
Published as a conference paper at ICLR 2022

CODETREK: FLEXIBLE MODELING OF CODE USING
AN EXTENSIBLE RELATIONAL REPRESENTATION

Pardis Pashakhanloo
University of Pennsylvania

Aaditya Naik
University of Pennsylvania

Yuepeng Wang
Simon Fraser University

Hanjun Dai
Google Research

Petros Maniatis
Google Research

Mayur Naik
University of Pennsylvania

ABSTRACT

Designing a suitable representation for code-reasoning tasks is challenging in
aspects such as the kinds of program information to model, how to combine them,
and how much context to consider. We propose CodeTrek, a deep learning approach
that addresses these challenges by representing codebases as databases that conform
to rich relational schemas. The relational representation not only allows CodeTrek
to uniformly represent diverse kinds of program information, but also to leverage
program-analysis queries to derive new semantic relations, which can be readily
incorporated without further architectural engineering. CodeTrek embeds this
relational representation using a set of walks that can traverse different relations
in an unconstrained fashion, and incorporates all relevant attributes along the way.
We evaluate CodeTrek on four diverse and challenging Python tasks: variable
misuse, exception prediction, unused definition, and variable shadowing. CodeTrek
achieves an accuracy of 91%, 63%, 98%, and 94% on these tasks respectively, and
outperforms state-of-the-art neural models by 2-19% points.

1 INTRODUCTION

Deep learning techniques are increasingly applied to code-reasoning tasks, including bug detection
(Allamanis et al., 2018), type inference (Hellendoorn et al., 2018), code summarization (Alon et al.,
2019b), program repair (Dinella et al., 2020), and code generation (Alon et al., 2020), among many
others. The successful application of these techniques to a given task depends heavily on the program
representation that encompasses relevant program features and model architecture.

There are many crucial choices involved in designing a suitable representation for a new task.
Consider the example in Figure 1 which depicts an instance of an exception-prediction task (Kanade
et al., 2020), whose goal is to predict the exception type in the placeholder “[??]” in the highlighted
statement. Predicting the correct type AssertionError from a range of 20 pre-defined exception types
in Python requires understanding the implementation of the check() function, which is defined in a
different class (TestObject). Thus, the desirable context for the model goes beyond the immediate
lexical neighborhood of the placeholder, possibly inside a chain of called functions.

The richness of information and extended scope inevitably imply that the relevant context may be very
large. Models tackling such tasks are challenged to either reduce the scope of a task—e.g., a single
function, or a few contiguous lines of code text—or heuristically sample from larger scope to produce
a small enough input to fit inside the memory of a GPU. For example, Transformers learn to reason
about code from a sequence of tokens in the program; and GNNs with n layers—a hyper-parameter
which, for message-passing architectures, determines how much of the graph is reachable from some
immediately adjacent context to the task example—prune all nodes that are further than n graph hops
away from the placeholder. However, distance is not always the determining factor in collecting
relevant information. For instance, when trying to decide which exception type is applicable, it may
be more important to follow control flow edges until they meet the raising of an exception than, say,
fetching all adjacent statements without exception handling.

We outline two key design goals motivated by these considerations. First, we observe that pro-
gramming languages have well-defined semantics, which ensures that relevant information (module
imports such as pickle, class inheritance, inter-procedural control flow and data flow, deeper analyses

1

Published as a conference paper at ICLR 2022

ID Kind CID
s1 except c1
s2 assert c2
s4 assign c1

 stmt
ID Scope
c1 test.py:130-138

c2 test.py:5-10

scope
Base Relations

Derived Relations

SID Var
s4 o

 def

project
module
dependency

Program Analysis Queries
(derived relations)

btorrent

pickle

class SyncTestCase:
 ...
 def call_chk():
 o = TestObject()
 try:
 ...
 o.check()
 except [??]:
 errs.append(...)

...

 1:
 2:
 5:

100:

defr.py

log.py

test.py

...

...

 TABLE (
 ID VARCHAR(5) PRIMARY KEY,
 Scope VARCHAR(128) NOT NULL
)

 TABLE (
 ID VARCHAR(5) PRIMARY KEY,
 Kind VARCHAR(20) NOT NULL,
 CID VARCHAR(5) NOT NULL,
 FOREIGN KEY (CID) REFERENCES scope(ID)
)

 VIEW [ID, Caller, Callee] AS ...

Semmle Compiler

 VIEW [SID, Var] AS
 SELECT s, v
 FROM stmt s, var v
 WHERE exists(expr e | e.defines(v)
 and s.getSubEx() = e

130:
131:
132:

136:
137:
138:

import pickle
class TestObject:
 def check(self):
 ...
 assert self.z == 0 10:

Schema of Python Programs
(base relations) Input Python Program

 stmt

scope
Relational Representation

 def

 call

ID Caller Callee
a1 f2 f1

 call

...

Figure 1: Example showing how CODETREK translates an exception-prediction sample in a Python
program into a feature-rich representation that consists of base relations that capture the program’s
syntax and derived relations that capture semantic information computed by program analysis queries.

like def/use chains and object escape, etc.) can be extracted via a number of deterministic analyses.
So, instead of learning this kind of information indirectly from labeled data, we can make it directly
available to the model. The model can thus focus on learning the information that can only be
discovered from rich contexts. Second, even when rich information is easily accessible, making
well-informed predictions in code-reasoning tasks requires intelligent context collection to fit the
needs of the task. So, instead of solely considering the model’s technical constraints, we must capture
relevant context in a task-specific manner.

In this paper, we propose CODETREK, a deep learning approach that realizes these goals. CODETREK
leverages a declarative program analysis framework to produce a rich, easily extensible representation
of context as a relational database, and a biased graph-walk mechanism for pruning that context in
a task-specific way before presenting it to a model based on Transformers and DeepSets (Zaheer
et al., 2017). CODETREK builds upon Semmle (Avgustinov et al., 2016), which converts codebases
in C, Java, Python, etc., into relational databases that capture the underlying structure and semantics
of code, as well as a query language, CodeQL, for specifying program analyses to compute new
semantic information. CODETREK brings little modelling innovation—the architecture is reminiscent
of neural techniques for knowledge-graph reasoning (Das et al., 2018; Perozzi et al., 2014). However,
it is useful both as a relation generator and a task generator. As the former, it can harness existing
and new analyses to add more inductive bias for hard tasks. As the latter, it can help benchmark
neural techniques on more challenging tasks, and generate auxiliary training objectives to pre-train
unsupervised code-understanding models (Feng et al., 2020; Guo et al., 2020; Kanade et al., 2020).

We evaluate CODETREK on four diverse tasks on real-world Python programs. They include two
existing tasks, variable misuse and exception prediction, as well as two newer ones, unused definition
and variable shadowing. The newer tasks are sophisticated CodeQL queries, written by program
analysis experts, and enable testing the power of neural models: they both involve complex logical
reasoning, and only 1.6% of the unused definition samples contain bugs, which is more in line with
real-world settings. CODETREK achieves an accuracy of 91%, 63%, 98%, and 94% on these tasks
respectively, which is 2-19% points higher than state-of-the-art neural models CuBERT, GREAT,
GGNN, and Code2Seq. We also demonstrate the robustness of CODETREK in two out-of-distribution
scenarios: real-world variable misuse samples from GitHub and unused definition samples involving
subtle code perturbations introduced using a systematic test-generation framework, Skeletal Program
Enumeration (Zhang et al., 2017). CODETREK achieves an accuracy of 57% and ROC-AUC of 78%,
respectively in these scenarios, which is 6–11% points and 14–36% points higher than the baselines.

In summary, this paper makes the following contributions:

1. We propose to represent programs as relational databases that make rich context readily available
for code-reasoning tasks using deep learning.

2. We present a graph-walk mechanism that prunes the unrelated context in a task-specific manner.
3. We propose techniques to enable task designers to easily tailor and stress-test their models via

program analysis queries, walk specifications, and systematic test-program generation.

2

Published as a conference paper at ICLR 2022

4. We identify two new challenging tasks for neural code reasoning, unused definition and variable
shadowing; although sophisticated, non-neural static-analysis tools can solve them, these tasks
pose a useful litmus test for neural code-reasoning frameworks and demonstrate the ability of
CODETREK to generate hard tasks that follow real-world program distributions with modest effort.

5. We extensively evaluate our approach and demonstrate that deeper relational information about
code helps neural models outperform the state-of-the-art in terms of accuracy and robustness.

CODETREK is publicly available at https://github.com/ppashakhanloo/CodeTrek.

