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ABSTRACT

In a busy city street, a pedestrian surrounded by distractions can
pick out a single sign if it is relevant to their route. Artificial
agents in outdoor Vision-and-Language Navigation (VLN) are
also confronted with detecting supervisory signal on environment
features and location in inputs. To boost the prominence of
relevant features in transformer-based systems without costly
preprocessing and pretraining, we take inspiration from priority
maps - a mechanism described in neuropsychological studies. We
implement a novel priority map module and pretrain on auxiliary
tasks using low-sample datasets with high-level representations

of routes and environment-related references to urban features.

A hierarchical process of trajectory planning - with subsequent
parameterised visual boost filtering on visual inputs and prediction
of corresponding textual spans - addresses the core challenge of
cross-modal alignment and feature-level localisation. The priority
map module is integrated into a feature-location framework that
doubles the task completion rates of standalone transformers
and attains state-of-the-art performance for transformer-based
systems on the Touchdown benchmark for VLN. Code and data
are referenced in Appendix [C]

1 INTRODUCTION

Navigation in the world depends on attending to relevant cues at
the right time. A road user in an urban environment is presented
with billboards, moving traffic, and other people - but at an
intersection will pinpoint a single light to check if it contains
the colour red (Gottlieb et al., 2020; |Shinoda et al., 2001). An
artificial agent navigating a virtual environment of an outdoor
location is also presented with a stream of linguistic and visual
cues. Action selections that move the agent closer to a final
destination depend on the prioritisation of references that are
relevant to the point in the trajectory. In the first example, human
attention is guided to specific objects by visibility and the present
objective of crossing the road. At a neurophysiological level, this
process is mediated by a priority map - a neural mechanism that
guides attention by matching low-level signals on salient objects
with high-level signals on task goals. Prioritisation in humans
is enhanced by combining multimodal signals and integration
between linguistic and visual information (Ptak} 2012} |Cavicchio
et al.}2014). The ability to prioritise improves as experience of
situations and knowledge of environments increases (Zelinsky
and Bisleyl} 2015} Tatler et al., 2011)).
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We introduce a priority map module for Vision-and-Language
Navigation (PM-VLN) that is pretrained to guide a transformer-
based architecture to prioritise relevant information for action
selections in navigation. In contrast to pretraining on large-scale
datasets with generic image-text pairs (Su et al.| 2020), the PM-
VLN module learns from small sets of samples representing
trajectory plans and urban features. Our proposal is founded
on observation of concentrations in location deictic terms and
references to objects with high visual salience in inputs for VLN.
Prominent features in the environment pervade human-generated
language navigation instructions. Road network types (“inter-
section”), architectural features (“awning”), and transportation
(“cars”) all appear with high frequency in linguistic descriptions
of the visual appearance of urban locations. Learning to combine
information in the two modalities relies on synchronising temporal
sequences of varying lengths. We utilise references to entities as
a signal for a process of cross-modal prioritisation that addresses
this requirement.

Our module learns over both modalities to prioritise timely
information and assist both generic vision-and-language and cus-
tom VLN transformer-based architectures to complete routes (Li
et al.,|2019; Zhu et al.| [2021)). Transformers have contributed to
recent proposals to conduct VLN, Visual Question Answering,
and other multimodal tasks - but are associated with three chal-
lenges: 1) Standard architectures lack mechanisms that address
the challenge of temporal synchronisation over linguistic and
visual inputs. Pretrained transformers perform well in tasks on
image-text pairs but are challenged when learning over sequences
without explicit alignments between modalities (Lin and Wang],
2020). 2) Performance is dependent on pretraining with large sets
of image-text pairs and a consequent requirement for access to
enterprise-scale computational resources (Majumdar et al., 2020
Suglia et al.,|2021). 3) Visual learning relies on external models
and pipelines - notably for object detection (Li et al., [2020; Le
et al.,[2022). The efficacy of object detection for VLN is low in
cases where training data only refer to a small subset of object
types observed in navigation environments.

We address these challenges with a hierarchical process of
trajectory planning with feature-level localisation and low-sample
pretraining on in-domain data. We use discriminative training
on two auxiliary tasks that adapt parameters of the PM-VLN
for the specific challenges presented by navigating routes in
outdoor environments. High-level planning for routes is enabled
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by pretraining for trajectory estimation on simple path traces
ahead of a second task comprising multi-objective cross-modal
matching and location estimation on urban landmarks. Data in the
final evaluation task represent locations and trajectories in large
US cities and present an option to leverage real-world resources in
pretraining. Our approach builds on this opportunity by sourcing
text, images, coordinates, and path traces from the open web
and the Google Directions API where additional samples may
be secured at low cost in comparison to human generation of
instructions.
This research presents four contributions to enhance
transformer-based systems on outdoor VLN tasks:
¢ Priority map module Our novel PM-VLN module conducts
a hierarchical process of high-level alignment of textual
spans with visual perspectives and feature-level operations
to enhance and localise inputs during navigation (see Figure
3).
¢ Trajectory planning We propose a new method for aligning
temporal sequences in VLN comprising trajectory estimation
on path traces and subsequent predictions for the distribution
of linguistic descriptions over routes.
¢ Two in-domain datasets and training strategy We intro-
duce a set of path traces for routes in two urban locations
(TR-NY-PIT-central) and a dataset consisting of textual
summaries, images, and World Geodetic System (WGS)
coordinates for landmarks in 10 US cities (MC-10). These
resources enable discriminative training of specific compo-
nents of the PM-VLN on trajectory estimation and multi-
objective loss for a new task that pairs location estimation
with cross-modal sentence prediction.
 Feature-location framework We design and build a frame-
work (see Figure[Z)) to combine the outputs from the PM-VLN
module and cross-modal embeddings from a transformer-
based encoder. The framework incorporates components
for performing self-attention, combining embeddings, and
predicting actions with maxout activation.

