
RadZero: Similarity-Based Cross-Attention for
Explainable Vision-Language Alignment in

Chest X-ray with Zero-Shot Multi-Task Capability

Jonggwon Park, Byungmu Yoon, Soobum Kim, Kyoyun Choi∗
DEEPNOID Inc.

Seoul, South Korea
{jgpark, bmyoon, soobumk, kychoi}@deepnoid.com

Abstract

Recent advancements in multimodal models have significantly improved vision-
language (VL) alignment in radiology. However, existing approaches struggle to
effectively utilize complex radiology reports for learning and offer limited inter-
pretability through attention probability visualizations. To address these challenges,
we introduce RadZero, a novel framework for VL alignment in chest X-ray with
zero-shot multi-task capability. A key component of our approach is VL-CABS
(Vision-Language Cross-Attention Based on Similarity), which aligns text em-
beddings with local image features for interpretable, fine-grained VL reasoning.
RadZero leverages large language models to extract concise semantic sentences
from radiology reports and employs multi-positive contrastive training to effectively
capture relationships between images and multiple relevant textual descriptions.
It uses a pre-trained vision encoder with additional trainable Transformer layers,
allowing efficient high-resolution image processing. By computing similarity be-
tween text embeddings and local image patch features, VL-CABS enables zero-shot
inference with similarity probability for classification, and pixel-level VL similar-
ity maps for grounding and segmentation. Experimental results on public chest
radiograph benchmarks show that RadZero outperforms state-of-the-art methods in
zero-shot classification, grounding, and segmentation. Furthermore, VL similarity
map analysis highlights the potential of VL-CABS for improving explainability in
VL alignment. Additionally, qualitative evaluation demonstrates RadZero’s capabil-
ity for open-vocabulary semantic segmentation, further validating its effectiveness
in medical imaging. Code is available at https://github.com/deepnoid-ai/RadZero.

1 Introduction

Recent advancements in deep learning have significantly impacted medical imaging, leading to nu-
merous studies on computer-aided diagnosis [15, 8, 25, 36]. However, acquiring high-quality manual
annotations remains a key challenge. In contrast, vision-language (VL) models (VLMs) in the natural
image domain [29, 40, 39] have reduced reliance on manual labeling by learning from image-text
pairs without explicit supervision, achieving strong zero-shot performance in tasks like classification
and retrieval. Building on this progress, VLMs have been increasingly explored in medical imaging,
including chest X-rays (CXRs). Several studies have demonstrated effective representation learning
[37, 42, 43] and zero-shot capabilities [19, 24] without task-specific annotations.

Despite these advance, current medical VLMs underutilize the rich semantics of radiology im-
age–report pairs. Prior methods—such as word-level alignment [12, 1], clinical entity extraction
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Figure 1: Comparison of attention maps and the proposed VL similarity map for visualizing VL
alignment. (a) While traditional attention maps inevitably exhibit high values at certain points due
to softmax activation, the proposed VL similarity maps yield low values for unrelated image-text
pair. (b) Their fixed scale, originating from cosine similarity, enables open-vocabulary semantic
segmentation through simple thresholding.

[42, 37], and using large language model (LLM) prompts [19]—face limitations, struggling with
poor text embedding segmentation and inefficient training due to random sampling. An effective
solution should 1) decompose reports into semantically minimal, clinically meaningful sentences, 2)
embed each sentence independently, and 3) learn from multiple sentence–image pairs per study to
fully leverage supervision.

Moreover, reliable explainability is critical for the clinical adoption of medical VLMs. Attention
maps are used as explainable features by most of the recent research [37, 19, 42]. However, while
an attention map (Figure 1 (a), top) can indicate where the model is focusing, it does not provide an
explanation for why it is attending to those regions. This limitation can be addressed by computing
pixel-level image–text similarity, which enables more fine-grained and transparent explanations.
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Figure 2: Zero-shot multi-task performance. Each
score is averaged over multiple datasets per task.

To overcome these shortcomings, we propose
RadZero, a novel VL alignment framework for
chest X-ray with zero-shot multi-task capabili-
ties. RadZero employs multi-positive contrastive
learning [20] to incorporate multiple sentences
per image-report pair. RadZero’s core innova-
tion is Vision-Language Cross-Attention Based
on Similarity (VL-CABS), which directly com-
putes cosine similarity between text descriptions
and local image patches. Unlike traditional at-
tention maps, the resulting VL similarity maps
offer clearer visual reasoning by maintaining
low values for unrelated image-text pairs (Fig-
ure 1 (a), bottom). This enhances interpretability
and enables open-vocabulary semantic segmen-
tation via simple thresholding. RadZero also supports high-resolution inputs by freezing a pre-trained
image encoder [39] and adding trainable Transformer layers [18], further boosting performance on
fine-grained zero-shot tasks. Experiments on public chest radiograph benchmarks demonstrate that
RadZero outperforms state-of-the-art (SOTA) models in various zero-shot tasks (Figure 2), while
qualitative analyses reveal its enhanced explainability and potential for open-vocabulary semantic
segmentation.

2 Related Works

2.1 General vision-language alignment

Contrastive learning for vision–language alignment with large-scale image–text pairs has been actively
studied. CLIP [29] demonstrated that directly aligning images and text enables strong zero-shot
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classification. LiT [39] proposed freezing the pre-trained vision encoder during contrastive training,
preserving fine-grained visual features and further enhancing zero-shot performance. dino.txt [18]
extended this framework by adding Transformer [33] layers on top of a pre-trained DINOv2 [27],
training only a lightweight module while keeping the vision encoder frozen. Additionally, it fused
global and patch-averaged embeddings, enabling patch-level similarity computation with text and
supporting open-vocabulary semantic segmentation. UniCLIP [20] introduced a multi-positive NCE
(MP-NCE) loss, which independently evaluates multiple positive pairs per image. Building on these
advances, our approach integrates a frozen, fine-grained vision encoder with trainable Transformer
layers, following LiT and dino.txt. We also adopt MP-NCE loss to align images with multiple text
representations effectively.

2.2 Vision-language alignment in chest X-ray

Since the introduction of contrastive learning in radiology [43], aligning CXR images with radiology
reports has become an active research area. GLoRIA [12] focused on local alignment using cross-
attention between word-level text embeddings and patch-level image features. MGCA [34] employed
both report-level and token-level embeddings to extract multi-granular features, and BioViL-T [1]
similarly relied on token-level embeddings. Nevertheless, segmenting reports into individual words
or tokens often fails to capture their full semantic meaning.

Due to the complexity of medical image–report relationships, alignment interpretability is essential
for clinical use and is commonly addressed using attention maps. MedKLIP [37] and KAD [42],
for example, used RadGraph [14] to extract report features and employed attention maps for tasks
such as grounding and segmentation. In addition to VL alignment, G2D [22] aggregated attention
maps in addition to VL alignment to generate pseudo masks, which were used as pixel-wise pretext
supervisory signals during pre-training. CARZero [19] also used attention maps when leveraging
cross-attention alignment for zero-shot tasks, incorporating LLM-based prompt alignment to stan-
dardize reports. Despite their utility, attention maps have limitations: they often highlight irrelevant
regions due to softmax activation, but removing softmax is not ideal as raw logits are unnormalized
and uncentered. Additionally, variation in the norms of query and key embeddings leads to incon-
sistent similarity values across different image-text pairs. An example and a detailed discussion of
the limited explainability of attention maps are provided in Appendix A. In contrast, our approach
enhances explainability with VL-CABS, aligning visual patches and text embeddings. The resulting
maps offer intuitive and consistent measures of fine-grained image-text similarity.

