
Leveraging Dynamic Modeling of Cart-like Nonholonomic Systems to
Improve Contact Point’s Location and Control

Sergio Aguilera1 and Seth Hutchinson1

Abstract— There is a wide range of cart-like systems over
different environments such as hospitals, hotels, supermarkets,
and warehouses, between many others. These cart-like systems
are passive-wheeled objects with nonholonomic constraints with
varying inertial parameters. To effectively plan and control
for these systems we need to understand the ground-cart-
robot interactions and leverage the existence of multiple contact
points to minimize the energy used by the robot and improve
the control of the system. We derive the dynamic equations of
the cart-like system using a constrained Euler-Lagrange for-
mulation and propose a Linear Quadratic Regulator controller
to move the cart along a desired trajectory using external
forces (applied by the robot). We discuss the selection of one
or multiple contact points which can be optimize to improve
the performance of the system. We present a brief description
of the control architecture used for the Mobile Manipulator
(MM). We validate our approach experimentally, using a MM
to push a shopping cart and track desired trajectories. These
experiments show the accuracy of the control architecture to
track the desired trajectories for carts with different inertial
parameters and improve the controllability of the system by
changing the contact point on the cart.

I. INTRODUCTION

A wide range of passive-wheeled objects need to be
pushed around in different environments. In hospitals, we
have hospital beds and wheelchairs with similar wheels
configuration. Hotels have luggage carts that we would like
robots to load and move around. People usually interact with
shopping carts and strollers, and in construction sites, people
push toolboxes and wheelbarrows between many other cart-
like systems. All these can be described as passive non-
holonomic wheeled objects with varying inertial parameters.
They are passive because they have no motors and need
an external force to be applied to have them move. They
have two sets of wheels, with fixed and caster wheels,
which introduce nonholonomic constraints as they cannot
move laterally. During interaction with the object, its inertial
parameters can widely vary (e.g., loading an object into a
shopping cart while moving) or between interactions (e.g.,
fetching an empty wheelchair and then pushing it with a
patient). The goal of the MM is to have the object follow
a desired trajectory or reach a desired goal. The reaction of
the cart to external forces depends on the cart’s mass and
Center of Mass (CoM), which can vary, and the location of
the Contact Point (CP) at which the force is applied. We
want to create the capability for MMs to control these cart-
like systems along a desired trajectory with consideration of
their dynamics, as shown in Fig. 1.
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Fig. 1. Example of commonly used cart-like systems and our mobile
manipulator.

Previous research on control of wheeled carts, like [12],
[10], [11], and [6] focuses on path planning. Assuming that
the MM can change the cart’s orientation as needed. This
assumption does not hold for heavy carts with nonholo-
nomic constraints. Likewise, research on humanoid robots
pushing heavy objects [8] and [14] focuses mainly on the
humanoid’s posture and computing zero momentum points
for the interaction between the robot and the object. [4]
presents a similar robot to ours, which is used to push/pull
a pallet-jack. Using a force control for the manipulator, this
system can navigate the pallet-jack to a desired configuration.
Even though the pallet-jack system has a similar wheel
configuration with nonholonomic constraints, by rotating the
handle, the robot can set the orientation of the front wheel,
thus setting the direction of motion of the pallet-jack. This
allows the robot to plan the trajectory of the pallet-jack
kinematically. Control using MM with velocity control in
the mobile base and torque control on the upper torso is
discussed in [5], which describes how to decouple the base
motion to the arm through compensation. Work has been
done in pushing wheelchairs. For example, a MM using
a modified arm with two grippers to push a wheelchair is
introduced in [7]. Their approach uses an adaptive control
formulation to control the wheelchair and estimate its mass.
Similarly, [13] uses a MM to push a 4-caster wheels cart and
performs mass estimation. In both cases, the object’s CoM is
considered known and constant, significantly simplifying the
cart dynamics and estimating the cart’s inertial parameters.
All these previous works do not consider the location of the
manipulators on the cart-like system and do not change the
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Fig. 2. Simplified cart-like system’s diagram error trajectory tracking
problem with a desired trajectory.

contact point with the object.
Our current work builds on our research [2] on modeling

and online inertial parameter estimation of cart-like systems
and the control aspects are being presented on IROS 2023
[1]. In this work, we discuss a derivation of a simplify dy-
mamic model and the selection of contact points to improve
control. We present experimental results for a MM pushing
a shopping cart with different inertial parameters for linear
and curved trajectories.