2 THE CODETREK FRAMEWORK

2.1 BACKGROUND

Inspired by the idea of storing codebases as databases, CODETREK represents a program as a
relational database. Specifically, CODETREK leverages the per-language schema defined by Semmle
to uniformly store lexical, syntactic, and semantic program information as base relations in the
database—we focus on Python in this paper, but the approach is language-agnostic, as long as
Semmle supports the language. Each relation contains information—in the form of tuples—about
a particular kind of program element, such as expressions, statements, and so on. The columns of
a relation specify its attributes. For instance, in Figure 1, tuple (s1, except, c1) in the stmt relation
specifies that s1 is an except statement contained in a scope with identifier c1, and tuple (s4, o) in the
def relation specifies that variable o is defined in some statement with identifier s4. The schema also
defines referential integrity constraints of the form R.A → S.B where A is called a foreign key of
referencing relation R, and B is a unique attribute (e.g. a primary key) of referenced relation S. For
example, in Figure 1, we have stmt.CID→ scope.ID.

2.2 A BIRD’S-EYE VIEW OF CODETREK

Facilitated by CODETREK’s uniform representation of programs, task developers can easily obtain
new semantic information by writing program-analysis queries in CodeQL, an SQL-like language.
The newly derived information is also in the form of derived relations, which maintains the uniformity
of the relational representation. The derived information is stored in def, which, together with call,
can bias the prediction of the best variable to replace a placeholder. A task developer need not be a
machine-learning expert to bring in more semantic information about programs: All they need do is
write a CodeQL query, and the resulting derived information will be added to the existing richness of
the program’s available features in CODETREK.

scope_stmt

call.caller_func.id
func_scope

call.callee_func.id
func_scope scope_stmt

expr_stmt

func

id: f1
name: check
scope: c2

scope

. . .

. . .
. . .

id: c2
scope:
test.py:5-10

stmt

id: s3
kind: try
scope: c1

scope

scope_stmt expr

id: e1
kind: call
scope: c1

call

id: a1
caller: f2
callee: f1 stmt

id: s2
kind: assert
scope: c2

stmt

id: s1
kind: except
scope: c1

id: c1
scope:
test.py:130-138

func

 id: f2
 name: call_chk
 scope: c1

Figure 2: A partial illustration of a graph generated by CODETREK.

CODETREK translates a relational database to a graph whose nodes correspond to tuples, and whose
edges follow referential integrity constraints. An example of such a graph is illustrated in Figure 2
where each node is depicted as a circle along with its type (e.g., func) in white font. Orange and green
nodes correspond to tuples of base and derived relations, respectively. The attributes (e.g., name, kind,
etc.) of the node are shown in a box at the corner of the node. For each referential integrity constraint
R.A→ S.B, an edge type R.A S.B is defined, connecting the tuples of the two relations with the same
value on the edge attributes R.A and S.B. For brevity of presentation in Figure 2, when there is a single
such constraint between a pair of relations R and S, we omit the attributes from the edge type. But
we do not omit them when there are multiple such constraints, such as in the case between relations
func and call, namely, call.caller → func.id and call.callee → func.id. This graph view of program
semantics helps extract succinct context as input to a model. Context extraction from the resulting
CODETREK graph is done via biased random walks of the graph, in a fashion specified by the task
definition. The starting node—which we call an anchor node—may be example-specific (e.g., the
node containing the placeholder) or task-specific (e.g., all nodes holding a variable declaration). In
Figure 2, the node that represents tuple stmt(s1, except, c1)—which corresponds to the statement on

3

https://github.com/ppashakhanloo/CodeTrek

Published as a conference paper at ICLR 2022

stmt scope func call ... except test.py call_chk ... scope_stmt func_scope call_func call_func ...
node types node values edge types

subtokenize

except test py call chk ...
summation

& embed using Ev

node vocabulary (En) edge vocabulary (Ee)

Pooling

positional
encoding

(1)

(2)

(3)

Transformer Encoder
concat

positional
encoding

positional
encoding

(N) (N) (N - 1)

(3N - 1)

Figure 3: Embedding of the walk highlighted in Figure 2.

line 137 in Figure 1 (left)—is the anchor because the goal of the task is to predict a suitable exception
type in the except statement. The walk generator traverses the graph by biasing traversal of edges
according to each neighbor’s node type. If no bias is specified, walks are simply fair random walks.
Different probability mixes for different node types encourage the model to sample walks more
relevant to a task. An example of such a walk is shown in Figure 2 using circles with thicker borders.
This walk reaches the “assert” node which in fact determines the exception type that should be used
in the except statement. For instance, to spend more time traversing longer-range dependencies in
other functions, the developer can assign a higher value to call nodes. In our evaluation, we assign
higher probabilities to nodes of types stmt and expr. We could achieve improved accuracy for the
tasks compared to baselines by only modifying the probabilities of up to 4 types of nodes. Learning
the walk specification given the task without human input is exciting future work.

Finally, to convert random walks to a distributed representation, CODETREK embeds each walk
(including the types and attributes of each node and edge in the walk) using a Transformer encoder,
and then produces an order-invariant representation of the set of walks using the Deep Set architec-
ture (Zaheer et al., 2017). The resulting hidden representation can then be used by to make predictions
for the particular code-reasoning task.

Random walks to embed a graph are perhaps a regressive choice, compared to more modern solutions
such as GNNs or relational Transformers. For instance, DeepWalk (Perozzi et al., 2014) uses random
walks for distributed-representation learning in a transductive setting, and Code2Seq (Alon et al.,
2019a) uses shortest paths between pairs of AST leaf nodes. We chose biased random walks for
several reasons. First, this enables CODETREK to choose task-specific strategies to heuristically
fetch relevant context for a task, rather than choosing to embed all tokens of a function or class in
lexical order. Second, in contrast to GNNs, this enables CODETREK to potentially follow much
longer chains through the semantic graph than what would be possible in a message-passing GNN
of a tractable number of layers—this was, in fact, the motivation behind the model architectures by
Hellendoorn et al. (2020). Finally, in contrast to other walk-based approaches such as Code2Seq and
AnyCodeGen, which share some of our motivation, our graph structure has much richer connectivity
and is larger. For instance, those approaches only consider paths ending at token-bearing leaf nodes,
with only AST interior nodes in between, whereas CODETREK admits arbitrary paths through the
graph. In our example, paths with more than two token nodes, e.g., the walk illustrated in Figure 2
using circles with thicker borders is admissible for CODETREK but not for Code2Seq. CODETREK
builds upon the above techniques and extends to relational graphs, with different sampling strategies
and neural architectures that would suit database representation better.

2.3 BUILDING BLOCKS OF CODETREK

We now describe briefly the building blocks of CODETREK. Pre-processing consists of two steps:
(a) turning the codebase into a relational database (Code2Rel), using a pre-existing set of analyses
and the developer’s own analyses, and (b) mapping the relational database to a graph (Rel2Graph).
Then, a graph is processed into sets of graph walks to present to a model. Finally, we train using a
cross-entropy loss to implement a particular task.

Codebases as Relational Databases. Code2Rel applies to the codebase the system’s base program
analysis queries, which make up the base relations, as well as those provided by the developer, which

4

Published as a conference paper at ICLR 2022

form the derived relations. The result is a database comprising of a number of named tuples for each
relation type. For Python, we collect 95 base relations and 277 derived relations, although adding
more derived relations is simply an exercise in writing a few lines of CodeQL. Optionally, this step
can limit the resulting database to only those relations that are reachable (through query-to-query
dependencies) from some program analyses marked as required by the developer. Appendix D.1
provides further details.

Constructing Relational Graphs from Databases. Rel2Graph interprets the relations produced
by Code2Rel as a graph, as follows. Each named tuple is represented by a node with the values of the
tuple attributes as its features. Edges are added between these nodes as described in subsection 2.2
such that the edge type R.A S.B is defined for each referential integrity constraint R.A→ S.B between
nodes representing tuples of relations R and S.

Representing Code as a Set of Walks. Given a code database that is converted to graph G via
the above Rel2Graph, we propose to represent it by the embedding of a set of walks W , via the
procedure Graph2Walks. Graph2Walks projects a code graph as produced by Rel2Graph to a set of
walks, according to the task-specific walk specification (anchor node predicate, traversal bias, and
target walk length). Graph2Walks samples from the distribution of such random walks, by repeatedly
picking a node satisfying the anchor predicate, and traversing up to a maximum number of neighbors,
following the transition probabilities specified. The resulting walks are collected as token sequences
of relation types of nodes, their attribute values, and the edge types traversed, in the order of traversal.
Figure 3 row (1) shows such a walk representation corresponding to the walk highlighted in Figure 2.
Appendix D.3 specifies Graph2Walks precisely.

Embedding the Set of Sampled Walks. Given a walk w = [n0, e0, n1, e1, . . . , nN−1] of length
N steps consisting of N nodes and N − 1 edges, we produce an initial embedding Xw ∈ R(3N−1)×d,
where d is the embedding dimension. It consists of three segments. The firstN rows of the embedding
tensor represents the N node types (relation names), using an embedding lookup in En ∈ RR×d,
where R is the number of relations. The next N rows represent the attribute values of the N nodes;
we subtokenize attribute values (using a V -sized WordPiece vocabulary for attribute values), embed
each subtoken using Ev ∈ RV×d, and mean-pool the subtoken embeddings into each node’s attribute
embedding. The last segment represents theN−1 edge types (recall that an edge type is a tuple of two
relation names and primary-key/foreign-key attributes), using an embedding lookup in Ee ∈ RI×d,
where I is the number of referential-integrity constraints in the database. All three embedding
matrices En, Ev, Ee are learnable parameters. Each individual part of the embedding tensor gets its
own sinusoidal positional encoding (denoted as PEw ∈ R(3N−1)×d). We use a Transformer encoder to
represent the embedding of walkw as ew = pooling

(
Transformer(Xw+PEw)

)
: R(3N−1)×d 7→ Rd,

where after the last layer of Transformer we do mean-pooling over all 3N − 1 elements of the walk,
to obtain a d-dimensional ew. The steps for embedding of a walk sampled from the graph in Figure 2
is illustrated in Figure 3.

