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ABSTRACT
In a busy city street, a pedestrian surrounded by distractions can
pick out a single sign if it is relevant to their route. Artificial
agents in outdoor Vision-and-Language Navigation (VLN) are
also confronted with detecting supervisory signal on environment
features and location in inputs. To boost the prominence of
relevant features in transformer-based systems without costly
preprocessing and pretraining, we take inspiration from priority
maps - a mechanism described in neuropsychological studies. We
implement a novel priority map module and pretrain on auxiliary
tasks using low-sample datasets with high-level representations
of routes and environment-related references to urban features.
A hierarchical process of trajectory planning - with subsequent
parameterised visual boost filtering on visual inputs and prediction
of corresponding textual spans - addresses the core challenge of
cross-modal alignment and feature-level localisation. The priority
map module is integrated into a feature-location framework that
doubles the task completion rates of standalone transformers
and attains state-of-the-art performance for transformer-based
systems on the Touchdown benchmark for VLN. Code and data
are referenced in Appendix C.

1 INTRODUCTION
Navigation in the world depends on attending to relevant cues at
the right time. A road user in an urban environment is presented
with billboards, moving traffic, and other people - but at an
intersection will pinpoint a single light to check if it contains
the colour red (Gottlieb et al., 2020; Shinoda et al., 2001). An
artificial agent navigating a virtual environment of an outdoor
location is also presented with a stream of linguistic and visual
cues. Action selections that move the agent closer to a final
destination depend on the prioritisation of references that are
relevant to the point in the trajectory. In the first example, human
attention is guided to specific objects by visibility and the present
objective of crossing the road. At a neurophysiological level, this
process is mediated by a priority map - a neural mechanism that
guides attention by matching low-level signals on salient objects
with high-level signals on task goals. Prioritisation in humans
is enhanced by combining multimodal signals and integration
between linguistic and visual information (Ptak, 2012; Cavicchio
et al., 2014). The ability to prioritise improves as experience of
situations and knowledge of environments increases (Zelinsky
and Bisley, 2015; Tatler et al., 2011).

We introduce a priority map module for Vision-and-Language
Navigation (PM-VLN) that is pretrained to guide a transformer-
based architecture to prioritise relevant information for action
selections in navigation. In contrast to pretraining on large-scale
datasets with generic image-text pairs (Su et al., 2020), the PM-
VLN module learns from small sets of samples representing
trajectory plans and urban features. Our proposal is founded
on observation of concentrations in location deictic terms and
references to objects with high visual salience in inputs for VLN.
Prominent features in the environment pervade human-generated
language navigation instructions. Road network types (“inter-
section”), architectural features (“awning”), and transportation
(“cars”) all appear with high frequency in linguistic descriptions
of the visual appearance of urban locations. Learning to combine
information in the two modalities relies on synchronising temporal
sequences of varying lengths. We utilise references to entities as
a signal for a process of cross-modal prioritisation that addresses
this requirement.

Our module learns over both modalities to prioritise timely
information and assist both generic vision-and-language and cus-
tom VLN transformer-based architectures to complete routes (Li
et al., 2019; Zhu et al., 2021). Transformers have contributed to
recent proposals to conduct VLN, Visual Question Answering,
and other multimodal tasks - but are associated with three chal-
lenges: 1) Standard architectures lack mechanisms that address
the challenge of temporal synchronisation over linguistic and
visual inputs. Pretrained transformers perform well in tasks on
image-text pairs but are challenged when learning over sequences
without explicit alignments between modalities (Lin and Wang,
2020). 2) Performance is dependent on pretraining with large sets
of image-text pairs and a consequent requirement for access to
enterprise-scale computational resources (Majumdar et al., 2020;
Suglia et al., 2021). 3) Visual learning relies on external models
and pipelines - notably for object detection (Li et al., 2020; Le
et al., 2022). The efficacy of object detection for VLN is low in
cases where training data only refer to a small subset of object
types observed in navigation environments.

We address these challenges with a hierarchical process of
trajectory planning with feature-level localisation and low-sample
pretraining on in-domain data. We use discriminative training
on two auxiliary tasks that adapt parameters of the PM-VLN
for the specific challenges presented by navigating routes in
outdoor environments. High-level planning for routes is enabled
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by pretraining for trajectory estimation on simple path traces
ahead of a second task comprising multi-objective cross-modal
matching and location estimation on urban landmarks. Data in the
final evaluation task represent locations and trajectories in large
US cities and present an option to leverage real-world resources in
pretraining. Our approach builds on this opportunity by sourcing
text, images, coordinates, and path traces from the open web
and the Google Directions API where additional samples may
be secured at low cost in comparison to human generation of
instructions.

This research presents four contributions to enhance
transformer-based systems on outdoor VLN tasks:

• Priority map module Our novel PM-VLN module conducts
a hierarchical process of high-level alignment of textual
spans with visual perspectives and feature-level operations
to enhance and localise inputs during navigation (see Figure
3).

• Trajectory planning We propose a new method for aligning
temporal sequences in VLN comprising trajectory estimation
on path traces and subsequent predictions for the distribution
of linguistic descriptions over routes.

• Two in-domain datasets and training strategy We intro-
duce a set of path traces for routes in two urban locations
(TR-NY-PIT-central) and a dataset consisting of textual
summaries, images, and World Geodetic System (WGS)
coordinates for landmarks in 10 US cities (MC-10). These
resources enable discriminative training of specific compo-
nents of the PM-VLN on trajectory estimation and multi-
objective loss for a new task that pairs location estimation
with cross-modal sentence prediction.

• Feature-location framework We design and build a frame-
work (see Figure 2) to combine the outputs from the PM-VLN
module and cross-modal embeddings from a transformer-
based encoder. The framework incorporates components
for performing self-attention, combining embeddings, and
predicting actions with maxout activation.

2 BACKGROUND
In this section we define the Touchdown task and highlight a
preceding challenge of aligning and localising over linguistic
and visual inputs addressed in our research. A summary of the
notation used below and in subsequent sections is presented in
Appendix A.

Touchdown Navigation in the Touchdown benchmark 𝜙𝑉𝐿𝑁

is measured as the completion of 𝑁 predefined trajectories by an
agent in an environment representing an area of central Manhattan.
The environment is represented as an undirected graph composed
of nodes𝑂 located at WGS latitude / longitude points. At each step
𝑡 of the sequence {1, . . . , 𝑇} that constitute a trajectory, the agent
selects an edge 𝜉𝑡 to a corresponding node. The agent’s selection
is based on linguistic and visual inputs. A textual instruction τ
composed of a varying number of tokens describes the overall
trajectory. We use 𝜍 to denote a span of tokens from τ that
corresponds to the agent’s location in the trajectory. Depending

on the approach, 𝜍 can be the complete instruction or a selected
sequence. The visual representation of a node in the environment
is a panorama drawn from a sequence 𝑅𝑜𝑢𝑡𝑒 of undetermined
length. The agent receives a specific perspective 𝜓 of a panorama
determined by the heading angle ∠ between (𝑜1, 𝑜2). Success in
completing a route is defined as predicting a path that ends at the
node designated as the goal - or one directly adjacent to it.

In a supervised learning paradigm (see a) in Figure 1), an
embedding 𝑒𝜂 is learned from inputs 𝜍𝑡 and 𝜓𝑡 . The agent’s
next action is a classification over 𝑒𝜂 where the action 𝛼𝑡 is one
of a class drawn from the set A{𝐹𝑜𝑟𝑤𝑎𝑟𝑑, 𝐿𝑒 𝑓 𝑡, 𝑅𝑖𝑔ℎ𝑡, 𝑆𝑡𝑜𝑝}.
Predictions 𝛼𝑡 = 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 and 𝛼𝑡 = {𝐿𝑒 𝑓 𝑡, 𝑅𝑖𝑔ℎ𝑡} result re-
spectively in a congruent or a new ∠ at edge 𝜉𝑡+1. A route in
progress is terminated by a prediction 𝛼𝑡 = 𝑆𝑡𝑜𝑝.

Align and Localise We highlight in Figure 1 a preceding
challenge in learning cross-modal embeddings. As in real-world
navigation, an agent is required to align and match cues in
instructions with its surrounding environment. A strategy in
human navigation is to use entities or landmarks to perform this
alignment Cavicchio et al. (2014). In the Touchdown benchmark,
a relationship between sequences τ and 𝑅𝑜𝑢𝑡𝑒 is assumed from
the task generation process outlined in Chen et al. (2019) - but
the precise alignment is not known. We define the challenge
as one of aligning temporal sequences τ = {𝜍1, 𝜍2, . . . , 𝜍𝑛} and
𝑅𝑜𝑢𝑡𝑒 = {𝜓1, 𝜓2, . . . , 𝜓𝑛} with the aim of generating a set of
cross-modal embeddings 𝐸𝜂 where referenced entities correspond.
At a high level, this challenge can be addressed by an algorithm 𝑞

that maximises the probability 𝑃 of detecting 𝑆 signal in a set of
inputs. This algorithm is defined as

𝑞(𝜃) ((𝑋𝑡 )) = 𝑞(𝜃) (𝑋𝑡 ) → 𝑚𝑎𝑥

[∫
X
𝑝(𝑋𝑡 |𝜃)𝑠(𝑋𝑡 )

]
(1)

where 𝜃 is a parameter 𝜃 ∈ Θ1 and X is the data space.
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"Turn yourself so that you are going with the flow
of traffic. There should be a purple theater banner

on your left. Go forward on this street until you
come to the first traffic light. Make a right at the

light. You should see silver gates on your left. Go
straight and when you come to the next light,

make a right. Very shortly after you make the turn,
look to the left and you should see a silver light

post with a bike leaning against it."

