
Authoring and Verifying Human-Robot Interactions

David Porfirio,1 Allison Sauppé,2 Aws Albarghouthi,1 Bilge Mutlu1

1 University of Wisconsin–Madison, Madison, Wisconsin, USA
2 University of Wisconsin–La Crosse, La Crosse, Wisconsin, USA

{dporfirio,aws,bilge}@cs.wisc.edu, asauppe@uwlax.edu

ABSTRACT
As social agents, robots designed for human interaction must
adhere to human social norms. How can we enable designers,
engineers, and roboticists to design robot behaviors that adhere
to human social norms and do not result in interaction break-
downs? In this paper, we use automated formal-verification
methods to facilitate the encoding of appropriate social norms
into the interaction design of social robots and the detection
of breakdowns and norm violations in order to prevent them.
We have developed an authoring environment that utilizes
these methods to provide developers of social-robot applica-
tions with feedback at design time and evaluated the benefits
of their use in reducing such breakdowns and violations in
human-robot interactions. Our evaluation with application
developers (N = 9) shows that the use of formal-verification
methods increases designers’ ability to identify and contextu-
alize social-norm violations. We discuss the implications of
our approach for the future development of tools for effective
design of social-robot applications.

CCS Concepts
•Human-centered computing → Systems and tools for in-
teraction design; •Software and its engineering → Model
checking;

Author Keywords
Human-robot interaction; interaction design; authoring; visual
programming; verification; program analysis

INTRODUCTION
Robots have long been envisioned as social agents assisting
and interacting with people in day-to-day environments, mak-
ing deliveries at an office [30], working as a receptionist [42],
or working alongside a human worker on an assembly line
[46]. The success of these robots relies greatly on their ability
to offer a positive user experience by not only successfully
completing their task, but by also adhering to the norms and
expectations of human social behavior. Failing to adhere to
social norms can decrease interaction quality to the point of
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST ’18, October 14–17, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5948-1/18/10. . . $15.00

DOI: https://doi.org/10.1145/3242587.3242634

Design of interaction

Model of the design

Veri�cation of the model

Correctness
properties

Transition
system

Design
Feedback

Transition systemVisual representation

¬(φ∧ψ)≡¬φ∨¬ψ

Veri�cation
So�ware !






+



Figure 1. RoVer provides users with a visual environment to design inter-
actions, represents these designs as transition systems, and verifies these
systems to determine whether the interactions violate social norms.

causing interaction breakdowns. A delivery robot that continu-
ously announces its presence until acknowledged by a human
in a hospital emergency room might be so disruptive as to
discourage further use of the robot [37]. Alternatively, the
robot’s attempts at interacting with people might go unnoticed,
resulting in breakdowns in initiating social interaction [44].

Ensuring the success of robots in interacting with people will
require interaction designers and developers to carefully de-
sign robot behaviors that will adhere to the social norms and
expectations of the people with whom the robot will interact.

Session 2: Human-Robot Symbiosis UIST 2018, October 14–17, 2018, Berlin, Germany

75

mailto:dporfirio@cs.wisc.edu
mailto:aws@cs.wisc.edu
mailto:bilge@cs.wisc.edu
mailto:asauppe@uwlax.edu
https://doi.org/10.1145/3242587.3242634
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3242587.3242634&domain=pdf&date_stamp=2018-10-11

This design task, however, involves several challenges: social
norms make up a large space of rules and conventions that are
highly contextualized and potentially unknown to designers;
following social norms requires appropriately coordinating
behavior across several modalities such as gaze and gesture;
and adherence to one social norm might cause the violation
of another if the norms are not holistically taken into con-
sideration. Although visual-programming [e.g., 45, 1] and
learning-based [e.g., 22, 34] approaches can facilitate the
design of robot behaviors, these approaches do not check that
robot behaviors adhere to human social norms.

In this paper, we explore how concepts and methods from
formal verification, a computational approach to proving that
programs do or do not adhere to certain properties [50], can as-
sist designers in ensuring that human-robot interactions adhere
to social norms and in preventing interaction breakdowns. We
developed a method for constructing human-robot interactions
that supports automated detection of social breakdowns and
implemented it into an authoring environment for robot behav-
iors, RoVer, which employs the formal-verification technique
of model checking [6] to ensure that designed interactions
satisfy social-norm specifications and task expectations. In
RoVer, the model checker runs in the background, detects pos-
sible social-norm violations, and reports them to the designer
who can then modify the design to ensure its adherence to the
violated social norms. To bridge the gap between model check-
ing and human-robot interaction, we formalize social norms
and expectations in temporal logic [40], a common approach
to specifying correctness properties of both software and hard-
ware. We then demonstrate how human-robot-interaction mod-
els can be composed of micro-scale interaction units, called
microinteractions, with state-based transition systems as each
microinteraction’s core component [6]. Modeling interactions
as transition systems and specifying social norms in temporal
logic enable the application of model checking to ensure that
the interaction adheres to the norms.

The evaluation of our approach asked designers to use RoVer
to construct interactions for a given scenario with specific
context-based social-norm and task properties. We analyzed
the quality of their designs and measured their experience with
the verification-aided design.

In summary, our contributions are as follows:

Novel Approach to HRI Design—We present a novel ap-
proach to designing human-robot interactions in which so-
cial norms play a first-class role in the design process.
Verification-Backed Design—Our approach utilizes formal
verification techniques where human-robot interactions are
defined as state-transition systems and social norms are
defined as logical properties over interaction states.
Development and Evaluation of RoVer—We implement our
approach in RoVer, a new visual interaction authoring tool,
and assess its benefits and limitations.

RELATED WORK
Our work builds on prior research in social robotics, interac-
tion design, and formal verification. Below, we provide brief
summaries of relevant work from these areas.

Social Robotics
The development of our verification-based design approach
draws on the body of literature that establishes the design space
for robot behaviors that interact with people [e.g., 36]. When
these behaviors are designed appropriately, the robot’s inter-
actions with its users are more effective and positive. When
they are not designed appropriately, interactions may result
in social and task breakdowns. This literature, for example,
describes norms for when the robot should look toward an ob-
ject of interest with referential gaze as opposed to its partner
with affiliative gaze and highlights that the proper use of these
gaze cues can increase task outcomes and improve perceptions
of the robot [4, 20, 35]. The literature also describes norms
for cognitive gaze aversion, where a robot looks up before
speaking to signal thought, intimacy-modulating gaze aver-
sion, where a robot periodically looks slightly to the side while
speaking or listening, and floor-management gaze aversion,
where the robot averts its gaze to “hold” or looks toward its
interlocutor to “pass” the speaking floor [38, 3, 5].

Social norms are highly context dependent such that a behavior
effective in one context might be inappropriate in another. For
example, a study of people’s perceptions of a hospital delivery
robot found that the robot’s attention-seeking behavior was
perceived as being “disruptive” at a hospital unit where staff
had low interruptability but as being “friendly” at a unit where
staff had high interruptability [37]. The appropriateness of
social norms can also depend on the goals of the interaction.
For example, in situated interactions, the use of deictic gaze
might improve user task performance, while the use of eye
contact might improve user perceptions of the robot [21].

