [22]. ChromeOS, which

leverages Chrome as its application platform, has deprecated its

previous APIs (e.g., chrome.hid) and now requires user-space apps

to use browser APIs for device access [23]. Both Mozilla and Apple

do not implement these APIs at the moment [24, 25], with the ex-

ception of Web MIDI in Firefox which is implemented behind a site
permission add-on [26].

2.2.2 Security Considerations. Chrome uses various security mea-

sures to protect the host, device, and user. As the API standards are

not yet finalized, the following measures apply to the most recent

version of Google Chrome (121) at the time of writing.

TLS only. Device Browser APIs are only available in a secure TLS

context to prevent MITM attackers from accessing the API [27].

Blocklist. According to the proposals, each API, except for the

Web MIDI API, includes a blocklist [28–31]. Depending on various

properties and identifiers, devices may be blocked and hidden. The

specifics of the respective blocklists are discussed in Appendix A.

Permissions & User Activation. The standard proposals recom-

mend implementing a chooser-based dialog with at least two clicks

(to reduce the possibility of accidental clicks) for requesting device

access [1, 2]. The only exception here is the Web MIDI API, which

only has a single click prompt [4]. The initial permission dialog is

guarded by transient user activation [32, 33]. Permissions persist

until the user or site explicitly revokes them.

Recommendations in API Proposals. Although the API propos-

als have mentioned potential security risks since at least 2019 [2],

our investigation shows these considerations are largely unad-

dressed. This indicates the need for research to raise awareness

of the API and its capabilities. Our work underlines that the W3C

underestimates the prevalence and impact of device-associated

threats. For example, while the W3C acknowledges that an HID

“may contain [...] programmable macros” and suggests that “device

manufacturers must [...] prevent a malicious app from reprogram-

ming the device”, we show that the issues remain unaddressed.

3 API Security Analysis
In this section, we provide an overview of the security implications

of device APIs due to the drastic change in the threat model. We

bootstrap our evaluation on APIs included in the Permissions Pol-

icy [34, 35], following the assumption that all critical APIs must be

gated by a prompt. Out of those, we focus on APIs that interact with

peripheral devices. For all remaining APIs, we manually evaluate if

they allow attackers tampering with the devices. Following these

steps reveals five browser APIs: Bluetooth [36], WebHID [2], Web

MIDI [37], Web Serial [38] and WebUSB [1]. In the remainder of

this work, we do not expand further on the Bluetooth API, as the

implications of the API are analogous to those of other transport

protocols such as USB.

3.1 Threat Models
The threat model of devices traditionally only spans the host system

and the device itself [39]. This model only allows for two directions

of local exploitation. First, a device can exploit vulnerabilities on the
host, e.g., by injecting keystrokes to execute commands or extract

sensitive information. Second, a host can exploit vulnerabilities on

shared devices (e.g., printers) or security hardware (e.g., FIDO secu-

rity keys) to extract confidential data. With device APIs in browsers,

a new threat model emerges in which the devices are exposed to
third parties via browsers. Here, the device may process malicious

requests from an—in the classic threat model—trusted host system,

which forwards the API-initiated requests of an untrusted site. This

confused deputy attack enables several devastating security-critical

attacks, as shown in Section 3.2. The only assumption is that an

attacking website gains user permission for the respective Device

API, for which there are several ways (cf. Section 3.3).

3.2 Attacks Enabled by Device APIs
Using a device API, a malicious website can send data to a device.

Below, we discuss the security implications of this new threat model.

Integrity. The focus of our investigations are threats to device

and system integrity. First, many devices allow modifying or replac-

ing the firmware via an exposed bootloader (Section 4) enabling

BadUSB-like attacks [6]. The capabilities of an attacker depend on

the capabilities of the device (e.g., Bluetooth) but generally allow

emitting trusted input events via HID. Second, as shown in Sec-

tion 6, devices can be “reconfigured” or controlledwithout replacing
the firmware. For example, several mice or keyboards allow users

to reprogram buttons with macro functionalities, all of which are

exposed via WebHID. A malicious actor can abuse this to escape

the browser sandbox. Similarly, modems are accessible via Web

Serial, allowing attackers to control the modem (see Section 6).

Availability & Confidentiality. The device API proposals also
state some other concerns only discussed briefly in this work. A

malicious actor could perform Denial-of-Service (DoS) attacks on

the device to temporarily or permanently disrupt the functionality

of the device. Similarly, device APIs may violate confidentiality. For

example, macro features in keyboards may be used to quickly enter

sensitive information such as credentials or passwords
1
. Device

APIs potentially enable web attackers to extract such sensitive data

by reading the on-board device storage.

1
https://security.stackexchange.com/q/222210

3

https://security.stackexchange.com/q/222210

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28–02 May, 2025, Sydney, AU Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.3 Gaining Device API Permission
To launch any attack leveraging device APIs, malicious websites

must gain access to the respective API. Attackers have several ways

of obtaining such privileges. In all cases, the user must grant per-

mission to use a device on some site. Once permitted, the site can

interact with the device without further consent on future visits.

In the simplest scenario, the user grants permission to a malicious

website directly. Attackers may leverage social engineering tech-

niques (i.e., phishing) to trick users into granting permissions, e.g.,

by impersonating legitimate vendor sites. For example, Hazhirpas

et al. [40] convinced up to 95 % of users into granting permissions

leveraging a browser game. Furthermore, an attacker can leverage

permissions granted to another site via a Cross-Site Scripting (XSS),

website compromise, or domain re-registration [41]. XSS in partic-

ular is one of the most prominent security issues for websites and

frequent in the wild [42]. In addition, browser extensions can ma-

nipulate requests and execute JavaScript in the context of arbitrary

sites [43]. As such, malicious or vulnerable browser extensions can

also be used to gain access to devices. Lastly, users of rehosting ser-

vices may inadvertently grant permissions to a malicious site since

such services frequently merge the origin of all proxied sites [44].

4 Firmware Attacks
Devices commonly implement firmware update mechanisms. This

is usually implemented as a bootloader that allows flashing new

firmware. Communication with the bootloader is often done via

the same interface as the device itself, e.g., HID or MIDI. Such

mechanisms are implemented on most devices regardless of their

transport protocol. In this section, we analyze the risks of exposing

firmware update mechanisms to web-based APIs. We identify two

primary attack vectors, namely, allowing the flashing of custom

firmware (Section 4.1) and firmware rollbacks (Section 4.2). We

illustrate attacks on two different web APIs via case studies on the

Logitech Unifying Receiver (WebHID/WebUSB) and the Launchpad

MK2 (Web MIDI). However, this class of attacks is not limited to the

two presented APIs but rather an overarching issue with exposing

firmware update mechanisms.

4.1 Custom Firmware
Allowing the host to flash custom firmware onto a device via a

browser-based API is a severe security risk. Custom firmware can re-

program the device to perform almost arbitrary attacker-controlled

functionality. In the following, we present two case studies that

show the practicality of this attack vector.

Logitech Unifying Receiver. The Logitech Unifying Receiver is

a proprietary USB wireless receiver based on transceivers of the

nRF24L-family used for a wide range of wireless keyboards and

mice from Logitech. The wireless receiver communicates using the

custom HID++ protocol (see Section 5.1.3) and features an HID-

based bootloader that allows replacing the firmware. As a response

to a variety of vulnerabilities reported by Bastille Research [45, 46]

(e.g., CVE-2016-10761) and Markus Mengs [47] (e.g., CVE-2019-

13053), Logitech introduced signed firmware updates in 2019 (i.e.,

RQR12.09 and RQR24.07). However, wireless receivers sold with

older firmware, i.e., firmware before 2019, allow flashing arbitrary

firmware unless a user manually updates the device. A custom

firmware, for example, allows emitting trusted input events such

as keystrokes. Such a compromised device fully covers the func-

tionality of USB Rubber Ducky devices [9] (see Section 6.1). This

effectively allows an attacker to execute arbitrary commands on

the host system. Additionally, the device provides a malicious actor

access to the 2.4GHz transceiver module, which can interact with

other devices using the Enhanced ShockBurst protocol. Access to

the transceiver module allows, for example, abusing the MouseJack

vulnerability [46]. We verify that we can flash the firmware used to

exploit the MouseJack vulnerability using WebHID onto a Logitech

Unifying Receiver. With the custom firmware, we successfully in-

ject arbitrary keys into a different laptop in the same room that

uses a Logitech MX Anywhere 2S wireless mouse. This attack only

requires granting the WebHID permission to exploit the wireless

receiver and no user interaction by the ultimate target user. Thus,

control over a wireless receiver running outdated firmware can be

used to compromise systems in the proximity of the victim device.