Training and Inference. An example consists of a set of walks and a ground-truth label, (W, ŷ).
Given an unordered set of walk embeddings {ew}w∈W , we build a classifier by using the construction
y = MLP

(
DeepSet({ew}w∈W)

)
, where y denotes the predicted label and we optimize for cross

entropy loss. However, for a binary classification task, we can obtain a more interpretable model via
y =

∑
w∈W αwσ(MLP(ew)), where σ(·) is the sigmoid function, and αw = exp MLP(ew)∑

w′∈W exp MLP(ew′)
.

This way, we can inspect the individual walks that contributed the most (i.e., the highest αw) to the
positive or negative predictions, and see if that aligns with human reasoning. We refer to αw as
the walk score. We train using the Adam optimizer with 8 GPUs for distributed synchronized SGD
training (see Appendix A for details).

3 EVALUATION

Tasks. We consider two main criteria in selecting tasks. The first is locality, which is determined
by whether reasoning within a function typically suffices, or whether inter-procedural reasoning is
required. The second is declarativity—whether the task can be stated as a logic problem that can
be solved using declarative queries. For declarative tasks, we write queries in CodeQL (detailed in
Appendix C); for non-declarative tasks, we rely on available datasets. We treat the following tasks:

1. VARMISUSE. Given a function and a variable accessed in it, predict whether the variable is
misused. We also consider a variation of this task, VARMISUSE-FUN (Kanade et al., 2020), that

5

Published as a conference paper at ICLR 2022

Task CODETREK GGNN Code2Seq GREAT CuBERT
VARMISUSE 0.91 ± 0.003 0.69 ± 0.004 – 0.82 ± 0.002 0.89 ± 0.003
VARMISUSE-FUN 0.70 ± 0.004 0.54 ± 0.004 0.52 ± 0.005 0.89 ± 0.003 0.84 ± 0.003
EXCEPTION 0.63 ± 0.003 0.28 ± 0.02 0.30 ± 0.01 0.44 ± 0.008 0.42 ± 0.008
EXCEPTION-FUN 0.65 ± 0.01 0.51 ± 0.02 0.51 ± 0.008 0.68 ± 0.007 0.69 ± 0.007
DEFUSE ∗ 0.98 ± 0.002 0.76 ± 0.07 – 0.84 ± 0.05 0.76 ± 0.01
DEFUSE-FUN ∗ 0.91 ± 0.005 0.77 ± 0.07 0.66 ± 0.01 0.82 ± 0.007 0.71 ± 0.01
VARSHADOW 0.94 ± 0.007 0.71 ± 0.01 0.70 ± 0.01 0.93 ± 0.008 0.91 ± 0.008

Table 1: Accuracy results of CODETREK. Rows that are marked by ∗ are measured by ROC-AUC,
and the rest are measured by accuracy. The best performance in each row is denoted in boldface.

takes only a function and predicts whether all variables are used correctly in the function. Note that
neither variation is declarative: given a well-formed program, no logic query can deterministically
decide that a variable is misused, since that decision depends on the intended semantics.

2. EXCEPTION. Given a module containing a masked exception type in an except clause, predict
the most appropriate built-in exception type out of 20 choices. We also consider a variation of
this task, EXCEPTION-FUN (Kanade et al., 2020), that is similar to EXCEPTION but takes a single
function as scope. Although EXCEPTION needs inter-procedural reasoning, neither variation is
declarative, since the choice of the appropriate exception type is subjective in Python.

3. DEFUSE. Given a function and a variable definition in its scope, predict whether the definition is
used. We also consider a variation of this task, DEFUSE-FUN, that takes a function as its input
and predicts whether any definitions are unused. This task is especially interesting because the
real-world distribution of programs that contain unused definitions is skewed. Both variations are
declarative (see Appendix C.1) and require only intra-procedural reasoning.

4. VARSHADOW. Given a module, predict whether any variable defined within a certain scope has
the same name as a variable defined in an enclosing outer scope, thereby shadowing that latter
variable. Similar to EXCEPTION, this task requires inter-procedural analysis in order to reason
over both local as well as global variables. It has a declarative query (see Appendix C.2).

Benchmark. We use the ETH Py150 Open corpus consisting of 125K Python modules1. It is a
de-duplicated and redistributable subset of ETH Py1502. Specifically, for the non-declarative tasks,
we use the datasets released by Kanade et al. (2020). Since these are function-level samples but the
EXCEPTION task is module-level, we augment the function in each sample with the entire containing
module for this task. For the declarative tasks, we use analyses written in CodeQL to annotate all
functions (or modules, as applicable) in ETH Py150 Open. All datasets consist of real examples,
except for VARMISUSE-FUN and VARMISUSE where variable misuses are synthetically introduced
into real code. We collected a number of apparent variable misuses from GitHub commits to test our
models and baselines on a realistic dataset. Dataset details are available in Appendix H.

Baselines. To compare CODETREK’s performance with state-of-the-art techniques, we select four
baselines: we implement GGNN by Allamanis et al. (2018) and Code2Seq by Alon et al. (2019a),
build classifiers on top of the GREAT encoder by Hellendoorn et al. (2020), and fine-tune the
pre-trained Python model for CuBERT by Kanade et al. (2020), which is essentially the Transformer-
based classifier implementation of BERT. For Code2Seq we use ASTs as base program structures
as described by Alon et al. (2019a). We sample leaf-to-leaf paths from these ASTs. The number of
paths we sample is the same as the number of walks we sample for training CODETREK models.
For GGNN and GREAT, we compute the data flow, control flow, and lexical information described
by Allamanis et al. (2018) and Hellendoorn et al. (2020), respectively, using Semmle CodeQL and
augment program ASTs with those edges. We detail baseline hyperparameters in Appendix A, and
fine-grained information about the size of AST-based versus CODETREK graphs in Appendix G.1.

3.1 ACCURACY OF CODETREK

We evaluate the performance of CODETREK and the baseline techniques on all the tasks described in
section 3, all presented as classification tasks. We perform 10-fold cross-validation and report the
average of the metric that we use to measure the performance of each task. We use ROC-AUC as the
metric for DEFUSE and DEFUSE-FUN tasks due to their unbalanced datasets, and accuracy for the

1https://github.com/google-research-datasets/eth_py150_open
2https://www.sri.inf.ethz.ch/py150

6

https://github.com/google-research-datasets/eth_py150_open
https://www.sri.inf.ethz.ch/py150

Published as a conference paper at ICLR 2022

Task CODETREK GGNN Code2Seq GREAT CuBERT
VARMISUSE-REAL 0.57 0.51 0.50 0.49 0.46
DEFUSE-SPE ∗ 0.78 0.53 0.63 0.41 0.47

Table 2: Robustness results of CODETREK.

remaining tasks. The results are reported in Table 1. In 5 out of 7 tasks, CODETREK outperforms
GGNN, Code2Seq, GREAT, and CuBERT by 2–19% points.

There are various reasons why CODETREK performs better than these approaches. First, declarative
tasks such as DEFUSE-FUN (or DEFUSE) require complex reasoning about the interactions between
program variables. For instance, one needs to reason about the uses and definitions of variables in
a flow-sensitive manner to determine whether any unused definitions exist in a program. Consider
the code snippet in Figure 4. The definition of the variable month on line 2 is unused but that at
line 3 is used in line 4. CODETREK gives a majority of the walks sampled using the definition
at line 3 a high score (around 0.99), indicating the existence of a use of that definition. However,
most of the walks sampled from the definition of month at line 2 were given a lower score, and so
CODETREK determines that this definition is unused. We observe that both CuBERT and GREAT
fail to distinguish between the definitions on lines 2 and 3, and so they predict both to be used.

1 def get_month(self, t):
2 month, _, _ = t
3 def validate(month):
4 return is_valid(month)
5 return self.month

Figure 4: Example DEFUSE-FUN task.

Additionally, some tasks such as EXCEPTION require rea-
soning beyond the boundaries of a single function to make
informed predictions. Functions in the chain of function
calls can be lexically far from each other, thus rendering
the limited context size of CuBERT and GREAT insuffi-
cient. We observe that GGNN fails in the presence of such
long call chains on par with findings of Alon & Yahav

(2021). CODETREK addresses this kind of mispredictions by readily using a call graph relation to
connect the chain of function calls. This enables CODETREK to traverse a long distance without the
need to consider other statements in the program that have no effect in raising some exception.