Adherence to certain social norms might also result in conflict
with other social norms. For instance, a robot interacting with
a group of people might be designed to greet newcomers or
bid farewell to people who leave [16]. Although issuing
greetings and farewells are important social norms for most
interactions [26, 42], adhering to these norms might result in
interruptions in the flow of the conversation in the context of
group interactions [38]. Thus, a robot’s behaviors must be
carefully coordinated to manage conflicting social norms.

Interaction Design
Interaction-design tools for robots range from low-level pro-
gramming languages [e.g., 7] to visual programming environ-
ments [e.g., 11]. For example, the popular visual-authoring
environment Choreograph, developed to program the NAO
robot by Softbank Robotics, offers users the ability to visu-
ally program high-level behaviors while allowing access to
low-level control of movements [41]. RoboFlow offers pro-
gram expressiveness through a visual environment, although
it focuses on task-based programming rather than specifying
social behaviors for a robot [1]. RoboStudio [12], iCustom-
Programs [11], Interaction Blocks [45], and TiVipe [33, 8]
offer visual interfaces for the design of robot social behaviors
with a focus on usability for non-programmers. Interaction
Composer [16] also focuses on usability while providing a
design framework to increase interaction quality.

Many of the tools above have modularized the robot’s behav-
iors and actions into discrete components, and some have for-

Session 2: Human-Robot Symbiosis UIST 2018, October 14–17, 2018, Berlin, Germany

76

malized different patterns of dyadic interactions into discrete
state-transition structures [e.g., 45, 39, 18]—an approach
we adopt in the current work to formalize our underlying
representation of microinteractions. For instance, a simple
“question-answer pair” pattern can be discretized into states
for “asking” and “answering” with transitions connecting each
state. This representation supports modularity and scalability
and enables systematic computational analysis.

Formal Verification
Formal verification involves systematic analysis of programs
against a set of program properties or expectations [50]. The
field has a long history—dating back to Turing [47]—and
many different approaches to the problem. To be able to reason
about social norms, we chose to utilize the rich foundations
of model checking [6] and temporal logic [40], as interac-
tions can be viewed as state machines and social norms as
properties over traces in the state space that make up the inter-
action. Interactions can also be viewed as human-in-the-loop
systems, in which control is shared between the human and
the robot. Prior work synthesizes such systems from temporal-
logic formulas [32]. Other work in program synthesis enables
designers to specify the constraints of a system and its envi-
ronment in temporal logic and provides them with feedback
in the form of suggested additional environmental constraints
[31, 2], contrary to our approach of manually designing in-
teractions and receiving feedback from pre-existing temporal
logic specifications. While program synthesis requires a full
specification of the system, automatic program repair requires
only a partial specification to correct a faulty program [19]. In-
teractive repair involves automatic modifications to a program
based on designer corrections to the program output [24].

Applications of verification to robotics includes the check-
ing of mission-critical properties [14] and using temporal
logic and model checking to generate motion plans [15, 27].
Within social robotics, recent work includes applying formal
verification to ensure safety and trustworthiness [48, 13, 49]
and theoretical investigations of human-machine trust through
the lens of probabilistic temporal logic [23, 28]. Prior work
also applies verification to check mission-critical properties of
human-robot teamwork [9]. To our knowledge, no prior work
applies formal verification techniques to human-robot interac-
tion design with a focus on checking the appropriateness of a
robot’s social conduct. This paper seeks to bridge this gap.

TECHNICAL APPROACH
This section presents our technical approach to authoring
and verifying human-robot interactions by (1) formalizing
the building blocks of our approach and (2) illustrating its
application to an example design problem in RoVer.

Building Blocks
Our approach consists of three primary building blocks:

1. Microinteractions represent the most granular form of an
interaction between a human and a robot. For instance,
a question-answer microinteraction may involve the robot
asking a question and the human responding.

2. Groups encapsulate multiple microinteractions that run in
parallel and make up more complex interactions. For in-
stance, asking a question and gesturing toward an object
can be grouped together into an “inquiry” group.

3. Interactions include sequences of groups that form a com-
plete interaction, such as exchanging greetings, asking a
question, and bidding farewell performed in a sequence.

Our approach also enables interaction designers to specify
social norms as logical statements and to automatically verify
if their interaction adheres to the set of specified norms.

Robot Delivery Scenario
Throughout this section, we will use the example interaction
of “a robot delivering a package to a human” to illustrate how
a designer might use our tool to avoid violating social norms.
We assume that our example robot is humanoid with gaze
and gesturing capabilities and that the designer is given the
following specifications: (1) the interaction begins when the
robot issues a greeting to the human; (2) both the robot and
the human are already in close proximity; (3) after the greet-
ing, the human is attentive, and the robot must authenticate
the human’s identity; (4) after the human has signed for the
delivery, the robot must give the delivery to the human; and (5)
after the delivery has been successfully completed, the robot
must bid farewell to the human.

In the scenario above, the robot must adhere to numerous task
requirements and social norms including the following:

Greeting norm: The robot should issue a greeting at the
beginning of the interaction [26].

Farewell norm: The robot should issue a farewell at the end
of the interaction [42].

Speech norm: The robot should not interrupt the human’s
speech while the human has the speaking floor [43, 38].

Gaze norm: The robot should coordinate its gaze during the
delivery such that it engages in referential gaze by looking at
the package during handoff [35] and otherwise in intimacy-
modulating gaze aversion by shifting its gaze slightly from
side-to-side while speaking [5].

Noninterruptability norm: The robot will properly exit the
waiting cycle after the previously inattentive human ac-
knowledges its presence and not perpetually re-issue un-
needed greetings or alerts before being acknowledged [37].

In our illustration of RoVer, we will describe how our example
delivery interaction scenario can be implemented, how the
social norms can be specified and verified, and how robot
behaviors that do not adhere to the norms might be revised.

Semantic Foundations
Before we proceed with describing the building blocks of our
approach, we outline its semantic foundations.

A state s of the interaction between a robot and its user repre-
sents the condition of the human and the robot at a particular
point in time. For instance, in state s, the human might be
speaking while the robot is silent or listening. Note that the

Session 2: Human-Robot Symbiosis UIST 2018, October 14–17, 2018, Berlin, Germany

77

no-interrupt

no-interrupt close-up

say-hello authenticate give-package

end standby

timeout

detect
speech

start
end end

Greeter

Wait

Ask Hando� Wait

Farewell

Remark

Wait

no-interrupt

say-hello authenticate give-package

end

standby

user is ready

user is busy

user is unavailable

Figure 2. Left: The design of a delivery interaction as implemented in RoVer. Right: A state-space representation of the delivery interaction shown on
the left. The gray boxes represent microinteractions one of which is highlighted in blue and expanded to show labels on transitions and states.

amount of information tracked by a state can be arbitrarily
complex, depending on robot capabilities and the granularity
with which we wish to represent the interaction.

Intuitively, every action performed by the human or the robot—
e.g., the human beginning to speak—transitions the interaction
from some state s to some state s′. We thus view an interaction
in our system as a labeled transition system, which defines a
relation from input state s to some output state s′, depending
on the actions (labels) taken by the human and the robot.

Figure 2 (right) shows an abstract view of the labeled transition
system representing the final design for our illustrative delivery
example. In RoVer, designers do not work explicitly with
labeled transition systems; instead, they design interactions
using higher-level syntactic building-blocks (as shown on the
left of Figure 2), which are in the background semantically
interpreted as transition systems for purposes of verification.