LaunchpadMK2. The LaunchpadMK2 is a MIDI controller widely

used in music production. Below, we analyze its firmware update

mechanism. The Launchpad can be forced into bootloader mode

using a specific SysEx message [48]. Firmware updates are provided

as syx files (files containing SysEx messages). They can be applied

by “playing” the file (i.e., sending the SysEx messages to the device)

when the Launchpad is in bootloader mode. Using the open-source

toolkit to build custom firmware for a similar Launchpad [49],

we reverse-engineer the SysEx message format and extract the

raw firmware binary. The firmware comprises a full ARM image

for an Arm Cortex M4, enabling unconstrained privileged code

execution on the device. While the Launchpad MK2 appears as a

MIDI device, it is connected to the PC via USB and uses USB as

a carrier protocol. Thus, with complete control over the executed

code, it is possible to modify the low-level USB implementation

to implement an HID device instead. We successfully patch the

firmware achieving arbitrary code execution on the device.

4.2 Firmware Rollbacks
While devices may not allow flashing arbitrary firmware by en-

forcing vendor signatures, they may still be vulnerable to firmware

rollbacks. Such a rollback can bring the device into a state where

old, vulnerable firmware is installed, which can then be exploited.

Such an attack is possible with up-to-date Logitech Unifying Re-

ceivers. Our investigation shows that they do not implement roll-
back protection. This protective mechanism prevents downgrading

the firmware to older versions [50]. For example, we can construct

a full-chain exploit for a known and fixed vulnerability (CVE-2019-

13055). Our target device was the Logitech Unifying Receiver C-

U0008, running the latest firmware (RQR24.11). The vulnerability

allows extracting AES keys to encrypt the receiver’s wireless traffic

and a wireless device (e.g., keyboard) via USB/HID. Our full-chain

exploit first restarts the wireless receiver into DFU mode using

a specific HID output report and then flashes the older firmware

version using HID output reports. Afterward, we extract the AES

keys as described by the original vulnerability. Note that the DFU

mode of the wireless receiver reports as a different device, such

that a malicious actor must obtain two separate permissions. This

process takes approximately 38 s.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Peripheral Instinct: How External Devices Breach Browser Sandboxes WWW ’25, April 28–02 May, 2025, Sydney, AU

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Configuration Protocol
HID
USB

Memory

Macros

R VCtrl

Left
Click

W
e
b

H
ID

Figure 1: HIDs (right), such as mice, communicate with the
browser (left) using WebHID. Custom configuration proto-
cols are built on top of the HID protocol on top of USB. Pro-
grammable devices feature on-boardmemory to storemacros
for keys/buttons in a custom macro language.

5 Analysis of Device-Specific Protocols
While firmware attacks are a severe threat and grant a malicious

actor full control over a device, they have several prerequisites.

Alternatively, the attacker can abuse the device’s existing func-

tionality to perform attacks. In contrast to firmware attacks, such

attacks differ from device to device and require a detailed under-

standing of the device. In this section, we first analyze the macro

functionality often found in HID devices. This functionality allows

users to reprogram keys or buttons to perform custom actions and

is implemented differently across device vendors and devices. Sec-

ond, we discuss howmodems can be controlled via a serial interface

using the AT command set.

5.1 HIDs with Onboard Macros
Figure 1 provides a high-level overview in which an HID is exposed

to WebHID and allows attackers to use the configuration protocol

to change macros stored in memory. In the following, we study each

of these aspects in more detail on a subset of devices representative

of the implementation choices of device vendors. We rely on these

results to instantiate macro-based attacks in Section 6.

5.1.1 Overview of HIDs and Methodology. Table 1 in Appendix B

provides an overview of the devices discussed in the following. We

investigate the features of 22 devices from 15 vendors, covering

many widespread devices from large vendors, such as Logitech and

Microsoft, as well as from smaller vendors.We are mainly interested

in reprogrammable on-board macro functionality supported by 14

devices. Further, we investigate to which extent this functionality

can be accessed fromWebHID. Since our Razer devices only expose

this functionality via USB and not via the HID protocol, they are

not discussed in detail. For our analysis, we rely on protocol reverse

engineering using USB dumps, prior work on protocol reverse

engineering, and documentation. We use Wireshark’s capability

of dumping USB traffic [51] on a laptop that does not connect

any internal devices using USB to filter relevant packets. Using

the official closed-source tools, we analyze the effects of different

settings on the raw bytes sent via USB to understand the protocol.

5.1.2 Macro Capabilities. Generally, a macro consists of a sequence

of actions, such as key/button press/release or actions to control

a mouse pointer. Moreover, many devices allow custom delays

between actions. The analyzed devices show vast differences in

macro capabilities, ranging from a single keycode to complex macro

languages. We group the macro capabilities into 3 categories.

Single Key. The simplest macro implementations only allow defin-

ing a single keycode that the device sends when the corresponding

button is pressed. Such macro functionality is the least critical

from a security standpoint, as the exploitation is severely limited.

However, it still is, e.g., possible to build a wiretap on an attacker-

controlled site using an auto-focussed hidden input field and the

key combination that activates voice typing (cf. Section 6.2). We

find such an implementation on the Microsoft Pro IntelliMouse.

Key Sequence. The majority of analyzed devices support key-

stroke sequences of varying lengths. In the simplest case, these

sequences have a fixed upper bound for the length (e.g., 5 for the

CH57x). For other devices, e.g., from VIA or Logitech, the limiting

factor is the available on-board memory. In addition, the devices

differ in how fast they replay macro actions. We provide the maxi-

mum length and the minimum time between keystrokes in Table 1

in Appendix B. Key sequences also come in different encodings. The

most simplest encoding is a sequence of HID keycodes. This encod-

ing does not require any complex logic on the device (e.g., CH57x).

If other functionalities such as mouse movement (e.g., Zelotes) or

custom delays (e.g., VIA, Zelotes) are supported, lists of custom

structures are used for storing the macros.

Instruction-set Emulators. Logitech uses the most complex

and flexible encoding of all analyzed devices. They store macros

as custom variable-length instructions that are interpreted by an

instruction-set emulator. The devices support a wide variety of

instructions that range from delay, key press, and mouse function-

ality instructions to sophisticated control flow instructions (e.g.,

‘unconditional jump’ or ‘jump if the macro button is released’).

5.1.3 Proprietary Configuration Protocols. 14 of our tested devices

use custom protocols built on the HID protocol. These protocols

range from straightforward protocols using 4 HID reports to pro-

gram a key to complex protocols requiring 800 HID reports to

achieve the same. Most devices feature error-tolerant protocols

and firmware. Logitech, e.g., uses a default profile if the profile

information in memory cannot be parsed. The Logitech and the

Zelotes software reset the device to factory defaults if the informa-

tion cannot be parsed. While several protocols are documented or

have been (partly) reverse-engineered [52–54], we provide details

of our findings for the Zelotes and CH57x protocol in Appendix F.

5.2 Hayes and Hayes-compatible Modems
In this section, we discuss how modems can be controlled via the

Web Serial API. We focus on the AT command set, also known as

the Hayes AT command set, which is a standard for controlling

modems that was introduced in 1981. Modems that support the AT

command set are called Hayes-compatible modems. An example of

a Hayes-compatible modem is the Fibocom L850-GL LTE modem.

It is a PCIe modem used in various laptops, such as the Lenovo

ThinkPad X1 Carbon or the Lenovo ThinkPad T490s.

TheAT command set is text-based and uses ASCII characters [55].

The commands are sent to the modem via a serial interface, such

as UART or USB. Similarly, the modem also responds using plain

text. AT commands are used to communicate with different services

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28–02 May, 2025, Sydney, AU Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

provided by the modem. Commonly, AT commands are used to con-

trol call services, cellular network services, and SMS services [55].

Note that some vendors may extend the AT command set with

proprietary commands. For example, AT+CMGF=1\r\n instructs the

modem to switch to text mode for SMS messages. In the following,

AT+CMGS="+00123456789"\r defines the recipient of an SMS mes-

sage. Lastly, the message content is defined and sent using Hello
World\x1A. Section 7 demonstrates how this API can be used for

malicious activities.

