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ABSTRACT
The domain of image restoration encompasses a wide array of
highly effective models (e.g., SwinIR, CODE, DnCNN), each exhibit-
ing distinct advantages in either efficiency or performance. Select-
ing and deploying these models necessitate careful consideration
of resource limitations. While some studies have explored dynamic
restoration through the integration of an auxiliary network within
a unified framework, these approaches often fall short in practical
applications due to the complexities involved in training, retrain-
ing, and hyperparameter adjustment, as well as limitations as being
totally controlled by auxiliary network and biased by training data.
To address these challenges, we introduce FlexIR: a flexible and ma-
nipulable framework for image restoration. FlexIR is distinguished
by three components: a meticulously designed hierarchical branch
network enabling dynamic output, an innovative progressive self-
distillation process, and a channel-wise evaluation method to en-
hance knowledge distillation efficiency. Additionally, we propose
two novel inference methodologies to fully leverage FlexIR, catering
to diverse user needs and deployment contexts. Through this frame-
work, FlexIR achieves unparalleled performance across all branches,
allowing users to navigate the trade-offs between quality, cost, and
efficiency during the inference phase. Crucially, FlexIR employs a
dynamic mechanism powered by a non-learning metric indepen-
dent of training data, ensuring that FlexIR is entirely under the
direct control of the user. Comprehensive experimental evaluations
validate FlexIR’s flexibility, manipulability, and cost-effectiveness,
showcasing its potential for straightforward adjustments and quick
adaptations across a range of scenarios. Codes will be available at
[URL].

1 INTRODUCTION
Image restoration, a longstanding challenge, seeks to recover pris-
tine images from degraded counterparts, has been applied in a wide
range of industrial fields [16, 29, 44, 45]. The vast computational re-
sources available and large amount of data have driven researchers
to build powerful image restoration models with strong perfor-
mance. Convolutional Neural Networks (CNNs) have dominantly
addressed restoration tasks [20, 22, 41, 47, 56], yet their efficacy
is curtailed by the basic convolution layer’s limitations in captur-
ing long-range dependencies. With the proposal of self-attention
mechanism, transformer-based models have yielded impressive re-
sults [5, 21, 37, 46, 57] and become preferred choice for restoration
problems.
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Figure 1: Regular Branch Inference (left) and Adaptive Infer-
ence (right). In Regular Branch Inference, image regions are
recovered and integrated by setting pointer 𝑃 . For Adaptive
Inference, the pointer 𝑃 is initially set to 1. Utilizing a gra-
dient map, a score independent of the dataset is calculated
for each recovered region. Here, ℎ denotes the threshold, en-
abling regions with scores exceeding this threshold to be
promptly outputted. If the score does not surpass the thresh-
old, the pointer activates the next B-RSTB (𝑘 + +), optimizing
the inference process for enhanced performance.

Despite the abundance of models available for image restoration
tasks, the current landscape predominantly offers models that cater
to a coarse level of complexity and performance, each designed
for a specific resource allocation (e.g., FLOPs, GPU memory cost).
Although certain models [21, 51, 57] exhibit remarkable capabilities,
showcasing efficiency or performance orientation, they are inher-
ently static and tailored, lacking the flexibility to adapt to varying
resource limitations. In practice, the deployment of models across
diverse platforms necessitates adaptability to distinct resource con-
straints, such as energy, latency, and on-chipmemory. Recent efforts
in developing dynamic restoration networks [18, 36, 43] aim to ad-
dress these challenges by enabling automatic trade-offs. However,
these solutions fall short in scalable real-world deployment. Their
telepathic designs are employing an auxiliary network to aid unified
networks in identifying patch-level difficulties, facilitating adaptive
outputs post-training to minimize computational expenses. Yet, this
methodology demands intricate training processes, and the output
heavily depends on the model’s predetermined behavior. Moreover,
the auxiliary network’s decision-making process is significantly
influenced by the training dataset, posing generalization challenges
in practical scenarios, which often require extensive retraining and
hyperparameter tuning. A promising direction is the exploration
of non-learning metrics that do not depend on training data [25],
proposing a framework that allows human oversight over model
behavior and resource consumption. In summary, while dynamic
frameworks offer potential, their practical application remains lim-
ited by these constraints.