Microinteractions
Our work modularizes patterns of interaction into microinter-
actions that include both robot and human behaviors. Our tool,
RoVer, incorporates the concepts proposed by Kahn et al. [25]
for using design patterns in human-robot interaction: patterns
must (1) capture physical and social interaction as opposed
to solely human or robot behavior, (2) be abstract in specifi-
cation and parameterizable, enabling multiple instantiations,
(3) be modular, and (4) organized hierarchically where more
complex patterns encapsulate smaller patterns.

Semantics of Microinteractions
The core building block in our approach is a microinteraction—
the smallest and simplest possible interactions between a hu-
man and a robot. Examples include the Ask microinteraction,
which involves the robot asking a question and the human
either answering or not answering the question. Formally,
we define a microinteraction m as a labeled transition system.
A microinteraction thus begins in some initial state s and,
depending on the actions taken by the human and the robot,
progresses through multiple states until it arrives at an output
state s′, when the microinteraction is considered complete.

Illustrating Microinteractions
RoVer supplies a library of parameterizable microinteractions
that interaction designers can customize to suit their needs.

Thus, designers do not need to create microinteractions from
scratch, but they simply customize existing ones. Each param-
eter in a microinteraction can change its structure or behavior.
The parameters to Ask include the question that the robot asks
and the answers that the robot can understand. In Figure 2,
microinteractions are denoted by colored boxes.

In Ask, the parameters do not change the structure of the
transition system but instead change the behavior of the mi-
crointeraction at runtime by linking the answers that the robot
can recognize to specific outputs. Within our delivery example,
the robot can be set to confirm the human’s name with the
question, “Are you <name>,” to understand the answers “Yes”
and “No,” and link them to particular outputs. If the robot does
not hear speech from the human at all or does not understand
the answer even after a few requests for repetition, Ask will
consider the human to be unable to proceed.

Groups
Semantics of Groups
In order to construct complex, nuanced interactions, our ap-
proach allows composing groups of microinteractions. For
instance, a group may combine the pointing behavior from
one microinteraction and the gaze behavior from another.
Formally, a group g consists of a set of microinteractions
{m1,m2, . . .,mn}. Semantically, we view g as the parallel com-
position of the n microinteractions, denoted as follows:

m1 ‖ m2 ‖ . . . ‖ mn

In other words, we consider microinteractions as n processes
that execute in parallel. Consider a scenario where a robot
is expected to hand an object to a human while it greets the
human. This design can be achieved by constructing a group
g = {mg,mh }, composed of, in parallel, the Greeter and Hand-
off microinteractions, denoted by mg and mh , respectively.

Illustrating Groups
In the example delivery scenario, the interaction designer may
wish for the robot to speak to its user as it hands the package.
In RoVer, as illustrated in Figure 2, groups are depicted by
boxes containing microinteractions; for instance, the give-
package group composes Handoff and Remark.

Session 2: Human-Robot Symbiosis UIST 2018, October 14–17, 2018, Berlin, Germany

78

Each group will have a set of possible input and output states
that the user can use to compose groups (as we will see later).
The possible inputs and outputs are included in Figure 2.
Ready indicates that the robot believes that the human is ready
to proceed within the interaction. Unavailable indicates that
the human has signaled in some way or the robot has reason to
believe that the human is not ready to proceed. Busy indicates
that the robot does not know whether the human is ready or not,
e.g., when the human hesitates to proceed in the task. RoVer
provides the designer with information on a group’s inputs
and outputs in the form of icons placed over the representation
for each group (not included in Figures 2–3 for readability).

Interactions
Semantics of Interactions
At a high level, a network of groups transitioning among
each other creates a comprehensive transition system that
computationally represents the interaction as a whole.

An interaction is a labeled transition system that is constructed
by composing groups in two different ways. First, we can sim-
ply compose two groups—g1 and g2—sequentially, executing
the first group and then the second, for instance, executing
a group with Greeter followed by another group with Ask.
Second, we can compose groups conditionally, where g1 is
followed by g2 depending on some condition on the output
state of g1. For instance, if the human ignores the robot after a
greeting, as done by shoppers observed by Satake et al. [44]
in a shopping mall, the interaction could proceed to bidding
farewell instead of proceeding with the delivery. An exam-
ple of using multiple conditions on a transition is shown in
Figure 2, through which the interaction may transition from
give-package to standby if the human is busy or unavailable.
All groups in Figure 2 are composed conditionally.

Regardless of how groups are composed, RoVer employs type-
checking to ensure that the outputs of g1 are a subset of the
allowable inputs of g2. If transitions extending from g1 are
composed conditionally, RoVer checks to ensure that each
output state of g1 is included in a condition exactly once.

Illustrating Interactions
Figure 2 presents a final design for the delivery interaction that
satisfies the criteria previously outlined. The transitions (ar-
rows) between groups denote the temporal ordering of events.
The icons around a particular transition denote the end state
that must be met within the source group in order to transition
to the target group. For instance, from the give-package group,
if the human is busy and does not accept the package, the robot
will transition to a waiting state, where it waits indefinitely
until the human acknowledges the robot with speech.

Specifying and Verifying Social Norms
Specification
Now that we have defined and illustrated the building blocks
of our technical approach, we discuss how social norms can be
specified. A key observation of this work is that many social
norms can be succinctly expressed as formulas in linear tempo-
ral logic (LTL), a widely used logical grammar for specifying
correctness properties of software and hardware designs [6].

At a high-level, LTL enables specifying what events should
and should not happen and in what temporal order they should
happen. In the context of the previously outlined social norms
of our delivery robot, LTL provides us with modal operators
to formalize such statements. For instance, using the global
operator (denoted G), we specify conditions that should hold
in every state. Using the G operator, the speech norm of
“respecting conversational floor” can be formalized in LTL as:

G humanSpeaking −→ ¬ robotSpeaking

In other words, in any state s of the interaction, if the human
has the speaking floor, then (→) the robot should not speak.
Here, humanSpeaking and robotSpeaking describe the set
of states in which the human and the robot speak, respectively.
Similarly, G allows us to check for potential conflicts in the
robot’s gaze across concurrently executing microinteractions:

G¬(referentialGaze ∧ intimacyModulatingGaze)

Here, referentialGaze and intimacyModulatingGaze
describe the set of states involving different gaze types. Within
individual microinteractions, gaze behavior is designed to sat-
isfy this social norm. If one microinteraction executing the
handoff runs concurrently with another executing the speech,
the above LTL property checks that both microinteractions
will not attempt to concurrently execute both gaze behaviors.

LTL also allows us to talk about future events using the modal
operator F. This operator enables us to check the farewell
social norm with the LTL syntax below, in which Farewell
refers to the set of states within the Farewell microinteraction:

F Farewell

As a more complex example, LTL provides the next operator X
to indicate something that should be true in the immediate next
state and the until operator U to indicate that φ should remain
true until ψ happens and that ψ must happen. We check the
noninterruptability social norm with the LTL syntax as below:

[robotSpeaking → (X ¬ robotSpeaking ∨
X humanReady)] U humanReady

For simplicity, we use X in the above property to denote the
next microinteraction. Thus, the property translates to “until
the human is ready, if the robot is speaking, then either it will
not be speaking in the next microinteraction, or the human
will be ready to proceed.” In other words, before its user is
ready, the robot should not engage in multiple consecutive
microinteractions involving robot speech. Applying this prop-
erty to real-world human-robot interactions would address
situations where the robot repeatedly makes announcements
to, and eventually irritates, unavailable users [37].