"Turn yourself so that you are going with the flow
of traffic. There should be a purple theater banner

on your left. Go forward on this street until you
come to the first traffic light. Make a right at the

light. You should see silver gates on your left. Go
straight and when you come to the next light, make
a right. Very shortly after you make the turn, look to
the left and you should see a silver light post with a

bike leaning against it."

"Turn yourself so that you are going with the flow of traffic. There should
be a purple theater banner on your left. Go forward on this street until you
come to the first traffic light. Make a right at the light. You should see silver
gates on your left. Go straight and when you come to the next light, make a
right. Very shortly after you make the turn, look to the left and you should

see a silver light post with a bike leaning against it."
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Figure 1: Outline of VLN as a supervised classification task a).
Linguistic and visual inputs both refer to entities indicated in red.
We address a challenge to align and localise over unsynchronised
inputs b) by focusing on entities represented in both modalities.

In the Touchdown benchmark, linguistic and visual inputs
are of the form 0 ≤ |τ| ≤ 𝑛 and 0 ≤ |𝑅𝑜𝑢𝑡𝑒 | ≤ 𝑛 where
𝑙𝑒𝑛(τ) ≠ 𝑙𝑒𝑛(𝑅𝑜𝑢𝑡𝑒). The task then is to maximise the proba-
bility of detecting signal in the form of corresponding entities
over the sequences τ and 𝑅𝑜𝑢𝑡𝑒, which in turn is the product of
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"There should be a purple theater banner on
your left. Go forward on this street until you
come to the first traffic light. Make a right at

the light. You should see silver gates on
your left. "
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Figure 2: Prior work on transformer-based systems for VLN follows the above pipeline from inputs to the main model concluding with a) a
classifier to predict actions. We propose a feature-location framework (FLPM) to enhance the performance of a main model as in b). Here
path traces are an additional input to assist the PM-VLN to align linguistic and visual sequences. Submodule 𝑔𝐶𝐹𝑛𝑠 combines embeddings
from the main model 𝑈𝜂 and the PM-VLN 𝐸𝜂 ahead of action prediction with maxout activation.

probabilities over pairings 𝜍𝑡 and 𝜓𝑡 presented at each step:

𝑔(𝑋𝑡 ) → 𝑚𝑎𝑥
𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜

𝑃[τ, 𝑅𝑜𝑢𝑡𝑒] =
∏

𝑝𝑥𝜍 𝑥𝜓 (2)

3 METHOD
We address the challenge of aligning and localising over sequences
with a computational implementation of cross-modal prioritisation.
Diagnostics on VLN systems have placed in question the ability
of agents to perform cross-modal alignment (Zhu et al., 2022).
Transformers underperform in problems with temporal inputs
where supervision on image-text alignments is lacking (Chen et al.,
2020). This is demonstrated in the case of Touchdown where
transformer-based systems complete less than a quarter of routes.
Our own observations of lower performance when increasing
the depth of transformer architectures motivates moving beyond
stacking blocks to an approach that compliments self-attention.

Our PM-VLN module modulates transformer-based encoder
embeddings in the main task 𝜙𝑉𝐿𝑁 using a hierarchical process
of operations and leveraging prior learning on auxiliary tasks
(𝜙1, 𝜙2) (see Figure 3). In order to prioritise relevant informa-
tion, a training strategy for PM-VLN components is designed
where training data contain samples that correspond to the ur-
ban grid type and environment features in the main task. The
datasets required for pretraining contain less samples than other
transformer-based VLN frameworks (Zhu et al., 2021; Majumdar
et al., 2020) and target only specific layers of the PM-VLN module.
The pretrained module is integrated in a novel feature-location
framework FLPM shown in Figure 2. Subsequent components in
the FLPM combine cross-modal embeddings from the PM-VLN
and a main transformer model ahead of predicting an action.

3.1 Feature-location Framework with a Priority
Map Module
Prior work on VLN agents has demonstrated reliance for nav-
igation decisions on environment features and location-related
references (Zhu et al., 2021). In the definition of 𝜙𝑉𝐿𝑁 above,
we consider this information as the supervisory signal contained
in both sets of inputs (𝑥𝜍 , 𝑥𝜓)𝑡 . As illustrated in Figure 2, our
PM-VLN module is introduced into a framework FLPM. This
framework takes outputs from a transformer-based main model
𝐸𝑛𝑐𝑇𝑟𝑎𝑛𝑠 together with path traces ahead of cross-modal pri-

Spans

Trajectory
estimation

Path trace

Trajectory

plan

Feature-level
localisation

Perspective

from t1

Figure 3: A Priority Map module performs a hierarchical process
of high-level trajectory planning and feature-level localisation. Sub-
modules inside the white box are learned together and a helper
function generates a trajectory plan to predict spans from step 𝑡1.

oritisation and classification with maxout activation 𝐶𝑙𝑎𝑠𝑚𝑎𝑥 𝑥𝑖 .
Inputs for 𝐸𝑛𝑐𝑇𝑟𝑎𝑛𝑠 comprise cross-modal embeddings 𝑒𝜂 pro-
posed by Zhu et al. (2021) and a concatenation of perspectives up
to the current step 𝜓𝑐𝑎𝑡

𝐶𝑙𝑎𝑠𝑚𝑎𝑥 𝑥𝑖
𝑖

[𝑦 𝑗 |𝑧′] = 𝑑 (PM-VLN({𝑔(𝑥𝑖), (𝑡𝑟𝑡 , 𝚤′𝑡 , 𝜓𝑡 )}𝑛𝑖=1)+

𝐸𝑛𝑐𝑇𝑟𝑎𝑛𝑠 ({𝑔(𝑥𝑖), (𝑒𝜂 , 𝜓𝑐𝑎𝑡 )}𝑛𝑖=1))
(3)

where 𝑡𝑟𝑡 is a path trace, 𝑧′ is the concatenation of the outputs of
the two encoders, and 𝑑 is a dropout operation.

3.1.1 Priority Map Module Priority maps are described in the
neuropsychological literature as a mechanism that modulates sen-
sory processing on cues from the environment. Salience deriving
from the physical aspects of objects in low-level processing is
mediated by high-level signals for the relevance of cues to task
goals (Fecteau and Munoz, 2006; Itti and Koch, 2000; Zelinsky
and Bisley, 2015). Cortical regions that form the location of



these mechanisms are associated with the combined processing
of feature- and location-based information (Bisley and Mirpour,
2019; Hayden and Gallant, 2009). Prioritisation of items in map
tasks with language instructions indicate an integration between
linguistic and visual information and subsequent increases in
salience attributed to landmarks (Cavicchio et al., 2014).

Our priority map module (PM-VLN) uses a series of simple
operations to approximate the prioritsation process observed in
human navigation. These operations avoid dependence on initial
tasks such as object detection. Alignment of linguistic and visual
inputs is enabled by trajectory estimation on simple path traces
forming high-level representations of routes and subsequent gen-
eration of trajectory plans. Localisation consists of parameterised
visual boost filtering on the current environment perspective
𝜓𝑡 and cross-modal alignment of this view with selected spans
from subsequent alignment (see Algorithm 1). This hierarchical
process compliments self-attention by accounting for the lack of
a mechanism in transformers to learn over unaligned temporal
sequences. A theoretical basis for cross-modal prioritisation is
presented below.

Algorithm 1 Priority Map Module
Input: Datasets D𝜙1 ,D𝜙2 , and D𝜙𝑉𝐿𝑁

with inputs (𝑥𝑙 , 𝑥𝑣)
for tasks Φ. Initial parameters in all layers at Θ𝑙

𝑗
∼

𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇 𝑗 , 𝜎𝑗 ).
Output: (𝑒𝑙 , 𝑒′𝑣)
while not converged do

for 𝑥𝑡𝑟 𝑖 in 𝜙1 do
Θ′𝑔𝑃𝑀𝑇𝑃

← 𝑔𝜙1 (𝑋𝑖 ,Θ).
end for

end while
while not converged do

for (𝑥𝑙𝑖 , 𝑥𝑣𝑖 ) in 𝜙2 do
Θ′𝑔𝑃𝑀𝐹

← 𝑔𝜙2 (𝑋𝑖 ,Θ).
end for

end while
while not converged do

Sample 𝑥𝑡𝑟𝑡 from 𝐷𝑇𝑟𝑎𝑖𝑛 .