3 Methods

3.1 Finding-sentence extraction

Radiology reports contain diverse types of information, including clinical history, observations,
comparative analysis with prior studies, and diagnostic impressions. Encoding the entire report into a
single text embedding often fails to capture this complexity. CARZero [19] addressed this by using an
LLM to extract relevant sentences and introducing a prompt alignment strategy based on the template
“There is [disease]” for consistency between training and inference. Similarly, we use an LLM to
extract such sentences, which we refer to as finding-sentences. These are generated using a prompt
that follows a predefined structure, such as “There is [finding] of [location],” and are segmented
into minimal semantic units containing the finding name, presence (or uncertainty), and location.
The full prompt is provided in Appendix E.2. Each image is paired with multiple finding-sentences
during training, as illustrated in Figure 3 (a). For zero-shot inference, we apply prompt alignment by
prepending “There is” to text descriptions of findings and anatomical regions.

3.2 Vision-language alignment with similarity based cross-attention

3.2.1 Model architecture

To leverage the advantages of vision encoder pre-training, we adopt the approach of LiT [39] by
freezing a pre-trained vision encoder in contrastive learning. In Vision Transformers [9] such as
DINOv2 [27], interpolating the positional embeddings allows for increased input image resolution
[31]. Building on this property, we train our model with high-resolution images. To embed the output
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Figure 3: The overall framework of RadZero. (a) Finding-sentence extraction using an LLM. (b)
Computation of the similarity logit, lnij , between image Ii and finding-sentence Sn

j . W-sum and
cos-sim denote weighted sum and cosine similarity, respectively. (c) Computation of MP-NCE loss
(LI ) and InfoNCE loss (LT ) from the similarity logit matrix. (d) Zero-shot inference pipeline.

of the vision encoder, we add K trainable Transformer layers, as proposed by Jose et al. [18]. For
the text encoder, we use a pre-trained Sentence-BERT [30], which is fine-tuned during training, to
extract embeddings for each finding-sentence. The model architecture is illustrated in Figure 3 (b).

3.2.2 Vision-language cross-attention based on similarity

We propose VL-CABS (Vision-Language Cross-Attention Based on Similarity), a cosine similarity-
based cross-attention mechanism for computing similarity logits. By directly employing cosine
similarity between the text and visual patch embeddings, we obtain VL similarity scores that are
well-defined in range and centered at zero. This consistent scaling allows for fair comparisons across
different image–text pairs and significantly enhances explainability through the visualization of VL
similarity maps. It also enables single thresholding, offering new possibilities for open-vocabulary
semantic segmentation.

The proposed method operates on a mini-batch of size B, pairing each image Ii (i = 1, . . . , B) with
Ni associated finding-sentences {Sn

i }
Ni
n=1. Each image is processed by a vision encoder fv followed

by trainable layers fa, yielding a sequence of embeddings [ vi0, vi1, . . . , viL ] = fa(fv(Ii)), where
vi0 ∈ RD corresponds to the [CLS] token and {vik}Lk=1 ⊂ RD are patch embeddings, with D
denoting the embedding dimension and L the total number of patches. Each finding-sentence Sn

j is
encoded into a sentence-level embedding tnj = ft(S

n
j ) ∈ RD using a text encoder ft.

To compute VL similarity, we ℓ2-normalize all embeddings as v̄ik = vik/∥vik∥2 and t̄nj = tnj /∥tnj ∥2,
and calculate the scaled cosine similarity between each patch and sentence as snijk =< v̄ik, t̄

n
j >

· exp(τ) (k = 0, . . . , L), where τ is a learnable temperature. These scores are converted into
attention weights using softmax over the patch index k: anijk = exp(snijk)/

∑L
m=0 exp(s

n
ijm). A

sentence-specific attended vision embedding is computed as the weighted sum vnij =
∑L

k=0 a
n
ijkvik,

which is then ℓ2-normalized as v̄nij = vnij/∥vnij∥2. The global similarity logit between image Ii and
sentence Sn

j is given by lnij =< v̄nij , t̄
n
j > · exp(τ). The corresponding patch-level similarity map is

Mn
ij = [ snij1, . . . , s

n
ijL ].

3.3 Multi-positive contrastive learning

Although CARZero [19] also uses prompt templates for training, it suffers from instability due to
randomly selecting one sentence for each image at every training step. To utilize all N finding-
sentences matched to each image at every step, we adopt multi-positive NCE (MP-NCE) loss [20]
which treats positive pairs independently in order to amplify the loss contributions from each positive
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pair. A visualization of our contrastive loss is shown in Figure 3 (c). Let NT =
∑B

i=1 Ni be the total
number of finding-sentences in a mini-batch. For the i-th image, the number of positive and negative
finding-sentences are Ni and NT −Ni, respectively. The MP-NCE loss can be computed as follows:

LI = − 1

NT

B∑
i=1

Ni∑
n=1

log
exp(lnii)

exp(lnii) +
B∑
j ̸=i

Nj∑
m=1

exp(lmij )

(1)

For each finding-sentence Sn
i , there is one positive image Ii and B − 1 negative images. The

corresponding InfoNCE loss [26] is computed as follows:

LT = − 1

NT

B∑
i=1

Ni∑
n=1

log
exp(lnii)

exp(lnii) +
B∑
j ̸=i

exp(lnj,i)

(2)

The final objective function is the sum of LI and LT : L = LI + LT .

3.4 Zero-shot inference

The similarity logit between an image Ii and a sentence Sn
j , denoted by lnij , is converted into a

similarity probability l̂nij = σ(lnij) via a sigmoid function, and used for zero-shot classification.

For grounding and segmentation, we reshape the patch-level similarity map Mn
ij = [snij1, . . . , s

n
ijL]

into a
√
L×

√
L square map, and resize it to the original image resolution via bilinear interpolation.

To account for preprocessing such as padding and resizing, this interpolation is applied accordingly.
A final element-wise sigmoid activation is applied to obtain the pixel-level similarity map M̂n

ij =
σ(bilinear(Mn

ij)), which we refer to as the VL similarity map and use for zero-shot grounding and
segmentation. The VL similarity map is derived from the cosine similarity between vision patches and
text embeddings, and since we do not modify the embedding space beyond applying ℓ2-normalization
and adjusting the temperature, it can be directly interpreted as the similarity between each image
pixel and the text. The zero-shot inference process is illustrated in Figure 3 (d).

4 Experiments

4.1 Training dataset

MIMIC-CXR [16] We train our model using the MIMIC-CXR dataset for VL alignment. MIMIC-
CXR comprises 377,110 CXR images from 227,835 radiographic studies involving 65,379 patients.
Each study includes a radiology report and one or more CXR images in either frontal or lateral views.
Images are sourced from MIMIC-CXR-JPG [17], and only the ‘findings’ and ‘impression’ sections of
reports are extracted using the official codebase2. All view positions are considered, and the official
dataset split is followed. As described in Section 3.1, finding-sentence extraction is applied, with
each study containing an average of 6.45 such sentences. Studies without extracted finding-sentences
are discarded, resulting in 352,875 training images and 2,852 for validation.

4.2 Test datasets

Open-I (OI) [7] contains 3,851 radiology reports and 7,470 CXR images with multi-label annotations
for 18 diseases. PadChest (PC) [4] comprises 160,868 CXR images from 67,000 patients, with
192 labels showing a long-tailed distribution. Following [19], we use 39,053 samples annotated by
board-certified radiologists. Additionally, PadChest20 (PC20), introduced in [19], serves as a test set
for rare disease evaluation, consisting of 20 classes with fewer than 10 samples each. ChestXray14
(CXR14) [35] provides official test set with 22,433 images labeled for 14 diseases. CheXpert (CXP)
[13] includes a test set of 500 patients’ images annotated by five board-certified radiologists. Following
[19], we evaluate classification on five observations: atelectasis, cardiomegaly, consolidation, edema,

2https://github.com/MIT-LCP/mimic-cxr

5

https://github.com/MIT-LCP/mimic-cxr


and pleural effusion. ChestXDet10 (CXD10) [23], a subset of CXR14, contains 542 images with
bounding box annotations for 10 diseases in the official test set. SIIM [38] pneumothorax dataset
provides segmentation masks for 11,582 CXRs; we adopt the test split from [34], which includes
1,704 images with 458 positives. RSNA [32] pneumonia dataset consists of 29,700 frontal CXRs
with bounding box annotations; we use the test set from [37] containing 5,337 images, including
1,218 positives. MS-CXR [2] consists of 1,153 image-phrase-bounding box triplets, with images
sourced from MIMIC-CXR. The bounding boxes annotated to specific phrases in the report enable
more detailed grounding, referred to as phrase grounding. For fair evaluation on the test set of 167
images released by [6], where each phrase maps to a single bounding box, we exclude these images
from the training set described in Sec. 4.1.