Lastly, to check the greeting norm, we simply must ensure that
the initial state corresponds to Greeter.

Verifying Social Norms
The interaction in Figure 2 satisfies all of the norms outlined
at the beginning of this section. To illustrate how these social
norms might be violated, we will walk through constructing
the interaction in the following paragraphs.

Session 2: Human-Robot Symbiosis UIST 2018, October 14–17, 2018, Berlin, Germany

79

Greeter

say-hello

Greeting property
Farewell property

Non-interruptability property

Speech property
Gaze property

a) b)

Greeter Ask Hando� Wait

Farewell

Remark

Wait

say-hello authenticate give-package

end

standby

Greeter Ask Hando�
Remark

say-hello authenticate give-package

set to prioritize referential gaze
behavior during gaze con�icts

c)

Wait is currently prioritized to
prompt the human for speech

Greeting property
Farewell property

Non-interruptability property

Speech property
Gaze property

Greeting property
Farewell property

Non-interruptability property

Speech property
Gaze property

Figure 3. A walk-through of the construction of the delivery interaction.
Satisfied and violated properties are shown at each step. The complete
interaction is shown in Figure 2.

Figure 3a depicts the start of the design. This simple interac-
tion starts with a greeting, satisfying the greeting social norm.
The absence of a Farewell microinteraction leads to the viola-
tion of the farewell property. The noninterruptability property
is violated because there exists a path through the interaction,
consisting only of Greeter, in which the human is never ready
to proceed. The human may ignore the robot’s greeting, and
the interaction will terminate. The speech and gaze properties
remain satisfied since no two microinteractions are composed
concurrently. For the violated properties, RoVer presents feed-
back in real-time during design as a list of descriptions in plain
English language, such as stating, “The interaction does not
end with a farewell,” to provide feedback on the violation of
the farewell norm. For some properties, RoVer can pinpoint
the source of the violations to specific groups and provide this
information to the designer, while RoVer may not precisely
localize other property violations.

Figure 3b depicts a minimally functional delivery interaction
in which the robot greets the human, confirms the human’s
identity, and hands off the package while making a remark.
The farewell property remains violated, and there now exist
two points of premature termination: after the authenticate
group, e.g., if the robot fails to confirm the human’s identity in
Ask, and after the give-package group. Additionally, the par-
allel execution of both microinteractions in the give-package
group has caused a potential conflict between referential gaze
behavior in Handoff and intimacy-modulating gaze behavior
in Remark. RoVer handles gaze properties differently from
other violations in that if a gaze violation is possible, then
RoVer will ask the designer to prioritize a behavior. It is then

Parameter pane

Veri�cation-based-feedack paneDesign-model pane

Microinteraction-library pane

Figure 4. The user interface for RoVer, including a design-model pane
that serves as the canvas for the designer to construct interactions, a pa-
rameter pane that provides contextual parameter options for behaviors
and microinteractions, a library pane that provides a draggable library
of available microinteractions, and a feedback pane that provides the de-
signer with feedback based on verification analysis.

left to the designer to select the referential gaze behavior. Now,
the noninterruptability property remains violated, because the
self-loop on the say-hello group makes it possible for the robot
to speak in two consecutive microinteractions before being
acknowledged by the human.

Figure 3c shows an almost-complete interaction. The gaze
property violation has been addressed by prioritizing a specific
gaze behavior. If referential gaze is successfully prioritized,
the robot will keep its eyes on the package even while si-
multaneously speaking to the human. Similarly, the farewell
property violation has been addressed, as all paths through
the interaction lead to Farewell, assuming that the human
does not keep the robot waiting forever without responding
(which is known as a fairness constraint in model checking
[6]). The noninterruptability property remains violated for the
same reasons as before. The speech property is now violated
as the robot speaks within Farewell and by default prompts
the human to speak in Wait. The parallel execution of Wait
and Farewell might cause the robot to interrupt the human.
Farewell must contain robot speech, but Wait can be parame-
terized such that the robot does not prompt the user to speak.

In the final version of the delivery interaction, shown in Figure
2, the violation of the speech property has been fixed by pa-
rameterizing Wait, and the violation of the noninterruptability
property has been addressed by adding the no-interrupt group,
so that the robot waits silently for the human’s attention.

Implementation
RoVer is implemented in Java version 8 and uses the PRISM
Model Checker [29] to perform verification of interaction de-
signs in the backend.1 The user interface for RoVer is depicted
in Figure 4. Interaction designs can be saved in XML format.
At any point while designing an interaction, users can simulate
their interactions on a robot platform, which causes an XML
1The source code for RoVer is publicly available as open-source at
https://github.com/Wisc-HCI/RoVer.

Session 2: Human-Robot Symbiosis UIST 2018, October 14–17, 2018, Berlin, Germany

80

https://github.com/Wisc-HCI/RoVer

file of the interaction to be sent to the robot and used as input
to guide the execution of the interaction.

For our implementation and testing, we used a Softbank
Robotics NAO robot. We implemented the code to execute in-
teractions in the robot in Python version 2.7, using version 1.4
of NaoQi [41]. Each microinteraction corresponds to a Python
function that is called as necessary during the execution of
the interaction. The parameters for each microinteraction are
given as inputs to each function. Microinteractions that are
composed concurrently are multi-threaded on the robot.

EVALUATION
In addition to describing the design and envisioned use of
RoVer we present a preliminary user study that examines the
effects of our verification-based approach on the human-robot
interaction design process. The study tested our central hypoth-
esis that feedback from verification will improve the process
of authoring human-robot interactions, specifically (1) reduce
the amount of time spent looking for and fixing errors, (2)
improve the ability to identify and contextualize design errors
by decreasing the discrepancy between perceived and actual
errors, (3) decrease the overall effort required by participants,
(4) enhance the quality of interaction designs, and (5) improve
ease of finding, interpreting, and fixing errors. Below, we
describe our study design, participants, and results.

Study Design
We designed a between-participants study with two condi-
tions: (1) assisted, where participants received feedback from
verification, and (2) nonassisted, where they did not receive
feedback. All participants used the implementation of RoVer
described in the previous section.

To better assess the effects of verification on the outcomes
discussed in our hypotheses, we contextualized the study in
a design-interpret-fix pipeline in which all participants first
designed their interaction without verification. At the interpret
stage, participants were given information on the errors in their
design according to their condition. Finally, participants had
the opportunity to fix errors. Participants did not have access
to simulating their designs on a robot. Preliminary trials with
RoVer showed that users in the nonassisted condition relied
heavily on simulation, and providing this option would have
confounded our testing of the use and effects of verification.