In this work, we introduce FlexIR, a flexible and manipulable
framework designed for image restoration tasks. FlexIR maintains
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the capability for dynamic outputs while eliminating the need for
joint training with an auxiliary network. This approach renders
the framework fully adaptable by users and suitable for a broad
spectrum of deployment scenarios. At the core of FlexIR is a hier-
archical network architecture, enhanced by our newly proposed
Branch Residual Swin Transformer Blocks (B-RSTB), which sup-
ports dynamic output generation. This branched network design
allows for straightforward manipulation during the inference stage
to meet varying resource requirements, eliminating the need for
retraining. To efficiently train the network, we devise a novel pro-
gressive self-distillation mechanism. This mechanism leverages a
pointer system to sequentially activate B-RSTBs, aiming for theo-
retically optimal restoration quality at each step. Our investigations
reveal that the knowledge (features) derived from the preceding
B-RSTB affects subsequent blocks in unique ways. This insight has
led us to introduce a channel-wise scoring mechanism for feature
distillation, enhancing the training process. We detail two technical
approaches for model inference: 1. Regular Branch Inference and 2.
Adaptive Inference wherein a dataset-irrelevant and gradient-based
scoring method is introduced. These approaches enable FlexIR to
cater to diverse application needs, as illustrated in Fig. 1 and will
be further discussed in methodology section. The primary contri-
butions of our paper are summarized as follows:

• We introduce FlexIR, a Flexible andManipulable Image Restora-
tion Frameworkwhich stands out as a versatile, cost-effective
solution tailored to meet varying user demands, capable of
seamless deployment across a broad spectrum of platforms
with distinct resource limitations.
• We present a novel progressive self-distillation mechanism
alongside a channel-wise scoring mechanism to enhance
model training, fostering greater efficiency and improved
convergence results. Additionally, we detail two innovative
approaches for model inference, incorporating adaptive in-
ference facilitated by a dataset-independent scoring method.
Two approaches amplifies FlexIR’s utility across diverse ap-
plication scenarios.
• Comprehensive experimental validations demonstrate our
method’s superiority. Specifically, the fully-equipped FlexIR
model rivals state-of-the-art alternatives, while its compact
variant outperforms other small-scale methods. Significantly,
FlexIR’s operational parameters during inference are manu-
ally adjustable, negating the need for complex retraining or
adjustment of auxiliary networks characteristic of existing
dynamic frameworks. This attribute underscores FlexIR’s
enhanced adaptability and capability to negotiate quality-
cost-efficiency trade-offs effectively.

2 RELATEDWORK
2.1 Image Restoration and Vision Transformer
Image restoration has long been dominated by CNN-based models,
demonstrating impressive performance in various tasks such as
image super-resolution [9], image denoising [51], and reducing
JPEG compression artifacts [8]. These CNN models excel at local
feature extraction and efficiently learn mappings between low-
quality and high-quality images using large image pairs.

Inspired by the remarkable success of transformers in NLP field,
researchers have ventured into applying transformer-based mod-
els to computer vision tasks, including image classification [10,
26, 31, 40], object detection [3, 23], and segmentation [40, 58].
In the domain of restoration tasks, recent methods have focused
on achieving a better trade-off between speed and quality. For
instance, Uformer [37] introduced a U-shape transformer-based
structure with a window transformer block for image restoration.
Restormer [46] adopted a U-shape structure and replaced the orig-
inal spatial attention with channel attention to reduce computa-
tional intensity while performing attention in a lower dimension.
SwinIR [21] proposed RSTB (Residual Swin Transformer Block)
based on Swin Transformer [26], incorporating a window shift
mechanism to reduce complexity and improve efficiency. More re-
cently, Zhao [57] presented an efficient transformermodel for image
restoration, transferring feature aggregation at the pixel level into
a lower-dimensional space of superpixels to avoid computationally
expensive global self-attention.

Some of these methods prioritize efficiency, while others focus
on effectiveness, nevertheless, they still fall under the category of
fixed models and are inflexible at the inference stage and cannot
adapt to diverse and dynamic deployment environment.

2.2 Dynamic, Flexible and Manipulable
The concept of dynamic neural networks seeks to enhance model
flexibility by adapting processing pathways based on the varying
complexity of input samples. This paradigm shift toward adap-
tive inference has spurred innovative approaches, for instance,
Branchynet [33] introduced an early exiting strategy for image
classification, allowing the model to exit from intermediate lay-
ers once it becomes confident enough in its predictions. Similarly,
PABEE [59] proposed a Patience-based mechanism, demonstrating
the feasibility of enhancing the efficiency of BERT [7] with theoreti-
cal analysis. FastBERT [24] further advanced this idea by combining
self-distillation with a sample-wise adaptive mechanism, striking
a balance between speed and accuracy in response to varying re-
quest amounts. MSDNet [14] and its variants [19, 42] develop a
multi-classifier architecture for the image classification task. These
methodologies, however, predominantly cater to classification prob-
lems and do not straightforwardly extend to the domain of image
restoration.