2 BACKGROUND

In this section we define the Touchdown task and highlight a
preceding challenge of aligning and localising over linguistic
and visual inputs addressed in our research. A summary of the
notation used below and in subsequent sections is presented in
Appendix [A]

Touchdown Navigation in the Touchdown benchmark ¢y
is measured as the completion of N predefined trajectories by an
agent in an environment representing an area of central Manhattan.
The environment is represented as an undirected graph composed
of nodes O located at WGS latitude / longitude points. Ateach step
t of the sequence {1, . .., T} that constitute a trajectory, the agent
selects an edge &; to a corresponding node. The agent’s selection
is based on linguistic and visual inputs. A textual instruction T
composed of a varying number of tokens describes the overall
trajectory. We use ¢ to denote a span of tokens from T that
corresponds to the agent’s location in the trajectory. Depending

on the approach, ¢ can be the complete instruction or a selected
sequence. The visual representation of a node in the environment
is a panorama drawn from a sequence Route of undetermined
length. The agent receives a specific perspective i of a panorama
determined by the heading angle / between (01, 02). Success in
completing a route is defined as predicting a path that ends at the
node designated as the goal - or one directly adjacent to it.

In a supervised learning paradigm (see a) in Figure [I]), an
embedding e,, is learned from inputs ¢; and ¢,;. The agent’s
next action is a classification over e,, where the action a; is one
of a class drawn from the set A{Forward, Le ft, Right, Stop}.
Predictions «; = Forward and a; = {Left, Right} result re-
spectively in a congruent or a new / at edge &;+1. A route in
progress is terminated by a prediction a; = Stop.

Align and Localise We highlight in Figure [I| a preceding
challenge in learning cross-modal embeddings. As in real-world
navigation, an agent is required to align and match cues in
instructions with its surrounding environment. A strategy in
human navigation is to use entities or landmarks to perform this
alignment |Cavicchio et al.{(2014)). In the Touchdown benchmark,
a relationship between sequences T and Route is assumed from
the task generation process outlined in |Chen et al.| (2019) - but
the precise alignment is not known. We define the challenge
as one of aligning temporal sequences T = {¢1,¢2,...,¢,} and
Route = {Y1,¥2,...,¢¥,} with the aim of generating a set of
cross-modal embeddings E;, where referenced entities correspond.
At a high level, this challenge can be addressed by an algorithm ¢
that maximises the probability P of detecting S signal in a set of
inputs. This algorithm is defined as

2(0)((X,)) = q(6)(X,) — max [ /X p<xz|e>s<x,>] ()

where 6 is a parameter § € ©; and X is the data space.
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Figure 1: Outline of VLN as a supervised classification task a).
Linguistic and visual inputs both refer to entities indicated in red.
We address a challenge to align and localise over unsynchronised
inputs b) by focusing on entities represented in both modalities.

In the Touchdown benchmark, linguistic and visual inputs
are of the form 0 < |t| < n and 0 < |Route| < n where
len(T) # len(Route). The task then is to maximise the proba-
bility of detecting signal in the form of corresponding entities

over the sequences T and Route, which in turn is the product of
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Figure 2: Prior work on transformer-based systems for VLN follows the above pipeline from inputs to the main model concluding with a) a
classifier to predict actions. We propose a feature-location framework (FLpy;) to enhance the performance of a main model as in b). Here
path traces are an additional input to assist the PM-VLN to align linguistic and visual sequences. Submodule g, combines embeddings
from the main model U;; and the PM-VLN E:;, ahead of action prediction with maxout activation.

probabilities over pairings ¢; and ¢, presented at each step:

g(X,) - max P[T,Route] = [ | peyr, 2)

subjectto

3 METHOD

We address the challenge of aligning and localising over sequences
with a computational implementation of cross-modal prioritisation.
Diagnostics on VLN systems have placed in question the ability
of agents to perform cross-modal alignment (Zhu et al., [2022).
Transformers underperform in problems with temporal inputs
where supervision on image-text alignments is lacking (Chen et al.
2020). This is demonstrated in the case of Touchdown where
transformer-based systems complete less than a quarter of routes.
Our own observations of [lower performance|] when increasing
the depth of transformer architectures motivates moving beyond
stacking blocks to an approach that compliments self-attention.
Our PM-VLN module modulates transformer-based encoder
embeddings in the main task ¢y n using a hierarchical process
of operations and leveraging prior learning on auxiliary tasks
(@1, ¢2) (see Figure 3). In order to prioritise relevant informa-
tion, a training strategy for PM-VLN components is designed
where training data contain samples that correspond to the ur-
ban grid type and environment features in the main task. The
datasets required for pretraining contain less samples than other
transformer-based VLN frameworks (Zhu et al., 2021} Majumdar
et al.,|2020) and target only specific layers of the PM-VLN module.
The pretrained module is integrated in a novel feature-location
framework FLpy shown in Figure@ Subsequent components in
the FLpy combine cross-modal embeddings from the PM-VLN
and a main transformer model ahead of predicting an action.

3.1 Feature-location Framework with a Priority
Map Module

Prior work on VLN agents has demonstrated reliance for nav-
igation decisions on environment features and location-related
references (Zhu et all| [2027). In the definition of ¢y N
we consider this information as the supervisory signal contained
in both sets of inputs (x,xy);. As illustrated in Figure [2} our
PM-VLN module is introduced into a framework FLpy;. This
framework takes outputs from a transformer-based main model
Encrrans together with path traces ahead of cross-modal pri-
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Figure 3: A Priority Map module performs a hierarchical process
of high-level trajectory planning and feature-level localisation. Sub-
modules inside the white box are learned together and a helper
function generates a trajectory plan to predict spans from step 7.

oritisation and classification with maxout activation Clas,ax x;-
Inputs for Encryans comprise cross-modal embeddings é,, pro-
posed by |Zhu et al.|(2021) and a concatenation of perspectives up
to the current step Ycqr

Clasmuixx,- [v;l2'] = d(PM-VLN({g(x:), (tre, 17, %) 1=y )+
Encrrans({8(x:), (e_n’ wcat)}?:l))

where 17, is a path trace, z’ is the concatenation of the outputs of
the two encoders, and d is a dropout operation.

3

3.1.1 Priority Map Module Priority maps are described in the
neuropsychological literature as a mechanism that modulates sen-
sory processing on cues from the environment. Salience deriving
from the physical aspects of objects in low-level processing is
mediated by high-level signals for the relevance of cues to task
goals (Fecteau and Munoz, 2006; [Itti and Kochl [2000; [Zelinsky
and Bisleyl, 2015). Cortical regions that form the location of



these mechanisms are associated with the combined processing
of feature- and location-based information (Bisley and Mirpour,
2019} Hayden and Gallant, 2009). Prioritisation of items in map
tasks with language instructions indicate an integration between
linguistic and visual information and subsequent increases in
salience attributed to landmarks (Cavicchio et al., [2014).