4.3 Evaluation metrics

AUC, or area under the ROC curve, is adopted to evaluate zero-shot classification on multi-label
test datasets. Pointing game [41], which determines whether the coordinates of the maximum value
falls within the corresponding bounding box, is employed as the grounding metric. Dice score serves
as a standard evaluation metric for segmentation. Following [37], we compute the Dice score using
only positive samples and optimize the segmentation threshold on the test set to maximize the score.
Threshold search intervals are 0.01 for sigmoid and 0.001 for softmax, depending on the feature
map’s activation function. Pixel-wise AUC (Pix-AUC) computes AUC at pixel-level to evaluate
the quality of the segmentation probability map. To account for both sensitivity and specificity in
mask prediction, we incorporate both positive and negative samples. For fine-grained tasks such
as grounding and segmentation, predictions are interpolated back to the original image size before
evaluation.

4.4 Implementation details

We adopt XrayDINOv2 [5] as the pre-trained vision encoder, which was trained in a unimodal setting
using CXR images based on DINOv2 [27]. While the vision encoder was trained with an image
resolution of 224, we increase it to 518 for our experiments. The patch size of 14×14 leads to 37×37
patches, yielding a vision patch length L of 1369. The text encoder is MPNet ("all-mpnet-base-v2")
[30], initialized with pre-trained parameters and further fine-tuned during training. The trainable
Transformer layers consist of two randomly initialized layers (K = 2), with a hidden dimension of
768, matching the embedding size of both the vision and text encoders. While the vision encoder
remains frozen, all other parameters are trainable. Following [29], the learnable temperature parameter
τ is initialized to log(1/0.07). The details of model training can be found in Appendix C.1. The
LLM used for extracting finding-sentences is "Llama-3.3-70B-Instruct" [10], deployed in a private
computing environment.

5 Results

5.1 Zero-shot evaluation

Classification. Table 1 compares RadZero with SOTA models on public test datasets. For the five
datasets evaluated in CARZero [19], we report their published results. For SIIM and RSNA, we
independently evaluated two open-source models. RadZero achieved new SOTA performance on OI
and PC, irrespective of image resolution. In the long-tailed PC dataset with 192 classes, RadZero

Method Open-I
(OI)

PadChest
(PC)

PadChest20
(PC20)

ChestXray14
(CXR14)

CheXpert
(CXP)

ChestXDet10
(CXD10) SIIM RSNA

GLoRIA [12] 0.589 0.565 0.558 0.610 0.750 0.645 - -
BioViL-T [1] 0.702 0.655 0.608 0.729 0.789 0.708 - -

MedKLIP [37] 0.759 0.629 0.688 0.726 0.879 0.713 0.897 0.869
KAD [42] 0.807 0.750 0.735 0.789 0.905 0.735 - -

CARZero [19] 0.838 0.810 0.837 0.811 0.923 0.796 0.924 0.747
RadZero (224px) 0.851 0.841 0.879 0.807 0.903 0.785 0.914 0.839

RadZero 0.847 0.841 0.871 0.804 0.900 0.787 0.924 0.834

Table 1: Zero-shot classification AUROC scores on public CXR datasets. For fair comparison, we
also report the results of low-resolution (224×224) version of RadZero.
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Method Mean ATE CALC CONS EFF EMPH FIB FX MASS NOD PTX
GLoRIA [12] 0.367 0.479 0.053 0.737 0.528 0.667 0.366 0.013 0.533 0.156 0.143

KAD [42] 0.391 0.646 0.132 0.699 0.618 0.644 0.244 0.199 0.267 0.316 0.143
BioViL-T [1] 0.351 0.438 0.000 0.630 0.504 0.846 0.390 0.026 0.500 0.000 0.171

MedKLIP [37] 0.481 0.625 0.132 0.837 0.675 0.734 0.305 0.224 0.733 0.312 0.229
CARZero [19] 0.543 0.604 0.184 0.824 0.782 0.846 0.561 0.184 0.700 0.286 0.457

RadZero (224px) 0.537 0.604 0.211 0.806 0.813 0.795 0.451 0.197 0.767 0.325 0.400
RadZero 0.622 0.646 0.368 0.824 0.857 0.872 0.585 0.250 0.767 0.506 0.543

Table 2: Zero-shot grounding results (pointing game accuracy) on CXD10. Lesion abbreviations can
be found in Appendix E.1.

outperformed CARZero by 3.1 percentage points, demonstrating strong generalization in zero-shot
classification. Notable gains are also observed in PC20, which focuses on rare diseases, suggesting
that VL-CABS is particularly effective for infrequent conditions. On datasets where RadZero failed
to rank first, MedKLIP performed best on RSNA, while CARZero led on CXR14, CXP, and CXD10.
However, MedKLIP underperformed on the latter datasets, and CARZero underperformed on RSNA.
In contrast, RadZero showed results comparable to the top-performing models across all datasets.
Interestingly, the lower-resolution RadZero (224px) even outperformed RadZero: potentially due to
the pre-trained vision encoder, as discussed in Sec. 5.4.

The representative classification metric shown in Figure 2 is the average AUC across all datasets.
RadZero established a new SOTA, outperforming CARZero by 1.5 percentage points, a gain at-
tributable to our training strategy that incorporates multi-positive contrastive learning to enhance the
diversity of both positive and negative samples per image.

Method MS-CXR
BioViL-T [1] 0.719

MedKLIP [37] 0.407
CARZero [19] 0.749

RadZero (224px) 0.832
RadZero 0.844

Table 3: Zero-shot phrase
grounding results (pointing
game accuracy) on MS-CXR.

Grounding. Table 2 presents zero-shot grounding results on
CXD10. We adopted the pointing game scores reported by CARZero
for all models except BioViL-T, which we evaluated using its re-
leased weights. RadZero achieved the highest average score across
all diseases, outperforming CARZero by 0.079. Per-lesion analysis
showed that RadZero achieved the best performance in all classes
except consolidation, indicating that the proposed VL-CABS ef-
fectively captures local alignment between text and image patches
regardless of disease type. Furthermore, RadZero efficiently supports
higher input resolutions, enabling more precise localization.

Table 3 reports zero-shot phrase grounding results, evaluating align-
ment at the phrase level in contrast to disease-level grounding in
Table 2. Pointing game accuracy is used as the evaluation metric. We evaluated all baselines using
publicly available models. RadZero achieved the highest score of 0.844, demonstrating accurate
interpretation of text phrases. The strong performance of RadZero (224px) suggests that the gains are
largely attributable to the effectiveness of VL-CABS rather than the higher input resolution.