Interaction Design Scenario
We provided designers with the six microinteractions shown in
Figure 2. Additionally, RoVer included the microinteractions
Answer that involved the robot answering a question from
the human and Instruction that involved the robot issuing an
instruction to the human. We asked participants to design
an interaction with an informational robot at the entrance
to a university building. The design specifications for the
interaction included the following: (1) the robot must wait for
a human to approach it, (2) greet each human that approaches
it, (3) answer questions for as long as the human continues to
ask them, and (4) say goodbye to the human at the end of the
interaction. The specific list of task and social expectations for
this interaction, which we converted to LTL, is shown in Table
1. We also included the same speech property and similar gaze

properties discussed in the previous section. We categorized
each expectation as either Social or Task/Social, depending
on whether the expectation was related to the robot’s social
conduct or its performance of its task, which in the case of an
informational robot had both task and social implications.

Procedure
At the start of the experiment, participants were told that they
would be designing an interaction between a robot and its
user using RoVer. Figure 5 depicts the study setup. We also
informed participants that they would not be able to use the
robot to simulate their interactions. After providing informed
consent, we trained participants on the basics of designing
interactions using a modified version of RoVer with feedback
from verification and type-checking deactivated. The training
process involved watching a video on the basics of microin-
teractions, watching a second video describing the modified
RoVer, and a hands-on activity that guided participants through
the creation of an example interaction. We then briefed each
participant on the interaction-design scenario and gave them a
list of task and social norm expectations that their designs had
to satisfy (Table 1). Participants were given as much time as
they needed to design their interactions.

After participants indicated that they had finished their designs,
we asked nonassisted participants to attempt to manually ver-
ify their interactions by reviewing a copy of the list of task
and social norm properties printed on paper and record which
properties they believed their designs violated and where the
violations occurred. For assisted participants, we turned on
verification and type-checking within RoVer so that partici-
pants could see a snapshot of which properties their designs
violated, and—for the properties that could be pinpointed to a
specific area in the interaction—where the violations occurred.
We then asked each participant in the assisted condition to
record which properties they believed their design violated
and where the violations occurred. All participants received a
printed image of their designs that they could annotate.

After participants looked for errors in their designs and feed-
back was turned off in the assisted condition, we asked partici-
pants to fix the errors that they had flagged. During the entire

Figure 5. An experimenter demonstrating the setup of the user study,
including the authoring environment on a desktop computer on the right
and the NAO robot to the left of the computer.

Session 2: Human-Robot Symbiosis UIST 2018, October 14–17, 2018, Berlin, Germany

81

Table 1. List of social and task norms that participants were asked to satisfy when designing their interactions. “Begin” and “end” refer to the sets of
states at the beginning and end of microinteractions respectively, and “deadlock” refers to states where no further transitions are possible. (∗) X refers
to the next group, not necessarily the next state. (∗∗) Negating an LTL property is a technique for reasoning about some paths as opposed to all paths. If
the negation is satisfied, then the actual property is unsatisfied, and vice versa. Translations are provided for the more complex properties.

Waiting Expectations

Greeting Expectations

�e robot must not interrupt the work�ow of any human while it is waiting
for a human to approach it.

Task/Social

�e robot should issue a greeting at some point.Task/Social

�e robot should not greet humans that have not approached it.Task/Social

�e robot should never greet the same human twice.Social

Answering Expectations

A�er unsuccessfully answering a question (the human is unavailable), the
robot should not listen for any more questions from the human.

Task/Social

A�er successfully answering a question (the human is ready), the robot does
not need to continue asking questions.

Task/Social

A�er successfully answering a question (the human is ready), the human
should be able to ask arbitrarily many more questions if they want.

Task/Social �e interaction should not end before the robot has answered any questions.

Farewell Expectations

�e interaction should eventually end.Task/Social

When the interaction ends, it must end with a farewell.Task/Social

Task/Social

Turn-Taking Expectations

�ere should not be instances in which the robot speaks twice in a row.Social

�ere should not be instances in which the human is prompted to speak
twice in a row.

Social

DescriptionCategory

DescriptionCategory

DescriptionCategory

DescriptionCategory

DescriptionCategory

[robotSpeaking →(X ¬ robotSpeaking X humanReady)] U humanReady*
(translates to until the human is ready to proceed, if the robot is speaking in one
group, in the next group either the human will be ready or the robot is silent)

F (Greeter begin)

G ¬ (Greeter humanUnavailable begin)

G [Greeter end → ¬ (F Greeter begin)]

F Answering

G [Answering humanUnavailable end→ ¬ (F Answering begin)]

F deadlock

G [deadlock → Farewell]

G [(robotSpeaking ¬ humanSpeaking) → (X humanSpeaksFirst)]*
(translates to if within a group the robot speaks and the human stays silent,
then in the next group the robot will allow the human to speak �rst)

G [(humanSpeaking ¬ robotSpeaking) → (X robotSpeaksFirst)]*
(translates to if a group involves the human speaking and the robot staying
silent, then in the next group the robot will speak �rst)

LTL Form

LTL Form

LTL Form

LTL Form

LTL Form

¬ [G (Answering humanReady end → F Answering begin)]**

¬ [G (Answering humanReady end → ¬ (F Answering begin))]**

fix phase, participants had access to the printed image of their
designs and annotations. After the experiment, participants
filled out several questionnaires that assessed their experience,
including SUS [10] scores that measured RoVer’s usability.

Participants
A total of nine students recruited from the University of
Wisconsin–Madison campus took part in the study. All partic-
ipants were native English speakers between the ages of 18
and 22 (M = 19.7, SD = 1.4) and had completed at least one
semester of programming courses.

Measures & Analysis
To assess the effects of verification-aided feedback on the de-
sign process, we captured several measures of design quality,
performance, and experience. Design performance was mea-
sured using the time participants spent in the interpretation
and fix phases. We corrected time spent interpreting errors by
the complexity of participants’ initial designs, calculated as

the sum of groups, microinteractions, and transitions between
groups. Similarly, we corrected time spent fixing errors by the
number of perceived errors recorded by participants during
the interpretation phase. We also calculated error discrep-
ancy for each participant, expressed as the difference between
the recorded number of perceived errors versus the number
of actual errors present at the end of the design phase. We
corrected this difference for design complexity. To capture
design experience, we measured designer task load using the
NASA Task Load Index (TLX) [17] and designer experience
using a questionnaire with items to measure the participants’
perceived ease of finding (four items, Cronbach’s α = 0.89),
understanding (four items, Cronbach’s α = 0.82), and fixing
(three items, Cronbach’s α = 0.79) errors. Finally, to mea-
sure design quality, we captured the number of actual errors
present at the end of the fix phase (corrected for design com-
plexity), offset by the number of errors present after the design
phase (also corrected for design complexity). Errors included

Session 2: Human-Robot Symbiosis UIST 2018, October 14–17, 2018, Berlin, Germany

82

0 500 1,000 1,500 2,000 2,500 3,000

2.0

1.5

1.0

0.5

0.0

N
um

be
r o

f E
rr

or
s

Time (seconds)

Assisted (5)
Non-assisted (4)

Design stage Fix stage

0.0

-2.5

-5.0

-7.5

-10.0

-12.5

-15.0

-17.5

To
ta

l C
ha

ng
e

of
 E

rr
or

s o
ve

r T
im

e

Time (seconds)
Assisted Non-

Assisted

Assisted (5)
Non-assisted (4)

1,770

-0.15

1,970 2,170 2,370 2,570 2,770 2,970

-0.10

C
ha

ng
e

in
 #

 E
rr

or
s D

ur
in

g
Fi

x
Ph

as
e

-0.05

0.00

0.05

0.10Assisted (5)
Non-assisted (4) Non-assisted (4)

-0.20

Figure 6. Left: Errors tracked for each participant in the design and fix stages, corrected for design complexity. Right: Change in the corrected number
of errors during the fix process (center-right), and the summed change over time during the fix process (right).

property violations, type-checking errors, and errors related to
incorrect conditional logic on transitions between groups.