Our priority map module (PM-VLN) uses a series of simple
operations to approximate the prioritsation process observed in
human navigation. These operations avoid dependence on initial
tasks such as object detection. Alignment of linguistic and visual
inputs is enabled by trajectory estimation on simple path traces
forming high-level representations of routes and subsequent gen-
eration of trajectory plans. Localisation consists of parameterised
visual boost filtering on the current environment perspective
¥, and cross-modal alignment of this view with selected spans
from subsequent alignment (see Algorithm[I). This hierarchical
process compliments self-attention by accounting for the lack of
a mechanism in transformers to learn over unaligned temporal
sequences. A theoretical basis for cross-modal prioritisation is

presented

Algorithm 1 Priority Map Module

Input: Datasets Dy, ,Dy,, and Dy, , ,, With inputs (x7,x,)
for tasks @®. Initial parameters in all layers at @5. ~
Normal(uj, o).
Output: (e, ¢’,)
while not converged do
for x;,, in ¢; do
G:S’PMTP — g4 (Xi, ©).
end for
end while
while not converged do
for (x;,,x,,) in ¢ do
GZ/JPMF — 84,(Xi, ).
end for
end while
while not converged do
Sample x;,, from DpTrain,
Xip, < gpmTP (X1r,).
Sample (1}, 4,) from DTrain,
ey — gusm (WY:).
e, < gvar(ey).
er < gprr(8car(iy, €})).
end while
return (e, e},)

High-level trajectory estimation Alignment over linguistic
and visual sequences is formulated as a task of predicting a set of
spans from the instruction that correspond to the current step. This
process starts with a submodule g pps7p that estimates a count cnt
of steps from a high-level view on the route (see Figure[d). Path
traces - denoted as trr - are visual representations of trajectories
generated from the coordinates of nodes. At ¢y in trr initial

spans in the instruction are assumed to align with the first visual
perspective. From step 7, a submodule containing a pretrained
ConvNeXt Tiny model (Liu et al.l 2022) updates an estimate
of the step count in cnt,,,.. A trajectory plan tp, is a Gaussian
distribution of spans in T within the interval [xe f;, X,ighi]. At
each step, samples from this distribution serve as a prediction
for relevant spans. The final output i; is the predicted span 1,
combined with 7;_1.

Normal

_> gpurp  —Cntu—>

Figure 4: Submodule g p ;7 p estimates a step count (cnt;,-) on a path
trace. A trajectory plan (7p) is a Gaussian distribution (Normal)
over the instruction and predicts a span for every step i;. This is
concatenated with the span predicted for the previous step.

Feature-level localisation Predicted spans are passed with ¢,
to a submodule g pasr that is pretrained on cross-modal matching
in ¢, (see Figure5). Feature-level operations commence with
visual boost filtering. Let Convy gr be a convolutional layer with
a kernel « and weights W that receives as input . In the first
operation gysp, a Laplacian of Gaussian kernel «7,,¢ is applied
to y,. The second operation gy gr consists of subtracting the
output e,, from the original tensor ,:

gvar(ey) = (1= 1)(ey) — gusm)(W¥r) 4

where A is a learned parameter for the degree of sharpening.

A combination of gysas and gypr is equivalent to adaptive
sharpening of details in an image with a Laplacian residual (Bayer,
1986)). Here operations are applied directly to e, and adjusted at
each update of Wconyy, - With a parameterised control SA. In the
simple and efficient implementation from |Carranza-Rojas et al.
(2019), o in the distribution LoG (u;, o) is fixed and the level
of boosting is reduced to a single learned term

Az(xix) = BACY (AN, — Aw,, ):) 5)
4 _

where Aw is a matrix of parameters and AA’ is the identity.

cu —iof o |-
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Figure 5: Submodule g pjsr commences feature-level operations by
boosting visual features in the perspective. The next operation (Car)
is a concatenation of the output from gy 5 and the linguistic output
1; from the alignment process above. A precise prediction for the
relevant span ¢; is returned by gp, ..

Selection of a localised span e; proceeds with a learned cross-
modal embedding e, composed of ¢/, and the linguistic output ;
from the preceding alignment operation. A binary prediction over



this linguistic pair is performed on the output hidden state from
a single-layer LSTM, which receives e, as its input sequence.
Function gp,r, returns a precise localisation of relevant spans

w.r.t. prominent features in the perspective:

0, if (w,x)+b <0
gPrL(el):gCat(l;,e(/)é{ lf(W x)+ < (6)

1, otherwise

Pretraining Strategy A data-efficient pretraining strategy
for the PM-VLN module consists of pretraining submodules of
the PM-VLN on auxiliary tasks (¢, ¢2). We denote the two
datasets for these tasks as (Dgy,, Dy,) and a training partition
as DTrain (see Appendix [B| for details). In ¢, the gpprp
submodule is pretrained on TR-N'Y-PIT-central - a new set of path
traces. Path traces in Dz;]”“'" are generated from 17,000 routes
in central Pittsburgh with a class label for the step count in the
route. The distribution of step counts in DT]”“" is 50 samples
for routes with <7 steps and 300 samples for routes with >7
steps (see Appendix . During training, samples from Dglr ain
are presented in standard orientation for 20 epochs and rotated
180° ahead of a second round of training. This rotation policy is
preferred following empirical evaluation using standalone versions
of the g pprp submodule receiving two alternate preparations of
DTIr @in with random and 180° rotations. Training is formulated
as multiclass classification with cross-entropy loss on a set of
M=66 classes

M
2, (Xir, ©) = Bo + argmax ) Bi(xir,W;) ()
L j:1

where a class is the step count, B is the bias, and i is the sample
in the dataset.