Feature\Method FlexIR Dynamic Methods
[18, 36, 43]

Fixed Methods
[21, 49, 51]

No Joint Training
(No Auxiliary Net) ✓ ✗ ✓

Dynamic ✓

(Optional) ✓ ✗

Flexible and
Manipulable ✓ ✗ ✗

Inference User-Controlled
Dataset-Irrelevant

Model-Determined
Dataset-Trapped

Computation
Cost Fixed

In the realm of dynamic image restoration, the conventional
approach employs an auxiliary network to gauge task difficulty at a
granular level. Classsr [18] introduces a dynamic super-resolution
strategy, leveraging a Class-Module for difficulty-based sub-image
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 (a) Overall Architecture of FlexIR                                                             (c) Channel-Wise Scoring Distillation    

(b) Branch Residual Swin Transformer Block (B-RSTB)
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Figure 2: Overview of FlexIR. (a) is the overall architecture of FlexIR, a pointer is utilized to activate B-RSTB step by step, which
also enables progressive self-distillation in training stage. (b) is network structure of Branch Residual Swin Transformer Block
(B-RSTB). A switch is associated with a pointer to determine whether to enter the branch network. (c) is the channel-wise
scoring distillation process. Partial activated network serves as student and full activated network serve as teacher, while a
score map 𝜙 is computed through a learnable channel attention network and student feature map is channel weighted for
further feature distillation.

classification followed by an SR-Module for resolution enhance-
ment. Adaptive Patch Exiting [36] offers a scalable solution for
super-resolution, employing a regressor to evaluate the incremen-
tal utility of each layer for a given patch. Path-Restore [43] pioneers
the use of reinforcement learning in training a pathfinder to navi-
gate the optimal processing route for each image, informed by a
difficulty-regulated reward mechanism. Despite their innovations,
these methods rely on auxiliary networks for functionality, ne-
cessitating joint training and model adjustments to refine output
behaviors—a process that is both complex and data-dependent,
challenging the generalizability [25] of these models in real-world
applications.

Contrasting these approaches, our FlexIR framework is distin-
guished by its independence from auxiliary network-driven ad-
justments. FlexIR’s operational parameters can be dynamically tai-
lored at the inference stage, obviating the need for joint training or
complex re-adjustment protocols. This design philosophy not only
simplifies the application of FlexIR but also enhances its flexibility
and manipulability to navigate quality-cost-efficiency trade-offs
more effectively.

3 METHOD
3.1 Architecture
As shown in Fig. 2 (a), our network is the hierarchical architecture
stacked with several Branch Residual Swin Transformer Blocks (B-
RSTBs). In general inference manifold, given a degraded image 𝐼𝐿𝑄 ,
we initially employ a standard feature extractionmodule to generate
a shallow feature representation 𝑒 . Subsequently, we feed the feature
representation 𝑒 into first B-RSTB if is activated. As depicted in
Fig. 2 (b), a pivotal switch is associated with a pointer, determining
whether to enter the branch network. If the next B-RSTB is not
activated by pointer, residual matrixM will be generated and added
to original image to obtain restored image 𝐼𝐻𝑄 , Conversely, when
the switch is off, the B-RSTB acts as an encoder and generates a
new feature map, as indicated in Equation (1):

𝑂𝑢𝑡𝑝𝑢𝑡 =


𝐼𝐻𝑄 =M + 𝐼𝐿𝑄 , 𝑠𝑤𝑖𝑡𝑐ℎ → on

𝐹 : Feature Map, 𝑠𝑤𝑖𝑡𝑐ℎ → off
(1)

By progressively activating more B-RSTBs, our model enhances its
encoder capability, thereby improving the restoration performance.
However, it’s essential to note that this also results in increased

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

memory and computing costs, but can be efficiently manipulated
by adjusting the pointer settings.

3.2 Model Training
The objective of FlexIR training is to achieve optimal restoration
results across all B-RSTBs. Differing from inference manifold, our
training process necessitates the utilization of both the feature map
𝐹 and 𝐼𝐻𝑄 for parameter optimization. One simple approach [24]
if applied here is to direct activate all B-RSTBs and perform back-
propagation collectively, this method may introduce optimization
conflicts, particularly between deeper and shallower B-RSTBs. To
mitigate this, we propose a progressive self-distillation approach
for model training.

3.2.1 Progressive Self-Distillation. The process of progressive
self-distillation (PSD) is associated with the movement of pointer.
Following a predefined training schedule, pointer progressively
activates B-RSTB step by step, while non-activated B-RSTBs do
not output residual matrix and acquire gradient for optimization.
Additionally, we introduce a teacher model, which is fully activated
FlexIR directly loading the pre-trained parameters from SwinIR [21],
to generate soft labels for feature distillation.Algorithm 1 outlines
the details of this process, including the loss strategy, which is
explained in the next subsection

3.2.2 Loss Function. We calculate Charbonnier loss [4] between
restored image and ground truth to optimize the parameters of
B-RSTB, the loss function L𝑐 is formulated as Equation (2):

L𝑐 =

√︃
| |𝐼𝐻𝑄 − 𝐼𝐻𝑄 | |2 + 𝜖2 (2)

where 𝜖 is a constant that is empirically set to 10−3.
Conducting progressive self-distillation in the early stage with

only Charbonnier loss may compromise the upper-bound perfor-
mance of deeper B-RSTBs. Inspired by prior works [38, 39], we
introduce a channel-wise scoring distillation process to regulate
parameter optimization, as depicted in Fig. 2 (c). A score map 𝜙 is
computed through a learnable channel attention network and is
defined as Equation (3):

𝜙 = 𝜎 (Θ(𝐴𝑃 (𝐹 )) + Θ(𝑀𝑃 (𝐹 ))) (3)

where 𝜎 denotes the sigmoid function, 𝐹 is the feature map and
𝐹 ∈ R𝑏×𝑐×ℎ×𝑤 , Θ is a shared MLP, 𝐴𝑃 and𝑀𝑃 represent average
pooling and max pooing respectively. Then, the loss function L𝐶𝐴
is calculated as Equation (4), in which 𝐹𝑡 is feature map obtained
from teacher model.