Our analysis of the data from the above measures involved
one-tailed Student’s t-tests. We used α levels of .05 and .10
for significant and marginal effects, respectively.

Results
The analysis of our data showed that feedback from formal ver-
ification increased designers’ ability to accurately find errors
in their designs and the ease of finding and understanding these
errors. The paragraphs below provide descriptive statistics and
test details for these effects.

The average corrected time interpreting errors for assisted
and nonassisted participants were 23.8 (SD = 4.51) and 19.7
(SD = 8.26), respectively. Average corrected time fixing er-
rors was 66.0 (SD = 32.8) and 80.0 (SD = 42.0) for assisted
and nonassisted participants, respectively (Figure 7). Due
to technical issues, we discarded data from one nonassisted
participant for time fixing errors. Error discrepancy in the
assisted condition (M = 0.13, SD = 0.05) was significantly

0

5

10

15

20

25

0

40

20

60

80

100

0

0.1

0.2

0.3

0.4

0

1

2

3

4

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

Ea
se

 o
f F

in
di

ng
 E

rr
or

s

Ea
se

 o
f I

nt
er

pr
et

in
g

Er
ro

rs

Ea
se

 o
f F

ix
in

g
Er

ro
rs

In
te

rp
re

ta
ta

io
n

Ti
m

e
(a

dj
us

te
d)

Fi
x

Ti
m

e
(a

dj
us

te
d)

Pe
rc

ei
ve

d
vs

. A
ct

ua
l E

rr
or

 (a
dj

us
te

d)

N
A

SA
 T

as
k

Lo
ad

 In
de

x

Assisted Non-
Assisted

Assisted Non-
Assisted

Assisted Non-
Assisted

Assisted Non-
Assisted

Assisted Non-
Assisted

Assisted Non-
Assisted

Assisted Non-
Assisted

Figure 7. Results from the user study show that verification assistance
decreases error discrepancy (top-center-right) and increases ease of find-
ing and interpreting errors (bottom-left, bottom-center). No improve-
ment is shown in time interpreting or fixing errors (top-left, top-center-
left), effort expended (top-right), or ease of finding errors (bottom-right).

lower than in the nonassisted condition (M = 0.31, SD = 0.19),
t(7) = 2.08, p = 0.04 (Figure 7).

Contrary to our prediction, the average effort expended by par-
ticipants in designing interactions, measured using the NASA
TLX, in the assisted condition (M = 3.70, SD = 0.32) was
not less than the effort expended in the nonassisted condition
(M = 2.75, SD = 0.62) (Figure 7).

Assisted participants found finding errors to be significantly
easier (M = 5.05, SD = 1.11) than did nonassisted participants
(M = 3.44, SD = 0.72), t(7) = 2.50, p = 0.02. Additionally,
assisted participants (M = 5.20, SD = 0.74) found understand-
ing errors in their designs to be significantly easier than did
nonassisted participants (M = 3.81, SD = 0.72), t(7) = 2.84,
p = 0.01. Assisted participants did not find it significantly
easier to fix errors (M = 5.0, SD = 1.13) than did nonassisted
participants (M = 4.17, SD = 1.40) (Figure 7). The change
in the amount of errors in the fix phase was not significantly
lower in the assisted condition (M = −0.12, SD = 0.20) than
in the nonassisted condition (M = −0.03, SD = 0.04) (Fig-
ure 6, center-right). For one participant, RoVer exhibited an
inconsistency in setting the starting states of the interaction,
requiring this participant’s error data to be manually corrected.

Lastly, assisted participants reported an average SUS score
of 77 (SD = 14.5), while nonassisted participants reported
an average SUS score of 77.5 (SD = 11.7). We believe the
similarity between scores result from the conditions only dif-
fering in the interpretation phase in which most functionality
of the system was deactivated and modifications to designs
was disallowed.

These results provide partial support for our central hypothe-
sis, showing improvements in (1) the ability to identify and
contextualize design errors and (2) the ease of finding and
interpreting errors. On the other hand, we found no improve-
ments in (2) the ease of fixing errors, (3) the amount of time
spent finding and fixing errors, (4) the overall effort required
by participants, and (5) the quality of interaction designs.

DISCUSSION

Implications for Interaction Design
The demonstration of RoVer has shown that our design and
verification framework is capable of verifying a wide range
of social norms in temporal logic and of expressing complex

Session 2: Human-Robot Symbiosis UIST 2018, October 14–17, 2018, Berlin, Germany

83

interactions with only a small set of microinteractions. The
use of verification in designing human-robot interactions has
the potential to prevent errors introduced at the design stage,
aiding in the development of more effective applications of
social robots for a variety of day-to-day scenarios of use.

Verification is a powerful technique to aid designers in re-
ducing errors in human-robot interactions. The results from
our user study confirm that the use of verification in RoVer
helps designers better understand where errors are in their
designs and that designers are aware that the process is eas-
ier when using verification. The ability to identify errors
is critical to developing interactions that are unlikely to en-
counter breakdowns, better facilitating deployment of these
robots. Designer’s subjective understanding that addressing
potential design breakdowns is made easier with verification
is particularly important given the increased cognitive load
that verification bears on designers, helping them feel that the
tradeoff of the cognitive burden for ease of use is justified.

Limitations and Future Work
Despite the wide range of interactions that various combina-
tions of a small set of microinteractions affords, the size of
the microinteraction library and limited ability to parameterize
microinteractions are some of the improvements that users
wanted to see in RoVer. Thus, a logical next step in the devel-
opment of our design and verification framework is to enable
users to create their own microinteractions to add to the li-
brary. User-created microinteractions could then be checked
with verification to determine whether each microinteraction
satisfies design constraints required by RoVer.

In addition to user-created microinteractions, designers might
also benefit from the ability to author their own social norms
and task expectations against which they can check their de-
signs, affording them more control over the interactions they
wish to create. Determining the amount of control the user
should have, however, is not straightforward. More control
is favorable when the interaction is novel or the designer has
the background and expertise necessary to define “correctness”
for the designed behavior. Too much control, however, is prob-
lematic when the correct interaction is not clear to the user.
Further research is needed to determine the most effective
means for users to author LTL properties.

Limitations of the modeling framework also limit the social-
norm properties that can be expressed in LTL, specifically the
expression of probabilistic properties and properties that rea-
son about the ordering of events among concurrently executing
microinteractions. RoVer analyzes interactions nondeterminis-
tically, meaning that it must consider every possible interaction
event without any regard as to whether certain events are likely
or unlikely. Consequently, false positives often arise when
RoVer searches for expectation violations. For instance, in the
group-level property that states that the robot should never
interrupt the human during the execution of two concurrent
microinteractions, the model checker outputs any possible
combination of states between the microinteractions that re-
sults in a violation. In future work, we plan to incorporate
probability into the execution of microinteractions to better
reason about the likelihood of property violations. We can also

use probability to more accurately reason about the actions
of the human in each microinteraction. With probabilistic
information on human actions, verification can estimate and
inform the designer about the chances that an expectation will
be violated, rather than labeling a property as violated even if
the likelihood of violation is small.