𝑥𝑡 𝑝𝑡 ← 𝑔𝑃𝑀𝑇𝑃 (𝑥𝑡𝑟𝑡 ).
Sample (𝚤′𝑡 , 𝜓𝑡 ) from 𝐷𝑇𝑟𝑎𝑖𝑛 .

𝑒𝑣 ← 𝑔𝑈𝑆𝑀 (𝜓𝑡 ).
𝑒′𝑣 ← 𝑔𝑉𝐵𝐹 (𝑒𝑣).
𝑒𝑙 ← 𝑔𝑃𝑟𝐿 (𝑔𝐶𝑎𝑡 (𝚤′𝑡 , 𝑒′𝑣)).

end while
return (𝑒𝑙 , 𝑒′𝑣)

High-level trajectory estimation Alignment over linguistic
and visual sequences is formulated as a task of predicting a set of
spans from the instruction that correspond to the current step. This
process starts with a submodule 𝑔𝑃𝑀𝑇𝑃 that estimates a count 𝑐𝑛𝑡
of steps from a high-level view on the route (see Figure 4). Path
traces - denoted as 𝑡𝑟𝑇 - are visual representations of trajectories
generated from the coordinates of nodes. At 𝑡0 in 𝑡𝑟𝑇 initial

spans in the instruction are assumed to align with the first visual
perspective. From step 𝑡1, a submodule containing a pretrained
ConvNeXt Tiny model (Liu et al., 2022) updates an estimate
of the step count in 𝑐𝑛𝑡𝑡𝑟𝑇 . A trajectory plan 𝑡 𝑝𝑡 is a Gaussian
distribution of spans in τ within the interval [𝑥𝑙𝑒 𝑓 𝑡 , 𝑥𝑟𝑖𝑔ℎ𝑡 ]. At
each step, samples from this distribution serve as a prediction
for relevant spans. The final output 𝚤′𝑡 is the predicted span 𝚤𝑡

combined with 𝚤𝑡−1.







"Turn yourself so that you are going with
the flow of traffic. There should be a purple
theater banner on your left. Go forward on
this street until you come to the first traffic
light. Make a right at the light. You should

see silver gates on your left. Go straight and
when you come to the next light, make a

right. Very shortly after you make the turn,
look to the left and you should see a silver
light post with a bike leaning against it."

Figure 4: Submodule 𝑔𝑃𝑀𝑇𝑃 estimates a step count (𝑐𝑛𝑡𝑡𝑟 ) on a path
trace. A trajectory plan (𝑡 𝑝) is a Gaussian distribution (𝑁𝑜𝑟𝑚𝑎𝑙)
over the instruction and predicts a span for every step 𝚤𝑡 . This is
concatenated with the span predicted for the previous step.

Feature-level localisation Predicted spans are passed with 𝜓𝑡

to a submodule 𝑔𝑃𝑀𝐹 that is pretrained on cross-modal matching
in 𝜙2 (see Figure 5). Feature-level operations commence with
visual boost filtering. Let 𝐶𝑜𝑛𝑣𝑉𝐵𝐹 be a convolutional layer with
a kernel 𝜅 and weights 𝑊 that receives as input 𝜓𝑡 . In the first
operation 𝑔𝑈𝑆𝑀 , a Laplacian of Gaussian kernel 𝜅𝐿𝑜𝐺 is applied
to 𝜓𝑡 . The second operation 𝑔𝑉𝐵𝐹 consists of subtracting the
output 𝑒𝑣 from the original tensor 𝜓𝑡 :

𝑔𝑉𝐵𝐹 (𝑒𝑣) = (𝜆 − 1) (𝑒𝑣) − 𝑔(𝑈𝑆𝑀 ) (𝜓𝑡 ) (4)

where 𝜆 is a learned parameter for the degree of sharpening.
A combination of 𝑔𝑈𝑆𝑀 and 𝑔𝑉𝐵𝐹 is equivalent to adaptive

sharpening of details in an image with a Laplacian residual (Bayer,
1986). Here operations are applied directly to 𝑒𝑣 and adjusted at
each update of 𝑊𝐶𝑜𝑛𝑣𝑉𝐵𝐹

with a parameterised control 𝛽𝜆. In the
simple and efficient implementation from Carranza-Rojas et al.
(2019), 𝜎 in the distribution 𝐿𝑜𝐺 (𝜇 𝑗 , 𝜎𝑗 ) is fixed and the level
of boosting is reduced to a single learned term

Δ𝑧(𝑥1, 𝑥2) = 𝛽𝜆(
∑︁
𝑗

(𝐴𝐴′𝜅𝑖 𝑗 − 𝐴𝑊𝜅𝑖 𝑗
)𝑧) (5)

where 𝐴𝑊 is a matrix of parameters and 𝐴𝐴′ is the identity.

"There should be a purple theater banner on
your left. Go forward on this street until you
come to the first traffic light. Make a right at

the light. You should see silver gates on
your left. "







"There should be a purple theater banner on
your left. Go forward on this street "

Figure 5: Submodule 𝑔𝑃𝑀𝐹 commences feature-level operations by
boosting visual features in the perspective. The next operation (𝐶𝑎𝑡)
is a concatenation of the output from 𝑔𝑉𝐵𝐹 and the linguistic output
𝚤′𝑡 from the alignment process above. A precise prediction for the
relevant span 𝑒𝑙 is returned by 𝑔𝑃𝑟𝐿 .

Selection of a localised span 𝑒𝑙 proceeds with a learned cross-
modal embedding 𝑒′𝜂 composed of 𝑒′𝑣 and the linguistic output 𝚤′𝑡
from the preceding alignment operation. A binary prediction over



this linguistic pair is performed on the output hidden state from
a single-layer LSTM, which receives 𝑒′𝜂 as its input sequence.
Function 𝑔𝑃𝑟𝐿 returns a precise localisation of relevant spans
w.r.t. prominent features in the perspective:

𝑔𝑃𝑟𝐿 (𝑒𝑙) = 𝑔𝐶𝑎𝑡 (𝚤′𝑡 , 𝑒′𝑣) ≜
{

0, 𝑖 𝑓 ⟨𝑤, 𝑥⟩ +𝑏 < 0
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)

Pretraining Strategy A data-efficient pretraining strategy
for the PM-VLN module consists of pretraining submodules of
the PM-VLN on auxiliary tasks (𝜙1, 𝜙2). We denote the two
datasets for these tasks as (D𝜙1 ,D𝜙2 ) and a training partition
as D𝑇𝑟𝑎𝑖𝑛 (see Appendix B for details). In 𝜙1, the 𝑔𝑃𝑀𝑇𝑃

submodule is pretrained on TR-NY-PIT-central - a new set of path
traces. Path traces in 𝐷𝑇𝑟𝑎𝑖𝑛

𝜙1
are generated from 17,000 routes

in central Pittsburgh with a class label for the step count in the
route. The distribution of step counts in 𝐷𝑇𝑟𝑎𝑖𝑛

𝜙1
is 50 samples

for routes with ≤7 steps and 300 samples for routes with >7
steps (see Appendix B). During training, samples from 𝐷𝑇𝑟𝑎𝑖𝑛

𝜙1
are presented in standard orientation for 20 epochs and rotated
180° ahead of a second round of training. This rotation policy is
preferred following empirical evaluation using standalone versions
of the 𝑔𝑃𝑀𝑇𝑃 submodule receiving two alternate preparations of
𝐷𝑇𝑟𝑎𝑖𝑛

𝜙1
with random and 180° rotations. Training is formulated

as multiclass classification with cross-entropy loss on a set of
M=66 classes

𝑔𝜙1 (𝑥𝑡𝑟 ,Θ) = 𝐵0 + 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖

𝑀∑︁
𝑗=1

𝐵𝑖 (𝑥𝑡𝑟 ,𝑊 𝑗 ) (7)

where a class is the step count, 𝐵 is the bias, and 𝑖 is the sample
in the dataset.