L𝐶𝐴 = | |
𝑐∑︁
𝑖

𝐹𝑏,𝑖,ℎ,𝑤 · 𝜙𝑖 − 𝐹𝑡 | |1 (4)

To further leverage the hierarchical structure and ensure the
best restoration quality, we minimize the total loss L through a
weighted average following [17], indicated as Equation (5):

L =

∑𝑛
𝑗=1 𝑗 · (𝛼 · L𝐶𝐴 𝑗

+ (1 − 𝛼) · L𝑐 𝑗 )∑𝑛
𝑗=1 𝑗

(5)

where 𝛼 is a hyper-parameter which is empirically set to 1/10.

Algorithm 1 Progressive Self-distillation

Data: D = {𝐼𝐿𝑄𝑖
, 𝐼𝐻𝑄𝑖

}𝑁𝑖
Materials: Max Epoch 𝐸, Schedule 𝑆 , Teacher model 𝑇 ,

Initialized model𝑀 , Loss L𝐶𝐴, L𝑐 and Weight 𝛼
Result: Self-distilled Model𝑀
1: Let 𝑒 ←− 0 // Initialize epoch
2: Let 𝑃 ←− 1 // Initialize pointer
3: while 𝑒 < 𝐸 do
4: Let 𝑑 = 𝑆 (𝑒) // Get pointer index 𝑑 as scheduled
5: if 𝑃 < 𝑑 then
6: Activate 𝑃𝑡ℎ B-RSTB and 𝑃 + +
7: end if
8: Loop 𝐼𝐿𝑄 , 𝐼𝐻𝑄 = 𝑁𝑒𝑥𝑡 (D)
9: for 𝑗 = 1; 𝑗 <= 𝑑 ; 𝑗 + + do
10: if 𝑗 == 1 then
11: 𝐼𝐻𝑄 𝑗

, 𝐹 𝑗 = B-RSTB𝑗 (𝐼𝐿𝑄 𝑗
) ; 𝐹𝑡 = 𝑇 (𝐼𝐿𝑄 )

12: else
13: 𝐼𝐻𝑄 𝑗

, 𝐹 𝑗 = B-RSTB𝑗 (𝐹 𝑗−1) ; 𝐹𝑡 = 𝑇 (𝐼𝐿𝑄 )
14: end if
15: L = 𝛼 · L𝐶𝐴 (𝐹 𝑗 , 𝐹𝑡 ) + (1 − 𝛼) · L𝑐 (𝐼𝐻𝑄 𝑗

, 𝐼𝐻𝑄 )
16: 𝑀 ← 𝐴𝑑𝑎𝑚(B-RSTB𝑗 ;L · 𝑗/

∑𝑑
𝑗=1)

17: end for
18: End Loop IF D is None
19: Do iteration 𝑒 + +
20: end while
21: Return𝑀

3.3 Model Inference
In this section, we present two technical inference approaches: 1.
Regular Branch Inference and 2. Adaptive Inference. After elucidat-
ing the mechanisms of these two approaches, we provide guidance
on their application in diverse scenarios.

3.3.1 Regular Branch Inference. As previously introduced, a
switch is associated with pointer to decide determine whether to
engage the branch network. This allows us to activate partial FlexIR
by controlling the pointer index, thereby achieving a diverse array
of trade-offs between GPU cost, speed, and restoration quality
within a single well-trained model. We observe that partitioning
an image into regions (e.p. four regions) can effectively reduce
computational costs with only a marginal performance degradation.
thus we also seamlessly integrate it into our inference process.
Further insights are provided in Algorithm 2.

3.3.2 Adaptive Inference. FlexIR is adept at performing infer-
ence adaptively, automatically activating certain B-RSTB modules
and fast outputs based on the characteristics of the input image.
The capability of Adaptive Inference is particularly beneficial when
handling a wide variety of input categories, we will discuss it in
next subsection.

One notable consensus is that, the difficulty of inference varies
due to the inherent variations in image content. Therefore, a pivotal
objective is to compute uncertainty scores for them. To this end, we
introduce a dataset-irrelevant criteria for uncertainty estimation.