However, CODETREK performs worse than CuBERT in EXCEPTION-FUN. This could be attributed
to the fact that CuBERT is pre-trained on around 7 million Python programs, and therefore is able
to memorize tokens from several instances of try-except blocks. An example of a heuristic that it
learns is that in presence of tokens such as request or response in the context, it suggests catching
HTTPError, which is usually the correct choice. However, its prediction is not robust against changes
in the variable names. For instance, changing the names of a few nearby variables to request or
response forces CuBERT to predict HTTPError regardless of the semantics. CODETREK on the other
hand, does not rely on memorizing the tokens, but learns to assign high probabilities to walks that
correctly traverse a chain of function calls starting from the try blocks to locations in programs (or
their libraries) where the exception is originally raised.

CODETREK also performs worse than GREAT in VARMISUSE-FUN. This is because every node that
corresponds to a variable is selected to be an anchor for this task. The total number of walks (500
in this task) is divided among these variables. However, there can be hundreds of variables in some
programs, resulting in few walks generated for each variable in such cases, diminishing the ability of
CODETREK to learn sufficient information about each variable.

3.2 ROBUSTNESS OF CODETREK

We evaluate the robustness of CODETREK on additional test data that does not follow the distribution
of the training data. This data includes two new datasets: one representing real-world bugs for
the VARMISUSE-FUN task and the other consisting of programs mutated using a systematic test-
generation framework for the DEFUSE-FUN task. The results are reported in Table 2.
Real-world bugs. We manually collect 199 real-world instances containing a VARMISUSE-FUN
bug and their corrected counterparts (a total of 398 samples) from commits on GitHub and use them
as testing data for the VARMISUSE-FUN task. We define a VARMISUSE-FUN bug as the occurrence
of a misused variable that is changed to another in-scope variable in the commit. We evaluate the
baselines using this real-world set of bugs. CODETREK outperforms baselines in detecting real-world
variable misuse bugs (VARMISUSE-REAL) by achieving an accuracy of 57% which is 6% points
better than the second best result obtained by GGNN.

Mutated programs. There are several approaches to mutating existing datasets, including trans-
forming existing data (Yang et al. (1992)), generating synthetic programs, and fuzzing. A representa-

7

Published as a conference paper at ICLR 2022

tive approach that has been used to systematically evaluate the robustness of compilers is Skeletal
Program Enumeration (SPE), proposed by Zhang et al. (2017). SPE parameterizes each program
by a set of its variables, and replaces each variable name exhaustively with other in-scope variable
names. We generate variations of the DEFUSE-FUN testing data using this technique, and evaluate
the baselines on this mutated dataset (DEFUSE-SPE). CODETREK outperforms all baselines in
classifying these perturbed programs by achieving the ROC-AUC score of 78% which is 15% points
better than the second best result obtained by Code2Seq.

The poor performance of the baselines can be explained by the fact that the code generated by
SPE is out-of-distribution. For example, the assignment a = a + a is unusual in real code, but
occurs frequently in SPE-generated samples. Despite this, the inductive bias borne by rich relational
information during training remains applicable and prevails over the unusual-looking token sequences,
thus explaining CODETREK’s performance.

These results suggest that sampling walks can be a promising strategy for robustness. Interestingly,
the runner-up in this study is Code2Seq—another walk-based approach. We inspected the paths in
both approaches to understand the reason behind the difference in performance of Code2Seq and
CODETREK despite their similarities. We identified two reasons: 1) the kinds of program information
that can be captured from an AST are limited compared to the program graph we propose, and 2)
several walks that CODETREK prioritizes for this task cannot be embedded by Code2Seq.

3.3 EFFECTIVENESS ON LONGER-RANGE TASKS

We evaluate the effectiveness of CODETREK on tasks that require reasoning beyond function bound-
aries. CODETREK achieves this ability by readily incorporating relations that capture inter-procedural
or inter-modular dependencies such as call graphs. To demonstrate this, we compare CODETREK’s
performance on EXCEPTION with vs. without incorporating the call graph information at training
time. CODETREK achieves an accuracy of 52% when call graph information is not provided, which
increases to 63% after providing the call graph information between functions within a module.

1 class ZipFile:
2 def __init__(...):
3 self.__check_compression(...)
4 def __check_compression(...):
5 raise NotImplementedError
6 # ...2000 lines of code...
7 class TestZipFile:
8 def test(path):
9 try:

10 zf = ZipFile(path)
11 except [??]:
12 log.warning()

Figure 5: Example EXCEPTION task.

To illustrate the kinds of mistakes that the baselines (and
also CODETREK in the absence of call graph information)
make, consider the representative example in Figure 5,
snipped and simplified from the zipfile package. In this
example, the model predicts the exception type that should
be caught on line 11. However, to make an informed pre-
diction, the model must consider the exceptions that may
be raised when calling the ZipFile constructor (line 10).
Hence, the definition of the constructor (line 2) must be
taken into consideration. This constructor calls another
function check compression in which a NotImplement-

edError is raised on line 5. This chain of function dependence can be easily represented using a call
graph. Therefore, CODETREK, once provided with call graph, will eventually traverse the path that
reaches this raise statement from the exception statement through the call graph edges.

3.4 SENSITIVITY TO NUMBER OF SAMPLED WALKS

We evaluate the sensitivity of CODETREK at test time to the number of walks that are sampled
from program graphs. All the models for the considered tasks are trained on 100 sampled walks
per program. The results are reported in Figure 6. We observe that the accuracies of the models
increase with the number of sampled walks. In some tasks, such as DEFUSE and VARMISUSE that
involve local reasoning about one point in the program, reducing the number of walks from 100 to
50 reduces the accuracies of the models by a very small amount. On the other hand, for tasks that
require reasoning about numerous points in the program (e.g., DEFUSE-FUN) or reasoning globally
(e.g., EXCEPTION) decreasing the number of sampled walks has a bigger impact on the accuracy.

3.5 IMPACT OF PROGRAM REPRESENTATION

To evaluate the impact of different code representations, we train two models for each task using
CODETREK’s architecture: for one set of models, the walks are sampled from relational graphs
whereas for the other set of models, the walks are sampled from ASTs. The performance results are
reported in Table 3. Notably, the models trained on walks sampled from relational graphs are about
3–35% points more accurate than models trained on walks sampled from ASTs.

8

Published as a conference paper at ICLR 2022

25 50 75 100
Number of Sampled Walks

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rfo

rm
an

ce

VarMisuse
Exception
ExceptionFun
DefUse
DefUseFun
VarShadow

Figure 6: Sensitivity to the number of walks.

Task Relational AST
VARMISUSE 0.91 0.63
VARMISUSE-FUN 0.70 0.55
EXCEPTION 0.63 0.37
EXCEPTION-FUN 0.65 0.62
DEFUSE ∗ 0.98 0.63
DEFUSE-FUN ∗ 0.91 0.67
VARSHADOW 0.94 0.73

Table 3: Impact of Program Representa-
tion on Accuracy. (Rows marked by ∗ are
evaluated by ROC-AUC score.)

We also evaluate the usefulness of the ability to bias random walks in CODETREK. The accuracy
results that are reported in Table 1 are all trained on biased random walks. Specifically, in all of the
tasks, nodes with types stmt, expr, and variable are biased such that they are 5 times more likely to
be traversed compared to other kinds of neighboring nodes. In addition, in the EXCEPTION task,
we decrease the bias assigned to nodes of type module to 0 to avoid traveling from one function to
another through the module node they have in common. (See Appendix E for more details about
specification of the tasks.) This forces the walks to only go to other functions by taking call graph
edges between them. We select one of the tasks, EXCEPTION-FUN, to measure the accuracy in the
absence of said biases. We re-train EXCEPTION-FUN using uniformly sampled walks and observe
that the accuracy reduces from 65% to 58% as a result.

4 RELATED WORK

Learning to represent code. There is a rich literature on using neural networks for code reasoning.
At the token sequence level, the Transformer and its variants (Hellendoorn et al., 2020; Dowdell &
Zhang, 2020) have been widely used (Berabi et al., 2021; Ahmad et al., 2020; Zügner et al., 2021; Kim
et al., 2021; Wang et al., 2020). Their performance can be further boosted via pretraining (Feng et al.,
2020; Guo et al., 2020; Kanade et al., 2020; Wang et al., 2021; Peng et al., 2021; Liu et al., 2020).
Others have proposed to represent programs with ASTs and additional semantic edges (Allamanis
et al., 2018; Brockschmidt et al., 2018) or learned abstract relations (Johnson et al., 2020), using GNN
or leaf-to-leaf sequence embeddings (Alon et al., 2019a;b). Our work enables adding much richer
semantic information while reducing the dependency on syntax structures. Additionally, CODETREK
can take advantage of program analysis queries on relational databases to eliminate the engineering
burden of augmenting program graphs with additional semantic edges.