Pretraining on ¢, for the feature-level localisation submodule
gpmr 1s conducted with the component integrated in the frame-
work FLpy and the new MC-10 dataset. Samples in DZ“""
consist of 8,100 landmarks in 10 US cities. To demonstrate the
utility of open source tools in designing systems for outdoor
VLN, the generation process leverages free and accessible re-
sources that enable targeted querying. Entity IDs for landmarks
sourced from the Wikidata Knowledge Graph are the basis for
downloading textual summaries and images from the MediaWiki
and WikiMedia APIs. Additional details on MC-10 are available
in Appendix [B] The aim in generating the MC-10 dataset is to
optimise @y, such that features relating to Y, ,, are detected
in inputs X4, ,. We opt for open A multi-objective loss for
¢> consists of cross-modal matching over the paired samples
(x1,x,) - and a second objective comprising a prediction on the
geolocation of the entity. In the first objective, gppsr conducts
a binary classification between the true x; matching x, and a
second textual input selected at random from entities in the mini-
batch. A limit of 540 tokens is set for all textual inputs and the
classification in g ppsr is performed on the first sentence for each
entity. Parameters ®g,,,,,. are saved and used subsequently for
feature-level localisation in ¢y .

3.1.2 Cross-modal Attention and Action Prediction on Com-
bined Outputs Resuming operations subsequent to the PM-VLN,
outputs e;,, from Convypgr are passed together with ¢;, to a
VisualBERT embedding layer. Embeddings for both modalities
are then processed by 4 transformer encoder layers with a hidden
size of 256 and self-attention € is applied to learn alignments
between the pairs

&
En:@(eﬂ:w;):&)ft (kZ_; MkL(Sk,gk)) 3

where So f1 is the softmax function, k is the number of elements
in the inputs, Mg-; is a masked element over the cross-modal
inputs, L is the loss, & is an element in the input modality, and
gk is the predicted element. Cross-modal embeddings resulting
from this attention operation are processed by concatenating over
layer outputs g(e;,") = (¢!, &%, &, &%).

Architectural and embedding selections for our frameworks
aim to enable comparison with benchmark systems on ¢v .
The Encryans in the best performing framework uses a standard
VisualBERT encoder with a hidden size of 256 and 4 layers and
attention heads. As noted above, inputs for Encryq,s align with
those used in prior work (Zhu et al., [2021)).

A submodule gcr,s combines U, from L4 of the Encrrans
and outputs from the cross-modal attention operation g(E’ )
ahead of applying dropout. Predictions for navigation actions
are the outputs of a classifier block consisting of linear layers
with maxout activation. Maxout activation in a block composed
of linear operations takes the maxz;; where z;; are the product
of x;jWy. for k layers. In contrast to ReLU, the activation
function is learned and prevents unit saturation associated with
performing dropout (Goodfellow et al.,|2013). We compare a
standard classifier to one with max x; in Table@ Improvements
with max x; are consistent with a requirement to offset variance
when training with the high number of layers in the full FLpy
framework.

3.2 Theoretical Basis

This section provides a theoretical basis for a hierarchical pro-
cess of cross-modal prioritisation that optimises attention over
linguistic and visual inputs. In this section we use ¢ to denote this
process for convenience. During the main task ¢y, g aligns
elements in temporal sequences T and Route and localises spans
and visual features w.r.t. a subset of all entities Ent in the routes:

gpm = lxi=xy|| —  max Pp,,, [T,Route] <R (9)

subjectto

Inputs in ¢y 1y consist of a linguistic sequence T and a visual
sequence Route or each trajectory j in a set of trajectories. As a
result of the process followed by (Chen et al.|(2019) to create the
Touchdown task, these inputs conform to the following definition.

Definition 1 (Sequences refer to corresponding entities). At
each step in j, |x;| and |x, | are finite subsequences drawn from
T; and Route that refer to corresponding entities appearing in
the trajectory entj C Ent.



In order to simplify the notation, these subsequences are de-
noted in this section as x; and x,,. Touchdown differs from other
outdoor navigation tasks (Hermann et al., 2020) in excluding
supervision on the alignment over cross-modal sequences. Fur-
thermore len(T;) # len(Route;) and there are varying counts
of subsequences and entities in trajectories. In an approach to
¢y n formulated as supervised classification, an agent’s action
at each step a, = classification c¢; € {0, 1} where c is based on
corresponding ent; in the pair (x;,x,);. The likelihood that c,
is the correct action depends in turn on detecting S signal in the
form of ent, from noise in the inputs. The objective of g then is
to maximise Pg for each point in the data space.

The process defining ¢ is composed of multiple operations
to perform two functions of high-level alignment g4;;¢, and
localisation gr,c. At the current stage stg, function gasign
selects one set of spans ¢g:¢ € (@1, 92, ..., ¢n)

Start, ift =0
where stg { End, ift = —1

V stg€other» N € N € Z:‘zl > f_1 otherwise.

This is followed by the function gr,., which predicts
one of Gsenyy V Ssenry_, as the span ¢ relevant to the current
trajectory step scnt

scnt, lf(T7 lﬂt) =0

where scnt .
scnty_1, otherwise.

We start by describing the learning process when the agent in
¢vin is a transformer-based architecture Enc + Clas excluding
an equivalent to g (e.g. VisualBERT in Table 1 of the main report).
Enc + Clas is composed of two core subprocesses: cross-modal
attention to generate representations q(EB(L — V)) and a
subsequent classification Clas(e3,").

Definition 2 (Objective in Enc + Clas). The objective
0bj(0) for algorithm q(P(L = V), where L and V
are each sequences of samples {x1,x3,...,xn}, is the corre-
spondence between samples x; and x, presented at step t in
i ti=ti 4, .. iy

It is observed that in the learning process for Enc + Clas, any
subprocesses to align and localise finite sequences x; and x, W.r.t.
ent are performed as implicit elements in the process of optimis-
ing Obj;(6). In contrast the basis for the hierarchical learning
process enabled by our framework FLpy; - which incorporates
q py With explicit functions for these steps - is given in Theorem
1.