6 Device-specific Attack: Exploiting Onboard
Macros

The first device-specific attack vector targets macro-capable de-

vices to inject keystrokes into the host system. Our investigation

in Section 5.1 revealed that 14 of the 22 tested HIDs allow repro-

gramming over WebHID, including vendors such as Logitech and

Microsoft. In this section, we demonstrate resulting threats, leading

to browser-sandbox escapes via key injections and exposure of

potentially confidential information via key injections.

6.1 Command Injection
Our first attack method aims to compromise a target system by

circumventing the browser sandbox. To this end, the web attacker

reprograms a HID with a critical chain of commands that spawn

an attacker-controlled program. For brevity, we focus on Windows

systems, as they are the most prominent target system [56]. Other

systems, such as macOS and Linux, are discussed in Appendix D.

While the attack is similar to the well-known Rubber Ducky at-

tack, the device is merely reprogrammed and not fully under the

attacker’s control. This imposes several limitations on the attack,

such as the inability to query host system information or even a

strict limit on the number of keystrokes that can be injected.

Keystroke injections all follow the same basic principles. At

first, a sequence of keystrokes provides the attacker access to a run
dialog, a part of a system that facilitates dynamic code execution.

The remaining part of the injection provides inputs to the run dialog

and contains the actual payload executed on the system.

Run Dialogs. There are multiple run dialogs on Windows. The

Start menu can be accessed using a single keystroke, q . Alterna-

tively, the Run command window can be accessed using q + R .

Both run dialogs provide similar functionality. They may be used

to navigate to web resources using the system’s default browser,

to start applications, or to run arbitrary commands. Another run

dialog is the Quick Link menu (q + X), which can open the Win-

dows Powershell as Administrator using only five key presses. If

the user is logged in as an Administrator, this only requires con-

firming a dialog which is possible using , . Using keystroke

combinations and commands that do not affect one OS but per-

form actions on another OS, we may build a polyglot injection that

works regardless of the victim system. As an example, a polyglot

run dialog opener for Windows and Linux can be achieved using

the following keystrokes: q + X , I , Ctrl + Alt + T .

Injection Payloads. Keystroke-based payloads are well explored,

mainly due to the USB Rubber Ducky [9], a programmable USB

device designed for keystroke injection attacks. An extensive li-

brary of payloads for the device [57], covers most popular attack

targets. Our injection payloads, however, have more limitations, as

discussed previously. For example, less than 15 % of payloads from

the official repository would work on the Logitech G203 due to

the limitation of 80 keystrokes. A simple downloader payload that

downloads and executes a script from an attacker-controlled web-

site amounts to approximately 50-60 keystrokes. To significantly

reduce the number of keystrokes, attackers can store an ephemeral

payload in the system-wide clipboard.

Write-access to the clipboard from the browser is only guarded

by transient user activation [58] and thus implicitly granted with

the WebHID permission. Leveraging the clipboard, the shortest

payload is Ctrl + V , . Thus, the shortest total injection length

amounts to 3 keystrokes on Windows. Such an injection can be

performed using all programmable devices discussed in Section 5,

except for the Microsoft Pro IntelliMouse. Using the Keychron

V1Z2, the injection only takes about 35ms. Similarly, the shortest

injection with elevated privileges uses 7 keystrokes on Windows

and takes about one second using the Keychron V1Z2.

Time to Configure. Our investigation shows that the time to

configure is well below 1 s for all devices in our set. Appendix B

includes a table of the times for a subset of devices.

6.2 Spyware
Besides the command injection, which aims to gain remote access

to a system or exfiltrate sensitive data, keystroke injections via

macros can also be leveraged to spy on a user’s behavior. Most

intuitively, an attacker can log user activity using screenshots. Here,

they assign a frequently used button to a macro that first issues a

key combination that triggers a screenshot and then performs the

expected behavior to remain stealthy. OnWindows, e.g., the PrtScn

(i.e., PrintScreen) key captures a screenshot of the entire screen and

stores it in the clipboard [59]. It can be exfiltrated (using Ctrl + V)

or via the clipboard history. Further, it is, e.g., possible to construct

an audio wiretap. On Windows, a payload may use the keyboard

shortcut to activate the in-built dictation tool, q + H , to build

a wiretap [60] that writes all spoken words to the current cursor

location. Exfiltration can, e.g., happen via an attacker-controlled

website with hidden input elements. Note that this does, however,

trigger a message display by the OS and a sound.

7 Device-specific Attack: Exploiting
Hayes-compatible Modems

As introduced in Section 5.2, Hayes-compatible modems can be

controlled via the AT command set. In the following, we discuss

several potential threats that can be exploited by a malicious actor

that can control a modem via the Web Serial API. The threats

range from dialing or sending SMS to premium-rate numbers, over

GPS tracking to permanent denial of service attacks. These attacks

assume that a SIM card is inserted into themodem,which commonly

occurs in a business setting. To prevent unauthorized usage of a

SIM card, usage is commonly gated by a PIN code. Upon booting,

the system prompts the user to enter the PIN code.

Reviving Dialer Campaigns. In the past, a dialer was a common

type of malware that would dial premium-rate numbers, resulting

in a charge to the victim [61]. The attacker would set up a premium-

rate number, which features high charges for the caller. The dialer

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Peripheral Instinct: How External Devices Breach Browser Sandboxes WWW ’25, April 28–02 May, 2025, Sydney, AU

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

malware would then dial the number, resulting in a charge to the

victim. In recent years, dialer campaigns have become less common

due to the widespread use of broadband internet connections. How-

ever, the Web Serial API allows reviving dialer campaigns. Given

serial access to a modem, an attacker can issue AT commands that

dial or send SMS to premium-rate numbers (see Section 5.2).

Spyware. The modem contains various privacy-relevant informa-

tion that can be accessed via AT commands. For example, many

modems contain a GPS module that allows the modem to determine

its location, which allows tracking a user’s location. In addition,

the modem also contains information about recent activity, such as

dialed numbers or SMS messages. SMS messages, in particular, can

contain sensitive information such as two-factor authentication

codes or passwords. Such information can even be intercepted by

forwarding SMS messages and calls to the attacker’s number.

Permanent Denial of Service. If the SIM card is not unlocked, a

malicious actor cannot use the modem for the advanced attacks dis-

cussed in the previous sections. To hinder brute-force attacks, SIM

cards are locked after a certain number of incorrect attempts [62].

Commonly, after three incorrect attempts, the SIM card is locked,

and the user has to enter a PUK code to unlock it. Then, after some

incorrect attempts with the PUK code, the SIM card is permanently

locked, and the user has to be issued a new SIM card by the carrier.

PIN and PUK are entered using AT commands, which allows an

attacker to perform a permanent DoS attack locking the SIM card.

8 Mitigating Device API Attacks
In this section, we propose and discuss mitigations for Device API

attacks.While disabling the APIsmitigates the underlying issue, this

is a drastic measure. We discuss the advantages and disadvantages

of other mitigation approaches that are fully backward-compatible

with the respective standards and ideally also compatible with the

current implementation of the APIs.

8.1 Extension-based Control
The extension-based approach introduces an abstraction layer be-

tween the low-level access to the device and the interface exposed

to any (malicious) site. This layer can inspect the data sent to a

device, which allows the extension to implement a firewall-like

mechanism to prevent arbitrary sites from performing security-

relevant actions, such as macro programming or firmware updates.

Alternatively, the extension can also completely prevent access

to low-level functionality and instead expose abstract functions

that encapsulate the device’s behavior. Such an abstract function

could, e.g., allow any site with access to change the LED color

of the connected device (e.g., device.setRGB(0,255,255)) with-
out exposing any other functionality. Such an extension could be

provided by the device vendor that protects access to the device

against malicious use by restricting access to sensitive function-

ality. It would even require fewer privileges than regular native

configuration software, which may achieve full control over the

OS, as it can, for example, emulate keystrokes directly. Similarly, it

is possible to implement an extension that blocks sending data or

even removes an API completely.

Implementation. The mechanism is implemented by leveraging

a technique called Virtual Machine Layering [63, 64], which allows

intercepting JavaScript functions. Here, the API functions that can

be used to send data to a device are encapsulated by functions that

first filter their arguments and then pass those arguments to the

device via a handle to the original function. The original function

can only be called using the handle in the encapsulation. A Chrome

Extension with Manifest Version 2 can use the manifest in Listing 1

in the appendix to run a content script before the rendering of

any arbitrary site (and subdocuments) injects the encapsulation

before the head of the document. After the initial encapsulation,

any script that tries to access the WebHID API can no longer access

the original WebHID API. As a proof of concept, we implement

a Chrome Extension that prevents a site from accessing the on-

board memory feature on Logitech devices relying on the HID++

2.0+ protocol via the WebHID API (cf. Section 5.1.3). This is easily

possible since the third byte of a report is the feature identifier.