Graph representation learning. Our work on learning program representations via relational
databases is closely related to inductive representation learning on graphs (Hamilton et al., 2017)
with graph neural networks (GNNs) (Xu et al., 2018) or Transformers (Ying et al., 2021). Although
scalable GNNs via sampling (Chen et al., 2017; Zhou et al., 2020) have been proposed in the
transductive setting, it is still challenging to represent large database graphs with 100k nodes in this
inductive setting (Clement et al., 2021; Yang & Kuang, 2021). Techniques from transductive graph
embedding based on skip-gram (Perozzi et al., 2014; Grover & Leskovec, 2016) or general knowledge
graph embedding (Das et al., 2017; Hamilton et al., 2018; Zheng et al., 2020) are scalable but not
directly applicable for inductive setting. CODETREK achieves a good balance between modeling for
large codebases and efficiency.

Feature selection techniques. There are efforts in the data-mining literature to minimize human
effort in feature augmentation and selection. Chepurko et al. (2020) discover joins that can improve
the prediction accuracy for a single data table whereas CODETREK operates on multiple tables.

5 CONCLUSIONS

We proposed CODETREK, a technique that represents programs as relational databases to make rich
semantic information available to deep learning models for code-reasoning tasks. We also introduced
a flexible walk-based mechanism to sample relevant contexts from large graphs which are constructed
from relational databases. We evaluated CODETREK on a variety of real-world tasks and datasets,
and showed that it outperforms state-of-the-art neural models.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

We thank the anonymous reviewers, David Bieber, Rishabh Singh, Charles Sutton, and Daniel Tarlow
for their valuable feedback. This research was supported by grants from ONR (#N00014-18-1-2021)
and NSF (#2107429 and #1836936).

REFERENCES

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. A transformer-based
approach for source code summarization. arXiv preprint arXiv:2005.00653, 2020.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In International Conference on Learning Representations (ICLR). OpenReview.net,
2018.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations (ICLR). OpenReview.net, 2021.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from
structured representations of code. In International Conference on Learning Representations
(ICLR). OpenReview.net, 2019a.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed rep-
resentations of code. Proceedings of the ACM on Programming Languages, 3(POPL):1–29,
2019b.

Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. Structural language models of code. In
International Conference on Machine Learning, pp. 245–256. PMLR, 2020.

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL: object-oriented
queries on relational data. In Shriram Krishnamurthi and Benjamin S. Lerner (eds.), European
Conference on Object-Oriented Programming (ECOOP), volume 56 of LIPIcs, pp. 2:1–2:25.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

Berkay Berabi, Jingxuan He, Veselin Raychev, and Martin Vechev. Tfix: Learning to fix coding errors
with a text-to-text transformer. In International Conference on Machine Learning, pp. 780–791.
PMLR, 2021.

Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and Oleksandr Polozov. Generative
code modeling with graphs. arXiv preprint arXiv:1805.08490, 2018.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568, 2017.

Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez, Tim Kraska, and David
Karger. Arda: Automatic relational data augmentation for machine learning. arXiv preprint
arXiv:2003.09758, 2020.

Colin B Clement, Shuai Lu, Xiaoyu Liu, Michele Tufano, Dawn Drain, Nan Duan, Neel Sundaresan,
and Alexey Svyatkovskiy. Long-range modeling of source code files with ewash: Extended window
access by syntax hierarchy. arXiv preprint arXiv:2109.08780, 2021.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement learning. arXiv preprint arXiv:1711.05851,
2017.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement learning. In International Conference on
Learning Representations, 2018.

10

Published as a conference paper at ICLR 2022

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. Hoppity: Learning
graph transformations to detect and fix bugs in programs. In International Conference on Learning
Representations (ICLR). OpenReview.net, 2020.

Thomas Dowdell and Hongyu Zhang. Language modelling for source code with transformer-xl.
arXiv preprint arXiv:2007.15813, 2020.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with
data flow. arXiv preprint arXiv:2009.08366, 2020.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Proceedings of the 31st International Conference on Neural Information Processing Systems,
pp. 1025–1035, 2017.

William L Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding
logical queries on knowledge graphs. arXiv preprint arXiv:1806.01445, 2018.

Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. Deep learning type
inference. In Proceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE), 2018.

Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. Global
relational models of source code. In International Conference on Learning Representations (ICLR).
OpenReview.net, 2020.

Daniel D Johnson, Hugo Larochelle, and Daniel Tarlow. Learning graph structure with a finite-state
automaton layer. arXiv preprint arXiv:2007.04929, 2020.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and evaluating
contextual embedding of source code. In Proceedings of the International Conference on Machine
Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pp. 5110–5121.
PMLR, 2020.

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. Code prediction by feeding trees to
transformers. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pp. 150–162. IEEE, 2021.

Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. Multi-task learning based pre-trained language model for
code completion. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, pp. 473–485, 2020.

Dinglan Peng, Shuxin Zheng, Yatao Li, Guolin Ke, Di He, and Tie-Yan Liu. How could neural
networks understand programs? arXiv preprint arXiv:2105.04297, 2021.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 701–710, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Wenhua Wang, Yuqun Zhang, Zhengran Zeng, and Guandong Xu. trans3: A transformer-based
framework for unifying code summarization and code search. arXiv preprint arXiv:2003.03238,
2020.

11

Published as a conference paper at ICLR 2022

Xin Wang, Yasheng Wang, Pingyi Zhou, Meng Xiao, Yadao Wang, Li Li, Xiao Liu, Hao Wu, Jin Liu,
and Xin Jiang. Clsebert: Contrastive learning for syntax enhanced code pre-trained model. arXiv
preprint arXiv:2108.04556, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Hao Yang and Li Kuang. Ccmc: Code completion with a memory mechanism and a copy mechanism.
In Evaluation and Assessment in Software Engineering, pp. 129–138. 2021.

Wuu Yang, Susan Horwitz, and Thomas Reps. A program integration algorithm that accommo-
dates semantics-preserving transformations. ACM Transactions on Software Engineering and
Methodology (TOSEM), 1(3):310–354, 1992.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform bad for graph representation? arXiv preprint
arXiv:2106.05234, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and
Alexander Smola. Deep sets. arXiv preprint arXiv:1703.06114, 2017.

Qirun Zhang, Chengnian Sun, and Zhendong Su. Skeletal program enumeration for rigorous compiler
testing. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pp. 347–361. ACM, 2017.

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang, and
George Karypis. Dgl-ke: Training knowledge graph embeddings at scale. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 739–748, 2020.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI Open, 1:57–81, 2020.

Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan Günnemann.
Language-agnostic representation learning of source code from structure and context. arXiv
preprint arXiv:2103.11318, 2021.

12

Published as a conference paper at ICLR 2022

A TRAINING PARAMETERS AND HYPERPARAMETERS

In this section, we describe details on parameters and hyperparameters we used.

CodeTrek We train CODETREK models with a learning rate of 10−4, 4 transformer layers, an
embedding size of 256, 8 attention heads, and 512 hidden units. We sample 100 walks with lengths
of up to 24 in each graph for every task, except for the VARMISUSE-FUN task for which we sample
500 such walks per graph. The reason is that the anchors we select for VARMISUSE-FUN task are all
the variables in the given program which can be well over 100 variables. So, we increase the total
number of walks to include more random walks starting from each variable.

CuBERT We fine-tune the CuBERT pre-trained model that is provided by Kanade et al. (2020)
with a learning rate of 10−4, 4 transformer layers, and 512 hidden units. We use the checkpoint that
is pre-trained on examples of size 512 tokens.

GREAT We train GREAT models with a learning rate of 10−4, 4 transformer layers, 8 attention
heads and 512 hidden units. The example size in 512 tokens.

Code2Seq We train Code2Seq models with a learning rate of 10−3, 4 layers, 512 hidden units, and
embedding size of 256. We sample 100 paths in each AST.

GGNN We train GGNN models with a learning rate of 10−4, 5 layers, a latent dimension of size
128, and a message dimension of size 128.

B MORE EXPERIMENNTS

Increasing the Number of Layers in Baselines We repeat the experiments that are reported in
Table 1 for GREAT and GNN with 10 layers. We report the results in Table 4

Task GNN GREAT
VARMISUSE 0.72 0.84
VARMISUSE-FUN 0.58 0.86
EXCEPTION 0.30 0.45
EXCEPTION-FUN 0.53 0.68
DEFUSE* 0.78 0.87
DEFUSE-FUN* 0.77 0.84
VARSHADOW 0.74 0.94

Table 4: The performance of GNN and GREAT with 10 layers.

Ablation Study We measure the contribution of the positional encoding which is used in embedding
walks, the contribution of derived relations in improving the accuracy, and the effect of the biases
assigned to node types. We report the results in Table 5. Every row in this table shows a different
configuration indicated by 1-4.