4
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Algorithm 2 Inference Approaches
Input: Image 𝐼𝐿𝑄 , Pointer 𝑃 , Threshold ℎ
Materials: Partition operation K , Union operationU,
Scoring operation Ω
Output: Image 𝐼𝐻𝑄

1: Do {𝐼1, 𝐼2, ..., 𝐼𝑛} = K(𝐼𝐿𝑄 ) // Default: n=4
2: Let 𝑖 = 1 // Initialize region index
3: while 𝑖 <= 𝑛 do
4: if Inference type == Regular then
5: for 𝑗 = 1; 𝑗 < 𝑃 ; 𝑗 + + do
6: 𝐹 𝑗 = B-RSTB𝑗 (𝐼𝑖 ) // Switch on
7: end for
8: Let 𝑗 == 𝑃 // Output from last B-RSTB
9: 𝐼𝑖 = B-RSTB𝑗 (𝐹 𝑗−1) // Switch off
10: else if Inference type == Adaptive then
11: for 𝑗 = 1; 𝑗 <= 𝑃 ; 𝑗 + + do
12: 𝐼𝑖 , 𝐹 𝑗 = B-RSTB𝑗 (𝐼𝑖 )
13: if Ω(𝐼𝑖 ) > ℎ then
14: Break and Fast Output 𝐼𝑖
15: end if
16: end for
17: end if
18: Do iteration 𝑖 + +
19: end while // Then recover from regions
20: Do 𝐼𝐻𝑄 = U({𝐼 ′1, 𝐼

′
2, ..., 𝐼

′
𝑛})

21: Return 𝐼𝐻𝑄

We exploit the sharpness estimation method [48] in which maxi-
mum gradient and variability of gradients are utilized for scoring.
To specify the calculation, a gradient map 𝐺 ∈ Rℎ×𝑤 is first gener-
ated by a gradient operator (e.g. Roberts operator), after clipping the
gradient map to obtain the center of gradient map𝐺𝑐 ∈ Rℎ−𝐵×𝑤−𝐵
and 𝐵 = 𝑟𝑜𝑢𝑛𝑑 (𝑚𝑖𝑛(ℎ,𝑤)/16), the maximum gradient is calculated
as Equation (6):

𝑀𝐺 =𝑚𝑎𝑥 (𝐺𝑐 ) (6)

to capture content diversity from various regions, the gradient
variability is computed as Equation (7):

𝑉𝐺 =
(𝑚𝑎𝑥 (𝐺𝑐 ) −𝑚𝑖𝑛(𝐺𝑐 ))∑

𝑖, 𝑗 𝐺 (𝑖, 𝑗)/(ℎ ×𝑤)
(7)

Subsequently, the score Ω of an input image is obtained as Equation
(8):

Ω = 𝑀𝐺𝛽 ·𝑉𝐺1−𝛽 (8)

where 𝛽 is a constant that is empirically set to 0.61 [48].
Since the score is exclusively derived from the image itself, it

remains independent of the dataset and exhibits excellent general-
ization for uncertainty estimation. Moreover, due to the inherent
variation in difficulty within individual parts of one image, par-
titioning images into regions aligns more suitably with Adaptive
Inference.

����� �� ���� �� ��(× 4) � = 1

� = 1 � = 6 � = 1 � = 6 � = 4 � = 6

Figure 3: Visual analysis reveals intriguing trends across
different tasks (denoising, JPEG artifacts reduction, super-
resolution). The setting of pointer should follow the real user
requirements and the characteristic of executed task.

3.4 Real-world Applications Analysis
In this section, we explore the practical applications of FlexIR in
real-world scenarios, addressing questions such as the choice be-
tween Regular Branch Inference and Adaptive Inference, pointer
settings, the advantages of these two inference approaches, and the
determination of proper thresholds for Adaptive Inference.

3.4.1 Regular Branch Inference vs. Adaptive Inference
Regular Branch Inference. In scenarios where instances are ho-
mogeneous and share common characteristics, employing Regular
Branch Inference, as elucidated earlier, is advisable. For instance,
when dealing with similar cases (e.g., images of various fruits, im-
ages of various clothes), preemptive trade-offs can be identified.
Adaptive Inference. Conversely, in scenarios characterized by
diversity [6], adopting Adaptive Inference is prudent, as strong
priors are absent, and the nature of incoming cases is uncertain.
Adaptive Inference allows specification of the desired quality of
restored images by setting thresholds, with the scoring mechanism
relying on inherent image features, ensuring robust generalization
capabilities.