Theorem 1. Assuming x; and x,, conform to Definition 1 and
thatV x € L 3 x € V, an onto function gypap = mx +b,m # 0
exists such that:

8Map(x1,x,) — max [ent;xl’xV) € Ent (10)

In this case, additional functions g aiign and gr.oc - when imple-

mented in order - maximise gprap:

max Pp,,, =max gyap(X1,x,) —
J subjectto (11)

(gAligm 8Locs gMap) v ent](-Xl!x‘/) S Lj N Vj

Remark 1 Let P(max gyap) in Theorem 1 be the probabil-
ity of optimising gnyrap such that the number of pairs NGx)
corresponding to ent; € Lj NV; is maximised. It is noted
that NOvX) s determined by all possible outcomes in the set
of cases {(x1,x,) & entj, (x;,x,) & entj, x; & x,}. As
the sequences of instances i in x;, x, and ent; are forward-
only, it is also noted that Nt(f{’xV) < N,(X”XV) if ent; & xy;,
ent; ¢ x,;, orent}' # ent.". By definition, Nt(f{’x“) > N,(X”x“) if
P(ent; = x;; = xy;) - where the latter probability is s.t. processes
performed within finite computational time CT (n) - which implies
that P(max gpap)|P(ent; = x1; = xy;).

Remark 2. Following on from Remark 1,

CT (nPlenti=x1i=xvi)) \when q contains g;, and function
g (max(NGxv) = entj € L;NV;), where g, € G <
CT (nP(enti=x1i=xvi)\ \when q does not contain g; <
CT (nP(enti=x1i=xvi)) \when q contains g;, and function
8¢ (max(NG1-v) = entj € L;NVj).

Discussion In experiments, we expect from Remark 1 that
results on ¢y for architectures such as Enc + Clas - which
exclude operations equivalent to those undertaken by the onto
function gaz4p - Will be lower than the results for a framework
FLpw over a finite number of epochs. We observe this in Table[T]
when comparing the performance of respective standalone and
+ FLpym for VisualBERT and VLN Transformer systems. Poor
results for variants (a) and (h) in Tables[2] and [3]in comparison
to FLpy + VisualBERT(4]) also support the expectation set
by Remark 2 that performance will be highly impacted in an
architecture where operations in gy, increase the number of
misalignments.

Proof of Theorem 1 We use below ax for a generic
transformer-based system that predicts « on (L,V), Vx for
gradients, and O% to denote @Fnc+Clas , @FEnctq — [ep
sequence x; = |[entj,enty,...,ent, ]| and sequence x, =
[ent;, enty, . .., enty,], where ny and ny are unknown. We note
that at any point during learning, Ps(x;,x,) is spread unevenly
over ent;j in relation to @ ~ X.

Propositions We start with the case that 3 ent;
ent™)  and ent™). Here CT(nEMELOVY for @48 <
CT (nEMELYY for @% where g, accounts for A(Leny, Lens).
We next consider the case where H ent; : ent™D) vy ent(v),
Where B groc then Péx”xV) <3groc ng”x“).

We conclude with the case where 3 Ent . x; v X.
In P§* ent™) @ ent™) when ent™) # ent™),
As (Entp,Enty) = Ent, ®* ~ max(N¥%)) e X.

P;X”x“) where ent; = x;; = X,; > ent; € O x
max(N1Xv)) . Furthermore P 3 ent € Ent ~ (ent;) > B

ent # ent;. Therefore slope Vx increases and CT(nF™eL0V)

for A4*td < CT(nEnteLﬂV).



Development Test
TCT SPD| SEDT TCT SPD| SED7
Inputs (L, V) GA? 12.1  20.2 11.7 10.7 199 10.4
(non-transformer based) RCONCAT ? 11.9  20.1 11.5 11.0 204 10.5
ARC+L2STOP* ¢ 195 17.1 19.0 16.7 18.8 16.3
Inputs (L, V) Visual BERT(81) 104 213 10.0 9.9 21.7 9.5
(transformer based) VisualBERT(41) 143 177 13.7 11.8 183 11.5
VLN Transformer(41) 122 189 12.0 128 204 11.8
VLN Transformer(8I) ® 132 198 12.7 13.1  21.1 12.3
VLN Transformer(81) + M50 + style *° 150 20.3 14.7 16.2 20.8 15.7
Inputs (L, V) + JD / HT** ORAR (ResNet pre-final)* d 26.0 15.0 - 253 16.2 -
(non-transformer based) ORAR (ResNet 4th-to-last)* 4 299 11.1 - 291 117 -
Inputs (L, V) + Path Traces VLN Transformer(81) 11.2 234 10.7 11.5 239 10.8
(transformer based) VisualBERT(41) 16.2 18.7 15.7 15.0 20.1 14.5

FLpM(41) + VLN Transformer(81)

FLpn(41) + VisualBERT(41)

29.9
33.0

234
23.6

26.8
29.5

28.2
334

23.8
23.8

25.6
29.7

Frameworks from 2 |Chen et al.| (2019), ® [Zhu et al|(2021)), Xiang et al.[(2020), and d/Schumann and Riezler| (2022).

* Results reported by the authors.

* Systems receive two types of features - Junction Type and Heading Delta - as inputs.

Table 1: Performance on the Touchdown benchmark ranked by TC on the test partition. Systems are grouped by input types
during VLN and the use of transformer blocks in architectures. Contributions of the FLp); framework and path traces to improved
performance are demonstrated with results for systems with two baseline transformer-based architectures - VisualBERT and VLN
Transformer. These baselines also are assessed in two sizes to test the benefits of adding transformer blocks.

4 EXPERIMENTS

Our starting point in evaluating the PM-VN module and FLpy
is performance in relation to benchmark systems (see Table [I)).
Ablations are conducted by removing individual operations (see
Table [2) and the role of training data is assessed (see Table [3).
To minimise computational cost, we implement frameworks with
low numbers of layers and attention heads in transformer models.

4.1 Experiment Settings

Metrics We align with|Chen et al.|(2019) in reporting task com-
pletion (TC), shortest-path distance (SPD), and success weighted
edit distance (SED) for ¢y n. All metrics are derived using the
Touchdown navigation graph. TC is a binary measure of success
0, Lin ending a route with a prediction ¢{_, = y¢_, orcy | = y;’:ll
and SPD is calculated as the mean distance between ¢f_, and
¥7_,- SED is the Levenshtein distance between the predicted path
in relation to the defined route path and is only applied when TC
=1.