We train a model for the EXCEPTION task using the Positional Encoding in embedding the components
of each walk, the call relation that shows the relationships between functions and their callers, and
the biases which are assigned to nodes of type stmt, expr”, and variable (Config 1). This setting is
similar to that of Table 1 in the paper. With this setting, CODETREK achieves an accuracy of 63.83%
on the EXCEPTION task. If we remove the Positional Encoding (Config 2), we see a small drop of
1.77% points in the accuracy. The effect of further removing the biases (Config 3) is much higher:
CODETREK ’s accuracy drops 6.3% points from 62.06% to 55.76% points. This aligns with our
intuition that adding biases to the aforementioned node types results in generating walks that are
more relevant to the task. Finally, we obtain the largest drop in the accuracy by further removing the
derived call relation (Config 4). This component contributes a significant amount of 10.57% points
to the accuracy of the task, and it obtains a low accuracy of 45.19% points in absence of all three
components.

13

Published as a conference paper at ICLR 2022

Config # Positional Encoding Derived Relations Biases Accuracy (%)
1 X X X 63.83
2 × X X 62.06
3 × X × 55.76
4 × × × 45.19

Table 5: Contribution of different factors to the accuracy of EXCEPTION task.

Steps 4 6 12 18 24 30
Accuracy 0.41 0.49 0.60 0.63 0.64 0.65

Table 6: Sensitivity to the length of walks.

Different Pooling Mechanisms. We examine the effect of mean pooling versus attention pool-
ing on the performance of CODETREK models. Attention pooling increases the accuracy of the
EXCEPTION task from 63.83% to 66.43%.

Different Positional Encoding Techniques. We also explore different positional encoding options.
The current setting of CODETREK gives an accuracy of 63.83% in the EXCEPTION task. Substituting
the sinusoidal positional encoding with a learned one improves the accuracy less than 1% points.
This result is in line with findings of Vaswani et al. (2017), which report nearly identical results using
both positional encoding techniques.

Sensitivity to the Length of Walks To measure the sensitivity of CODETREK to the length (i.e.,
number of steps) of walks, we train a number of models for the EXCEPTION task with walks of
length 4–30 steps. We report accuracy changes in Table 6. Longer walks tend to improve accuracy.
Walks that are too short (4 or 6 hops) result in models with low accuracy (42% and 51%, respectively)
because they are not able to capture enough information to make predictions. There is, however,
a point when enough context is captured (e.g., 24 hop walks) and longer walks do not improve
performance significantly.

C CODEQL QUERIES USED FOR LABELING

In this section, we present the CodeQL queries that we used to label the examples for newly added
tasks. Both queries are adapted from CodeQL’s query repository at https://github.com/
github/codeql.

C.1 DEFUSE-FUN QUERY

1 import python
2 import Definition
3
4 predicate unused_local(Name unused, LocalVariable v) {
5 forex(Definition def | def.getNode() = unused |
6 def.getVariable() = v
7 and def.isUnused()
8 and not exists(def.getARedef())
9 and not exists(annotation_without_assignment(v))

10 and def.isRelevant()
11 and not v = any(Nonlocal n).getAVariable()
12 and not exists(def.getNode().getParentNode().
13 (FunctionDef).getDefinedFunction().getADecorator())
14 and not exists(def.getNode().getParentNode().
15 (ClassDef).getDefinedClass().getADecorator())
16)
17 }
18
19 private AnnAssign annotation_without_assignment(LocalVariable v) {
20 result.getTarget() = v.getAStore()
21 and not exists(result.getValue())
22 }
23
24 from Name unused, LocalVariable v

14

https://github.com/github/codeql
https://github.com/github/codeql

Published as a conference paper at ICLR 2022

25 where
26 unused_local(unused, v) and
27 forall(Name el | el = unused.getParentNode().(Tuple).getAnElt() | unused_local(el, _))
28 select unused, v.getId()

C.2 VARSHADOW QUERY

1 import python
2 import semmle.python.types.Builtins
3
4 predicate optimizing_parameter(Parameter p) {
5 exists(string name, Name glob | p.getDefault() = glob
6 | glob.getId() = name
7 and p.asName().getId() = name
8)
9 }

10
11 predicate shadows(Name d, GlobalVariable g, Function scope, int line) {
12 g.getScope() = scope.getScope()
13 and d.getScope() = scope
14 and exists(LocalVariable l |
15 d.defines(l) and
16 l.getId() = g.getId()
17)
18 and not exists(Import il, Import ig, Name gd | il.contains(d)
19 and gd.defines(g)
20 and ig.contains(gd))
21 and not exists(Assign a | a.getATarget() = d
22 and a.getValue() = g.getAnAccess())
23 and not exists(Builtin::builtin(g.getId()))
24 and d.getLocation().getStartLine() = line
25 and exists(Name defn | defn.defines(g)
26 | not exists(If i | i.isNameEqMain()
27 | i.contains(defn)))
28 and not optimizing_parameter(d)
29 }
30
31 AttrNode pytest_fixture_attr() {
32 exists(ModuleValue pytest | result.getObject("fixture").pointsTo(pytest))
33 }
34
35 Value pytest_fixture() {
36 exists(CallNode call |
37 call.getFunction() = pytest_fixture_attr()
38 or call.getFunction().(CallNode).getFunction() = pytest_fixture_attr()
39 | call.pointsTo(result)
40)
41 }
42
43 predicate assigned_pytest_fixture(GlobalVariable v) {
44 exists(NameNode def |
45 def.defines(v) and def.(DefinitionNode).getValue().pointsTo(pytest_fixture())
46)
47 }
48
49 predicate first_shadowing_definition(Name d, GlobalVariable g) {
50 exists(int first, Scope scope |
51 shadows(d, g, scope, first)
52 and first = min(int line | shadows(_, g, scope, line))
53)
54 }
55
56 from Name d, GlobalVariable g, Name def
57 where
58 first_shadowing_definition(d, g)
59 and not exists(Name n | n.deletes(g))
60 and def.defines(g)
61 and not assigned_pytest_fixture(g)
62 and not g.getId() = "_"
63 select d, g.getId(), def

15

Published as a conference paper at ICLR 2022

D CODEBASES AS DATABASES

D.1 TRANSLATING CODE TO RELATIONAL DATABASE

CODETREK views program information as relations. ?? shows the number of relations in three
common programming languages. There is a directed acyclic graph F that represents the dependencies
between these relations. For example, in FPython represents the dependencies between 95 base
relations plus 277 derived relations.
Example D.1. A certain Python task requires base relations {A,B} and derived relation {E}.
However, in FPython, E depends on derived relation D, which in turn depends on base relations
{B,C}. Therefore, Code2Rel computes all five relations: A, B, C, D, E in order.

Algorithm 1 (Code2Rel) Given a program P , a set of base relation names RB , and a set of derived
relation names RQ, construct and return database D. Note that the term node in this algorithm refers
to nodes in the relation dependency graph, not to nodes in the program graph (e.g., in Algorithm 2)
that the model will see.

1. Initialize D to the set of all base relations in RB by translating program P .
2. Let RS be the set of relation names reachable from RQ in relation dependency graph F:

(a) RQ ⊆ RS

(b) if r ∈ RS and r → r′ ∈ Edges(F) then r′ ∈ RS

3. Let F be the sub-graph of F induced by set of nodes RS :
(a) Nodes(F) = RS

(b) Edges(F) = { r → r′ ∈ Edges(F) | r, r′ ∈ Nodes(F) }
4. Compute a topological ordering L = [r1, ..., r|Nodes(F)|] of F .
5. For each r in L in order:

Evaluate the query for computing relation r on database D and add the result to D.

D.2 TRANSLATING RELATIONS TO GRAPH

Algorithm 2 (Rel2Graph) Given a database D, construct a program graph G.

Construct an undirected and labeled graph G as follows:
(a) Nodes(G) = D
(b) Add to Edges(G) each (t1, t2, l) that satisfies the following conditions:

i. l : R.[a1, ...ak] → S.[b1, ..., bk] is a referential integrity constraint in the schema of
database D

ii. t1 is a tuple of relation named R in D
iii. t2 is a tuple of relation named S in D
iv. for all i ∈ [1..k] : t1.ai = t2.bi

D.3 TRANSLATING GRAPH TO A SET OF WALKS

Definition D.1 (Walk specification). A walk specification S = 〈C, B,min,max〉 is a tuple in which
C is a conditional expression that filters walk anchors from the set of nodes Nodes(G), B is a map of
bias values that correspond to each relation name, and min,max ∈ R+ specify the minimum and
maximum length of the walks generated by the specification.
Example D.2. An example of a walk specification is as follows.

C = {t|t ∈ Nodes(G) ∧ t ∈ expr ∧ t.kind = name}
B = {stmt : 5, expr : 5}
min = 3,max = 16

16

Published as a conference paper at ICLR 2022

Algorithm 3 (Graph2Walks) Given a program graphG, a walk specification S = 〈C, B,min,max〉,
and the number of walks w, sample a set of walks W .