8.2 API-Device Contracts
The WebUSB proposal discusses the possibility of instantiating API-

device contracts that are honored by the browser [1]. While such

contracts are an impractical solution for the broader set of USB

devices due to the lack of standardization, they may be feasible for

a subset of devices. In the following, we propose two approaches

to implement such contracts for WebHID with minimal impact on

devices that aim to support the API. HID Usages allow grouping re-

lated controls by specifying a Usage Page and a Usage ID associated

with a report, forming the so-called 32-bit extended Usage.

Reserved Usages. We propose an approach where devices imple-

ment security-relevant functionality, such as persistent memory

manipulation, either behind a reserved Usage Page or a reserved

Usage ID. For most firmware, this only requires minor firmware

modifications. To evaluate the feasibility of this approach, we mod-

ify the firmware of the blink(1) [65], an open-source device that

supports WebHID and has a driver integrated into the upstream

Linux kernel, to expose less functionality via WebHID. It uses two

feature reports operating under the same Extended Usage. The

feature report with ID ‘2’ exposes the “reboot to bootloader” func-

tionality. To separate this functionality, we introduce a feature

report with ID ‘3’ that operates under Usage Page ‘0xdead’. The

code of the official tool for the device has to be modified by a single

digit. We extend the Chromium blocklist locally to prevent any

reports associated with Usage Page ‘0xdead’. Only reports under

the blocked Usage Page can no longer be sent or received.

WebHID Capability Indicator. The WebUSB specification pro-

poses a WebUSB Platform Capability Descriptor implemented by

storing a specific Platform Descriptor in the Binary Object Store

of the USB device [66]. This descriptor provides basic informa-

tion about the device to the browser and could also be used to

indicate that a device should be exposed via WebUSB. Similarly, a

report under Usage Page ‘0xdead’ could indicate that the device ac-

knowledges the WebHID threat model. Since this Usage Page is not

standardized, the device is free not to implement any functionality

on this report and only use it as a flag.

Browser-Device Communication. The WebUSB specification

discusses two other approaches to mitigate attacks on USB de-

vices [1]. The first mechanism is similar to the Referer header [67]
and would be used by the browser to communicate the origin from

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28–02 May, 2025, Sydney, AU Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

which a request originated to the device. This mitigation, however,

shifts the responsibility of access control to the device. Meanwhile,

the second mechanism is similar to Cross-Origin Resource Shar-
ing [68]. Here, a device can specify a set of origins allowed to com-

municate with the device. The browser then enforces this allowlist.

The proposal states that such an allowlist need not be implemented

on the device but could also be specified in a separate public registry.

Such an approach may be challenging to maintain as it requires

maintenance of the registry or modifications to firmware.

8.3 Pure Browser-based Approaches
Directional Permissions. Bi-directional communication may not

be necessary in many scenarios. Hence, splitting permissions into

input and output would be possible. The default permission would

only allow receiving input from the device. Permission to send

data to the device could be granted separately, with an additional

warning. This way, non-standard controllers could, e.g., be used in

browser games without the risk of reprogramming.

Permission Dialogue. As of writing, the permission dialogue fol-

lows a chooser-based approach, which requires at least two clicks

to grant permission for a device [2]. However, there is little to no

information about what the site may achieve, given access to a

device. Further, the Device API permission prompts are visually

and operationally similar to the prompts by non-security-relevant

browser APIs such as the notification API. Given that prior work on

browser extensions [69] and Android permissions [70] established

that users rarely understand the risks associated with permissions,

this likely also applies to browser APIs. Moreover, inconsistent

browser implementations [71] obfuscate implications for the end

user. Further, Progressive Web Apps (PWAs) are web applications

that can be installed on a device [72]. Since installing PWAs re-

quires further consent and user interaction, they may be granted

permissions that go beyond the capabilities of a regular website.

Allowlist. The several specifications and Chromium implement

blocklists restricting access to devices. Vendors have to submit

rules proactively. While blocklist-based approaches are often easy

to manage and set up, they often grow exponentially and may still

miss entries to block access to malicious devices [73]. In contrast,

allowlist-based approaches usually take more time to manage but

provide greater security due to the restrictive default behavior [73].

As such, an allowlist-based approach may be a better fit due to the

prevalence of insecurely configurable devices.

8.4 Device-based Approaches
Update mechanisms are crucial to ensure that vulnerabilities are

fixable by the end user. However, devices must ensure attackers

cannot exploit the update mechanism. Device vendors should em-

ploy authenticated firmware update mechanisms [50]. Here, the

origin and integrity of firmware updates are verified using crypto-

graphic signatures to prevent malicious ones. In addition, to prevent

firmware downgrades to vulnerable versions, devices should also

employ rollback protection, which checks the firmware version

before performing an update [50]. The update mechanism may also

require physical interaction with the device (e.g., pressing a button)

to ensure a user-initiated update. This requirement can additionally

be imposed during runtime reprogramming of the device.

8.5 Host-based Approaches
Since USB is a prominent attack vector, a wide variety of allow-

or blocklisting approaches [10–13] has emerged to deal with USB

threats such as BadUSB [6]. Such an approach would, e.g., defend

against BadUSB-like attacks performed via HID-based bootloaders

since the firewall can prevent devices from sending input by default.

However, this is ineffective against macro-based attacks since the

intended functionality of a device is abused. Since the behavior

and, in particular, the time between keyboard events differ from

normal user behavior during keystroke injection attacks, various

injection-detection approaches have emerged [74–77]. These ap-

proaches leverage timing differences between keystrokes, letter

frequencies, keypress times, and latency. To our knowledge, these

mechanisms are not widely deployed due to their performance

costs and relatively high false-positive rates. However, our minimal

injection sequences of 3 keystrokes only feature 2 data points for

such mechanisms, so any detection mechanism is heavily limited.

OS Device Access Control. On Linux, udev is the generic device

manager that provides an abstract interface of the hardware to

the rest of the software [78]. By default, HIDs are not accessible to

unprivileged users. The device manager has an extensive set of rules

that allows customizing this behavior. This default behavior also

prevents opening devices from WebHID on Linux systems unless

Chromium runs as a privileged process or the necessary udev rules

are present. Similarly, Apple’s macOS also blocks applications from

accessing devices that implement a keyboard, mouse, or trackpad

to prevent input monitoring [79]. As such, a user must grant the

browser permission to access such devices.

8.6 Recognizing Macro-exploitable Devices
In order to estimate whether a device is exploitable, we propose a

simple tool that can be used to rule out a device is exploitable with

WebHID. The tool is based on observations from our analysis of 22

devices Section 5. All exploitable devices implement the Keyboard
or Keypad Usage and support output or feature reports under
a Usage that is accessible using the WebHID API. As such, devices

that lack one of these two features are definitely not exploitable. For

the remaining devices, we observed that output or feature reports

that carry more than 64 bytes were only used for programming

macros or exchanging the memory or firmware of the device. Thus,

the presence of high-capacity output or feature reports increases

the likelihood of a device being exploitable.

9 Conclusion
We showed how Device APIs change the threat model for peripher-

als, leading to severe security and privacy problems. Based on our

reverse-engineering and analysis of devices from several vendors,

we found that many allow device control from within the browser,

up to reprogramming or even fully replacing the firmware. Conse-

quently, malicious websites can control devices without requiring

any physical interaction. To demonstrate the security implications,

we built full-chain exploits, leading to arbitrary code execution

on the victim system, circumventing the browser sandbox. Our

research highlights the need to raise awareness among device ven-

dors, indicating that the web might not be ready yet for a global

deployment of Device APIs, given their security implications.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Peripheral Instinct: How External Devices Breach Browser Sandboxes WWW ’25, April 28–02 May, 2025, Sydney, AU

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Web Incubator Community Group (WICG), “WebUSB API Draft Community

Group Report,” 2023. [Online]. Available: https://wicg.github.io/webusb/

[2] ——, “WebHID API Draft Community Group Report,” 2022. [Online]. Available:

https://wicg.github.io/webhid/

[3] Mozilla, “WebSerial,” 2023. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/API/Web_Serial_API

[4] ——, “WebSerial,” 2023. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/API/Web_MIDI_API

[5] H. Oz, A. Aris, A. Acar, G. S. Tuncay, L. Babun, and S. Uluagac, “Røb: Ransomware

over modern web browsers,” in USENIX, 2023.
[6] K. Nohl and J. Lell, “BadUSB - On Accessories that Turn Evil,” Black Hat USA,

2014.