Hyperparameter Settings Frameworks are trained for 80
epochs with batch size=30. Scores are reported for the epoch with
the highest SPD on Z)gjLVN. Pretraining for the PM-VLN module
is conducted for 10 epochs with batch sizes ¢; = 60 and ¢, = 30.
Frameworks are optimised using AdamW with a learning rate of
2.5 x 1073 (Loshchilov and Hutter, [2017).

4.2 Touchdown

Experiment Design: [Chen et al.| (2019) define two separate
tasks in the Touchdown benchmark: VLN and spatial description
resolution. This research aligns with other studies (Zhu et al.|
2021} 2022)) in conducting evaluation on the navigation compo-
nent as a standalone task. Dataset and Data Preprocessing:
Frameworks are evaluated on full partitions of Touchdown with
pTrain — ¢ 525 pDev = 1,391, and DT¢* = 1,409 routes.
Trajectory lengths vary with D774 = 342, DP¢v = 34.1, and
DTes! = 34.4 mean steps per route. Junction Type and Heading
Delta are additional inputs generated from the environment graph
and low-level visual features (Schumann and Riezler,2022). M-50
+ style is a subset of the StreetLearn dataset with DTrain = 30 968
routes of 50 nodes or less and multimodal style transfer applied
to instructions (Zhu et al.;,2021). Embeddings: All architectures
evaluated in this research receive the same base cross-modal em-
beddings x,, proposed by |Zhu et al.|(2021), which are learned by
a combination of the outputs of a pretrained BERT-base encoder
with 12 encoder layers and attention heads. At each step, a fully
connected layer is used for textual embeddings ¢; and a 3 layer
CNN returns the perspective ;. FLpy frameworks also receive
an embedding of the path trace tr; at step z. As this constitutes
additional signal on the route, we evaluate a VisualBERT model
(41) that also receives tr;, which in this case is combined with
¥, ahead of inclusion in x,,,. Results: In Table the first block
of frameworks consists of architectures composed primarily of



convolutional and recurrent layers. VLN Transformer is a frame-
work proposed by Zhu et al.|(2021) for the Touchdown benchmark
and consists of a transformer-based cross-modal encoder with 8
encoder layers and 8 attention heads. VLN Transformer + M50 +
style is a version of this framework pretrained on the dataset de-
scribed above. To our knowledge, this was the transformer-based
framework with the highest TC on Touchdown preceding our work.
ORAR (ResNet 4th-to-last) (Schumann and Riezler, [2022)) is from
work published shortly before the completion of this research
and uses two types of features to attain highest TC in prior work.
Standalone VisualBERT models are evaluated in two versions
with 4 and 8 layers and attention heads. A stronger performance
by the smaller version indicates that adding self-attention layers
is unlikely to improve VLN predictions. This is further supported
by the closely matched results for the VLN Transformer(41) and
VLN Transformer(81). FLpy; frameworks incorporate the PM-
VLN module pretrained on auxiliary tasks (¢, ¢,) - and one of
VisualBERT (41) or VLN Transformer(81) as the main model.
Performance on TC for both of these transformer models doubles
when integrated into the framework. A comparison of results for
standalone VisualBERT and VLN Transformer systems with path
traces supports the use of specific architectural components that
can exploit this additional input type. Lower SPD for systems run
with the FLpy; framework reflect a higher number of routes where
a stop action was predicted prior to route completion. Although
not a focus for the current research, this shortcoming in VLN
benchmarks has been addressed in other work (Xiang et al.,2020;
Blukis et al.||2018).

4.3 Assessment of Specific Operations

Ablations are conducted on the framework with the highest TC
i.e. FLpy + VisualBERT(41). The tests do not provide a direct
measure of operations as subsequent computations in forward
and backward passes by retained components are not accounted
for. Results indicate that initial alignment is critical to cross-
modal prioritisation and support the use of in-domain data during
pretraining.

Development
TCT SPD| SEDT
FLpy + VisualBERT(41) 33.0 23.6 29.5
PM-VLN
-8PMTP (a) 7.1 26.8 6.8
- gppmrF minus gypr (b) 27.9 25.7 24.9
-8PMF minus lr—1 (C) 29.8 21.8 27.2
FLpm
- 8Artn With gcgr (d) 18.8 30.5 16.4

- 8Clasmax x; with gcras (€) 31.7 21.9 28.2

Table 2: Ablations on core operations in the PM-VLN (variants
(a-(c)) and the FLpy framework (variants (d) and (e)).

Ablation 1: PM-VLN Prioritisation in the PM-VLN module
constitutes a sequential chain of operations. Table 2] reports
results for variants of the framework where the PM-VLN excludes
individual operations. Starting with g pps7p, trajectory estimation
is replaced with a fixed count of 34 steps for each route tr, (see
variant (a)). This deprives the PM-VLN of a method to take
account of the current route when synchronising T and sequences
of visual inputs. All subsequent operations are impacted and the
variant reports low scores for all metrics. Two experiments are
then conducted on gppr. In variant (b), visual boost filtering
is disabled and feature-level localisation relies on a base ;.
A variant excluding linguistic components from gpysr is then
implemented by specifying 7, as the default input from T, (see
variant (c)). In practice, span selection in this case is based on
trajectory estimation only.

Ablation 2: FLpy; Ablations conclude with variants of FLpp
where core functions are excluded from other submodules in
the framework. Results for variant (d) demonstrate the impact
of replacing the operation defined in Equation [3] with a simple
concatenation on outputs from PM-VLN ¢; and e;,. A final ex-
periment compares methods for generating action predictions: in
variant (€), 8Clas, . x[ is replaced by the standard implementation
for classification in VisualBERT. Classification with dropout and
a single linear layer underperforms our proposal by 1.3 points on
TC.

4.4 Assessment of Training Strategy

A final set of experiments is conducted to measure the impact of
training data for auxiliary tasks (@1, ¢2).