Method RSNA SIIM
Dice Dice Pix-AUC

GLoRIA [12] 0.347* - -
BioViL [3] 0.439* - -

MedKLIP [37] 0.465* 0.044 0.648
G2D [22] 0.477† 0.051† -

CARZero [19] 0.540 0.100 0.856
CARZero (logits) 0.529 0.081 0.928
RadZero (224px) 0.562 0.121 0.943

RadZero 0.546 0.171 0.947
MGCA [34] (1%) 0.513 0.144 0.752

MGCA (10%) 0.571 0.238 0.856
MGCA (100%) 0.578 0.305 0.976

Table 4: Zero-shot segmentation results. Val-
ues with ∗ are from [37] and † from [22]

Segmentation. Table 4 summarizes zero-shot segmen-
tation results on SIIM and RSNA. To benchmark against
supervised models, we fine-tuned MGCA with varying
proportions of training data; percentages in parentheses
indicate the amount used.

Among zero-shot models, RadZero achieved the highest
Dice scores on both datasets. On SIIM, it outperformed
CARZero by 71%, demonstrating superior segmentation
capability. The smaller margin on RSNA is likely due to
its coarser annotations—bounding boxes rather than pixel-
level masks—which limit the advantages of RadZero’s
fine-grained VL similarity maps. As in phrase grounding,
the results of RadZero (224px) suggest that the superior
performance is not merely driven by higher resolution.

RadZero also remained competitive against fine-tuned
models. It outperformed MGCA (1%) on both datasets, demonstrating the effectiveness of zero-shot
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segmentation. Although it did not surpass MGCA (10%) or (100%), RadZero requires no mask labels,
enabling broader generalization beyond fixed vocabularies, as further discussed in Sec. 5.3.

SIIM’s detailed annotations also allow for Pix-AUC evaluation. RadZero achieved the highest
score, exceeding even MGCA (10%), indicating well-calibrated VL similarity maps that distinguish
positive from negative regions. In contrast, MedKLIP and CARZero, both relying on attention
maps, performed worse with scores of 0.648 and 0.856, respectively. For a fair comparison, we
also evaluated CARZero’s pre-softmax logits (CARZero (logits)), which improved performance but
still fell short of RadZero. Notably, CARZero (logits) underperformed its own Dice score (0.081 vs.
0.100) despite threshold tuning, as expected from the inconsistent scaling of dot-product similarity.
In contrast, VL-CABS directly encode pixel-level text–image similarity, allowing low values for
negative samples. This contributed to its superior Pix-AUC, as further supported in Sec. 5.2.

5.2 VL similarity map analysis

Figure 4 illustrates that RadZero effectively aligned visual and textual representations with VL-
CABS. The outputs, VL similarity map M̂ and probability l̂, offer both interpretable visualizations
and quantitative metrics. For the normal image Figure 4 (a), the model assigned low similarity (0.072)
to the prompt “There is atelectasis” with a dark VL similarity map, indicating weak alignment
between vision tokens and the text embedding, In contrast, “There is no atelectasis” (0.921) and “The
lungs are clear” (0.846) yielded bright activations across lung fields, reflecting strong alignment.

Figure 4 (b) shows fibrosis, and “There is fibrosis” resulted in high similarity (0.970) with strong
activations in the affected lung. Prompts indicating normality received much lower scores (0.093 and
0.014) and darker VL similarity maps, clearly distinguishing abnormal from normal descriptions.

Figure 4 (c) highlights RadZero’s ability to distinguish anatomical descriptions. For right-sided pleural
effusion, the model assigned high similarity (0.907) to “There is effusion,” with bright activations in
the correct region. Notably, “There is right effusion” (0.946) scored even higher, indicating accurate
localization, while “There is left effusion” scored much lower (0.125) and a dark VL similarity map,
showing that the model correctly distinguishes between left and right lung regions.

Overall, these results underscore the explainability of VL-CABS. The similarity probability is
verifiable at the pixel level, enabling spatially grounded explanations. By explicitly revealing how
conclusions are derived, RadZero offers enhanced interpretability in the context of disease diagnosis.

5.3 Open-vocabulary semantic segmentation

Figure 5 presents open-vocabulary semantic segmentation results for both findings and anatomical
regions. Segmentation masks were generated by thresholding the VL similarity map M̂ for each text
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Method Similarity Trainable
layers MP Res. Classification Grounding Segmentation

OI PC PC20 CXR14 CXP CXD10 CXD10 MS-CXR SIIM

(a) dot-product Linear ✗ 224 0.839 0.824 0.853 0.805 0.896 0.792 0.472 0.784 0.078
(b) cos Linear ✗ 224 0.843 0.830 0.863 0.805 0.902 0.786 0.483 0.790 0.078
(c) cos 2 Transformer ✗ 224 0.845 0.832 0.860 0.808 0.895 0.793 0.539 0.838 0.099
(d) RadZero (224px) cos 2 Transformer ✓ 224 0.851 0.841 0.879 0.807 0.903 0.785 0.537 0.832 0.121
RadZero cos 2 Transformer ✓ 518 0.847 0.841 0.871 0.804 0.900 0.787 0.622 0.844 0.171

LiT [39] - Linear ✗ 224 0.768 0.769 0.775 0.764 0.854 0.735 - - -
dino.txt [18] - 2 Transformer ✗ 224 0.834 0.816 0.837 0.797 0.901 0.770 0.121 0.174 0.021
CARZero [19] - Transformer Dec. ✗ 224 0.827 0.815 0.877 0.795 0.889 0.770 0.437 0.743 0.072

Table 5: Ablation study of model architecture components. “MP” denotes multi-positive.

prompt; in cases of overlapping predictions, the prompt with the highest similarity was assigned. In
Figure 5 (a), RadZero successfully localized lesions based on text queries, though some segmentation
masks extended beyond ground truth boxes, indicating room for improvement. Notably, certain
incorrect predictions captured clinically relevant features that were not explicitly annotated: in Figure
5 (b), a chest tube was reasonably associated with “pneumothorax.” Figure 5 (c) further demonstrates
RadZero’s ability to segment anatomical structures without supervision, inferring approximate spatial
regions from text despite imprecise boundaries. These results highlight the potential of VL-CABS for
zero-shot open-vocabulary semantic segmentation and RadZero’s capacity to align textual descriptions
with medical imagery. Additional qualitative examples are provided in Appendix H.

5.4 Ablation Studies

Ablation study on RadZero components. 1) Similarity function: Comparing (a) and (b) in Table 5
shows the effect of using cosine similarity instead of scaled dot-product [33] for VL alignment. Cosine
similarity, which better aligns with inference-time VL similarity maps, improved classification and
slightly enhances grounding. 2) Trainable parameters: (b) and (c) compare a linear layer and a
two-layer Transformer, with the image encoder frozen. Transformer layers yielded consistent gains
across all tasks, particularly in grounding (0.483 → 0.539) and segmentation (0.078 → 0.099). 3)
Multi-positive pairs: The difference between (c) and (d) lay in the use of multi-positive contrastive
pairs. (d) improved classification (e.g., PC20: 0.860 → 0.879) and segmentation (0.099 → 0.121),
highlighting the advantage of richer supervision. 4) Image resolution: RadZero and (d) shared the
same architecture, except that RadZero used higher resolution inputs (518 vs. 224). This change
substantially improved grounding (0.537 → 0.622) and segmentation (0.121 → 0.171), showing the
importance of high-resolution features for spatially localized tasks. In classification, (d) outperformed
RadZero: likely due to the vision encoder (XrayDINOv2[5]) being pre-trained at 224 pixels, indicating
that using an encoder pre-trained at higher resolutions may further enhance the performance.

Comparison among different VL alignment approaches. Table 5 compares RadZero with
alternative VL alignment methods, keeping all settings identical except for VL feature fusion and
loss computation. LiT, which uses a [CLS] embedding for alignment, showed limited classification
performance and was incapable of grounding or segmentation. dino.txt improved classification
through additional Transformer layers, but its mean pooling constrained grounding and segmentation
performance. CARZero introduced a cross-attention decoder, enhancing performance on those tasks.
However, when compared to the RadZero ablations, (b) outperformed CARZero across most metrics,
showing that VL-CABS alone is sufficiently effective.