II. DYNAMIC MODEL AND CONTROL OF CART-LIKE
SYSTEMS

To control the cart-like system with a MM, we will start by
understanding the object being pushed. We will describe the
cart-like system as a passive nonholonomic system and study
the control inputs required to follow a desired trajectory.

A. Dynamic model

As mentioned, cart-like systems are passive and can have
a wide range of inertial parameters. The cart-like object may
have a considerable mass, e.g., a wheelchair with a patient
or a full shopping cart. Since the objects are passive (no
motors), we want to control them by applying an external
wrench at a given set of contact points using a MM. To
predict the cart’s behavior, we model its dynamics with
consideration of its inertial parameters (mass, center of mass,
and inertia) and input wrench to control the cart.

We propose a simplified dynamic model for these cart-like
systems using Euler-Lagrange dynamics. First, we consider
the motion of the system in SE(2) and define the following
coordinate frames: spatial/world frame {s}, a fixed frame
on the object {b}, and the CoM frame {c}. Since the CoM
location is unknown, we will develop the Euler-Lagrange
equations about frame {b}. We consider that the fixed wheels
introduce nonholonomic constraints due to no lateral slippage
of the wheels. While the caster wheels also introduce con-
straints, due to the off-set of these wheels, they eventually
align with the direction of motion, thus we will disregard
them an consider them as noise. We define the frame {b}
at the middle point between the fixed wheels and define

the generalized coordinates of the cart as q =
[
x y θ

]
.

Seen from the fixed frame of the cart, frame {b}, the
nonholonomic constraint have the form

Λ(qb)q̇b =
[
−sin(θ) cos(θ) 0

]
q̇b = 0 (1)

where Λ is the constraint matrix. We consider the Lagrangian
L = T −V , where T is the kinetic energy and V is the
potential energy. Since we are working in the plane, we
assume that the potential energy equals zero. For the kinetic
energy of the cart system, we should consider the velocity
of the main body, with mass mcart , and the velocity of
each of the wheels rotating, with mass mi. In general, carts
either have small, light wheels that rotate fast (e.g., shopping
cart) or large, heavier wheels that rotate slowly (wheelchair).
Regardless, the kinematic energy of the wheels is negligible
compared to the energy of the cart itself. Thus, we will
look at the energy of the cart as a whole, with mass m =
mcart +∑mi, and neglect the kinetic energy contribution of
the wheel’s angular velocity about their axis of rotation. The
kinematic energy of the cart’s CoM in the {b} frame is given
by
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Where sθ and cθ are the sine and cosine functions of θ , dx
and dy are the position of the CoM in the cart frame, and
I is the inertia of the system. The nonholonomic constraint
appears in this kinematic energy, so we can set it to zero. For
the external wrenches, we consider three main elements, the
external wrench applied by the MM, ΓMM; non-conservative
forces, N(q, q̇) (e.g., viscous force as the wheels rotate);
and the reaction forces introduced by the nonholonomic
constraints of the wheels due to no lateral slippage. The
reactive forces due to the nonholonomic constriant oppose
any force that would create a motion along the nonholonomic
constraint. Then, we can write the dynamic equations of the
system as

M(q)q̈+C(q, q̇)q̇ = ΓMM −N(q, q̇)−Λ
T (q)λ (3)

Where λ is a Lagrange multiplier vector (one for each
linearly independent constraint) that solves for the nonholo-
nomic constraints. Then, our dynamic system will be given
by

M =

 m 0 −mdycθ

0 m −mdysθ

−mdycθ −mdysθ I +m(d2
x +d2

y )