Pretraining on 𝜙2 for the feature-level localisation submodule
𝑔𝑃𝑀𝐹 is conducted with the component integrated in the frame-
work FLPM and the new MC-10 dataset. Samples in 𝐷𝑇𝑟𝑎𝑖𝑛

𝜙2
consist of 8,100 landmarks in 10 US cities. To demonstrate the
utility of open source tools in designing systems for outdoor
VLN, the generation process leverages free and accessible re-
sources that enable targeted querying. Entity IDs for landmarks
sourced from the Wikidata Knowledge Graph are the basis for
downloading textual summaries and images from the MediaWiki
and WikiMedia APIs. Additional details on MC-10 are available
in Appendix B. The aim in generating the MC-10 dataset is to
optimise Θ𝑔𝑃𝑀𝐹

such that features relating to 𝑌𝜙𝑉𝐿𝑁
are detected

in inputs 𝑋𝜙𝑉𝐿𝑁
. We opt for open A multi-objective loss for

𝜙2 consists of cross-modal matching over the paired samples
(𝑥𝑙 , 𝑥𝑣) - and a second objective comprising a prediction on the
geolocation of the entity. In the first objective, 𝑔𝑃𝑀𝐹 conducts
a binary classification between the true 𝑥𝑙 matching 𝑥𝑣 and a
second textual input selected at random from entities in the mini-
batch. A limit of 540 tokens is set for all textual inputs and the
classification in 𝑔𝑃𝑀𝐹 is performed on the first sentence for each
entity. Parameters Θ𝑔𝑃𝑀𝐹

are saved and used subsequently for
feature-level localisation in 𝜙𝑉𝐿𝑁 .

3.1.2 Cross-modal Attention and Action Prediction on Com-
bined Outputs Resuming operations subsequent to the PM-VLN,
outputs 𝑒′𝑣𝑡 from 𝐶𝑜𝑛𝑣𝑉𝐵𝐹 are passed together with 𝑒𝑙 𝑡 to a
VisualBERT embedding layer. Embeddings for both modalities
are then processed by 4 transformer encoder layers with a hidden
size of 256 and self-attention

⊕
is applied to learn alignments

between the pairs

𝑒̃𝜂 =
⊕
(𝑒𝑙⇐⇒ 𝑒′𝑣) = 𝑆𝑜 𝑓 𝑡

( E∑︁
𝑘=1
M𝑘Ł(E𝑘 , Ẽ𝑘)

)
(8)

where 𝑆𝑜 𝑓 𝑡 is the softmax function, 𝑘 is the number of elements
in the inputs,M𝑘=1 is a masked element over the cross-modal
inputs, Ł is the loss, E𝑘 is an element in the input modality, and
Ẽ𝑘 is the predicted element. Cross-modal embeddings resulting
from this attention operation are processed by concatenating over
layer outputs 𝑔(𝑒𝜂 ′) = (𝑒̃1

L , 𝑒̃
2
L , 𝑒̃

3
L , 𝑒̃

4
L).

Architectural and embedding selections for our frameworks
aim to enable comparison with benchmark systems on 𝜙𝑉𝐿𝑁 .
The 𝐸𝑛𝑐𝑇𝑟𝑎𝑛𝑠 in the best performing framework uses a standard
VisualBERT encoder with a hidden size of 256 and 4 layers and
attention heads. As noted above, inputs for 𝐸𝑛𝑐𝑇𝑟𝑎𝑛𝑠 align with
those used in prior work (Zhu et al., 2021).

A submodule 𝑔𝐶𝐹𝑛𝑠 combines 𝑈𝜂 from L4 of the 𝐸𝑛𝑐𝑇𝑟𝑎𝑛𝑠

and outputs from the cross-modal attention operation 𝑔(𝐸 ′𝜂)
ahead of applying dropout. Predictions for navigation actions
are the outputs of a classifier block consisting of linear layers
with maxout activation. Maxout activation in a block composed
of linear operations takes the 𝑚𝑎𝑥𝑧𝑖 𝑗 where 𝑧𝑖 𝑗 are the product
of 𝑥𝑖 𝑗𝑊𝑛∗ for 𝑘 layers. In contrast to ReLU, the activation
function is learned and prevents unit saturation associated with
performing dropout (Goodfellow et al., 2013). We compare a
standard classifier to one with 𝑚𝑎𝑥 𝑥𝑖 in Table 2. Improvements
with 𝑚𝑎𝑥 𝑥𝑖 are consistent with a requirement to offset variance
when training with the high number of layers in the full FLPM
framework.

3.2 Theoretical Basis
This section provides a theoretical basis for a hierarchical pro-
cess of cross-modal prioritisation that optimises attention over
linguistic and visual inputs. In this section we use 𝑞 to denote this
process for convenience. During the main task 𝜙𝑉𝐿𝑁 , 𝑞 aligns
elements in temporal sequences τ and 𝑅𝑜𝑢𝑡𝑒 and localises spans
and visual features w.r.t. a subset of all entities 𝐸𝑛𝑡 in the routes:

𝑞𝑃𝑀 = ∥𝑥𝑙 − 𝑥𝑣 ∥ →
𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜

𝑚𝑎𝑥 𝑃𝐷𝐸𝑛𝑡
[τ, 𝑅𝑜𝑢𝑡𝑒] ≤ 𝑅 (9)

Inputs in 𝜙𝑉𝐿𝑁 consist of a linguistic sequence τ and a visual
sequence 𝑅𝑜𝑢𝑡𝑒 or each trajectory 𝑗 in a set of trajectories. As a
result of the process followed by Chen et al. (2019) to create the
Touchdown task, these inputs conform to the following definition.

Definition 1 (Sequences refer to corresponding entities). At
each step in 𝑗 , |𝑥𝑙 | and |𝑥𝑣 | are finite subsequences drawn from
τ 𝑗 and 𝑅𝑜𝑢𝑡𝑒 𝑗 that refer to corresponding entities appearing in
the trajectory 𝑒𝑛𝑡 𝑗 ⊂ 𝐸𝑛𝑡.



In order to simplify the notation, these subsequences are de-
noted in this section as 𝑥𝑙 and 𝑥𝑣 . Touchdown differs from other
outdoor navigation tasks (Hermann et al., 2020) in excluding
supervision on the alignment over cross-modal sequences. Fur-
thermore 𝑙𝑒𝑛(τ 𝑗 ) ≠ 𝑙𝑒𝑛(𝑅𝑜𝑢𝑡𝑒 𝑗 ) and there are varying counts
of subsequences and entities in trajectories. In an approach to
𝜙𝑉𝐿𝑁 formulated as supervised classification, an agent’s action
at each step 𝛼𝑡 ≡ classification 𝑐𝑡 ∈ {0, 1} where 𝑐 is based on
corresponding 𝑒𝑛𝑡𝑡 in the pair (𝑥𝑙 , 𝑥𝑣)𝑡 . The likelihood that 𝑐𝑡
is the correct action depends in turn on detecting 𝑆 signal in the
form of 𝑒𝑛𝑡𝑡 from noise in the inputs. The objective of 𝑞 then is
to maximise 𝑃𝑆 for each point in the data space.

The process defining 𝑞 is composed of multiple operations
to perform two functions of high-level alignment 𝑔𝐴𝑙𝑖𝑔𝑛 and
localisation 𝑔𝐿𝑜𝑐. At the current stage 𝑠𝑡𝑔, function 𝑔𝐴𝑙𝑖𝑔𝑛

selects one set of spans 𝜑𝑠𝑡𝑔 ∈ (𝜑1, 𝜑2, . . . , 𝜑𝑛)

where 𝑠𝑡𝑔


𝑆𝑡𝑎𝑟𝑡, if 𝑡 = 0
𝐸𝑛𝑑, if 𝑡 = −1
∀ 𝑠𝑡𝑔𝑜𝑡ℎ𝑒𝑟 , 𝑛 ∈ 𝑁 ∈

∑𝑛1
𝑛=1 > 𝑡−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

This is followed by the function 𝑔𝐿𝑜𝑐, which predicts
one of 𝜍𝑠𝑐𝑛𝑡0 ∨ 𝜍𝑠𝑐𝑛𝑡0−1 as the span 𝜍 relevant to the current
trajectory step 𝑠𝑐𝑛𝑡

where 𝑠𝑐𝑛𝑡

{
𝑠𝑐𝑛𝑡0, if (τ, 𝜓𝑡 ) = 0
𝑠𝑐𝑛𝑡0−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

We start by describing the learning process when the agent in
𝜙𝑉𝐿𝑁 is a transformer-based architecture 𝐸𝑛𝑐 + 𝐶𝑙𝑎𝑠 excluding
an equivalent to 𝑞 (e.g. VisualBERT in Table 1 of the main report).
𝐸𝑛𝑐 + 𝐶𝑙𝑎𝑠 is composed of two core subprocesses: cross-modal
attention to generate representations 𝑞(

⊕
(𝐿 ⇐⇒ 𝑉)) and a

subsequent classification 𝐶𝑙𝑎𝑠(𝑒𝜂 ′).
Definition 2 (Objective in 𝐸𝑛𝑐 + 𝐶𝑙𝑎𝑠). The objective

𝑂𝑏 𝑗1 (𝜃) for algorithm 𝑞(
⊕
(𝐿 ⇐⇒ 𝑉), where 𝐿 and 𝑉

are each sequences of samples {𝑥1, 𝑥2, . . . , 𝑥𝑛}, is the corre-
spondence between samples 𝑥𝑙 and 𝑥𝑣 presented at step 𝑡 in∑𝑛

𝑖=1 𝑡𝑖 = 𝑡1 + 𝑡2, . . . + 𝑡𝑛.