3.4.2 Deployment Strategy: Speed or Quality?
As a versatile instance adaptable for a myriad of scenarios, FlexIR
can be flexibly manipulated according to specific user requirements
in the inference stage, to determine speed-first or quality-first.
The Setting of Pointer. As depicted in Fig. 3, for tasks like image
denoising or reducing JPEG compression artifacts, where visual
differences are imperceptible, a smaller pointer number can be cost-
effective while maintaining a fast response speed. However, for
tasks like super-resolution, especially with larger scales, discernible
differences emerge, necessitating a larger pointer number to ensure
the quality of the outputs.
The Setting of Threshold. Threshold influences the efficiency
when applying Adaptive Inference. Unfortunately, determining the
optimal threshold is nearly unobtainable because we can not predict
what kind of images user will upload into the model. Our empirical
solution is to use user study methods (e.p. online AB test) with
prepared a series of threshold values and adjust the threshold based
on user feedback promptly.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Quantitative results of color image denoising on benchmark datasets. The best and second-best results (PSNR) are
colored by red and blue, respectively. FlexIR 𝑃 = 4 indicates that four B-RSTBs are activated while all B-RSTBs are activated in
Full Size FlexIR. 𝜎 refers to the noise level, of which a larger value denotes a higher noise level.

Method DnCNN
[51]

IRCNN
[52]

FFDNet
[56]

DSNet
[30]

BRDNet
[34]

RNAN
[54]

RDN
[55]

IPT
[5]

DRUNet
[49]

CODE
[57]

FlexIR
[𝑃 = 4]

FlexIR
[Full Size]

CSBD68
𝜎 = 15 33.90 33.86 33.87 33.91 34.10 - - - 34.30 34.33 34.39 34.39
𝜎 = 25 31.24 31.16 31.21 31.28 31.43 - - - 31.69 31.69 31.75 31.75
𝜎 = 50 27.95 27.86 27.96 28.05 28.16 28.27 28.31 28.39 28.51 28.47 28.52 28.53

Kodak24
𝜎 = 15 34.60 34.69 34.63 34.63 34.88 - - - 35.31 35.32 35.32 35.32
𝜎 = 25 32.14 32.18 32.13 32.16 32.41 - - - 32.89 32.88 32.87 32.87
𝜎 = 50 28.95 28.93 28.98 29.05 29.22 29.58 29.66 29.64 29.86 29.82 29.76 29.77

McMaster
𝜎 = 15 33.45 34.58 34.66 34.67 35.08 - - - 35.40 35.38 35.58 35.59
𝜎 = 25 31.52 32.18 32.35 32.40 32.75 - - - 33.14 33.11 33.28 33.28
𝜎 = 50 28.62 28.91 29.18 29.28 29.52 29.72 - 29.98 30.08 30.03 30.16 30.16

Urban100
𝜎 = 15 32.98 33.78 33.83 - 34.42 - - - 34.81 - 35.11 35.12
𝜎 = 25 30.81 31.20 31.40 - 31.99 - - - 32.60 - 32.87 32.88
𝜎 = 50 27.59 27.70 28.05 - 28.56 29.08 29.38 29.71 29.61 - 29.78 29.79

LQ (20.23 dB)

Ground Truth DnCNN (34.59 dB)  Drunet (35.52 dB) CODE (35.58 dB)

� = 1 (35.19 dB) � = 2 (35.46 dB) � = 3 (35.64 dB) � = 4 (35.68 dB)

� = 5 (35.68 dB) ���� ���� (35.68 dB) 
Figure 4: Visual comparison of color image denoising (noise level 25) on image “kodim09” from Kodak24. Pointer 𝑃 indicates
the number of activated B-RSTB while all B-RSTBs are activated in Full Size FlexIR.

Table 2: Quantitative results of JPEG compression artifact reduction on benchmark datasets. The best and second-best results
(PSNR/SSIM/PSNRB) are colored by red and blue, respectively. FlexIR 𝑃 = 4 indicates that four B-RSTBs are activated while all
B-RSTBs are activated in Full Size FlexIR. 𝑞 refers to compression level, a smaller value denotes a higher compression level.

Method DnCNN-3
[51]

RNAN
[54]

RDN
[55]

DRUNet
[49]

CODE
[57]

FlexIR
[𝑃 = 4]

FlexIR
[Full Size]

Classic5

𝑞 = 10 29.40/0.8026/29.13 29.96/0.8178/29.62 30.00/0.8188/- 30.16/0.8234/29.81 30.13/0.8225/- 30.11/0.8219/29.81 30.25/0.8249/29.95
𝑞 = 20 31.63/0.8610/31.19 32.11/0.8693/31.57 32.15/0.8699/- 32.39/0.8734/31.80 32.36/0.8731/- 32.33/0.8702/31.80 32.50/0.8746/31.98
𝑞 = 30 32.91/0.8861/32.38 33.38/0.8924/32.68 33.43/0.8930/- 33.59/0.8949/32.82 33.61/0.8951/- 33.61/0.8948/32.94 33.72/0.8959/33.05
𝑞 = 40 33.77/0.9003/33.20 34.27/0.9061/33.4 34.27/0.9061/- 34.41/0.9075/33.51 34.43/0.9078/- 34.43/0.9073/33.65 34.52/0.9081/33.72