C =

0 0 mθ̇dysθ

0 0 −mθ̇dycθ

0 0 0

 ΓMM =

 fx
fy
τ

 N = σ

 ẋ
ẏ
θ̇


Λ(q) =

[
−sin(θ) cos(θ) 0

]
λ =

[
λ1
]

Where σ is a positive definite, viscous coefficient that
opposes the system’s motion. The Lagrange multipliers add
additional unknowns to the system, which can be solved by



the forward dynamics of the system and then by solving
for the Lagrange multipliers such that the acceleration in
the directions of the constraints is zero. Similarly, we can
compute

PΛ(q) =
[
I −Λ

T (
ΛM−1

Λ
T )−1

ΛM−1
]

(4)

where PΛ(q) ∈ Rn×n is a projection matrix with rank n− k,
and k is the number of constraints. PΛ(q) maps the gener-
alized forces ΓMM to PΛΓMM , which is an input force that
only applies forces in the allowed directions of motion. If
we look at the control problem from the origin of frame {b}
the projection matrix will nullify any generalize force in the
lateral direction (along yb-axis) due to the wheel no-lateral
slippage constraint.

B. Control of the Cart-like System

Given a desired trajectory as qd ∈ SE(2), we will look
at the control problem from the perspective of the cart-like
system in frame {b}. A diagram of the trajectory tracking
problem is shown in fig. 2.

If we control the cart-like system by applying a wrench at
the origin of frame {b} the applied wrench can be computed
using the projection matrix where θb = 0, such that the
dynamic system becomes

ΓMM =

 fx
0
τz

=

 m 0 −mdy
0 0 0

−mdy 0 I′

 q̈b +

σxẍb
0

σθ θ̈b

 (5)

It can be seen that we cannot apply lateral forces into the
system since they will be counteracted by the nonholonomic
constraints (or tilt and drop the cart if the force is too
large). Regardless, we can formulate the subsystem that has a
control on the linear acceleration x and angular acceleration
θ and propose a control architecture similar to the control of
Differential Drive Robots. By incorporating the lateral error
into our desired orientation, we pivot the cart in a direction
that approaches the desired trajectory. Once the cart is on
the desired trajectory, the goal orientation is the same as the
desired orientation. We define a goal trajectory based on the
desired trajectory for the cart as[

xdes(t)
θ des(t)

]
=

[
xd(t)

θd +atan2(yd − y,xd − x)

]
(6)

We can compute the optimal controller u∗ for this system,
and the final required wrench for the cart-like system, at the
origin of frame {b} will be given by

ΓMM = Mq̈des +Cq̇des +N −u∗ (7)

C. Contact Point Location

The mobile manipulator will not always be able to grasp
the object about the origin of frame {b} or want to grasp
from that point, but to choose from different contact points
to minimize the required torque by the manipulator. Thus,
we can define the contact frame at the location of the
contact point of the MM, in the object frame, as pb

cp =

[
xb

cp yb
cp 0

]
, with the same orientation as the cart. We

define a transformation matrix gi
j as the transformation pair

(pi
j,R

i
j), which takes a vector on the j frame to the i frame.

The transformation from the CP to frame {b} will be given
by

gb
cp =

[
I3×3 pb

cp
03×1 1

]
(8)

Then, we can transform the required force at the origin of
frame {b} into an equivalent wrench applied at the origin of
the contact frame using the adjoint transformation

Γcp = AdT
gb

cp
Γb =

[
Rb

cp p̂b
cpRb

cp
0 Rb

cp

]T

Γb (9)

where p̂b
cp is the skew-symmetric matrix of the vector pb

cp.
As an example, lets consider that we want the system to

accelerate with some linear acceleration ẍ des
b and no angular

acceleration θ̈ des
b = 0. According to eq. 5, the required

wrench will be equal to

fx = mẍ des
b

τz =−mdyẍ des
b =−dy fx (10)

Which means that we need to apply the required linear force
and counteract any torque due to the displacement of the
CoM. If we consider the possible contact points on the
shopping cart as a set that can move laterally along the handle
of the shopping cart, the adjoint transformation will give us
the following relationship as

f cp
x = mẍ des

b

τ
cp
x = ycp f b

x −dy f b
x

We can see that we need to apply the same linear force
to accomplish the desired acceleration, but if we pick the
contact point to be equal to the lateral displacement of
the CoM (ycp = dy), then no torque need to be applied to
counteract the torque due to the CoM displacement.