6 Conclusion

In this work, we introduced RadZero, a novel VL alignment model for chest X-ray that achieved strong
zero-shot performance in classification, grounding, and segmentation. Central to RadZero is VL-
CABS, which computes image-text similarity at the patch-level to improve interpretability. Combined
with multi-positive contrastive training, VL-CABS enabled effective representation learning without
pixel-level annotations, and the support for high-resolution inputs further boosted performance.
Extensive evaluations on public chest radiograph benchmarks showed that RadZero outperformed
SOTA methods. VL similarity map analysis highlighted the enhanced explainability of VL-CABS
by providing transparent rationales for how conclusions are derived. Qualitative assessments further
demonstrated RadZero’s potential for open-vocabulary semantic segmentation.
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Despite its impressive results, RadZero has limitations that indicate areas for future research. The
observed performance degradation on specific datasets emphasizes the necessity of enhancing general-
ization capability. Its reliance on the pre-trained vision encoder may also restrict domain adaptability.
In addition, the current study validates the proposed RadZero training framework only on chest X-ray
datasets, which limits the scope of its generalization. Future work could explore extending RadZero
to other medical imaging modalities such as CT and MRI, demonstrating its potential as a universal
vision-language learning framework adaptable to diverse anatomical and visual characteristics. More-
over, applying VL-CABS to general imaging domains, for instance in open-vocabulary semantic
segmentation, could be a meaningful direction toward building more interpretable VLMs.

Acknowledgments and Disclosure of Funding

This work was supported by the Technology Innovation Program (RS-2025-02221011, Development
of Medical-Specialized Multimodal Hyperscale Generative AI Technology for Global Integration)
funded by the Ministry of Trade Industry & Energy (MOTIE, South Korea).

References
[1] Shruthi Bannur, Stephanie Hyland, Qianchu Liu, Fernando Pérez-García, Maximilian Ilse, Daniel C.

Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anja Thieme, Anton Schwaighofer, Maria
Wetscherek, Matthew P. Lungren, Aditya Nori, Javier Alvarez-Valle, and Ozan Oktay. Learning to exploit
temporal structure for biomedical vision-language processing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 15016–15027, June 2023.

[2] Benedikt Boecking, Naoto Usuyama, Shruthi Bannur, Daniel C. Castro, Anton Schwaighofer, Stephanie
Hyland, Maria Wetscherek, Tristan Naumann, Aditya Nori, Javier Alvarez-Valle, Hoifung Poon, and Ozan
Oktay. Making the Most of Text Semantics to Improve Biomedical Vision–Language Processing, page 1–21.
Springer Nature Switzerland, 2022. ISBN 9783031200595. doi: 10.1007/978-3-031-20059-5_1. URL
http://dx.doi.org/10.1007/978-3-031-20059-5_1.

[3] Benedikt Boecking, Naoto Usuyama, Shruthi Bannur, Daniel C Castro, Anton Schwaighofer, Stephanie
Hyland, Maria Wetscherek, Tristan Naumann, Aditya Nori, Javier Alvarez-Valle, et al. Making the most of
text semantics to improve biomedical vision–language processing. In ECCV, pages 1–21. Springer, 2022.

[4] Aurelia Bustos, Antonio Pertusa, Jose-Maria Salinas, and Maria de la Iglesia-Vayá. Padchest: A large chest
x-ray image dataset with multi-label annotated reports. Medical Image Analysis, 66:101797, December
2020. ISSN 1361-8415. doi: 10.1016/j.media.2020.101797. URL http://dx.doi.org/10.1016/j.
media.2020.101797.

[5] Pierre Chambon, Jean-Benoit Delbrouck, Thomas Sounack, Shih-Cheng Huang, Zhihong Chen, Maya
Varma, Steven QH Truong, Chu The Chuong, and Curtis P Langlotz. Chexpert plus: Hundreds of thousands
of aligned radiology texts, images and patients. arXiv preprint arXiv:2405.19538, 2024.

[6] Zhihao Chen, Yang Zhou, Anh Tran, Junting Zhao, Liang Wan, Gideon Su Kai Ooi, Lionel Tim-Ee Cheng,
Choon Hua Thng, Xinxing Xu, Yong Liu, et al. Medical phrase grounding with region-phrase context
contrastive alignment. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 371–381. Springer, 2023.

[7] Dina Demner-Fushman, Marc D Kohli, Marc B Rosenman, Steven E Shooshan, Louis Rodriguez, Sameer
Antani, George R Thoma, and Clement J McDonald. Preparing a collection of radiology examinations for
distribution and retrieval. Journal of the American Medical Informatics Association, 23(2):304–310, Mar
2016. doi: 10.1093/jamia/ocv080.

[8] Kunio Doi. Computer-aided diagnosis in medical imaging: Historical review, current status and future
potential. Computerized Medical Imaging and Graphics, 31(4):198–211, 2007. ISSN 0895-6111. doi: https:
//doi.org/10.1016/j.compmedimag.2007.02.002. URL https://www.sciencedirect.com/science/
article/pii/S0895611107000262. Computer-aided Diagnosis (CAD) and Image-guided Decision
Support.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is worth 16x16
words: Transformers for image recognition at scale. In ICLR, 2020.

10

http://dx.doi.org/10.1007/978-3-031-20059-5_1
http://dx.doi.org/10.1016/j.media.2020.101797
http://dx.doi.org/10.1016/j.media.2020.101797
https://www.sciencedirect.com/science/article/pii/S0895611107000262
https://www.sciencedirect.com/science/article/pii/S0895611107000262


[10] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

[11] Xinyang Geng, Hao Liu, Lisa Lee, Dale Schuurmans, Sergey Levine, and Pieter Abbeel. Multimodal
masked autoencoders learn transferable representations. arXiv preprint arXiv:2205.14204, 2022.

[12] Shih-Cheng Huang, Liyue Shen, Matthew P Lungren, and Serena Yeung. Gloria: A multimodal global-
local representation learning framework for label-efficient medical image recognition. In ICCV, pages
3942–3951, 2021.

[13] Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik Mark-
lund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jayne Seekins, David A. Mong, Safwan S. Halabi,
Jesse K. Sandberg, Ricky Jones, David B. Larson, Curtis P. Langlotz, Bhavik N. Patel, Matthew P. Lungren,
and Andrew Y. Ng. Chexpert: A large chest radiograph dataset with uncertainty labels and expert compari-
son. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):590–597, Jul. 2019. doi: 10.
1609/aaai.v33i01.3301590. URL https://ojs.aaai.org/index.php/AAAI/article/view/3834.

[14] Saahil Jain, Ashwin Agrawal, Adriel Saporta, Steven QH Truong, Du Nguyen Duong, Tan Bui, Pierre Cham-
bon, Yuhao Zhang, Matthew P. Lungren, Andrew Y. Ng, Curtis P. Langlotz, and Pranav Rajpurkar. Radgraph:
Extracting clinical entities and relations from radiology reports. arXiv preprint arXiv:2106.14463, 2021.

[15] Mohammad Jamshidi, Ali Lalbakhsh, Jakub Talla, Zdeněk Peroutka, Farimah Hadjilooei, Pedram Lal-
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A Are Attention Maps of Medical VLMs Fully Explainable?

Explainability is critical for clinical deployment of deep learning models, and medical VLMs have
adopted attention maps as their de facto interpretable features [37, 19, 42]. However, attention maps
alone reveal only where the model is focusing, not why it makes a particular prediction. Without the
underlying image–text similarity scores, such heatmaps lack interpretability. Interpreting attention
maps for complex text queries can be unintuitive and may depend on access to ground-truth labels.

There is right effusion There is left effusion
0.560 0.049

(a) (b)

Figure 6: Attention maps from CARZero [19].
Image–text similarity probabilities are ob-
tained by applying a sigmoid function to the
classification logits.