LIVE1

𝑞 = 10 29.19/0.8123/28.90 29.63/0.8239/29.25 29.67/0.8247/- 29.79/0.8278/29.48 29.79/0.8281/- 29.75/0.8262/29.39 29.84/0.8282/29.50
𝑞 = 20 31.59/0.8802/31.07 32.03/0.8877/31.44 32.07/0.8882/- 32.17/0.8899/31.69 32.16/0.8901/- 32.13/0.8891/31.59 32.23/0.8905/31.71
𝑞 = 30 32.98/0.9090/32.34 33.45/0.9149/32.71 33.51/0.9153/- 33.59/0.9166/32.99 33.59/0.9168/- 33.57/0.9160/32.88 33.66/0.9171/33.00
𝑞 = 40 33.96/0.9247/33.28 34.47/0.9299/33.66 34.51/0.9302/- 34.58/0.9312/33.93 34.58/0.9313/- 34.56/0.9307/33.80 34.65/0.9314/33.91

4 EXPERIMENT
4.1 Experiment Setup
Implementation. For all our experiments, we maintain uniform
settings. Specifically, the B-RSTB number, STB number, window

size, channel number and attention head number are generally
set to 6, 6, 8, 180 and 6, respectively. B-RSTB consists of branch
network and RSTB network, therefore we use RSTB parameters
in SwinIR [21] to pre-train our FlexIR. In this context, SwinIR
can be regarded as a specific embodiment within the FlexIR
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framework, distinguished primarily by its static model ar-
chitecture. All experiments are conducted in PyTorch framework
with RTX 4090 GPU. For training, we use the Adam optimizer with
𝛽1 = 0.9 and 𝛽2 = 0.999. The learning rate is initialized to 1𝑒−5,
first increase then decrease through a linear warm-up strategy. For
data augmentation, we use horizontal and vertical flips and obtain
random 128 × 128 patches.
Evaluation. In our assessment of FlexIR’s adaptability and user-
directed manipulability, we undertake evaluations across three dis-
tinctive restoration tasks, training a singular model for each
while demonstrating various performance trade-offs through
the adjustment of pointer. Our evaluation involves two primary
steps: initially, we benchmark the peak capabilities of the FlexIR
model against various leading-edge methods by selecting a high
pointer index. Subsequently, we detail FlexIR’s performance met-
rics (#Params, MACs) at different pointer settings. This allows for
a nuanced comparison with commonly employed models of equiv-
alent scale or computational demand, including SwinIR, thereby
illustrating FlexIR’s efficiency and versatility in a comprehensive
manner.

4.2 Color Image Denoising
For color image denoising, we train FlexIR on a composite dataset
encompassing DIV2K [1], Flickr2k [35], BSD400 [2], and WED [27],
we test the performance on CBSD68 [28], Kodak24 [13], McMas-
ter [53] and Urban100 [15]. Consistent with existing methods [5,
30, 34, 49, 51, 52, 54–57], noise levels 15, 25 and 50 are used to
test the PSNR performance on several benchmarks. Tab. 1 shows
the quantitative results of color image denoising comparing with
existing method while visual comparison is presented in Fig. 4.

4.3 JPEG Compression Artifact Reduction
To evaluate our method on JPEG compression artifact reduction,
we train it on the same training datasets as color image denoising,
and same with existing work [11, 49, 51, 54, 55, 57], we apply JPEG
compression algorithm to images with quality factor of 10, 20, 30, 40
and test on two benchmark datasets: Classic5 [12] and LIVE1 [32].
Tab. 2 shows the comparisons of FlexIR with existing methods.
visual comparison is presented in Fig. 5.

4.4 Real-world Image Super-Resolution
Wealso conduct experiments on Real-world image Super-Resolution,
which is the ultimate goal of image SR for real-world applica-
tions. We test FlexIR on the real-world SR benchmark dataset Re-
alSRSet [50]. In view of no ground-truth, we provide visual com-
parison with basic LR (×2 and ×4), and present visual images from
FlexIR under different size, which is shown in Fig. 6. More visual
results will will be presented in the supplementary material.

4.5 Analysis Experiments
In this section, we conduct experiments on individual components
of FlexIR to better understand their effects. Our analysis consists
of two aspects: model training and model inference.
Analysis on Model Inference. We present performance and cost
comparisons of FlexIR under different settings against commonly
used methods on McMaster (noise 25) and Classic5 (quality factor

Ground Truth

LQ (30.11 dB) DnCNN-3 (33.17 dB)  Drunet (34.05 dB)

CODE (34.04 dB) ���� ���� (34.12 dB) � = 4 (33.94 dB)

Figure 5: Visual comparison of JPEG compression artifact re-
duction (quality factor 10) on image “monarch” from LIVE1.
Pointer 𝑃 indicates the number of activated B-RSTB while
all B-RSTBs are activated in Full Size FlexIR.

Table 3: Comparison of Params, MACs, PSNR under different
settings for color image denoising, 𝑃 is the pointer number.
PSNR is tested on McMaster (noise level 25), threshold for
adaptive inference is 1.1×.