1. Initialize the set of walks W = ∅.
2. Compute the set of anchors A = {t|t ∈ Nodes(G) ∧ t conforms to S.C}.
3. While |W | ≤ w:

(a) Pick a random tuple tcurr from A.
(b) Construct walk by repeating the following steps between S.min and S.max times:

i. Set tprev := tcurr.
ii. Set tcurr to a t ∈ Neighbors(G, tprev) with prob. proportionate to S.B[type(t)].

iii. Let ecurr = (tprev, tcurr, l) ∈ Edges(G)
iv. If ecurr /∈ walk then extend walk by ecurr. Otherwise set tcurr := tprev .

(c) If walk /∈W then add it to W .

D.4 BRINGING ALL THE PIECES TOGETHER

Definition D.2 (Task specification). A task specification T = 〈RB , RQ, S, n〉 is a tuple in which
RB is a set of base relation names, RQ is a set of derived relation names, S is a walk specification as
described in Definition D.1, and n is the number of walks to be generated.

Algorithm 4 (Code2Walks) Given a program P and a task specification T = 〈RB , RQ, S, n〉,
generate a set of walks W .

1. D = Code2Rel(P, T.RB , T.RQ)

2. G = Rel2Graph(D)

3. W = Graph2Walks(G,T.S, T.n)

E TASK SPECIFICATIONS

Using the notations defined in Appendix D, we describe the specifications of each task that we
used for evaluating CODETREK. In the following specifications, ellipsis (...) indicate the rest of the
universe of base relations as designed in Semmle framework.

TVARMISUSE-FUN = {

RB = {stmt, expr, variable, ssa-defn, ssa-use, successor, ...},
RQ = {},
S = {

C = {t | t ∈ Nodes(G) ∧ t ∈ expr ∧ t.Kind = name},
B = {stmt : 5, expr : 5, variable : 5},
min = 4,max = 16

},
n = 500

}
TEXCEPTION-FUN = {

RB = {stmt, expr, variable, ssa-defn, ssa-use, successor, ...},
RQ = {},
S = {

C = {t | t ∈ Nodes(G) ∧ t ∈ stmt ∧ t.Kind = except ∧ t.Type = HoleException},
B = {stmt : 5, expr : 5, variable : 5},
min = 4,max = 16

17

Published as a conference paper at ICLR 2022

},
n = 100

}
TEXCEPTION = {

RB = {stmt, expr, variable, ssa-defn, ssa-use, successor, ...},
RQ = {call-graph},
S = {

C = {t | t ∈ Nodes(G) ∧ t ∈ stmt ∧ t.Kind = except ∧ t.Type = HoleException},
B = {stmt : 5, expr : 5,module : 0},
min = 10,max = 24

},
n = 100

}
TDEFUSE-FUN = {

RB = {stmt, expr, variable, ssa-defn, ssa-use, successor, ...},
RQ = {variable-defs, local-variables},
S = {

C = {t | t ∈ Nodes(G)∧t ∈ expr∧ t.Kind = name∧t.Context ∈ {write, param}},
B = {stmt : 5, expr : 5, variable : 5},
min = 4,max = 16

},
n = 100

}
TDEFUSE and TVARMISUSE are defined similar to TDEFUSE-FUN and TVARMISUSE-FUN, respectively. However,
in both TDEFUSE and TVARMISUSE their C has an additional restriction t.location = user selection.
Also, TVARMISUSE is evaluated with n = 100.

TVARSHADOW = {

RB = {stmt, expr, variable, ssa-defn, ssa-use, successor, ...},
RQ = {call-graph},
S = {

C = {t | t ∈ Nodes(G) ∧ t ∈ var ∧ t.Kind = name ∧ t.is global = True},
B = {stmt : 5, expr : 5, variable : 5},
min = 4,max = 16

},
n = 100

}

F WALK FORMAT

We describe the format of a walk as the model views it before encoding using an example. Each walk
consists of three lists for node types, node values, and edges.

{
"anchor": "py_stmts(415098,6,415072,2)"
"trajectory": {

"node_types": ["py_stmts", "py_scopes",
"py_Functions", "py_scopes", "py_stmts",
"py_exprs", "py_exprs", "py_scopes",
"py_exprs", "py_variables", "v_8"],

18

Published as a conference paper at ICLR 2022

"node_values": [["ExceptStmt"], "",
["pipe","line"], "", ["Assign"],
["Call"], ["Attribute"],
["Name"], ["metr","ic"]],

"edges": ["(py_scopes.node,py_stmts.id)",
"(py_Functions.id,py_scopes.scope)",
"(py_Functions.id,py_scopes.scope)",
"(py_scopes.node,py_stmts.id)",
"(py_exprs.parent,py_stmts.id)",
"(py_exprs.id,py_exprs.parent)",
"(py_exprs.id,py_scopes.node)",
"(py_exprs.id,py_scopes.node)",
"(py_exprs.id,py_variables.parent)",
"(py_variables.id,variable.id)"]

},
}

The node values can consist of the value of any attribute of a node. For instance, ExceptStmt above
is the kind of the node with type py stmts, and pipeline is the name of the function that corresponds
to the function which is illustrated by node with type py Functions. The values that are identifiers,
function names, etc. are subtokenized using a subword tokenizer (the tensor2tensor package). For
instance, pipeline will break into [pipe,line]. Therefore, each value is encoded using the corresponding
vector in the subword dictionary. If the relation name of a tuple is variable, we assign an id to it to be
able to distinguish between different variables. So, the type of a variable node is determined by an id
(e.g., v 8).

G ADDITIONAL INFORMATION ABOUT GRAPHS

G.1 GRAPH SIZES

Relational EXCEPTION-FUN EXCEPTION VARSHADOW VARMISUSE-FUN DEFUSE-FUN
average 5,278 802,231 62,863 1,482 1,829
std 31,550 504,758 93,248 14,623 27,503
min 55 585 53 130 139
max 492,970 4,422,586 1,285,178 483,499 612,343

Table 7: Number of tuples (i.e., nodes) across relations of each file in the dataset used for each task.

AST EXCEPTION-FUN EXCEPTION VARSHADOW VARMISUSE-FUN DEFUSE-FUN
average 176 3,202 667 93 177
std 244 4,117 1432 126 268
min 20 20 10 10 10
max 13,035 36,808 36,786 30,729 5,243

Table 8: Number of AST nodes for each file in the dataset used for each task.

G.2 EDGES IN BASELINE GRAPHS

GGNN Graphs. The edges that are represented to GGNN models are borrowed from Allamanis
et al. (2018). They include

1. AST edges

2. NextToken edges

3. LastRead/LastWrite/ComputedFrom/LastLexicalUse edges among variable accesses

19

Published as a conference paper at ICLR 2022

4. GuardedBy/GuardedByNegation edges between variables used in branches and their corre-
sponding conditional expressions

5. ReturnsTo edges from the return statement to the method declaration, and
6. FormalArgName edges between method call arguments and their corresponding formal

parameters.

GREAT Graphs. For GREAT models, similar to Hellendoorn et al. (2020), we borrow the edge
types from Allamanis et al. (2018) and augment them with function calls.

H DATASET SIZES

The number of samples in each dataset is shown in Table 9. The VARSHADOW dataset consists of
49% samples with positive labels. The DEFUSE-FUN dataset is more skewed, with 15% positive
labels, while the DEFUSE dataset has 1.6% positive labels.

Task # Training # Validation # Testing Avg. LoC (<max)
VARMISUSE 700,683 75,468 378,401 13 (<235)
VARMISUSE-FUN 700,683 75,468 378,401 13 (<235)
EXCEPTION 18,456 2,086 10,334 528 (<7,624)
EXCEPTION-FUN 18,456 2,086 10,334 32 (<1,835)
DEFUSE 217,591 52,598 104,111 12 (<528)
DEFUSE-FUN 33,182 8,149 16,296 12 (<528)
VARSHADOW 70,183 21,794 39,845 149 (<27,228)

Table 9: The number of samples used for training, validation, and testing and the lines of code that
they contain. Lines of code (LoC) is reported as the average lines of code across samples in each
dataset after removing the highest 0.1% and lowest 0.1% of the data.

I QUALITATIVE STUDY

We qualitatively discuss a few examples on specific code snippets and describe the walks that
contribute the most to the predictions made by the respective CODETREK models. In each example,
we explain how the relations and the semantic edges between them enable CODETREK’s models to
predict accurately.

I.1 EXAMPLE 1 (DEFUSE)

1 def write_random_to_file():
2 no = random.randint(1, 10)
3 with open("random.txt", "w") as file:
4 file.write(str(no))
5 return no
6
7 def write_random():
8 random_no = write_random_to_file()
9 print "A random number was written to random.txt"

Figure 7: A sample code snippet for DEFUSE.

var

id: 4249
name: no
parent: 5320

access_var ssa-var ssa-use access

ex: 5051
var: 4249
ctx: write

ssa-var_var ssa-use_var-var

id: 4326
var: 4249

id: 3420
svar: 4326

expr expr_access

id: 5051
kind: name
parent: 4217

Figure 8: The most important walk in a simple instance of DEFUSE.