It is observed that in the learning process for 𝐸𝑛𝑐 + 𝐶𝑙𝑎𝑠, any
subprocesses to align and localise finite sequences 𝑥𝑙 and 𝑥𝑣 w.r.t.
𝑒𝑛𝑡 𝑗 are performed as implicit elements in the process of optimis-
ing 𝑂𝑏 𝑗1 (𝜃). In contrast the basis for the hierarchical learning
process enabled by our framework FLPM - which incorporates
𝑞𝑃𝑀 with explicit functions for these steps - is given in Theorem
1.

Theorem 1. Assuming 𝑥𝑙 and 𝑥𝑣 conform to Definition 1 and
that ∀ 𝑥 ∈ 𝐿 ∃ 𝑥 ∈ 𝑉 , an onto function 𝑔𝑀𝑎𝑝 = 𝑚𝑥 + 𝑏, 𝑚 ≠ 0
exists such that:

𝑔𝑀𝑎𝑝 (𝑥𝑙 , 𝑥𝑣) → 𝑚𝑎𝑥

[
𝑒𝑛𝑡
(𝑥𝑙 ,𝑥𝑣 )
𝑗

∈ 𝐸𝑛𝑡
]

(10)

In this case, additional functions 𝑔𝐴𝑙𝑖𝑔𝑛 and 𝑔𝐿𝑜𝑐 - when imple-

mented in order - maximise 𝑔𝑀𝑎𝑝:

𝑚𝑎𝑥 𝑃𝐷𝑒𝑛𝑡 𝑗
= 𝑚𝑎𝑥 𝑔𝑀𝑎𝑝 (𝑥𝑙 , 𝑥𝑣) →

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜

(−−−−−−−−−−−−−−−−−→𝑔𝐴𝑙𝑖𝑔𝑛, 𝑔𝐿𝑜𝑐 , 𝑔𝑀𝑎𝑝) ∀ 𝑒𝑛𝑡 (𝑥𝑙 ,𝑥𝑣 )𝑗
∈ 𝐿 𝑗 ∩𝑉 𝑗

(11)

Remark 1 Let 𝑃(𝑚𝑎𝑥 𝑔𝑀𝑎𝑝) in Theorem 1 be the probabil-
ity of optimising 𝑔𝑀𝑎𝑝 such that the number of pairs 𝑁 (𝑥𝑙 ,𝑥𝑣 )

corresponding to 𝑒𝑛𝑡 𝑗 ∈ 𝐿 𝑗 ∩ 𝑉 𝑗 is maximised. It is noted
that 𝑁 (𝑥𝑙 ,𝑥𝑣 ) is determined by all possible outcomes in the set
of cases {(𝑥𝑙 , 𝑥𝑣) ⇔ 𝑒𝑛𝑡 𝑗 , (𝑥𝑙 , 𝑥𝑣) ⇎ 𝑒𝑛𝑡 𝑗 , 𝑥𝑙 ⇎ 𝑥𝑣}. As
the sequences of instances 𝑖 in 𝑥𝑙 , 𝑥𝑣 and 𝑒𝑛𝑡 𝑗 are forward-
only, it is also noted that 𝑁

(𝑥𝑙 ,𝑥𝑣 )
𝑡+1 < 𝑁

(𝑥𝑙 ,𝑥𝑣 )
𝑡 if 𝑒𝑛𝑡𝑖 ∉ 𝑥𝑙 𝑖 ,

𝑒𝑛𝑡𝑖 ∉ 𝑥𝑣𝑖 , or 𝑒𝑛𝑡𝑥𝑙
𝑖

≠ 𝑒𝑛𝑡
𝑥𝑣
𝑖

. By definition, 𝑁 (𝑥𝑙 ,𝑥𝑣 )
𝑡+1 > 𝑁

(𝑥𝑙 ,𝑥𝑣 )
𝑡 if

𝑃(𝑒𝑛𝑡𝑖 = 𝑥𝑙 𝑖 = 𝑥𝑣𝑖) - where the latter probability is s.t. processes
performed within finite computational time𝐶𝑇 (𝑛) - which implies
that 𝑃(𝑚𝑎𝑥 𝑔𝑀𝑎𝑝) |𝑃(𝑒𝑛𝑡𝑖 = 𝑥𝑙 𝑖 = 𝑥𝑣𝑖).

Remark 2. Following on from Remark 1,
𝐶𝑇 (𝑛𝑃 (𝑒𝑛𝑡𝑖=𝑥𝑙 𝑖=𝑥𝑣𝑖 ) ) when 𝑞 contains 𝑔𝑡 , and function
𝑔𝑡 (𝑚𝑎𝑥(𝑁 (𝑥𝑙 ,𝑥𝑣 ) ⇒ 𝑒𝑛𝑡 𝑗 ∈ 𝐿 𝑗 ∩𝑉 𝑗 ), 𝑤ℎ𝑒𝑟𝑒 𝑔𝑡 ∈ 𝐺 <

𝐶𝑇 (𝑛𝑃 (𝑒𝑛𝑡𝑖=𝑥𝑙 𝑖=𝑥𝑣𝑖 ) ) when 𝑞 does not contain 𝑔𝑡 <

𝐶𝑇 (𝑛𝑃 (𝑒𝑛𝑡𝑖=𝑥𝑙 𝑖=𝑥𝑣𝑖 ) ) when 𝑞 contains 𝑔𝑡 , and function
𝑔𝑡 (𝑚𝑎𝑥(𝑁 (𝑥𝑙 ,𝑥𝑣 ) ⇏ 𝑒𝑛𝑡 𝑗 ∈ 𝐿 𝑗 ∩𝑉 𝑗 ).

Discussion In experiments, we expect from Remark 1 that
results on 𝜙𝑉𝐿𝑁 for architectures such as 𝐸𝑛𝑐 + 𝐶𝑙𝑎𝑠 - which
exclude operations equivalent to those undertaken by the onto
function 𝑔𝑀𝑎𝑝 - will be lower than the results for a framework
FLPM over a finite number of epochs. We observe this in Table 1
when comparing the performance of respective standalone and
+ FLPM for VisualBERT and VLN Transformer systems. Poor
results for variants (a) and (h) in Tables 2 and 3 in comparison
to FLPM + VisualBERT(4l) also support the expectation set
by Remark 2 that performance will be highly impacted in an
architecture where operations in 𝑔𝑀𝑎𝑝 increase the number of
misalignments.

Proof of Theorem 1 We use below 𝑎∗ for a generic
transformer-based system that predicts 𝛼 on (𝐿,𝑉), ∇𝑥 for
gradients, and Θ𝑎∗ to denote Θ𝐸𝑛𝑐+𝐶𝑙𝑎𝑠 𝜈 Θ𝐸𝑛𝑐+𝑞 . Let
sequence 𝑥𝑙 = [𝑒𝑛𝑡1, 𝑒𝑛𝑡2, . . . , 𝑒𝑛𝑡𝑛1 ] and sequence 𝑥𝑣 =

[𝑒𝑛𝑡1, 𝑒𝑛𝑡2, . . . , 𝑒𝑛𝑡𝑛2 ], where 𝑛1 and 𝑛2 are unknown. We note
that at any point during learning, 𝑃𝑆 (𝑥𝑙 , 𝑥𝑣) is spread unevenly
over 𝑒𝑛𝑡 𝑗 in relation to Θ𝑎∗ ≈ X.

Propositions We start with the case that ∃ 𝑒𝑛𝑡 𝑗 :
𝑒𝑛𝑡 (𝑥𝑙 ) 𝑎𝑛𝑑 𝑒𝑛𝑡 (𝑥𝑣 ) . Here 𝐶𝑇 (𝑛𝐸𝑛𝑡∈𝐿∩𝑉 ) 𝑓 𝑜𝑟 Θ𝑎∗+𝑔𝑡 <

𝐶𝑇 (𝑛𝐸𝑛𝑡∈𝐿∩𝑉 ) 𝑓 𝑜𝑟 Θ𝑎∗ 𝑤ℎ𝑒𝑟𝑒 𝑔𝑡 accounts for Δ(𝐿𝑒𝑛1, 𝐿𝑒𝑛2).
We next consider the case where � 𝑒𝑛𝑡 𝑗 : 𝑒𝑛𝑡 (𝑥𝑙 ) 𝜈 𝑒𝑛𝑡 (𝑥𝑣 ) .
𝑊ℎ𝑒𝑟𝑒 � 𝑔𝐿𝑜𝑐 𝑡ℎ𝑒𝑛 𝑃

(𝑥𝑙 ,𝑥𝑣 )
𝑆

< ∃ 𝑔𝐿𝑜𝑐 𝑃
(𝑥𝑙 ,𝑥𝑣 )
𝑆

.
We conclude with the case where ∃ 𝐸𝑛𝑡 : 𝑥𝑙 𝜈 𝑥𝑣 .
𝐼𝑛 𝑃𝐴∗

𝑆
𝑒𝑛𝑡 (𝑥𝑙 )

⊕
𝑒𝑛𝑡 (𝑥𝑣 ) 𝑤ℎ𝑒𝑛 𝑒𝑛𝑡 (𝑥𝑙 ) ≠ 𝑒𝑛𝑡 (𝑥𝑣 ) .