To illustrate the challenges of interpreting attention
maps, Figure 6 visualizes the attention outputs of
CARZero [19] for different image–text pairs, with
the overlaid values indicating the corresponding sim-
ilarity probabilities. In (a), the prompt “There is right
effusion” produces a heatmap focused on the right
lower lung and a high similarity probability (0.560),
intuitively linking the attended region to the predicted
finding. In (b), when queried with “There is left ef-
fusion” on the same image, the attention map still
highlights the right lower lung. While we can observe
where the model attends, the attention map alone
offers no clear explanation for why that region is rel-
evant. The image–text similarity probability for the
prompt “There is left effusion” is low (0.048), which—when considered alongside the attention
map—can be interpreted as indicating that the attended right lung region does not support the presence
of left-sided effusion. However, how should we interpret the fact that the model attends to the right
lung when queried about left effusion? Making sense of this behavior requires access to the ground
truth: effusion is present in the right lower lung but absent on the left. With this context, one might
infer that the model correctly identifies effusion on the right, recognizes that it does not match the
left-sided query, and therefore assigns a low similarity score.

This example underscores the need to interpret attention maps in conjunction with image–text
similarity scores. For complex text queries, meaningful interpretation often depends on knowing the
ground truth—a significant limitation in medical VLMs where such labels are frequently unavailable.
This reliance undermines the standalone explainability of attention visualizations. To address these
limitations, we propose vision–language cross-attention based on similarity (VL-CABS), a framework
that enables transparent inspection of the vision–language decision process. Detailed examples and
analysis of its application in RadZero are provided in Sec. 5.2.

B Ablation Studies

We conducted ablation studies to assess the impact of key design choices by selectively modifying
parts of our approach. The zero-shot tasks for evaluation included classification (class.), grounding
(ground.), phrase grounding (phrase.), and segmentation (seg.). Classification was tested on the
PadChest dataset, known for its highly imbalanced (long-tailed) label distribution, with AUC as the
evaluation metric. Grounding and phrase grounding were evaluated using the pointing game on the
ChestXDet10 and MS-CXR test sets, respectively. Segmentation performance was measured by the
Dice score on the SIIM dataset. For the ablation study, the default batch size and maximum number
of epochs were set to 128 and 10, respectively.

View Position class. ground. phrase. seg.
Frontal 0.831 0.604 0.838 0.161

All View 0.841 0.622 0.844 0.171

Table 6: Impact of view position.

View position. Table 6 shows the performance
variation based on the view position of CXR im-
ages. We compared two models: one trained exclu-
sively on frontal view images from MIMIC-CXR
and another trained on both frontal and lateral
views. The model trained on all view positions
consistently outperformed the frontal-only model,
suggesting that it effectively learned to interpret lateral images, enhancing overall robustness.
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Vision Image class. ground. phrase. seg.Encoder Resolution
DINOv2 [27] 518 0.825 0.606 0.814 0.100

RadDINO [28] 518 0.850 0.610 0.844 0.144
XrayDINOv2 [5] 224 0.841 0.548 0.832 0.118

XrayDINOv2 518 0.841 0.622 0.844 0.171

Table 7: Impact of vision encoder and resolution.

Model class. ground. phrase. seg.
Linear 0.826 0.549 0.826 0.100

1 Transformer layer 0.835 0.585 0.832 0.158
2 Transformer layers 0.841 0.622 0.844 0.171

Table 8: Impact of trainable vision layer.

Text class. ground. phrase. seg.Encoder
BioBERT 0.842 0.582 0.832 0.127

MPNet [30] 0.841 0.622 0.844 0.171

Table 9: Impact of text encoder.

Batch size class. ground. phrase. seg.
64 0.835 0.583 0.826 0.165

128 0.840 0.594 0.850 0.177
256 0.841 0.622 0.844 0.171

Table 10: Impact of batch size.

Vision encoder and resolution. Table 7 presents the impact of the vision encoder and image
resolution on model performance. We compared DINOv2 [27], RadDINO [28] and XrayDINOv2 [5]
using image resolutions of 224 and 518. DINOv2, which was trained on natural images rather than
X-rays, exhibited relatively lower performance, as expected due to the domain mismatch. Comparing
XrayDINOv2 at resolutions of 224 and 518, we observe that higher image resolution improves
fine-grained tasks such as grounding and segmentation. RadDINO and XrayDINOv2 showed similar
performance, suggesting that our approach is effectively applied to models trained with the DINOv2
strategy on chest X-ray images.

Trainable vision layer architecture. Table 8 presents the impact of different trainable layers in the
image encoder. The commonly used linear layer showed relatively lower performance across tasks. In
contrast, two Transformer layers achieved the best results across all tasks. Based on this observation,
RadZero was designed with two Transformer layers added to the vision encoder. This improvement
is likely due to the Transformer’s ability to attend to all patch embeddings, capturing richer semantic
information.

Text encoder. Table 9 presents the performance of different text encoders used during training.
We compared MPNet [30] and BioBERT [21], where BioBERT was fine-tuned on clinical reports
by CARZero [19]. While MPNet showed slightly lower performance in classification, it achieved
notable improvements in phrase grounding and segmentation, demonstrating its effectiveness in tasks
requiring fine-grained text-image alignment.

Batch size. Table 10 presents the impact of batch size on model performance during training. To
ensure a fair comparison, we maintained a consistent total number of training steps by adjusting the
number of epochs: 5 for a batch size of 64, 10 for 128, and 20 for 256. We observed that a batch size
of 64 resulted in lower performance across all tasks. While the model trained with a batch size of 128
performed reasonably well, its zero-shot grounding performance was notably lower than that of the
256 batch size model. As a result, we selected 256 as the final batch size. This trend aligns with the
well-known impact of batch size in contrastive learning, where larger batch sizes generally improve
representation learning by providing more diverse negative samples, leading to better alignment and
discrimination.

C Model Training and Computational Details

C.1 Training Configuration

RadZero is trained for 20 epochs with an early stopping patience of 5 epochs, selecting the best model
based on validation loss. We employ the AdamW optimizer with a learning rate of 0.0001, following
a cosine decay scheduler, with 50 warm-up steps, a weight decay of 0.05, and gradient clipping set to
1.0. Training is conducted with a global batch size of 256 using distributed data parallel (DDP) on
four Nvidia H100 GPUs for 13 hours.
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C.2 Resolution Trade-off Analysis

RadZero employs high-resolution images of 518 px instead of 224 px, which naturally increases
the computational cost. Table 11 summarizes the trade-off between performance and resource usage
across different image resolutions. The columns with downward arrows (↓) indicate that lower values
are better.

Method GPU Memory↓ (GB) Training Latency↓ Throughput Cls Grnd Seg
Training Inference GPU hour↓ (ms/img) (img/s) AUC ACC DICE

RadZero (224px) 25.13 × 4 2.20 40 60.18 733.56 0.852 0.537 0.342
RadZero 73.36 × 4 2.38 52 70.05 94.93 0.851 0.622 0.359

Table 11: Performance–cost trade-off across different image resolutions.

Both models were trained using four GPUs with a batch size of 64 per device (total batch size of 256).
For inference, memory usage and latency were measured with a batch size of 1. Throughput (images
per second) was measured using the largest power-of-two batch size that fits into GPU memory for
each model: 4096 for the 224 px model and 256 for the 518 px model. Note that throughput (img/s) and
latency (ms/img) are not exact reciprocals because throughput is measured under a large-batch setting
where computation is parallelized across samples, while latency reflects the time required to process
a single image without such parallelism. All computational cost measurements were conducted
on Nvidia H100 GPUs using the ChestXray14 dataset. The reported performance represents the
average over all datasets for each task. The results indicate that the additional computational cost is a
worthwhile trade-off given the substantial improvement in fine-grained performance.