Training Strategy 1: Exploiting Street Pattern in Trajectory
Estimation We conduct tests on alternate samples to examine
the impact of route types in Dz/;l’ @in  The module for FLpy
frameworks in Table[I]is trained on path traces drawn from an
area in central Pittsburgh (see SupMat:Sec.3) with a rectangular
street pattern that aligns with the urban grid type |Lynch| (1981}
found in the location of routes in Touchdown. Table [3|presents
results for modules trained on routes selected at random outside
of this area. In variants (f) and (g), versions V2 and V3 of
Dglr ain each consist of 17,000 samples drawn at random from the
remainder of a total set of 70,000 routes. Routes that conform to
curvilinear grid types are observable in outer areas of Pittsburgh.
Lower TC for these variants prompts consideration of street
patterns when generating path traces. A variant (h) where the
gpmrp submodule receives no pretraining underlines - along
with variant (a) in Table[2]- the importance of the initial alignment
step to our proposed method of cross-modal prioritisation.

Training Strategy 2: In-domain Data and Feature-Level
Localisation We conclude by examining the use of in-domain
data when pretraining the g pasr submodule ahead of feature-level
localisation operations in the PM-VLN. In Table 3] versions of
FLpy are evaluated subsequent to pretraining with varying sized
subsets of the Conceptual Captions dataset|Sharma et al.| (2018]).
This resource of general image-text pairs is selected as it has been
proposed for pretraining VLN systems (see below). Samples



are selected at random and grouped into two training partitions
equivalent in number to 100% (variant(i)) and 150% of DT;“i”
(variant (j)). In place of the multi-objective loss applied to the
MC-10 dataset, 6g,,,,, are optimised on a single goal of cross-
modal matching. Variant (k) assesses FLpyy when no pretraining
for the g ppsr submodule is undertaken. Lower results for variants
(i), (j), and (k) support pretraining on small sets of in-domain
data as an alternative to optimising VLN systems on large-scale
datasets of general samples.

Development
TCT SPD| SED7
FLpym + VisualBERT(41) 33.0 23.6 29.5

Pretraining for gp MTP
- gpMTP + DZ‘”"VZ () 11.9  20.1 11.5
-gpmrp + DYUMV3 (g) 136 205 131
- gpmrp 1o pretraining (h) 4.7 27.6 1.9

Pretraining for gppr
-8PMF + DZ‘”"VZ 1) 19.8 232 17.2
-gpmr + D 4"V3 (j) 239 208 203
- gpmF o pretraining (k) 6.3 25.1 4.6

Table 3: Assessment of the pretraining strategy for individual PM-
VLN submodules gpp;7p (variants (f) to (h)) and g ppsr (variants
(i) to (k) using alternative datasets for auxiliary tasks. Variants are
also run with no pretraining of gpy/7p and gpp/r.

5 RELATED WORK

This research aims to extend cross-disciplinary links between
machine learning and computational cognitive neuroscience in
the study of prioritisation in attention. This section starts with a
summary of literature in these two disciplines that use computa-
tional methods to explore this subject. Our training strategy is
positioned in the context of prior work on pretraining frameworks
for VLN. The section concludes with work related to the alignment
and feature-level operations performed by our PM-VLN model.
Computational Implementations of Prioritisation in Atten-
tion Denil et al.|(2012) proposed a model that generates saliency
maps where feature selection is dependent on high-level signals
in the task. The full system was evaluated on computer vision
tasks where the aim is to track targets in video. A priority
map computation was implemented in object detection models
by [Wei et al.| (2016)) to compare functions in these systems to
those observed in human visual attention. [Anantrasirichai et al.
(2017) used a Support Vector Machine classifier to model visual
attention in human participants traversing four terrains. Priority
maps were then generated to study the interaction of prioritised
features and a high-level goal of maintaining smooth locomotion.
A priority map component was incorporated into a CNN-based
model of primate attention mechanisms by [Zelinsky and Adeli
(2019) to prioritise locations containing classes of interest when

performing visual search. Studies on spatial attention in human
participants have explored priority map mechanisms that process
inputs consisting of auditory stimuli and combined linguistic and
visual information (Golob et al.l[2017;|Cavicchio et al.,|[2014). To
our knowledge, our work is the first to extend neuropsychological
work on prioritisation over multiple modalities to a computa-
tional implementation of a cross-modal priority map for machine
learning tasks.

Pretraining for VLN Tasks Two forms of data samples - in-
domain and generic - are used in pretraining prior to conducting
VLN tasks. In-domain data samples have been sourced from
image-caption pairs from online rental listings (Guhur et al.|[2021)
and other VLN tasks (Zhu et al.|[2021). In-domain samples have
also been generated by augmenting or reusing in-task data (Fried
et al.| 2018 [Huang et al.||2019; |Hao et al.; 2020} He et al., 2021}
Schumann and Riezler} 2022). Generic samples from large-scale
datasets designed for other Vision-Language tasks have been
sourced to improve generalisation in transformer-based VLN
agents. Majumdar et al.| (2020) conduct large-scale pretraining
with 3.3M image-text pairs from Conceptual Captions |Sharma
et al.| (2018) and |Q1 et al.| (2021)) initialise a framework with
weights trained on four out-of-domain datasets. Our training
strategy relies on datasets with a few thousand samples derived
from resources where additional samples are available at low cost.

Methods for Aligning and Localising Features in Linguistic
and Visual Sequences Alignment in multimodal tasks is often
posited as an implicit subprocess in an attention-based component
of a transformer (Tsai et al.| 2019;[Zhu et al.,|2021). [Huang et al.
(2019) identified explicit cross-modal alignment as an auxiliary
task that improves agent performance in VLN. Alignment in this
case is measured as a similarity score on inputs from the main
task. In contrast, our PM-VLN module conducts a hierarchical
process of trajectory planning and learned localisation to pair
inputs. A similarity measure was the basis for an alignment
step in the Vision-Language Pretraining framework proposed by
Li et al.| (2021). A fundamental point of difference with our
work is that this framework - along with related methods (Jia
et al., [2021) - is trained on a distinct class of tasks where the
visual input is a single image as opposed to a temporal sequence.
Several VLN frameworks containing components that perform
feature localisation on visual inputs have been pretrained on object
detection (Majumdar et al., |2020; Suglia et al., 20215 Hu et al.,
2019)). In contrast, we include visual boost filtering in gpasr to
prioritise visual features. Our method of localising spans using
a concatenation of the enhanced visual input and cross-modal
embeddings is unique to this research.