As (𝐸𝑛𝑡𝐿 , 𝐸𝑛𝑡𝑉 ) ⇒ 𝐸𝑛𝑡, Θ𝑎∗ ≈ 𝑚𝑎𝑥(𝑁 (𝑥𝑙 ,𝑥𝑣 ) ) ∈ X.
𝑃
(𝑥𝑙 ,𝑥𝑣 )
𝑆

𝑤ℎ𝑒𝑟𝑒 𝑒𝑛𝑡𝑖 = 𝑥𝑙 𝑖 = 𝑥𝑣𝑖 > 𝑒𝑛𝑡𝑖 ∈ Θ𝑎∗ ≈
𝑚𝑎𝑥(𝑁 (𝑥𝑙 ,𝑥𝑣 ) ). Furthermore 𝑃 ∃ 𝑒𝑛𝑡 ∈ 𝐸𝑛𝑡 ≈ (𝑒𝑛𝑡𝑖) > �
𝑒𝑛𝑡 0 𝑒𝑛𝑡𝑖 . Therefore 𝑠𝑙𝑜𝑝𝑒 ∇𝑥 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑎𝑛𝑑 𝐶𝑇 (𝑛𝐸𝑛𝑡∈𝐿∩𝑉 )
𝑓 𝑜𝑟 Θ𝑎∗+𝑞 < 𝐶𝑇 (𝑛𝐸𝑛𝑡∈𝐿∩𝑉 ).



Development Test
TC↑ SPD↓ SED↑ TC↑ SPD↓ SED↑

Inputs (L, V) GA a 12.1 20.2 11.7 10.7 19.9 10.4
(non-transformer based) RCONCAT a 11.9 20.1 11.5 11.0 20.4 10.5

ARC+L2STOP* c 19.5 17.1 19.0 16.7 18.8 16.3

Inputs (L, V) VisualBERT(8l) 10.4 21.3 10.0 9.9 21.7 9.5
(transformer based) VisualBERT(4l) 14.3 17.7 13.7 11.8 18.3 11.5

VLN Transformer(4l) b 12.2 18.9 12.0 12.8 20.4 11.8
VLN Transformer(8l) b 13.2 19.8 12.7 13.1 21.1 12.3
VLN Transformer(8l) + M50 + style * b 15.0 20.3 14.7 16.2 20.8 15.7

Inputs (L, V) + JD / HT** ORAR (ResNet pre-final)* d 26.0 15.0 - 25.3 16.2 -
(non-transformer based) ORAR (ResNet 4th-to-last)* d 29.9 11.1 - 29.1 11.7 -

Inputs (L, V) + Path Traces VLN Transformer(8l) 11.2 23.4 10.7 11.5 23.9 10.8
(transformer based) VisualBERT(4l) 16.2 18.7 15.7 15.0 20.1 14.5

FLPM(4l) + VLN Transformer(8l) 29.9 23.4 26.8 28.2 23.8 25.6
FLPM(4l) + VisualBERT(4l) 33.0 23.6 29.5 33.4 23.8 29.7

Frameworks from a Chen et al. (2019), b Zhu et al. (2021), c Xiang et al. (2020), and d Schumann and Riezler (2022).
* Results reported by the authors.
** Systems receive two types of features - Junction Type and Heading Delta - as inputs.

Table 1: Performance on the Touchdown benchmark ranked by TC on the test partition. Systems are grouped by input types
during VLN and the use of transformer blocks in architectures. Contributions of the FLPM framework and path traces to improved
performance are demonstrated with results for systems with two baseline transformer-based architectures - VisualBERT and VLN
Transformer. These baselines also are assessed in two sizes to test the benefits of adding transformer blocks.

4 EXPERIMENTS

Our starting point in evaluating the PM-VN module and FLPM
is performance in relation to benchmark systems (see Table 1).
Ablations are conducted by removing individual operations (see
Table 2) and the role of training data is assessed (see Table 3).
To minimise computational cost, we implement frameworks with
low numbers of layers and attention heads in transformer models.

4.1 Experiment Settings

Metrics We align with Chen et al. (2019) in reporting task com-
pletion (TC), shortest-path distance (SPD), and success weighted
edit distance (SED) for 𝜙𝑉𝐿𝑁 . All metrics are derived using the
Touchdown navigation graph. TC is a binary measure of success
0, 1 in ending a route with a prediction 𝑐𝑜

𝑡−1 = 𝑦𝑜
𝑡−1 or 𝑐𝑜

𝑡−1 = 𝑦𝑜−1
𝑡−1

and SPD is calculated as the mean distance between 𝑐𝑜
𝑡−1 and

𝑦𝑜
𝑡−1. SED is the Levenshtein distance between the predicted path

in relation to the defined route path and is only applied when TC
= 1.

Hyperparameter Settings Frameworks are trained for 80
epochs with batch size=30. Scores are reported for the epoch with
the highest SPD on D𝐷𝑒𝑣

𝜙𝑉𝐿𝑁
. Pretraining for the PM-VLN module

is conducted for 10 epochs with batch sizes 𝜙1 = 60 and 𝜙2 = 30.
Frameworks are optimised using AdamW with a learning rate of
2.5 x 10-3 (Loshchilov and Hutter, 2017).

4.2 Touchdown

Experiment Design: Chen et al. (2019) define two separate
tasks in the Touchdown benchmark: VLN and spatial description
resolution. This research aligns with other studies (Zhu et al.,
2021, 2022) in conducting evaluation on the navigation compo-
nent as a standalone task. Dataset and Data Preprocessing:
Frameworks are evaluated on full partitions of Touchdown with
𝐷𝑇𝑟𝑎𝑖𝑛 = 6, 525, 𝐷𝐷𝑒𝑣 = 1, 391, and 𝐷𝑇𝑒𝑠𝑡 = 1, 409 routes.
Trajectory lengths vary with 𝐷𝑇𝑟𝑎𝑖𝑛 = 34.2, 𝐷𝐷𝑒𝑣 = 34.1, and
𝐷𝑇𝑒𝑠𝑡 = 34.4 mean steps per route. Junction Type and Heading
Delta are additional inputs generated from the environment graph
and low-level visual features (Schumann and Riezler, 2022). M-50
+ style is a subset of the StreetLearn dataset with 𝐷𝑇𝑟𝑎𝑖𝑛 = 30, 968
routes of 50 nodes or less and multimodal style transfer applied
to instructions (Zhu et al., 2021). Embeddings: All architectures
evaluated in this research receive the same base cross-modal em-
beddings 𝑥𝜂 proposed by Zhu et al. (2021), which are learned by
a combination of the outputs of a pretrained BERT-base encoder
with 12 encoder layers and attention heads. At each step, a fully
connected layer is used for textual embeddings 𝜍𝑡 and a 3 layer
CNN returns the perspective 𝜓𝑡 . FLPM frameworks also receive
an embedding of the path trace 𝑡𝑟𝑡 at step 𝑡. As this constitutes
additional signal on the route, we evaluate a VisualBERT model
(4l) that also receives 𝑡𝑟𝑡 , which in this case is combined with
𝜓𝑡 ahead of inclusion in 𝑥𝜂𝑡 . Results: In Table 1 the first block
of frameworks consists of architectures composed primarily of



convolutional and recurrent layers. VLN Transformer is a frame-
work proposed by Zhu et al. (2021) for the Touchdown benchmark
and consists of a transformer-based cross-modal encoder with 8
encoder layers and 8 attention heads. VLN Transformer + M50 +
style is a version of this framework pretrained on the dataset de-
scribed above. To our knowledge, this was the transformer-based
framework with the highest TC on Touchdown preceding our work.
ORAR (ResNet 4th-to-last) (Schumann and Riezler, 2022) is from
work published shortly before the completion of this research
and uses two types of features to attain highest TC in prior work.
Standalone VisualBERT models are evaluated in two versions
with 4 and 8 layers and attention heads. A stronger performance
by the smaller version indicates that adding self-attention layers
is unlikely to improve VLN predictions. This is further supported
by the closely matched results for the VLN Transformer(4l) and
VLN Transformer(8l). FLPM frameworks incorporate the PM-
VLN module pretrained on auxiliary tasks (𝜙1, 𝜙2) - and one of
VisualBERT (4l) or VLN Transformer(8l) as the main model.
Performance on TC for both of these transformer models doubles
when integrated into the framework. A comparison of results for
standalone VisualBERT and VLN Transformer systems with path
traces supports the use of specific architectural components that
can exploit this additional input type. Lower SPD for systems run
with the FLPM framework reflect a higher number of routes where
a stop action was predicted prior to route completion. Although
not a focus for the current research, this shortcoming in VLN
benchmarks has been addressed in other work (Xiang et al., 2020;
Blukis et al., 2018).