D Detailed Classification Analysis

D.1 Per-Finding Classification Performance

Tables 12-14 compare RadZero and CARZero [19] in terms of per-finding classification AUCs on the
OpenI, PadChest, and ChestXray14 datasets, respectively. For PadChest, which has a large number
of classes, we evaluated on five representative categories commonly used. The full names for each
abbreviation are provided in Table 16.

Method Mean ATE CARD EFF INFL MASS NOD PNA PTX EDE EMPH FIB PLTH HERN FX OPAC LES CG LG
CarZero[19] 0.838 0.859 0.933 0.938 0.776 0.887 0.612 0.877 0.921 0.900 0.899 0.917 0.822 0.953 0.726 0.784 0.976 0.658 0.621
RadZero(224px) 0.851 0.850 0.939 0.937 0.774 0.891 0.653 0.881 0.952 0.910 0.925 0.900 0.837 0.989 0.720 0.784 0.970 0.700 0.700
RadZero 0.847 0.857 0.933 0.933 0.775 0.886 0.630 0.870 0.949 0.902 0.926 0.904 0.820 0.982 0.701 0.781 0.929 0.731 0.734

Table 12: Class-wise disease classification results on the OpenI dataset.

Method Mean ATE CARD CONS EDE PNA
CarZero[19] 0.810 0.835 0.906 0.903 0.971 0.841
RadZero(224px) 0.841 0.839 0.917 0.902 0.973 0.846
RadZero 0.841 0.839 0.920 0.899 0.972 0.831

Table 13: Class-wise disease classification results on the PadChest dataset.

Method Mean ATE CARD EFF INFL MASS NOD PNA PTX CONS EDE EMPH FIB PLTH HERN
CarZero[19] 0.811 0.819 0.852 0.873 0.670 0.854 0.718 0.737 0.871 0.786 0.884 0.808 0.788 0.770 0.928
RadZero(224px) 0.807 0.796 0.864 0.857 0.672 0.859 0.742 0.772 0.873 0.784 0.883 0.631 0.807 0.789 0.963
RadZero 0.804 0.792 0.863 0.854 0.669 0.837 0.727 0.766 0.875 0.784 0.881 0.655 0.806 0.781 0.963

Table 14: Class-wise disease classification results on the NIH ChestXray14 dataset.

Consistent with the average performance, RadZero generally outperforms or matches CARZero
on OpenI and PadChest. On ChestXray14, our model performs comparably or better on most
pathologies, but a notable drop on emphysema (EMPH) accounts for the overall underperformance
on the dataset. However, RadZero outperforms CARZero on EMPH in OpenI, indicating that the
drop is dataset-driven rather than due to lesion-specific modeling issues. These results reaffirm that
while RadZero demonstrates strong zero-shot classification, further improvements in generalization
remain an important direction.
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D.2 Comparison with Supervised Baselines

Table 15 compares our zero-shot classification performance against supervised baselines reported
in prior work on the CheXpert and ChestXray14 datasets. For the baselines, the percentages in
parentheses indicate the proportion of training data used for supervised training. Since RadZero is
trained solely on MIMIC-CXR, its external test results on CheXpert and ChestXray14 are reported as
single zero-shot scores rather than separate results for 1%, 10%, and 100% of the training data. Note
that the results for CheXpert differ from those presented in Table 1, as a different test set was used.
Specifically, we followed the test split adopted in [45] to ensure a fair comparison with other models.
Although both RadZero and RadZero(224px) underperform some fully supervised models trained
with 10% or 100% of labeled data, they consistently outperform models trained with 1% supervision.
These results demonstrate that RadZero achieves competitive zero-shot classification performance,
consistent with the segmentation results in Table 4.

Method CheXpert ChestXray14
(1%) (10%) (100%) (1%) (10%) (100%)

ConVIRT [43] 0.870 0.881 0.881 - - -
REFERS [44]∗ 0.872 0.881 0.882 - - -
M3AE [11]∗ 0.862 0.873 0.879 - - -
MGCA [34] 0.888 0.891 0.897 - - -
MRM [45] 0.885 0.885 0.887 0.794 0.840 0.859
RadZero(224px) 0.888 0.807
RadZero 0.889 0.804

Table 15: Comparison of zero-shot classification performance of RadZero against supervised baselines
on CheXpert and ChestXray14 datasets. Results for models marked with an asterisk (∗) are taken from
[45], whereas the results for all other models are reported in their respective papers. The percentages
in parentheses indicate the proportion of training data used for supervised training.

E Additional Details

E.1 Abbreviations

Table 16 lists the abbreviations used in this paper for lesions and anatomical regions. The left column
shows the abbreviated terms, and the right column gives their description.

Abbreviation Description
ATE Atelectasis

CALC Calcification
CARD Cardiomegaly

CG Calcified Granuloma
CONS Consolidation
EDE Pulmonary Edema
EFF Effusion

EMPH Emphysema
FIB Fibrosis
FX Fracture

HERN Hernia
INFL Infiltration
LES Lesion
LG Lung Granuloma

MASS Mass
NOD Nodule
OPAC Opacity
PLTH Pleural Thickening
PNA Pneumonia
PTX Pneumothorax

(a) Lesion abbreviations

Abbreviation Description
UL Upper Lobe
ML Mid Lobe
LL Lower Lobe

Rclav Right Clavicle
Lclav Left Clavicle
RULZ Right Upper Lung Zone
RMLZ Right Mid Lung Zone
RLLZ Right Lower Lung Zone
LULZ Left Upper Lung Zone
LMLZ Left Mid Lung Zone
LLLZ Left Lower Lung Zone
RCPA Right Costophrenic Angle
LCPA Left Costophrenic Angle

HD Hemidiaphragm
RHD Right Hemidiaphragm
LHD Left Hemidiaphragm

(b) Anatomical region abbreviations

Table 16: Abbreviations for lesions and anatomical regions.
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E.2 Prompt for finding-sentence extraction.

As shown in Figure 7, the prompt instructs the LLM to extract clinically relevant minimal semantic
units in the form of sentences from radiology reports. Finding-sentences are standardized through
prompt alignment to follow a “There is” format, with a one-shot example enhancing extraction
accuracy and guiding the model to identify both findings and their corresponding anatomical locations
in a structured manner.

You are an expert medical assistant AI specializing in understanding and analyzing chest x-ray radiology reports. 	 	



Your task is to extract the medically significant and meaningful findings from the given chest x-ray report, focusing on identifying phrases or expressions that describe notable 
conditions or abnormalities. 	Note that the report may reference previous studies, but we only need an interpretation based on the current chest x-ray. Therefore, remove and 
rewrite terms like  "new", "improved", "unchanged", "worsened"  or "consistent" to reflect the current status in a way that indicates the condition exists as observed in this 
image, without implying any comparison to prior images or studies. 	

 	

The template format includes: 	

"There is [finding] of [location]." 

"There may be [finding] of [location]." 

"There is no [finding] of [location]." 



[finding] represents the extracted key findings from the radiology report, and [location] represents the anatomical location mentioned in the report. If no location is provided, 
do not include it in the output. Adhere strictly to the following JSON format for the final output, using examples as a guideline for the desired analysis structure. Do not 
provide any explanations; output only in JSON format. 	If the report does not contain any findings, output an empty list (example: {"finding_sentence": []}). 	  
	 
[Example] 	

INPUT: 	

Cardiomegaly is accompanied by improving pulmonary vascular congestion and decreasing pulmonary edema. Left retrocardiac opacity has substantially improved, likely a 
combination of atelectasis and effusion. A more confluent opacity at the right lung base persists, and could be due to asymmetrically resolving edema, but pneumonia should 
be considered in the appropriate clinical setting. Small right pleural effusion is likely unchanged, with pigtail pleural catheter remaining in place and no visible pneumothorax. 	 
 	 