To compute the desired wrench to be applied onto the
cart, we need to know the inertial parameters of the system,
specifically m and dy. In [2] we present a online estimation
method to improve parameter estimation during pushing
maneuvers.

III. PARAMETER ESTIMATION AND CONTROL OF THE
MM

To have a accurate control input and the location of the
CoM to select the best CP location for control, we need to
have an accurate estimation of the inertial parameters of the
system. in [2] we show good results on the mass estimation
under basic trajectories using an augmented state to include
the parameters m and dy using an extended Kalman filter
for state estimation on these parameters. Here we show an
improvement on the estimation of the lateral displacement.

For control, we compute the desired torque required to
follow the desired trajectory using the estimated parameters
and then have the MM apply the required torque onto the
cart. The control architecture is presented in [1], where we



Fig. 3. Picture of the MM pushing the heavy shopping cart during a curved
trajectory tracking experiment.

Fig. 4. Estimation of the Mass with the cart with different load.

are controlling the base of the robot to keep a relative
distance with the cart and have the manipulator apply the
required wrench using a compliant controller.

IV. EXPERIMENTS

The setup for the hardware experiments has the mobile
manipulator, composed of a “Ridgeback” mobile base from
Clearpath Robotics, an omnidirectional base that has a ve-
locity input in R3; a Kuka IIWA 14 manipulator, which has
7 Degrees of Freedom and a maximum payload of 14kg; a
“Robotiq FTS-300” Force/Torque sensor and “Robotiq 2F-
85” two-finger gripper. The cart is a medium shopping cart
with a weight of 15kg. To keep track of the position and
velocity of the MM and the cart, we are using a Vicon camera
system for motion capture. We have markers on both MM
and object, and we get the pose of the bodies with a 0.4mm
mean error. To move the MM-cart system, we have a 5×6m2

space.
We present the result for the mass and lateral displacement

estimation and then the control improvement enable by
changing the CP during control

A. parameter estimation

For parameter estimation we can see that we can do online
learning while pushing on a straight line with a accurate mass
estimation in about 10 seconds as shown in Fig. 4, while the
estimation of the lateral displacement of the CoM takes about
5 to 10 seconds as shown in Fig. 5.

Fig. 5. Estimation of the CoM with the cart with a heavy load on the
right, the center and the left
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Fig. 6. Trajectory tracking experiments for a curved trajectory.

B. Curve Trajectory Tracking and Contact Points

We present the result of the trajectory tracking experiment
of a curve for 3 attempts, one with the light curve and two
for the heavy cart. The following trajectories are shown in
Fig. 6. For the light cart, the manipulator has enough torque
to rotate the cart fast enough to keep the cart close to the
trajectory. When we double the weight of the cart and do
not allow the change of contact point, the MM does not have
enough torque to change the heading of the cart fast enough,
thus failing the control goal. Finally, we allow the MM to
change contact point discretely when there is a change in
the inflection of the desired trajectory, which allow us to
once more have the cart follow the desired trajectory with
minimum error.

V. CONCLUSIONS

Using the dynamic model of the cart-like system and
understanding the location of the contact point between the
object and the MM, allow us to improve the capabilities
of the MM and minimize the energy required by the MM
to push these systems. We are able to learn the parameters
during control using an extended Kalman filter that allow us
to subsequently improve the selection of the contact point
and the required wrench needed to follow a trajectory. In the
future, we want to leverage the learning of this parameter to
improve path-planning by taking consideration of the inertial
parameters of the cart-like system, the selection of contact
points and the maximum torques that the MM can apply.
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