4.3 Assessment of Specific Operations

Ablations are conducted on the framework with the highest TC
i.e. FLPM + VisualBERT(4l). The tests do not provide a direct
measure of operations as subsequent computations in forward
and backward passes by retained components are not accounted
for. Results indicate that initial alignment is critical to cross-
modal prioritisation and support the use of in-domain data during
pretraining.

Development
TC↑ SPD↓ SED↑

FLPM + VisualBERT(4l) 33.0 23.6 29.5

PM-VLN
- 𝑔𝑃𝑀𝑇𝑃 (a) 7.1 26.8 6.8
- 𝑔𝑃𝑀𝐹 minus gVBF (b) 27.9 25.7 24.9
- 𝑔𝑃𝑀𝐹 minus 𝚤𝑡−1 (c) 29.8 21.8 27.2

FLPM
- 𝑔𝐴𝑡𝑡𝑛 with 𝑔𝐶𝑎𝑡 (d) 18.8 30.5 16.4
- 𝑔𝐶𝑙𝑎𝑠𝑚𝑎𝑥 𝑥𝑖

with 𝑔𝐶𝑙𝑎𝑠 (e) 31.7 21.9 28.2

Table 2: Ablations on core operations in the PM-VLN (variants
(a-(c)) and the FLPM framework (variants (d) and (e)).

Ablation 1: PM-VLN Prioritisation in the PM-VLN module
constitutes a sequential chain of operations. Table 2 reports
results for variants of the framework where the PM-VLN excludes
individual operations. Starting with 𝑔𝑃𝑀𝑇𝑃 , trajectory estimation
is replaced with a fixed count of 34 steps for each route 𝑡𝑟𝑡 (see
variant (a)). This deprives the PM-VLN of a method to take
account of the current route when synchronising τ and sequences
of visual inputs. All subsequent operations are impacted and the
variant reports low scores for all metrics. Two experiments are
then conducted on 𝑔𝑃𝑀𝐹 . In variant (b), visual boost filtering
is disabled and feature-level localisation relies on a base 𝜓𝑡 .
A variant excluding linguistic components from 𝑔𝑃𝑀𝐹 is then
implemented by specifying 𝚤𝑡 as the default input from τ𝑡 (see
variant (c)). In practice, span selection in this case is based on
trajectory estimation only.

Ablation 2: FLPM Ablations conclude with variants of FLPM
where core functions are excluded from other submodules in
the framework. Results for variant (d) demonstrate the impact
of replacing the operation defined in Equation 3 with a simple
concatenation on outputs from PM-VLN 𝑒𝑙 and 𝑒′𝑣 . A final ex-
periment compares methods for generating action predictions: in
variant (e), 𝑔𝐶𝑙𝑎𝑠𝑚𝑎𝑥 𝑥𝑖

is replaced by the standard implementation
for classification in VisualBERT. Classification with dropout and
a single linear layer underperforms our proposal by 1.3 points on
TC.

4.4 Assessment of Training Strategy
A final set of experiments is conducted to measure the impact of
training data for auxiliary tasks (𝜙1, 𝜙2).

Training Strategy 1: Exploiting Street Pattern in Trajectory
Estimation We conduct tests on alternate samples to examine
the impact of route types in 𝐷𝑇𝑟𝑎𝑖𝑛

𝜙1
. The module for FLPM

frameworks in Table 1 is trained on path traces drawn from an
area in central Pittsburgh (see SupMat:Sec.3) with a rectangular
street pattern that aligns with the urban grid type Lynch (1981)
found in the location of routes in Touchdown. Table 3 presents
results for modules trained on routes selected at random outside
of this area. In variants (f) and (g), versions V2 and V3 of
𝐷𝑇𝑟𝑎𝑖𝑛

𝜙1
each consist of 17,000 samples drawn at random from the

remainder of a total set of 70,000 routes. Routes that conform to
curvilinear grid types are observable in outer areas of Pittsburgh.
Lower TC for these variants prompts consideration of street
patterns when generating path traces. A variant (h) where the
𝑔𝑃𝑀𝑇𝑃 submodule receives no pretraining underlines - along
with variant (a) in Table 2 - the importance of the initial alignment
step to our proposed method of cross-modal prioritisation.

Training Strategy 2: In-domain Data and Feature-Level
Localisation We conclude by examining the use of in-domain
data when pretraining the 𝑔𝑃𝑀𝐹 submodule ahead of feature-level
localisation operations in the PM-VLN. In Table 3, versions of
FLPM are evaluated subsequent to pretraining with varying sized
subsets of the Conceptual Captions dataset Sharma et al. (2018).
This resource of general image-text pairs is selected as it has been
proposed for pretraining VLN systems (see below). Samples



are selected at random and grouped into two training partitions
equivalent in number to 100% (variant(i)) and 150% of 𝐷𝑇𝑟𝑎𝑖𝑛

𝜙2
(variant (j)). In place of the multi-objective loss applied to the
MC-10 dataset, 𝜃𝑔𝑃𝑀𝐹

are optimised on a single goal of cross-
modal matching. Variant (k) assesses FLPM when no pretraining
for the 𝑔𝑃𝑀𝐹 submodule is undertaken. Lower results for variants
(i), (j), and (k) support pretraining on small sets of in-domain
data as an alternative to optimising VLN systems on large-scale
datasets of general samples.

Development
TC↑ SPD↓ SED↑

FLPM + VisualBERT(4l) 33.0 23.6 29.5

Pretraining for 𝑔𝑃𝑀𝑇𝑃

- 𝑔𝑃𝑀𝑇𝑃 + 𝐷𝑇𝑟𝑎𝑖𝑛
𝜙1

𝑉2 (f) 11.9 20.1 11.5
- 𝑔𝑃𝑀𝑇𝑃 + 𝐷𝑇𝑟𝑎𝑖𝑛

𝜙1
𝑉3 (g) 13.6 20.5 13.1

- 𝑔𝑃𝑀𝑇𝑃 no pretraining (h) 4.7 27.6 1.9

Pretraining for 𝑔𝑃𝑀𝐹

- 𝑔𝑃𝑀𝐹 + 𝐷𝑇𝑟𝑎𝑖𝑛
𝜙2

𝑉2 (i) 19.8 23.2 17.2
- 𝑔𝑃𝑀𝐹 + 𝐷𝑇𝑟𝑎𝑖𝑛

𝜙2
𝑉3 (j) 23.9 20.8 20.3

- 𝑔𝑃𝑀𝐹 no pretraining (k) 6.3 25.1 4.6

Table 3: Assessment of the pretraining strategy for individual PM-
VLN submodules 𝑔𝑃𝑀𝑇𝑃 (variants (f) to (h)) and 𝑔𝑃𝑀𝐹 (variants
(i) to (k) using alternative datasets for auxiliary tasks. Variants are
also run with no pretraining of 𝑔𝑃𝑀𝑇𝑃 and 𝑔𝑃𝑀𝐹 .

5 RELATED WORK
This research aims to extend cross-disciplinary links between
machine learning and computational cognitive neuroscience in
the study of prioritisation in attention. This section starts with a
summary of literature in these two disciplines that use computa-
tional methods to explore this subject. Our training strategy is
positioned in the context of prior work on pretraining frameworks
for VLN. The section concludes with work related to the alignment
and feature-level operations performed by our PM-VLN model.

Computational Implementations of Prioritisation in Atten-
tion Denil et al. (2012) proposed a model that generates saliency
maps where feature selection is dependent on high-level signals
in the task. The full system was evaluated on computer vision
tasks where the aim is to track targets in video. A priority
map computation was implemented in object detection models
by Wei et al. (2016) to compare functions in these systems to
those observed in human visual attention. Anantrasirichai et al.
(2017) used a Support Vector Machine classifier to model visual
attention in human participants traversing four terrains. Priority
maps were then generated to study the interaction of prioritised
features and a high-level goal of maintaining smooth locomotion.
A priority map component was incorporated into a CNN-based
model of primate attention mechanisms by Zelinsky and Adeli
(2019) to prioritise locations containing classes of interest when

performing visual search. Studies on spatial attention in human
participants have explored priority map mechanisms that process
inputs consisting of auditory stimuli and combined linguistic and
visual information (Golob et al., 2017; Cavicchio et al., 2014). To
our knowledge, our work is the first to extend neuropsychological
work on prioritisation over multiple modalities to a computa-
tional implementation of a cross-modal priority map for machine
learning tasks.