We would also like to explore methods for automated repair of
property violations within interaction designs. That is, instead
of simply informing designers of the violated social norms, we
can automatically modify their designs to make them satisfy
the given set of social norms. For example, by automating the
repair of common errors, we can enable designers to focus on
the higher-level, unique aspects of their designs.

Lastly, we believe it is necessary to perform a more comprehen-
sive evaluation of RoVer, including a more careful calculation
of interaction design quality. Counting the number of errors at
any given point in time, as we did in the current evaluation, dis-
regards imbalances in error severity, highly correlated errors,
and the fact that removing errors often requires temporarily
introducing others, as seen in the assisted condition for errors
tracked during the fix phase in Figure 6 (right). Additionally,
we observed the number of errors in the assisted condition to
be higher than the non-assisted condition during the design
phase (Figure 6, left), despite conditions being equal during
this phase. This phenomenon may be a product of our small
sample size and of the limitations of our error metric. We
would also like to extend our user study to include experi-
mental conditions in which users have access to simulation
and verification, simulation without verification, and verifica-
tion without simulation to achieve a more comprehensive and
ecologically valid assessment.

CONCLUSION
In this paper, we describe a novel approach to human-robot
interaction design, including visual authoring of interactions,
formalizing interaction-related properties in temporal logic,
and verifying that the interactions adhere to a set of social
norms and task expectations. We implemented these methods
in an authoring environment, RoVer, and demonstrated its
capabilities and limitations in an illustrative “delivery robot”
scenario. In a preliminary user study with nine participants, we
assessed user experience within a single iteration of a design-
interpret-fix pipeline, in which users designed interactions,
interpreted social and task errors, and then addressed these
errors. The study results showed that having feedback from
formal verification increases designers’ ability to accurately
find errors within their designs and the ease of finding and
understanding these errors.

ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation
(NSF) award 1651129, an NSF Graduate Research Fellowship,
and a University of Wisconsin–Madison, College of Letters &
Science, Community of Graduate Research Scholars (C-GRS)
fellowship. We would like to thank Dylan Glas and Takayuki
Kanda for sharing interaction models from their work and
Christopher Little for help in conducting the evaluation study.

Session 2: Human-Robot Symbiosis UIST 2018, October 14–17, 2018, Berlin, Germany

84

REFERENCES
1. Sonya Alexandrova, Zachary Tatlock, and Maya Cakmak.

2015. RoboFlow: A flow-based visual programming
language for mobile manipulation tasks. In IEEE
International Conference on Robotics and Automation
(ICRA). IEEE, 5537–5544.

2. Rajeev Alur, Salar Moarref, and Ufuk Topcu. 2013.
Counter-strategy guided refinement of GR (1) temporal
logic specifications. In Formal Methods in
Computer-Aided Design (FMCAD). IEEE, 26–33.

3. Sean Andrist, Bilge Mutlu, and Michael Gleicher. 2013.
Conversational gaze aversion for virtual agents. In
International Workshop on Intelligent Virtual Agents
(IVA). Springer, 249–262.

4. Sean Andrist, Tomislav Pejsa, Bilge Mutlu, and Michael
Gleicher. 2012. Designing effective gaze mechanisms for
virtual agents. In ACM/SIGCHI Conference on Human
Factors in Computing Systems (CHI). ACM, 705–714.

5. Sean Andrist, Xiang Zhi Tan, Michael Gleicher, and
Bilge Mutlu. 2014. Conversational gaze aversion for
humanlike robots. In ACM/IEEE International
Conference on Human Robot Interaction (HRI). ACM,
25–32.

6. Christel Baier and Joost-Pieter Katoen. 2008. Principles
of Model Checking (Representation and Mind Series).
The MIT Press.

7. J-C Baillie. 2005. Urbi: Towards a universal robotic
low-level programming language. In IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS). IEEE, 820–825.

8. Emilia I Barakova, Jan CC Gillesen, Bibi EBM Huskens,
and Tino Lourens. 2013. End-user programming
architecture facilitates the uptake of robots in social
therapies. Robotics and Autonomous Systems 61, 7
(2013), 704–713.

9. Rafael H Bordini, Michael Fisher, and Maarten Sierhuis.
2009. Formal verification of human-robot teamwork. In
ACM/IEEE International Conference on Human Robot
Interaction (HRI). ACM, 267–268.

10. John Brooke and others. 1996. SUS-A quick and dirty
usability scale. Usability evaluation in industry 189, 194
(1996), 4–7.

11. Michael Jae-Yoon Chung, Justin Huang, Leila Takayama,
Tessa Lau, and Maya Cakmak. 2016. Iterative Design of a
System for Programming Socially Interactive Service
Robots. In International Conference on Social Robotics
(ICSR). Springer, 919–929.

12. Chandan Datta, Chandimal Jayawardena, I Han Kuo, and
Bruce A MacDonald. 2012. RoboStudio: A visual
programming environment for rapid authoring and
customization of complex services on a personal service
robot. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2352–2357.

13. Clare Dixon, Matt Webster, Joe Saunders, Michael
Fisher, and Kerstin Dautenhahn. 2014. “The fridge door
is open”— Temporal Verification of a Robotic Assistant’s
Behaviours. In Conference Towards Autonomous Robotic
Systems. Springer, 97–108.

14. Bernard Espiau, Konstantinos Kapellos, and Muriel
Jourdan. 1996. Formal verification in robotics: Why and
how? In Robotics Research. Springer, 225–236.

15. Georgios E Fainekos, Hadas Kress-Gazit, and George J
Pappas. 2005. Temporal logic motion planning for mobile
robots. In IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020–2025.

16. Dylan F Glas, Takayuki Kanda, and Hiroshi Ishiguro.
2016. Human-robot interaction design using interaction
composer: Eight years of lessons learned. In ACM/IEEE
International Conference on Human Robot Interaction
(HRI). IEEE Press, 303–310.

17. Sandra G Hart and Lowell E Staveland. 1988.
Development of NASA-TLX (Task Load Index): Results
of empirical and theoretical research. In Advances in
psychology. Vol. 52. Elsevier, 139–183.

18. Brandon Heenan, Saul Greenberg, Setareh
Aghel-Manesh, and Ehud Sharlin. 2014. Designing social
greetings in human robot interaction. In ACM Conference
on Designing Interactive Systems. ACM, 855–864.

19. Jarrett Holtz, Arjun Guha, and Joydeep Biswas. 2018.
Interactive Robot Transition Repair With SMT. arXiv
preprint arXiv:1802.01706 (2018).

20. Chien-Ming Huang and Bilge Mutlu. 2012. Robot
behavior toolkit: Generating effective social behaviors for
robots. In ACM/IEEE International Conference on
Human Robot Interaction (HRI). ACM, 25–32.

21. Chien-Ming Huang and Bilge Mutlu. 2013. The
repertoire of robot behavior: Enabling robots to achieve
interaction goals through social behavior. Journal of
Human-Robot Interaction 2, 2 (2013), 80–102.

22. Chien-Ming Huang and Bilge Mutlu. 2014.
Learning-based modeling of multimodal behaviors for
humanlike robots. In ACM/IEEE International
Conference on Human-Robot Interaction (HRI). ACM,
57–64.