Method #Params↓ MACs↓ PSNR↑
Full Size 11.46M 188.03G 33.28
𝑃 = 5 9.60M 157.52G 33.28
𝑃 = 4 7.74M 127.01G 33.28
𝑃 = 3 5.88M 96.50G 33.25
𝑃 = 2 4.02M 65.98G 33.12
𝑃 = 1 2.16M 35.47G 32.81

Adaptive* 11.46M - 33.27

SwinIR [21] 11.46M 188.03G 33.20
DnCNN [51] 0.56M 9.12G 31.52
DRUNet [49] 32.64M 35.90G 33.14

40) in Tab. 3 and Tab. 4 respectively. The analysis reveals that while
the full size FlexIR delivers superior performance, it also necessi-
tates increased computational resources. Modifying the pointer to
activate fewer B-RSTB layers results in notable savings in resource
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Figure 6: Visual comparison of real-world image SR (×2: first row, ×4: second row) on RealSRSet. Compared images are derived
from [50]. Pointer 𝑃 indicates the number of activated B-RSTB while all B-RSTBs are activated in "Full Size" FlexIR.

Table 4: Comparison of Params, MACs, PSNR under differ-
ent settings for JPEG compression artifact reduction, 𝑃 is
the pointer number. Performance (PSNR/SSIM/PSNRB) is
tested on Classic5 (quality factor 40), threshold for adaptive
inference is 1.1×. FlexIR surpass SwinIR on flexibility and
upper-bound PSNRB performance.

Method #Params↓ MACs ↓ Performance↑
Full Size 11.45M 202.72G 34.52/0.9081/33.72
𝑃 = 5 9.59M 169.81G 34.48/0.9078/33.70
𝑃 = 4 7.73M 136.90G 34.43/0.9073/33.65
𝑃 = 3 5.87M 103.98G 34.33/0.9064/33.52
𝑃 = 2 4.01M 71.07G 34.16/0.9045/33.42
𝑃 = 1 2.15M 38.15G 33.91/0.9013/33.41

Adaptive* 11.45M - 34.51/0.9081/33.70

SwinIR [21] 11.45M 202.72G 34.52/0.9082/33.66
DRUNet [49] 32.64M 35.90G 34.41/0.9075/33.51
RDN [55] 22.12M 362.46G 34.27/0.9061/-
RNAN [54] 8.96M 124.06G 34.27/0.9061/33.40

consumption, though at a slight compromise in performance met-
rics. Despite this, FlexIR demonstrates competitive advantages in
terms of PSNR/SSIM/PSNR-B, or exhibits lower memory require-
ments (#Params) when compared against analogous models, such as
when setting 𝑃 = 3 for FlexIR against RNAN [54] and DRUNet [49].
These comparative advantages are highlighted in the tables with
purple and pink shading. In our adaptive inference assessment,
we progressively adjust the inference threshold and evaluate the
impact on PSNR/SSIM and average time cost, as shown in Tab. 5.
Analysis onModel Training.We experiment with training FlexIR
while systematically abating the effects of Progressive Self-Distillation
(PSD) and Channel-Wise Scoring distillation (C-WS). We follow a
three-phase approach: initially training a pure FlexIR model using
self-distillation (SD), then substituting SD with PSD, and finally
incorporating the C-WS mechanism. As detailed in Tab. 6, by sum-
ming the average PSNR values obtained from all branches, we

observe an enhancement of 0.187 dB as a result of employing both
PSD and C-WS in the training process.

Table 5: Performance and cost under different threshold. In-
creasing threshold lead to a more cautious decision-making
by the model. PSNR/SSIM is computed on McMaster with
noise level 25.

Threshold PSNR↑ SSIM↑ Time Cost

1.00× 33.158 0.9023 14.25s
1.05× 33.259 0.9044 21.18s
1.10× 33.266 0.9045 22.34s
1.15× 33.270 0.9046 22.46s

Table 6: Ablation experiments for the components in FlexIR.
PSNR is computed on McMaster with noise level 25.

Method SD PSD C-WS PSNR↑

FlexIR
✓ - - 32.982
- ✓ - 33.059
- ✓ ✓ 33.169 (+0.187)

5 CONCLUSION
In this work, we present FlexIR, a novel framework designed for im-
age restoration, which integrates a hierarchical branch network, em-
ploys progressive self-distillation techniques, and utilizes channel-
wise evaluation to achieve superior adaptability and efficiency. Dis-
tinctively, FlexIR empowers users to effectively manage the trade-
offs between quality, cost, and efficiency, addressing the limitations
inherent in existing models that depend excessively on auxiliary
networks and are restricted by the biases present in their training
datasets. Through rigorous experimentation, FlexIR has exhibited
unparalleled flexibility and enhanced performance across a variety
of conditions, signifying a considerable progression in fulfilling
the complex demands of real-world applications. This framework
not only advances the state-of-the-art in image restoration but also
opens new avenues for user-centric model development.
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