[7] J. Müller, V. Mladenov, J. Somorovsky, and J. Schwenk, “Sok: Exploiting network

printers,” in S&P, 2017.
[8] J. Maskiewicz, B. Ellis, J. Mouradian, and H. Shacham, “Mouse trap: Exploiting

firmware updates in USB peripherals,” in WOOT, 2014.
[9] Hak5, “USB Rubber Ducky,” 2023. [Online]. Available: https://hak5.org/products/

usb-rubber-ducky

[10] D. J. Tian, A. Bates, and K. Butler, “Defending against malicious usb firmware

with goodusb,” in ACSAC, 2015.
[11] D. J. Tian, N. Scaife, A. Bates, K. Butler, and P. Traynor, “Making USB great again

with USBFILTER,” in USENIX, 2016.
[12] P. C. Johnson, S. Bratus, and S. W. Smith, “Protecting against malicious bits on

the wire: Automatically generating a usb protocol parser for a production kernel,”

in ACSAC, 2017.
[13] H. Mohammadmoradi and O. Gnawali, “Making whitelisting-based defense work

against badusb,” in International Conference on Smart Digital Environment, 2018.
[14] Globotron, “USG v1.0 Hardware Firewall,” 2023. [Online]. Available: https:

//globotron.nz/products/usg-v1-0-hardware-usb-firewall

[15] ——, “Armadillo Hardware Firewall USB 2.0,” 2023. [Online]. Available:

https://globotron.nz/products/armadillo-hardware-usb-firewall

[16] Web Incubator Community Group (WICG), “WebHID Explainer,” 2023. [Online].

Available: https://wicg.github.io/webhid/EXPLAINER.html

[17] USB Implementers Forum (USB-IF), “Device Class Definition for Human

Interface Devices (HID) - Version 1.11,” 2001. [Online]. Available: https:

//www.usb.org/sites/default/files/hid1_11.pdf

[18] Microsoft, “HID Architecture,” 2022. [Online]. Avail-

able: https://learn.microsoft.com/en-us/windows-hardware/drivers/hid/hid-

architecture#hid-clients-supported-in-windows

[19] J. Rothstein, MIDI: a Comprehensive Introduction, 2nd ed. Atlantic Books, 1995.

[20] Mozilla, “WebHID,” 2023. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/API/WebHID_API

[21] World Wide Web Consortium (W3C), “Types of Reports,” 2023. [Online].

Available: https://www.w3.org/standards/types#reports

[22] S. G. Stats, “Desktop Browser Market Share Worldwide,” 2023. [Online].

Available: https://gs.statcounter.com/browser-market-share/desktop/worldwide

[23] Chrome Developers, “Transitioning from Chrome Apps,” 2019. [Online].

Available: https://developer.chrome.com/docs/apps/migration/#build-chromeos-

android

[24] Mozilla, “Standard Positions,” 2023. [Online]. Available: https://mozilla.github.io/

standards-positions/#webhid

[25] Apple, “WebKit Standard Positions,” 2023. [Online]. Available: https://webkit.org

/tracking-prevention/#anti-fingerprinting

[26] Mozilla, “Site Permission Add-ons,” 2024. [Online]. Available: https://support.mo

zilla.org/en-US/kb/site-permission-add-ons

[27] ——, “Secure Context,” 2023. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/Security/Secure_Contexts

[28] Web Incubator Community Group (WICG), “WebHID Blocklist,” 2023. [Online].

Available: https://github.com/WICG/webhid/blob/main/blocklist.txt

[29] ——, “WebUSB Blocklist,” 2023. [Online]. Available: https://github.com/WICG/

webusb/blob/main/blocklist.txt

[30] ——, “WebBluetooth GATT Blocklist,” 2023. [Online]. Available: https:

//github.com/WebBluetoothCG/registries/blob/master/gatt_blocklist.txt

[31] ——, “WebSerial Bluetooth Service Blocklist,” 2023. [Online]. Available:

https://github.com/WICG/serial/blob/main/bluetooth-service-blocklist.txt

[32] Mozilla, “User Activation,” 2023. [Online]. Available: https://developer.mozilla.or

g/en-US/docs/Web/Security/User_activation

[33] Google Chrome Developers, “Making user activation consistent across apis,”

2019. [Online]. Available: https://developer.chrome.com/blog/user-activation/

[34] Mozilla, “Web APIs,” 2023. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/API

[35] ——, “Permissions Policy,” 2023. [Online]. Available: https://developer.mozilla.or

g/en-US/docs/Web/HTTP/Permissions_Policy

[36] Web Incubator Community Group (WICG), “Web Bluetooth API Draft

Community Group Report,” 2024. [Online]. Available: https://webbluetoothcg.g

ithub.io/web-bluetooth/

[37] W3C Audio Working Group, “Web MIDI API W3C Editor’s Draft,” 2024. [Online].

Available: https://webaudio.github.io/web-midi-api/

[38] Web Incubator Community Group (WICG), “Web Serial API Draft Community

Group Report,” 2024. [Online]. Available: https://wicg.github.io/serial/

[39] J. Tian, N. Scaife, D. Kumar, M. Bailey, A. Bates, and K. Butler, “Sok:" plug &

pray" today–understanding usb insecurity in versions 1 through c,” in S&P, 2018.
[40] M. Hazhirpasand, M. Ghafari, and O. Nierstrasz, “Tricking johnny into granting

web permissions,” in Proceedings of the Evaluation and Assessment in Software
Engineering, 2020.

[41] C. Lever, R.Walls, Y. Nadji, D. Dagon, P. McDaniel, andM. Antonakakis, “Domain-

Z: 28 registrations later measuring the exploitation of residual trust in domains,”

in S&P, 2016.
[42] O. W. A. S. P. (OWASP), “Top 10 Web Application Security Risks,” 2021. [Online].

Available: https://owasp.org/Top10/

[43] S. Agarwal, “Helping or hindering? how browser extensions undermine security,”

in CCS, 2022.
[44] T. Watanabe, E. Shioji, M. Akiyama, and T. Mori, “Melting pot of origins: Com-

promising the intermediary web services that rehost websites.” in NDSS, 2020.
[45] M. Newlin, “Mousejack, keysniffer and beyond: Keystroke sniffing and injection

vulnerabilities in 2.4 ghz wireless mice and keyboards,” DEFCON, 2016.
[46] Bastille Research, “MouseJack,” 2016. [Online]. Available: https://www.mousejac

k.com/

[47] Marcus Mengs, “Summary / Overview of known Logitech wireless peripheral

vulnerabilities,” 2019. [Online]. Available: https://github.com/mame82/misc/blo

b/5e7f02962b5556a03aa6d4277c8618e536117f7b/logitech_vuln_summary.md

[48] Lottie Thomas, Launchpad MK2 Programmer’s Reference Manual v1.03. Focusrite

Audio Engineering LTD, 2024.

[49] Dave Hodder, “Open source firmware for the Launchpad Pro grid controller,”

2015. [Online]. Available: https://github.com/dvhdr/launchpad-pro

[50] A. Regenscheid, “Platform firmware resiliency guidelines,” 2017.

[51] Wireshark, “USB capture setup,” 2020. [Online]. Available: https://wiki.wiresha

rk.org/CaptureSetup/USB

[52] Logitech, “Public Documentation of the Logitech HID++ Protocol,” 2018.

[Online]. Available: https://drive.google.com/drive/folders/0BxbRzx7vEV7eWm

gwazJ3NUFfQ28

[53] libratbag Team, “libratbag,” 2023. [Online]. Available: https://github.com/libratb

ag/libratbag

[54] Vuchener, Clément, “HID++ library and tools,” 2015. [Online]. Available:

https://github.com/cvuchener/hidpp

[55] Fibocom, “AT Commands User Manual,” 2013. [Online]. Avail-

able: https://www.maritex.com.pl/product/attachment/40451/15b4db6d1a10ea

da42700f7293353776

[56] S. G. Stats, “Operating System Market Share Worldwide,” 2023. [Online].