6 CONCLUSION

We take inspiration from a mechanism described in neurophysio-
logical research with the introduction of a priority map module
that combines temporal sequence alignment enabled by high-level
trajectory estimation and feature-level localisation. Two new
resources comprised of in-domain samples and a tailored training
strategy are proposed to enable data-efficient pretraining of the



PM-VLN module ahead of the main VLN task. A novel framework
enables action prediction with maxout activation on a combination
of the outputs from the PM-VLN module and a transformer-based
encoder. Evaluations demonstrate that our module, framework,
and pretraining strategy double the performance of standalone
transformers in outdoor VLN.
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Appendices

A NOTATION

Notations used in multiple sections of this paper are defined here for fast reference. Auxiliary tasks (¢, ¢») and the main VLN task
¢y constitute the set of tasks ®. Inputs and embeddings are specified as / (linguistic), v (visual), and 7 (multimodal). A complete
textual instruction is denoted as T, ¢ is a span, and i is a perspective. Linguistic and visual inputs for the PM-VLN are denoted as
(17, 4) and embeddings processed in prioritisation operations are (ey, e, );. In contrast, U denotes a set of embeddings from the main
model, which are derived from inputs €, ¥¢). The notations A and €P are respectively visual boost filtering and self-attention
operations. Table[d] provides a reference source for standard notation appearing throughout this paper. Other notations are defined in the
sections where they are used.

Notation Usage in this paper
A Matrix
AA Identity matrix
B,b Bias
D Dataset
Train,Dev,Test Dataset partitions
3 Exists
v For every (eg member in a set)
g Function
H Hypothesis
L Layer of a model
len Length
u Mean
n Number of samples
v Or
P Probability
q Algorithm
S Signal detected
o Standard deviation
® Set of parameters
W,w Set of weights
|x] Sequence
2 Equal by definition

Table 4: Reference List for Standard Notation.

B DATASETS

B.1 Generation and Partition Sizes

The MC-10 dataset consists of visual, textual and geospatial data for landmarks in 10 US cities. We generate the dataset with a modified
version of the process outlined by Armitage et al.[(2020). Two base entity IDs - Q2221906 (“geographic location™) and Q83620
(“thoroughfare™) - form the basis of queries to extract entities at a distance of <= 2 hops in the Wikidata knowledge graphT] Constituent
cities consist of incorporated places exceeding 1 million people ranked by population density based on data for April 1, 2020 from the
US Census Bureay?] Images and coordinates are sourced from Wikimedia and text summaries are extracted with the MediaWiki API.
Geographical cells are generated using the S2 Geometry Librar with a range of n entities [1, 5]. Statistics for MC-10 are presented by
partition in Table[5] As noted above, only a portion of textual inputs are used in pretraining and experiments.

Uhttps://query.wikidata.org/
2https://www.census.gov/programs-surveys/decennial - census/data/datasets.html
3https://code.google.com/archive/p/s2-geometry-library/


https://query.wikidata.org/
https://www.census.gov/programs-surveys/decennial-census/data/datasets.html
https://code.google.com/archive/p/s2-geometry-library/

Table 5: Statistics for the MC-10 dataset by partition.

Train Development
Number of entities 8,100 955
Mean length per text summary 727 745

TR-NY-PIT-central is a set of image files graphing path traces for trajectory plan estimation in two urban areas. Trajectories in central
Manhattan are generated from routes in the Touchdown instructions|Chen et al| 2019). Links E connecting O in the Pittsburgh partition
of StreetLearn Mirowski et al.| (2018)) are the basis for routes where at least one node is positioned in the bounding box delimited by the
WGS84 coordinates (40° 27° 38.82", -80° 1° 47.85") and (40° 26’ 7.31", -79° 59’ 12.86"). Labels are defined by step count cnt in the
route. Total trajectories sum to 9,325 in central Manhattan and 17,750 in Pittsburgh. In the latter location, routes are generated for all
nodes with 50 samples randomly selected where cnt =< 7 and 200 samples where cnt > 7. The decision to generate a lower number of
samples for shorter routes was determined by initial tests with the ConvNeXt Tiny model (2022). We opt for a maximum
cnt of 66 steps to align with the longest route in the training partition of Touchdown. The resulting training partition of samples for
Pittsburgh consists of 17,000 samples and is the resource used to pretrain g pps7p in the PM-VLN module.

B.2 Samples from Datasets

In auxiliary task ¢,, the gppsr submodule of PM-VLN is trained on visual, textual, and geodetic position data types. Path traces from
the TR-NY-PIT-central are used in ¢; to pretrain the gpp/7p submodule on trajectory estimation. Samples for entities in MC-10 and
path traces in TR-NY-PIT-central are presented in Figures[T] and 2}

Instruction:
*233rd Street s a local station
on the IRT White Plains Road
Line of the New York City
Subway."

Coordinates:
Point(-73.857222 40.893333)

Instruction:
"Independence Hall is a
historic civic building in
Philadelphia, Pennsylvania
in which both the United
States Declaration of
Independence and the
United States Consfitution
were debated and adopted.”

Coordinates:
Point(-75.15 39.948888888)

Instruction:

*The Laramie State Bank
Building is an Art Deco building
at 5200 W. Chicago Avenue, in
Chicago's Austin community."

Coordinates:
Point(-87.755833 41.895159)

Instruction:
"Frederick Law Olmsted
National Historic Site is a
United States National Historic
Site located in Brookline,
Massachusetts, a suburb of
Boston."

Coordinates:
Point(-71.1322 42.325)

Figure 6: Samples from the MC-10 dataset.

Figure 7: Samples from the TR-NY-PIT-central dataset with path traces representing routes in central Pittsburgh.



C CODE AND DATA

Source code for the project and instructions to run the framework are released and maintained in a public GitHub repository under MIT
license (https://github.com/JasonArmitage-res/PM-VLN). Code for the environment, navigation, and training adheres to the
codebases released by |Zhu et al|(2021) and (Chen et al.|(2019) with the aim of enabling comparisons with benchmarks introduced
in prior work on Touchdown. Full versions of the MC-10 and TR-NY-PIT-central datasets are published on Zenodo under Creative
Commons public license (https://zenodo.org/record/6891965#.YtwoS3ZBxD8).


https://github.com/JasonArmitage-res/PM-VLN
https://zenodo.org/record/6891965#.YtwoS3ZBxD8
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