23. Xiaowei Huang and Marta Zofia Kwiatkowska. 2017.
Reasoning about Cognitive Trust in Stochastic
Multiagent Systems. In AAAI. 3768–3774.

24. Barbara Jobstmann, Andreas Griesmayer, and Roderick
Bloem. 2005. Program repair as a game. In International
Conference on Computer Aided Verification (CAV).
Springer, 226–238.

25. Peter H Kahn, Nathan G Freier, Takayuki Kanda, Hiroshi
Ishiguro, Jolina H Ruckert, Rachel L Severson, and
Shaun K Kane. 2008. Design patterns for sociality in
human-robot interaction. In ACM/IEEE International
Conference on Human Robot Interaction (HRI). ACM,
97–104.

Session 2: Human-Robot Symbiosis UIST 2018, October 14–17, 2018, Berlin, Germany

85

26. Adam Kendon. 1990. Conducting interaction: Patterns of
behavior in focused encounters. Vol. 7. CUP Archive.

27. Hadas Kress-Gazit, Georgios E Fainekos, and George J
Pappas. 2008. Translating structured english to robot
controllers. Advanced Robotics 22, 12 (2008),
1343–1359.

28. Marta Kwiatkowska. 2017. Cognitive Reasoning and
Trust in Human-Robot Interactions. In Annual
Conference Theory and Applications of Models of
Computation (TAMC). 3–11.

29. Marta Kwiatkowska, Gethin Norman, and David Parker.
2011. PRISM 4.0: Verification of probabilistic real-time
systems. In International Conference on Computer Aided
Verification (CAV). Springer, 585–591.

30. Min Kyung Lee, Sara Kiesler, Jodi Forlizzi, and Paul
Rybski. 2012. Ripple effects of an embedded social agent:
a field study of a social robot in the workplace. In
ACM/SIGCHI Conference on Human Factors in
Computing Systems (CHI). ACM, 695–704.

31. Wenchao Li, Lili Dworkin, and Sanjit A Seshia. 2011.
Mining assumptions for synthesis. In ACM/IEEE
International Conference on Formal Methods and Models
for Codesign. IEEE Computer Society, 43–50.

32. Wenchao Li, Dorsa Sadigh, S Shankar Sastry, and
Sanjit A Seshia. 2014. Synthesis for human-in-the-loop
control systems. In International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems. Springer, 470–484.

33. Tino Lourens and Emilia Barakova. 2011. User-friendly
robot environment for creation of social scenarios. In
International Work-Conference on the Interplay between
Natural and Artificial Computation. Springer, 212–221.

34. Alaeddine Mihoub, Gérard Bailly, Christian Wolf, and
Frédéric Elisei. 2015. Learning multimodal behavioral
models for face-to-face social interaction. Journal on
Multimodal User Interfaces 9, 3 (2015), 195–210.

35. AJung Moon, Daniel M Troniak, Brian Gleeson,
Matthew KXJ Pan, Minhua Zheng, Benjamin A Blumer,
Karon MacLean, and Elizabeth A Croft. 2014. Meet me
where I’m gazing: How shared attention gaze affects
human-robot handover timing. In ACM/IEEE
International Conference on Human Robot Interaction
(HRI). ACM, 334–341.

36. Bilge Mutlu. 2011. Designing embodied cues for dialog
with robots. AI Magazine 32, 4 (2011), 17–30.

37. Bilge Mutlu and Jodi Forlizzi. 2008. Robots in
organizations: The role of workflow, social, and
environmental factors in human-robot interaction. In
ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 287–294.

38. Bilge Mutlu, Takayuki Kanda, Jodi Forlizzi, Jessica
Hodgins, and Hiroshi Ishiguro. 2012. Conversational gaze
mechanisms for humanlike robots. ACM Transactions on
Interactive Intelligent Systems (TiiS) 1, 2 (2012), 12.

39. Julia Peltason and Britta Wrede. 2010. Modeling
human-robot interaction based on generic interaction
patterns. In AAAI Fall Symposium: Dialog with Robots.

40. Amir Pnueli. 1977. The temporal logic of programs. In
Annual Symposium on Foundations of Computer Science.
IEEE, 46–57.

41. Emmanuel Pot, Jérôme Monceaux, Rodolphe Gelin, and
Bruno Maisonnier. 2009. Choregraphe: a graphical tool
for humanoid robot programming. In IEEE International
Symposium on Robot and Human Interactive
Communication (RO-MAN). IEEE, 46–51.

42. Selma Sabanovic, Marek P Michalowski, and Reid
Simmons. 2006. Robots in the wild: Observing
human-robot social interaction outside the lab. In IEEE
International Workshop on Advanced Motion Control.
IEEE, 596–601.

43. Harvey Sacks, Emanuel A Schegloff, and Gail Jefferson.
1974. A simplest systematics for the organization of
turn-taking for conversation. Language (1974), 696–735.

44. Satoru Satake, Takayuki Kanda, Dylan F Glas, Michita
Imai, Hiroshi Ishiguro, and Norihiro Hagita. 2009. How
to approach humans?: strategies for social robots to
initiate interaction. In ACM/IEEE International
Conference on Human-Robot Interaction (HRI). ACM,
109–116.

45. Allison Sauppé and Bilge Mutlu. 2014. Design patterns
for exploring and prototyping human-robot interactions.
In ACM/SIGCHI Conference on Human Factors in
Computing Systems (CHI). ACM, 1439–1448.

46. Allison Sauppé and Bilge Mutlu. 2015. The Social
Impact of a Robot Co-Worker in Industrial Settings. In
ACM/SIGCHI Conference on Human Factors in
Computing Systems (CHI). ACM, New York, NY, USA,
3613–3622.

47. Alan Turing. 1949. Checking a large routine. In Report of
a Conference on High Speed Automatic Calculating
Machines. Univ. Math. Lab., Cambridge, 67–69.

48. Matt Webster, Clare Dixon, Michael Fisher, Maha Salem,
Joe Saunders, Kheng Lee Koay, and Kerstin Dautenhahn.
2014. Formal verification of an autonomous personal
robotic assistant. In AAAI Spring Symposium: Formal
Verification and Modeling in Human-Machine Systems.
74–79.

49. Matt Webster, Clare Dixon, Michael Fisher, Maha Salem,
Joe Saunders, Kheng Lee Koay, Kerstin Dautenhahn, and
Joan Saez-Pons. 2016. Toward reliable autonomous
robotic assistants through formal verification: a case
study. IEEE Transactions on Human-Machine Systems
46, 2 (2016), 186–196.

50. Jeannette M Wing. 1990. A specifier’s introduction to
formal methods. Computer 23, 9 (1990), 8–22.

Session 2: Human-Robot Symbiosis UIST 2018, October 14–17, 2018, Berlin, Germany

86

	Related Work
	Social Robotics
	Interaction Design
	Formal Verification

	Technical Approach
	Semantic Foundations
	Microinteractions
	Groups
	Interactions
	Specifying and Verifying Social Norms
	Implementation

	Evaluation
	Study Design
	Participants
	Measures & Analysis

	Results

	Discussion
	Implications for Interaction Design
	Limitations and Future Work

	Conclusion
	Acknowledgements
	References