Available: https://gs.statcounter.com/os-market-share/desktop/worldwide

[57] Hak5, “Payload Library for the USB Rubber Ducky,” 2023. [Online]. Available:

https://github.com/hak5/usbrubberducky-payloads

[58] Mozilla, “Clipboard API,” 2023. [Online]. Available: https://developer.mozilla.or

g/en-US/docs/Web/API/Clipboard/

[59] Microsoft, “Copy the window or screen contents,” 2023. [Online]. Avail-

able: https://support.microsoft.com/en-us/office/copy-the-window-or-screen-

contents-98c41969-51e5-45e1-be36-fb9381b32bb7

[60] ——, “Use voice typing to talk instead of type on your PC,” 2023. [Online].

Available: https://support.microsoft.com/en-us/windows/use-voice-typing-to-

talk-instead-of-type-on-your-pc-fec94565-c4bd-329d-e59a-af033fa5689f

[61] M. Sahin, A. Francillon, P. Gupta, and M. Ahamad, “Sok: Fraud in telephony

networks,” in EuroS&P, 2017.
[62] S. He and I. C. Paar, “Sim card security,” in Seminar Work, Ruhr-University of

Bochum, 2007.

[63] E. Lavoie, B. Dufour, and M. Feeley, “Portable and efficient run-time monitoring

of javascript applications using virtual machine layering,” in European Conference
on Object-Oriented Programming, 2014.

[64] M. Schwarz, M. Lipp, and D. Gruss, “JavaScript Zero: Real JavaScript and Zero

Side-Channel Attacks,” in NDSS, 2018.
[65] blink(1), “blink(1) - the usb rgb led notification light,” 2023. [Online]. Available:

https://blink1.thingm.com/

[66] Grant, Reilly, “Building a device for WebUSB,” 2018. [Online]. Available:

https://developer.chrome.com/articles/build-for-webusb/

[67] Mozilla, “Referer,” 2023. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Referer

[68] Web Hypertext Application Technology Working Group (WHATWG), “CORS

Protocol,” 2023. [Online]. Available: https://fetch.spec.whatwg.org/#cors-

protocol

[69] A. Kariryaa, G.-L. Savino, C. Stellmacher, and J. Schöning, “Understanding users’

knowledge about the privacy and security of browser extensions,” in USENIX,
2021.

[70] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android per-

missions: User attention, comprehension, and behavior,” in SOUPS, 2012.

9

https://wicg.github.io/webusb/
https://wicg.github.io/webhid/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Serial_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Serial_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_MIDI_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_MIDI_API
https://hak5.org/products/usb-rubber-ducky
https://hak5.org/products/usb-rubber-ducky
https://globotron.nz/products/usg-v1-0-hardware-usb-firewall
https://globotron.nz/products/usg-v1-0-hardware-usb-firewall
https://globotron.nz/products/armadillo-hardware-usb-firewall
https://wicg.github.io/webhid/EXPLAINER.html
https://www.usb.org/sites/default/files/hid1_11.pdf
https://www.usb.org/sites/default/files/hid1_11.pdf
https://learn.microsoft.com/en-us/windows-hardware/drivers/hid/hid-architecture#hid-clients-supported-in-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/hid/hid-architecture#hid-clients-supported-in-windows
https://developer.mozilla.org/en-US/docs/Web/API/WebHID_API
https://developer.mozilla.org/en-US/docs/Web/API/WebHID_API
https://www.w3.org/standards/types#reports
https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://developer.chrome.com/docs/apps/migration/#build-chromeos-android
https://developer.chrome.com/docs/apps/migration/#build-chromeos-android
https://mozilla.github.io/standards-positions/#webhid
https://mozilla.github.io/standards-positions/#webhid
https://webkit.org/tracking-prevention/#anti-fingerprinting
https://webkit.org/tracking-prevention/#anti-fingerprinting
https://support.mozilla.org/en-US/kb/site-permission-add-ons
https://support.mozilla.org/en-US/kb/site-permission-add-ons
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
https://github.com/WICG/webhid/blob/main/blocklist.txt
https://github.com/WICG/webusb/blob/main/blocklist.txt
https://github.com/WICG/webusb/blob/main/blocklist.txt
https://github.com/WebBluetoothCG/registries/blob/master/gatt_blocklist.txt
https://github.com/WebBluetoothCG/registries/blob/master/gatt_blocklist.txt
https://github.com/WICG/serial/blob/main/bluetooth-service-blocklist.txt
https://developer.mozilla.org/en-US/docs/Web/Security/User_activation
https://developer.mozilla.org/en-US/docs/Web/Security/User_activation
https://developer.chrome.com/blog/user-activation/
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/HTTP/Permissions_Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Permissions_Policy
https://webbluetoothcg.github.io/web-bluetooth/
https://webbluetoothcg.github.io/web-bluetooth/
https://webaudio.github.io/web-midi-api/
https://wicg.github.io/serial/
https://owasp.org/Top10/
https://www.mousejack.com/
https://www.mousejack.com/
https://github.com/mame82/misc/blob/5e7f02962b5556a03aa6d4277c8618e536117f7b/logitech_vuln_summary.md
https://github.com/mame82/misc/blob/5e7f02962b5556a03aa6d4277c8618e536117f7b/logitech_vuln_summary.md
https://github.com/dvhdr/launchpad-pro
https://wiki.wireshark.org/CaptureSetup/USB
https://wiki.wireshark.org/CaptureSetup/USB
https://drive.google.com/drive/folders/0BxbRzx7vEV7eWmgwazJ3NUFfQ28
https://drive.google.com/drive/folders/0BxbRzx7vEV7eWmgwazJ3NUFfQ28
https://github.com/libratbag/libratbag
https://github.com/libratbag/libratbag
https://github.com/cvuchener/hidpp
https://www.maritex.com.pl/product/attachment/40451/15b4db6d1a10eada42700f7293353776
https://www.maritex.com.pl/product/attachment/40451/15b4db6d1a10eada42700f7293353776
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://github.com/hak5/usbrubberducky-payloads
https://developer.mozilla.org/en-US/docs/Web/API/Clipboard/
https://developer.mozilla.org/en-US/docs/Web/API/Clipboard/
https://support.microsoft.com/en-us/office/copy-the-window-or-screen-contents-98c41969-51e5-45e1-be36-fb9381b32bb7
https://support.microsoft.com/en-us/office/copy-the-window-or-screen-contents-98c41969-51e5-45e1-be36-fb9381b32bb7
https://support.microsoft.com/en-us/windows/use-voice-typing-to-talk-instead-of-type-on-your-pc-fec94565-c4bd-329d-e59a-af033fa5689f
https://support.microsoft.com/en-us/windows/use-voice-typing-to-talk-instead-of-type-on-your-pc-fec94565-c4bd-329d-e59a-af033fa5689f
https://blink1.thingm.com/
https://developer.chrome.com/articles/build-for-webusb/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://fetch.spec.whatwg.org/#cors-protocol
https://fetch.spec.whatwg.org/#cors-protocol

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, April 28–02 May, 2025, Sydney, AU Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[71] K. Nomoto, T.Watanabe, E. Shioji, M. Akiyama, and T. Mori, “Browser Permission

Mechanisms Demystified,” in NDSS, 2023.
[72] Mozilla, “Progressive web apps,” 2024. [Online]. Available: https://developer.mo

zilla.org/en-US/docs/Web/Progressive_web_apps

[73] M. Nozaki and H. Tipton, Information Security Management Handbook, Volume 5.
CRC Press, 2016, no. v. 5.

[74] S. Neuner, A. G. Voyiatzis, S. Fotopoulos, C. Mulliner, and E. R. Weippl, “Usblock:

Blocking usb-based keypress injection attacks,” in DBSec, 2018.
[75] N. Farhi, N. Nissim, and Y. Elovici, “Malboard: A novel user keystroke imperson-

ation attack and trusted detection framework based on side-channel analysis,”

Computers & Security, vol. 85, 2019.
[76] A. Negi, S. S. Rathore, and D. Sadhya, “Usb keypress injection attack detection via

free-text keystroke dynamics,” in International Conference on Signal Processing
and Integrated Networks (SPIN), 2021.

[77] G. Karantzas, “Forensic log based detection for keystroke injection" badusb"

attacks,” arXiv preprint arXiv:2302.04541, 2023.
[78] ArchWiki, “udev,” 2023. [Online]. Available: https://wiki.archlinux.org/title/udev

[79] Apple, “Control access to input monitoring on Mac,” 2023. [Online].