Pretraining for VLN Tasks Two forms of data samples - in-
domain and generic - are used in pretraining prior to conducting
VLN tasks. In-domain data samples have been sourced from
image-caption pairs from online rental listings (Guhur et al., 2021)
and other VLN tasks (Zhu et al., 2021). In-domain samples have
also been generated by augmenting or reusing in-task data (Fried
et al., 2018; Huang et al., 2019; Hao et al., 2020; He et al., 2021;
Schumann and Riezler, 2022). Generic samples from large-scale
datasets designed for other Vision-Language tasks have been
sourced to improve generalisation in transformer-based VLN
agents. Majumdar et al. (2020) conduct large-scale pretraining
with 3.3M image-text pairs from Conceptual Captions Sharma
et al. (2018) and Qi et al. (2021) initialise a framework with
weights trained on four out-of-domain datasets. Our training
strategy relies on datasets with a few thousand samples derived
from resources where additional samples are available at low cost.

Methods for Aligning and Localising Features in Linguistic
and Visual Sequences Alignment in multimodal tasks is often
posited as an implicit subprocess in an attention-based component
of a transformer (Tsai et al., 2019; Zhu et al., 2021). Huang et al.
(2019) identified explicit cross-modal alignment as an auxiliary
task that improves agent performance in VLN. Alignment in this
case is measured as a similarity score on inputs from the main
task. In contrast, our PM-VLN module conducts a hierarchical
process of trajectory planning and learned localisation to pair
inputs. A similarity measure was the basis for an alignment
step in the Vision-Language Pretraining framework proposed by
Li et al. (2021). A fundamental point of difference with our
work is that this framework - along with related methods (Jia
et al., 2021) - is trained on a distinct class of tasks where the
visual input is a single image as opposed to a temporal sequence.
Several VLN frameworks containing components that perform
feature localisation on visual inputs have been pretrained on object
detection (Majumdar et al., 2020; Suglia et al., 2021; Hu et al.,
2019). In contrast, we include visual boost filtering in 𝑔𝑃𝑀𝐹 to
prioritise visual features. Our method of localising spans using
a concatenation of the enhanced visual input and cross-modal
embeddings is unique to this research.

6 CONCLUSION
We take inspiration from a mechanism described in neurophysio-
logical research with the introduction of a priority map module
that combines temporal sequence alignment enabled by high-level
trajectory estimation and feature-level localisation. Two new
resources comprised of in-domain samples and a tailored training
strategy are proposed to enable data-efficient pretraining of the



PM-VLN module ahead of the main VLN task. A novel framework
enables action prediction with maxout activation on a combination
of the outputs from the PM-VLN module and a transformer-based
encoder. Evaluations demonstrate that our module, framework,
and pretraining strategy double the performance of standalone
transformers in outdoor VLN.
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Appendices

A NOTATION
Notations used in multiple sections of this paper are defined here for fast reference. Auxiliary tasks (𝜙1, 𝜙2) and the main VLN task
𝜙𝑉𝐿𝑁 constitute the set of tasks Φ. Inputs and embeddings are specified as 𝑙 (linguistic), 𝑣 (visual), and 𝜂 (multimodal). A complete
textual instruction is denoted as τ, 𝜍 is a span, and 𝜓 is a perspective. Linguistic and visual inputs for the PM-VLN are denoted as
(𝚤′𝑡 , 𝜓𝑡 ) and embeddings processed in prioritisation operations are (𝑒𝑙 , 𝑒𝑣)𝑡 . In contrast, 𝑈 denotes a set of embeddings from the main
model, which are derived from inputs 𝑒𝜂 , 𝜓𝑐𝑎𝑡 ). The notations Δ and

⊕
are respectively visual boost filtering and self-attention

operations. Table 4 provides a reference source for standard notation appearing throughout this paper. Other notations are defined in the
sections where they are used.

Notation Usage in this paper
𝐴 Matrix
𝐴𝐴 Identity matrix
𝐵, 𝑏 Bias
D Dataset
𝑇𝑟𝑎𝑖𝑛, 𝐷𝑒𝑣, 𝑇𝑒𝑠𝑡 Dataset partitions
∃ Exists
∀ For every (eg member in a set)
𝑔 Function
𝐻 Hypothesis
L Layer of a model
𝑙𝑒𝑛 Length
𝜇 Mean
𝑛 Number of samples
𝜈 Or
𝑃 Probability
𝑞 Algorithm
𝑆 Signal detected
𝜎 Standard deviation
Θ Set of parameters
𝑊, 𝑤 Set of weights
|𝑥 | Sequence
≜ Equal by definition

Table 4: Reference List for Standard Notation.

B DATASETS
B.1 Generation and Partition Sizes
The MC-10 dataset consists of visual, textual and geospatial data for landmarks in 10 US cities. We generate the dataset with a modified
version of the process outlined by Armitage et al. (2020). Two base entity IDs - Q2221906 (“geographic location”) and Q83620
(“thoroughfare”) - form the basis of queries to extract entities at a distance of <= 2 hops in the Wikidata knowledge graph1. Constituent
cities consist of incorporated places exceeding 1 million people ranked by population density based on data for April 1, 2020 from the
US Census Bureau2. Images and coordinates are sourced from Wikimedia and text summaries are extracted with the MediaWiki API.
Geographical cells are generated using the S2 Geometry Library3 with a range of 𝑛 entities [1, 5]. Statistics for MC-10 are presented by
partition in Table 5. As noted above, only a portion of textual inputs are used in pretraining and experiments.

1 https://query.wikidata.org/
2 https://www.census.gov/programs-surveys/decennial-census/data/datasets.html
3 https://code.google.com/archive/p/s2-geometry-library/

https://query.wikidata.org/
https://www.census.gov/programs-surveys/decennial-census/data/datasets.html
https://code.google.com/archive/p/s2-geometry-library/


Table 5: Statistics for the MC-10 dataset by partition.
Train Development

Number of entities 8,100 955
Mean length per text summary 727 745

TR-NY-PIT-central is a set of image files graphing path traces for trajectory plan estimation in two urban areas. Trajectories in central
Manhattan are generated from routes in the Touchdown instructions Chen et al. (2019). Links 𝐸 connecting 𝑂 in the Pittsburgh partition
of StreetLearn Mirowski et al. (2018) are the basis for routes where at least one node is positioned in the bounding box delimited by the
WGS84 coordinates (40° 27’ 38.82", -80° 1’ 47.85") and (40° 26’ 7.31", -79° 59’ 12.86"). Labels are defined by step count 𝑐𝑛𝑡 in the
route. Total trajectories sum to 9,325 in central Manhattan and 17,750 in Pittsburgh. In the latter location, routes are generated for all
nodes with 50 samples randomly selected where 𝑐𝑛𝑡 =< 7 and 200 samples where 𝑐𝑛𝑡 > 7. The decision to generate a lower number of
samples for shorter routes was determined by initial tests with the ConvNeXt Tiny model Liu et al. (2022). We opt for a maximum
𝑐𝑛𝑡 of 66 steps to align with the longest route in the training partition of Touchdown. The resulting training partition of samples for
Pittsburgh consists of 17,000 samples and is the resource used to pretrain 𝑔𝑃𝑀𝑇𝑃 in the PM-VLN module.

B.2 Samples from Datasets

In auxiliary task 𝜙2, the 𝑔𝑃𝑀𝐹 submodule of PM-VLN is trained on visual, textual, and geodetic position data types. Path traces from
the TR-NY-PIT-central are used in 𝜙1 to pretrain the 𝑔𝑃𝑀𝑇𝑃 submodule on trajectory estimation. Samples for entities in MC-10 and
path traces in TR-NY-PIT-central are presented in Figures 1 and 2.

Instruction:

"233rd Street is a local station
on the IRT White Plains Road
Line of the New York City
Subway."


Coordinates:
Point(-73.857222 40.893333)

Instruction:

"The Laramie State Bank
Building is an Art Deco building
at 5200 W. Chicago Avenue, in
Chicago's Austin community."


Coordinates:
Point(-87.755833 41.895159)

Instruction:

"Independence Hall is a
historic civic building in
Philadelphia, Pennsylvania
in which both the United
States Declaration of
Independence and the
United States Constitution
were debated and adopted."


Coordinates:
Point(-75.15 39.948888888)

Instruction:

"Frederick Law Olmsted
National Historic Site is a
United States National Historic
Site located in Brookline,
Massachusetts, a suburb of
Boston."


Coordinates:
Point(-71.1322 42.325)

Figure 6: Samples from the MC-10 dataset.

Figure 7: Samples from the TR-NY-PIT-central dataset with path traces representing routes in central Pittsburgh.



C CODE AND DATA
Source code for the project and instructions to run the framework are released and maintained in a public GitHub repository under MIT
license (https://github.com/JasonArmitage-res/PM-VLN). Code for the environment, navigation, and training adheres to the
codebases released by Zhu et al. (2021) and Chen et al. (2019) with the aim of enabling comparisons with benchmarks introduced
in prior work on Touchdown. Full versions of the MC-10 and TR-NY-PIT-central datasets are published on Zenodo under Creative
Commons public license (https://zenodo.org/record/6891965#.YtwoS3ZBxD8).

https://github.com/JasonArmitage-res/PM-VLN
https://zenodo.org/record/6891965#.YtwoS3ZBxD8
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