OUTPUT: 	

{ 	  

    "finding_sentence" : [ 	    

        "There is cardiomegaly with pulmonary vascular congestion", "There is pulmonary edema", "There is left retrocardiac opacity", 	    

        "There may be atelectasis", "There may be effusion", "There is right lung base opacity", "There is right lung base opacity suggestive of possible pneumonia", 

        "There may be small right pleural effusion", "There is pigtail pleural catheter in place", "There is no pneumothorax"

    ] 	

}

Figure 7: Prompt design for extracting finding-sentences with LLM.

F Linguistic Robustness and Generalization Analysis

Query Retrieved Sentences (Top-k) Similarity

(a) the lungs are clear

The lungs are clear 1.000
Lungs are clear 0.994
The airways are clear 0.993
There is clear lungs 0.985
There are clear lungs 0.983
The chest is clear 0.982

(b) pleural effusion in
the right lower lung

There is pleural effusion in the right lower lung 0.993
There is a pleural effusion in the right lower lung 0.978
There is pleural effusion of the right lower lung 0.976
There is effusion in the right lower lung 0.968
There is a pleural effusion of the right lower lung 0.965
There is right lower lung pleural effusion 0.953

(c) there is fibrosis

There is fibrosis 1.000
There is probable fibrosis 0.937
There is lung fibrosis 0.937
There is chronic fibrosis 0.934
There is a component of fibrosis 0.924
There is fibrotic disease 0.917

(d) pleural effusion in
RLL (unseen)

There is pleural effusion with drainage 0.753
There is slight decrease in pleural fluid 0.725
There is collecting pleural fluid 0.708

Table 17: Examples of similarity search results using
RadZero’s text encoder. Cell colors indicate cosine simi-
larity: high (blue) ≥ 0.95, medium (yellow) ≥ 0.85, and low
(red) < 0.85.

To evaluate the linguistic robustness
of RadZero to variations in report tem-
plates and phrasing patterns, we con-
ducted a series of qualitative analy-
ses using similarity search within a
vector database of training sentences
encoded by RadZero’s text encoder.
In Table 17 (a), given a query sen-
tence “the lungs are clear”, the model
retrieved multiple semantically simi-
lar sentences with varied phrasing and
syntactic structures. These results in-
dicate that the encoder captures se-
mantic equivalence beyond fixed tex-
tual templates, such as recognizing
“the chest is clear” or “the airways are
clear” as close variants.

We further tested syntactic diversity
using queries with complex structures
(e.g., “pleural effusion in the right
lower lung”). As shown in Table 17
(b), the retrieved results included ex-
pressions such as “right lower lung
pleural effusion” and “pleural effusion of the right lower lung,” demonstrating the model’s robustness
to grammatical variations. Similarly, queries evaluating lexical flexibility (e.g., “there is fibrosis”
in Table 17 (c)) showed that RadZero identifies semantically related expressions such as “chronic
fibrosis” and “fibrotic disease,” suggesting strong generalization across vocabulary variations. These
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findings collectively suggest that RadZero is not confined to specific textual templates or vocabularies
and generalizes well across diverse linguistic patterns, thereby mitigating the risk of overfitting to
particular report styles.

However, we observed that embeddings may be less accurate for report expressions that were rare or
absent in the training data. One notable case involves abbreviations-for example, “RLL” (right lower
lung)-which occurred infrequently in the original reports. As shown in Table 17 (d), such unseen
abbreviations tend to yield weaker semantic alignment. To address this limitation, non-standardized
or abbreviated expressions can be rewritten into complete finding-sentences using LLM-based
normalization, which helps maintain robustness across diverse report formats.

G Statistical Significance of Main Results

To assess run-to-run variability and verify the statistical reliability of the reported performance, we
conducted additional experiments across five random seeds for all tasks. For each model and task, we
report the mean and standard deviation of the evaluation metrics.

Method Classification Grounding Segmentation

OI PC PC20 CXR14 CXP CXD10 SIIM RSNA CXD10 MS-CXR SIIM RSNA

RadZero 0.847 0.841 0.871 0.804 0.900 0.787 0.924 0.834 0.622 0.844 0.171 0.546

Mean (±) 0.848 (±) 0.840 (±) 0.869 (±) 0.802 (±) 0.899 (±) 0.787 (±) 0.918 (±) 0.843 (±) 0.601 (±) 0.845 (±) 0.164 (±) 0.549 (±)
std 0.0016 0.0011 0.0040 0.0016 0.0019 0.0043 0.0063 0.0072 0.0130 0.0143 0.0080 0.0023

Table 18: Mean and standard deviation of main results over five runs.

As shown in Table 18, the variance across runs is relatively small, indicating that the observed
improvements are consistent and not due to random fluctuations. These results confirm the stability
and robustness of RadZero across different random initializations.

H Additional Visualization Results
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Figure 8: Open-vocabulary semantic segmenta-
tion for anatomical regions. The CXR images are
sourced from Open-I. The segmentation threshold
was set to 0.4.

Figure 8 depicts segmentation of anatomical re-
gions, which, while not perfect, generally align
with appropriate locations. Figure 9 presents ex-
amples demonstrating RadZero’s potential for
open-vocabulary semantic segmentation, includ-
ing additional lesion types such as mass, fibro-
sis, and calcification. Full names of lesion and
anatomical region abbreviations are provided in
Table 16.

Figure 10 presents VL similarity maps for 10
different findings of the ChestXDet10 dataset,
following the pipeline in Sec. 5.2. The brightest
regions in the map align well with the bound-
ing boxes, even for multiple or small lesions.
The similarity probability was above 0.5 for all
findings except calcification. While the model
correctly localized calcifications, the activated
regions appeared as small bright spots, leading
to a lower similarity probability of 0.45 due to
the weighted sum calculation. This highlights a
limitation of RadZero, suggesting the need for
further refinement in future work.
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Figure 9: Open-vocabulary semantic segmentation for findings. The CXR images and bounding
box labels are sourced from ChestXDet10. The segmentation threshold was set to 0.7.
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Figure 10: Visualization of VL similarity maps generated by RadZero for 10 findings on the
ChestXDet10 dataset. Red boxes indicate ground truth bounding boxes. The similarity probability
l̂ is shown in the top-right corner of each map.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s scope by highlight-
ing RadZero and its core component, VL-CABS, which computes text–image similarity for
interpretable, fine-grained vision-language alignment. They also clearly describe RadZero’s
zero-shot capability across multiple tasks.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper explicitly discusses RadZero’s limitations in each section including
Sec. 6 Conclusion: performance gaps on certain datasets (Sec. 5.1), prediction of regions
extending beyond the ground truth bounding box in open-vocabulary segmentation (Sec.
5.3), and reliance on a pre-trained vision encoder (Sec. 5.4), suggesting directions for future
improvement.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This work mainly includes empirical contributions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed experimental configurations in Sections 4.4 and Appen-
dices C.1, E.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our experiments are all conducted on publicly accessible datasets, and the
details about the datasets used are described in Sections 4.1 (training data) and 4.2 (test
data). For experiment implementation, we follow the official code of exisiting works, all
code can be found in their official GitHub repository.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed for experimental configurations in Section 4.4 and Appen-
dices C.1, E.2, and for the data split in Sections 4.1 (training data) and 4.2 (test data).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean and standard deviation across five random seeds in Appendix
G, ensuring statistical significance and reliability of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: The information on the computation resources is described in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research was conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential societal impacts are mentioned in Sections 1 and 6.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not release data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to Sections 4.1 and 4.2.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: There is no new assets released in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work has no human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work has no human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

26

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This work have used a publicly available LLM for data processing. To prevent
any potential misuse, the LLM was executed on a secure, private server.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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