Available: https://support.apple.com/guide/mac-help/control-access-to-input-

monitoring-on-mac-mchl4cedafb6/mac

[80] GamingOnLinux, “Desktop Envirmonment Trends,” 2023. [Online]. Available:

https://www.gamingonlinux.com/users/statistics/#DesktopEnvironment-top

[81] S. G. Stats, “Operating System macOS Version Market Share Worldwide,” 2023.

[Online]. Available: https://gs.statcounter.com/os-version-market-share/macos/

desktop/worldwide

A Accessible Device Classes
In this section, we provide a generic overview of the device classes

that are accessible via the critical device APIs.

WebHID. WebHID allows access to almost all HID devices, in-

cluding keyboards, mice, and gamepads [2]. However, for security

reasons, the user agent blocks access to FIDO U2F collections and

input-related HID collections for keyboards, mice, and keypads.

This prevents spoofing of communication with FIDO functionality,

the creation of input loggers and circumvention of the operating

system’s focus model. Most notably, we show that devices with

macro functionality are generally reprogrammable via additional

collections in Section 5.

Web MIDI. Web MIDI allows access to MIDI devices, such as

electronic musical instruments, MIDI controllers, and MIDI inter-

faces [37]. While the OS may provide drivers for MIDI devices,

the protocol itself is not used by the OS. Instead, MIDI devices

are typically accessed by (proprietary) music production software.

Most MIDI messages relate to musical performance and thus do

not pose a direct threat, even if an attacker can send arbitrary MIDI

messages. However, MIDI supports System Exclusive (SysEx) mes-

sages which add device-specific (non-standardized) functionality.

In Chromium-based browsers, the prompt is the same, regardless

of whether SysEx messages are exchanged.

WebUSB. While USB is a generic protocol, WebUSB only allows

access to a small subset of devices [1]. The user agent blocks access

to a set of USB interface classes for which most OSs have built-in

drivers, such as mass storage, HID, and audio/video devices. As a

rule of thumb, every type of interface available via some other high-

level API (e.g., WebHID) is blocked by WebUSB. Thus, WebUSB

can primarily only access generic interfaces or devices that are not

covered by other APIs.

Web Serial. TheWeb Serial API allows access to serial devices, such

as microcontrollers, GPS modules, 3D printers, and other devices

that communicate via a serial interface [38]. Such devices can be

connected to the host system via USB or other interfaces. Further,

the API allows access to the serial ports of Bluetooth Classic devices.

B Macro-based Exploits
Table 2 shows the time it takes to reprogram a device. This time is

measured from the user interaction that triggers reprogramming

until the macro is entirely written to the device and activated by,

e.g., also modifying the current active profile. Here, we measure the

time it takes to program the shortest malicious macro (i.e., q + R ,

Ctrl + V ,), as discussed in Section 6.1. This time, however,

only represents an upper bound since our web applications are not

optimized for performance. Further reverse engineering efforts may

drastically reduce the time to configure.

C Run Dialogs
Table 3 gives an overview of the various run dialogs that may be

used to execute payloads, as discussed in Section 6.1. The table also

shows the time to payload, which measures the time it takes until

the dialog appears after the start of a macro such that a malicious ac-

tor may enter the actual payload. This time was measured using the

Keychron V1Z2, which featured the smallest time interval between

macro keystrokes (see Table 1). Since this time is heavily system

and hardware-dependent, it only serves as a reference point. Our

times were measured on aWindows 11/Ubuntu 22.04 LTS dual-boot

system with an Intel Core i9-10900K CPU. The macOS times were

measured on a macOS Ventura system with an Apple M1 CPU.

D Keystroke Injections on Linux and macOS
D.1 Keystroke Injections on Linux
On Linux systems, the available keyboard shortcuts and the gen-

eral behavior of the UI depend on the desktop environment. While

there are many different desktop environments and window man-

agers, our work focuses on the three most widespread desktop

environments: KDE Plasma, XFCE, and GNOME [80]. Here, our

focus remains on recent versions, KDE Plasma 5, XFCE 4.0+, and

GNOME 40+, that are shipped with many Linux distributions by

default (e.g., Ubuntu/Kubuntu/Xubuntu 22.04 LTS).

Run Dialogs. Multiple prominent run dialogs exist on KDE-,

GNOME- and XFCE-based systems. By default, all three environ-

ments feature the same keyboard shortcuts to open terminals. Thus,

Ctrl + Alt + T can be used in all environments to open the default

terminal emulator with the default shell. Further, all environments

feature a command window that can be used to enter arbitrary

commands, which can be accessed using Alt + F2 in all three envi-

ronments. Similar toWindows, pressing q provides a search in all

three environments. This search can, however, only be used to open

files or start applications. As such, it can open a terminal emulator,

e.g., cmd. However, an attacker cannot obtain elevated privileges

without additional effort, as all dialogs require a password. While

elevated privileges granted to open applications might be reusable,

we do not investigate this.

Optimal Injections. The shortest total injection length amounts

to 3 keystrokes: q + R , Ctrl + V , on our Linux sytems. Using

the Keychron V1Z2, the entire injection only lasts about 5ms. To

our knowledge, this is also the fastest injection on Linux systems.

10

https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://wiki.archlinux.org/title/udev
https://support.apple.com/guide/mac-help/control-access-to-input-monitoring-on-mac-mchl4cedafb6/mac
https://support.apple.com/guide/mac-help/control-access-to-input-monitoring-on-mac-mchl4cedafb6/mac
https://www.gamingonlinux.com/users/statistics/#DesktopEnvironment-top
https://gs.statcounter.com/os-version-market-share/macos/desktop/worldwide
https://gs.statcounter.com/os-version-market-share/macos/desktop/worldwide

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Peripheral Instinct: How External Devices Breach Browser Sandboxes WWW ’25, April 28–02 May, 2025, Sydney, AU

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 1: Tested devices and their macro functionality. 𝛿𝑚𝑖𝑛 is the average minimal time between individual keystrokes registered
by the host and the corresponding standard error over 1000measurements. Devices with n/a in the WebHID column do not
feature support for on-board macros.

Vendor Device Connectivity Firmware Protocol WebHID Macro Length 𝛿𝑚𝑖𝑛 in𝑚𝑠

M
o
u
s
e

Logitech G203 LIGHTSYNC Wired Logitech v152.2.17 Logitech HID++ v4.2 ✓ ≈80 keys 4.08 ± 0.01

G305 LIGHTSPEED Wireless Receiver Logitech v68.1.14 Logitech HID++ v4.2 ✓ ≈40 keys 3.91 ± 0.02

G500s Wired Logitech v84.9 Logitech HID++ v1.0 ✓ ≈1076 keys 7.94 ± 0.02

G502 HERO Wired Logitech v127.3.10 Logitech HID++ v4.2 ✓ ≈420 keys 4.06 ± 0.01

Microsoft Pro IntelliMouse Wired Microsoft 0095 Custom HID ✓ 1 key -

Roccat Kone Aimo Wired Roccat v1.05 Custom HID ✓ >100 keys 3.94 ± 0.01

Redragon Pegasus M705 Wired ? Custom HID ✓ 30 keys 19.96 ± 0.02

Speedlink TAUROX Wired ? Custom HID ✓ 55 keys 15.99 ± 0.02

Zelotes T-90 Wired Gaming Mouse 3.0 Custom HID ✓ ≈80 keys 20.44 ± 0.04

Razer Viper Ultimate Wireless Receiver Razer v1.06.00 Custom USB ✗ >100 keys 1.96 ± 0.00

Corsair M55 RGB PRO Wired Corsair v4.7.23 - n/a - -

SteelSeries Rival 3 Wired SteelSeries 0.36.0.0 - n/a - -

Asus TUF Gaming M3 Wired Asus v1.00.09 - n/a - -

K
e
y
b
o
a
r
d

Logitech G710+ Mechanical Keyboard Wired Logitech v0x8000 - n/a - -

MX Keys Mini Bluetooth ? Logitech HID++ v4.2 n/a - -

Keychron Keychron V1Z2 Wired VIA v3 VIA Firmware Protocol v12 ✓ ≈408 keys 1.94 ± 0.00

Skyloong GK61XS Wired ? Custom HID ✓ 30 keys 17.65 ± 0.19

Multiple 4 Key Macro Keypad Wired CH57x Custom HID ✓ 5 keys 48.00 ± 0.02

Redragon K629 Wired ? Custom HID ✓ 31 keys 12.16 ± 0.14

Razer BlackWidow 2019 Wired Razer v1.01.00 Custom USB ✗ >100 keys 1.95 ± 0.00

M
i
s
c
. Multiple USB Foot Switch FS221-P Wired FS22-P v5.3 Custom HID ✓ 15 keys 1.90 ± 0.01

Diswoe Wireless Pro Controller Bluetooth ? - n/a - -

Table 2: Devices and their respective upper bound on the time
to configure the shortest malicious payload.