20

Published as a conference paper at ICLR 2022

var

id: 4252
name: file
parent: 5520

access_var ssa-var ssa-use access

ex: 4380
var: 4252
ctx: write

ssa-var_var ssa-use_var-var

id: 4318
var: 4252

id: 4309
svar: 4318

expr expr_access

id: 4254
kind: name
parent: 4380

Figure 9: The most important walk in a challenging instance of DEFUSE.

To understand how CODETREK uses semantic relations to determine whether a defined variable is
used, consider the code snippet listed in Figure 7. In this snippet, the local variable file is defined on
line 3, and then used on line 4. Intuitively, one would start from the variable definition and follow the
code to find an access of it to prove that it is indeed a used variable. More specifically, a programmer
starts with the expression on line 3 in which variable file is defined. She then tries to find another
access to this variable that reads it, such as on line 4.

CODETREK determines that the walk illustrated in Figure 8 has the highest score among a set of
randomly generated walks. Interestingly, this walk shows a similar behavior to that of a programmer:
it starts at the anchor node (an expr node corresponding to the variable definition) which corresponds
to the expression that defines file. Then, it traverses the graph towards a node that corresponds to a
use of this variable (a ssa-use node corresponding to the variable use).

1 def construct_file_handle():
2 file = Handler.initialize()
3 def check_handle(file):
4 if file.id < MIN_H:
5 return False
6 return True
7 file = Handler.initialize()
8 return Handler.default()

Figure 10: A challenging code snippet for DEFUSE.

Even the models that do not embed semantic edges (e.g., CuBERT) are able to correctly predict that
file is used, in such simple cases. However, in more complicated cases, such as the code snippet listed
in Figure 10, semantic edges are needed to be able to distinguish between different definitions of
variable file and to not confuse various uses of them. In this snippet, file is defined on line 2, and then
on line 7. The file defined on lines 2 and 7 are never used. To make matters more complicated, there
is a function check handle that is defined inside the top-level function construct file handle. This
function takes an argument which is named file and uses it on line 4.

In the absence of edges that make the relationship between uses and definitions of variable explicit, it
is challenging for a model to determine that the variable named file on line 2 is different from the
variable of the same name on line 4. As a result, we see that GREAT and CuBERT fail to label the
variable definition on line 2 as unused. CODETREK, however, takes advantage of the relationship
between the variable definition and its use (an ssa-use node) and makes a robust prediction. Among
the set of randomly generated walks starting from the definition on line 2 (expr node with id 4244)
there are no walks with the following pattern which only occurs when a variable is used after being
defined: “expr→ access→ var→ ssa-var→ ssa-use”. Therefore, CODETREK predicts that this
variable is never used. On the other hand, as illustrated in Figure 9, a walk with the mentioned pattern
exists between the definition on line 3 (expr node with id 4254) to its use on line 4 (ssa-use node
with id 4309). So, CODETREK predicts that this variable is used. It is worth emphasizing that the
walks illustrated in Figure 8 and Figure 9 are very similar although they correspond to completely
different code snippets.

I.2 EXAMPLE 2 (EXCEPTION)

For the EXCEPTION task, we choose a code snippet from the test dataset, which is listed in Figure 11.
In this code snippet, CODETREK must predict the exception to be caught by the except statement
at line 36 (represented by HoleException). The correct exception is ValidationError. We know this

21

Published as a conference paper at ICLR 2022

1 class Admission:
2
3 # ...
4
5 def admit_car(self, car):
6 if not str(car.get_id()).isdecimal():
7 raise ValidationError("Index is not valid")
8 name = car.get_number()
9 if name.upper() != name:

10 raise ValidationError("Number not in capslock")
11 if name.count(" ") < 2:
12 raise ValidationError("Number should have 3 parts")
13 check_name = name.split(" ")
14 if not check_name[0].isalpha():
15 raise ValidationError("First part is not alpha")
16 if not check_name[1].isdecimal():
17 raise ValidationError("Second part is not decimal")
18 if not check_name[2].isalpha():
19 raise ValidationError("Third part is not alpha")
20 owner = car.get_owner().replace("-", " ")
21 if not owner.isalpha() or not owner.istitle():
22 raise ValidationError("Owner's name is not written correctly")
23 if len(owner) > 40:
24 raise ValidationError("Name too long")
25
26 # a number of other unit test functions removed here only for presentation purposes ...
27
28 def test_car_admit():
29 admit = Admission.get_instance()
30 car1 = Car(1, "ag 12 BOB", "Dan")
31 car4 = Car(4, "A", "Ian")
32
33 try:
34 admit.admit_car(car1)
35 assert False
36 except HoleException:
37 assert True

Figure 11: A sample code snippet for EXCEPTION.

scope_stmt call.caller_func.idfunc_scope call.callee_func.id

func_scope

scope_stmt

scope

stmt

stmt

id: 4506
kind: except
scope: 3801

id: 3801
scope:
src.py:93-102

access

ex: 4264
var: 4265
ctx: read

var

id: 4265
name: ValidationError
parent: 4226

access_var

func call func

scope

 id: 4452
 name: test_car_admit
 scope: 3801

 id: 5253
 caller: 4452
 callee: 4236

 id: 4436
 name: admit_car
 scope: 3923

id: 3923
scope:
src.py:20-44

id: 4262
kind: raise
scope: 3923

expraccess_expr expr_stmt

id: 4264
kind: name
parent: 4262

Figure 12: The most important walk in an instance of EXCEPTION.

because we observe that the function admit car is called in the corresponding try block, and upon
inspecting its definition, we see that it raises the ValidationError exception.

Out of the walks sampled by CODETREK for predicting the correct exception, we illustrate the most
important (highest scoring) walk in Figure 12. This walk represents the aforementioned intuitive
reasoning for predicting the exception. It starts at the anchor node, which is the node of type stmt with
id 4506, corresponding to the except statement on line 36. It traverses to the function definition of
admit car by first traversing to the call node for admit car with id 5253, representing the call on line 34,
and then following the corresponding call graph edge to the definition of admit car. These call graph
edges allow for such inter-procedural reasoning. The walk then traverses to the stmt node for the
raise statement, then to its expression, and reaches the ValidationError exception via its corresponding
access node.

22

Published as a conference paper at ICLR 2022

I.3 EXAMPLE 3 (VARSHADOW)

1 env_vars = env.vars
2
3 class SystemReq:
4 # ...
5
6 # ...
7
8 class Utils:
9 @staticmethod

10 def rev(s):
11 for i in range(len(s)//2):
12 tmp = s[i]
13 s[i] = s[-(i+1)]
14 s[-(i+1)] = tmp
15
16 @staticmethod
17 def env_check():
18 env_vars = environ.vars
19 return env_vars

Figure 13: A sample code snippet for VARSHADOW.

access

ex: 5051
var: 4238
ctx: write

var

id: 4238
name: env_vars
parent: 4226

expr module

 id: 4226

scope-
loc

id: 1937
scope: 8456
parent: 4226

funcvar

id: 4347
name: env_vars
parent: 4337

access

ex: 4346
var: 4347
ctx: write

id: 5051
kind: name
parent: 6327

 id: 4337
 name: env_check
 scope: 8456

scope
id: 8456
scope:
src.py:93-95

access_expr access_var module_var

module_scope-loc

scope_scope-loc

func_scopefunc_varaccess_var

Figure 14: The most important walk in an instance of VARSHADOW.

VARSHADOW is an example of a long-range task in which the model has to be able to distinguish
between the global and the local scopes in order to predict whether a global variable is shadowed
by another variable with the same name that is defined in a local scope. We use the code snippet in
Figure 13 to explain how semantic relations help in such tasks.

To determine whether a global variable is shadowed by a local variable, a programmer would look
for variables that are defined in local scopes and have the same name as the global variable. The
walk which is illustrated in Figure 14 captures the relationship between the global variable definition
(expr node with id 5051) and a local re-definition with the same name (access node with id 4346)
by visiting a local scope (scope node with id 8456) of the module (the module node) along the way.
Interestingly, CODETREK assigns the highest importance to this walk among a number of randomly
generated walks, and can therefore correctly predict that env vars is a shadowed global variable.

23

	Introduction
	The CodeTrek Framework
	Background
	A Bird's-Eye View of CodeTrek
	Building Blocks of CodeTrek

	Evaluation
	Accuracy of CodeTrek
	Robustness of CodeTrek
	Effectiveness on Longer-Range Tasks
	Sensitivity to Number of Sampled Walks
	Impact of Program Representation

	Related Work
	Conclusions
	Training Parameters and Hyperparameters
	More Experimennts
	CodeQL Queries Used for Labeling
	DefUse-Fun Query
	VarShadow Query

	Codebases as Databases
	Translating Code to Relational Database
	Translating Relations to Graph
	Translating Graph to a Set of Walks
	Bringing all the pieces together

	Task Specifications
	Walk Format
	Additional Information about Graphs
	Graph Sizes
	Edges In Baseline Graphs

	Dataset Sizes
	Qualitative Study
	Example 1 (DefUse)
	Example 2 (Exception)
	Example 3 (VarShadow)