Vendor Device Time to Configure

M
o
u
s
e

Logitech G203 LIGHTSYNC ≈600ms

G305 LIGHTSPEED ≈600ms

G500s LIGHTSYNC ≈20ms

G502 HERO ≈600ms

Zelotes T-90 ≈180ms

K
e
y
b
o
a
r
d

Keychron V1Z2 ≈55ms

Multiple 4 Key Macro Keypad ≈125ms

D.2 Keystroke Injections on Apple’s macOS
Apple’s desktop OSs account for about 17 % of the respective mar-

ket share [81]. Out of all versions, macOS Catalina is the most

prominent one with above 91 % of adoption.

RunDialogs. By default, macOS does not offer asmany run dialogs

as the other OSs. The most prominent run dialog is the Spotlight

Search, where files, settings, and applications can be searched and

opened. As such, it can be leveraged to open a terminal with the

system’s default shell. The search term may be shortened. If a

terminal is already open, that terminal is brought to the foreground

and into focus. Note that this also allows reusing permissions should

the user have already entered a privileged state with the open

terminal (e.g., using sudo).
Optimal Injections. With the shortest ephemeral payload be-

ing + V , the shortest total injection length amounts to 12

keystrokes: + , T , E , R , M , I , N , A , L , , Ctrl

0 1 2 3 4 5 6

0x18 cmd index offset page data end

Figure 2: Zelotes custom HID protocol.

+ V , . Such an injection can be performed using most pro-

grammable devices discussed in Section 5, except for the macropad

which can only store 5 keystrokes. Using the Keychron V1Z2, the

entire injection only lasts about 125ms. The injection requires two

small delays: ≈10ms until the search responsive and ≈110ms until

the terminal application becomes responsive.

E Extension-based Mitigation
Listing 2 in the appendix shows an example of virtual machine layer-

ing. It replaces the functions sendReport and sendFeatureReport
of any HID device with placeholders that do nothing. This effec-

tively prevents any HID-based reprogramming of the device from

WebHID. Alternatively, they could also be replaced by filter func-

tions that act as a firewall. Freezing the device objects prevents the

untrusted code from removing the encapsulations. Further, we can

ensure that the scripts are injected into the site before executing any

other script using the manifest in Listing 1. We run a content script

before the rendering of any context starts such that no (potentially

malicious) code can interfere with our encapsulation process.

F Reverse-Engineered Protocols
Zelotes. The device communicates via HID feature reports with

report ID ‘7’. All reports have the same length of 7 B. Figure 2

shows the report format. The protocol sends the binary internal

state, consisting of button assignments, profiles, LED mode, and

macro sequences, in blocks of 8 bytes, where each byte is encoded

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’25, April 28–02 May, 2025, Sydney, AU Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 3: Keystroke sequences to access run dialogs and the delays required for using them.

Run Dialog Description Keystrokes Clipboard Content Time to Payload

W
i
n
d
o
w
s

Start menu q 60ms

Run command window q + R 30ms

Quick Link menu into Run command window q + X , R 110ms

Quick Link menu into Powershell q + X , I 450ms

Quick Link menu into Powershell as Administrator q + X , A , , 950ms

L
i
n
u
x

Command window Alt + F2 0ms

Terminal Ctrl + Alt + T 200ms

Search into Terminal q , C , M , D , 550ms

q , Ctrl + V , cmd or terminal 600ms

m
a
c
O
S

Spotlight Search into Terminal + Space , T , E , R , M , I , N , A , L , 120ms

+ Space , + V , terminal 90ms

1 {
2 "manifest_version": 2,
3 "name": "Device Driver",
4 "version": "1.0",
5 "content_scripts": [
6 {
7 "matches": ["<all_urls>"],
8 "js": ["sdk.js"],
9 "run_at": "document_start",
10 "all_frames": true
11 }
12]
13 }

Listing 1: Thismanifest ensures the content script is executed
before the rendering of the document starts. It allows inject-
ing the encapsulation function shown in Listing 2 which
must run in the context of the webpage.

0 1 2 3 4 5 6 7 8 9

0xa1 0x01 pos type len seq mod key 0xaa 0xaa︸ ︷︷ ︸
Start

︸ ︷︷ ︸
Keys, repeated per key

︸ ︷︷ ︸
End

Figure 3:CH57x custom key-programming protocol. pos is the
key position on the keyboard, type the type of key (normal,
media, mouse), len the length of the macro sequence, seq the
index of the key in the macro sequence, mod a bitfield for
modifier keys, and key the HID code of the key.

in a report. Reports use the command ‘0x3’ to write a byte directly

to the flash memory of the mouse. The location is calculated as

page×256+offset+ index (cf. Figure 2). After a maximum of 8 bytes,

a block is “committed” using commands ‘0x9’ and ‘0x0’. Command

‘0x5’ finishes the button assignment, and command ‘0x10‘ indicates

that the entire programming process has been completed.

CH57x. The communication with the device is via HID output

reports with report ID ‘3’. All reports sent are 64 B, with unused

bytes set to ‘0’. To program keys, the device first expects a “hand-

shake” report, which consists of only ‘0’s. After this report, the keys

can be programmed. The basic protocol for programming keys is

illustrated in Figure 3. The device expects a 2-byte start token (0xa1,
0x01) to start the programming mode. In programming mode, keys

are sent one by one as 6-byte reports. Every report contains the

position of the key on the keyboard, the type of key (e.g., normal

1 (function () {
2

3 // originals are only accessible in this scope
4 let original_requestDevice
5 = window.navigator.hid.requestDevice;
6 let original_getDevices
7 = window.navigator.hid.getDevices;
8

9 let encapsulate = function (original) {
10 return async function () {
11 let devices = await original.apply(
12 window.navigator.hid, arguments);
13 // ... replace device.sendReport and
14 // device.sendFeatureReport on sensitive
15 // devices by encapsulations
16 for (let device of devices) {
17 device.sendReport = function () {
18 return;
19 }
20 device.sendFeatureReport = function () {
21 return;
22 }
23 // prevent removing encapsulations
24 // because it then returns to default
25 Object.freeze(device);
26 }
27 return devices;
28 };
29 };
30

31 window.navigator.hid.requestDevice
32 = encapsulate(original_requestDevice);
33 window.navigator.hid.getDevices
34 = encapsulate(original_getDevices);
35

36 })();
37

Listing 2: This snippet removes the sendReport and
sendFeatureReport function from all HID devices by encap-
sulating the original functions for device access. It has to be
executed before any untrusted code.

key (‘1’), media key (‘2’), or mouse button (‘3’)), the number of keys

in the macro sequence, the index within the macro sequence, and

the key with one or more modifier keys (e.g., shift or control). A

2-byte end token (0xaaaa) terminates the programming mode.

12

	Abstract
	1 Introduction
	2 Background
	2.1 Device Protocols
	2.2 Device Browser APIs

	3 API Security Analysis
	3.1 Threat Models
	3.2 Attacks Enabled by Device APIs
	3.3 Gaining Device API Permission

	4 Firmware Attacks
	4.1 Custom Firmware
	4.2 Firmware Rollbacks

	5 Analysis of Device-Specific Protocols
	5.1 HIDs with Onboard Macros
	5.2 Hayes and Hayes-compatible Modems

	6 Device-specific Attack: Exploiting Onboard Macros
	6.1 Command Injection
	6.2 Spyware

	7 Device-specific Attack: Exploiting Hayes-compatible Modems
	8 Mitigating Device API Attacks
	8.1 Extension-based Control
	8.2 API-Device Contracts
	8.3 Pure Browser-based Approaches
	8.4 Device-based Approaches
	8.5 Host-based Approaches
	8.6 Recognizing Macro-exploitable Devices

	9 Conclusion
	References
	A Accessible Device Classes
	B Macro-based Exploits
	C Run Dialogs
	D Keystroke Injections on Linux and macOS
	D.1 Keystroke Injections on Linux
	D.2 Keystroke Injections on Apple's macOS

	E Extension-based Mitigation
	F Reverse-Engineered Protocols

