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ABSTRACT

Crystalline structure prediction is an essential prerequisite for designing materi-
als with targeted properties. Yet, it is still an open challenge in materials design
and drug discovery. Despite recent advances in computational materials science,
accurately predicting three-dimensional non-polymeric crystal structures remains
elusive. In this work, we focus on the molecular assembly problem, where a
set S of identical rigid molecules is packed to form a crystalline structure. Such
a simplified formulation provides a useful approximation to the actual problem.
However, while recent state-of-the-art methods have increasingly adopted so-
phisticated techniques, the underlying learning objective remains ill-posed. We
propose a better formulation that introduces a loss function capturing key geometric
molecular properties while ensuring permutation invariance over S. Remarkably,
we demonstrate that within this framework, a simple regression model already
outperforms prior approaches, including flow matching techniques, on the COD-
Cluster17 benchmark, a curated non-polymeric subset of the Crystallography
Open Database (COD). We release an anonymous version of the code available at
https://anonymous.4open.science/r/SinkFast-CD4C/.

1 INTRODUCTION

Generative modeling and deep learning have enabled rapid progress in the understanding and design
of materials, molecules, and drugs. On the one hand, for material property prediction, advances in
graph neural networks and transformers have significantly improved the understanding of molecular
structures (Joshi et al., 2023; Lin et al., 2023; Choudhary & DeCost, 2021), linking their three-
dimensional (3D) geometry to physical and chemical properties. Particular attention has been paid
to SE(3)-equivariant representations, which present higher expressivity by preserving geometric
symmetries (Schütt et al., 2021). These methods have been adapted to crystalline structures, with
their inherent challenges of infinite periodicity and rich symmetry patterns (Yan et al., 2024a). Yan
et al. (2022; 2024a); Ito et al. (2025) yield state-of-the-art performance in property prediction of
crystalline structures thanks to physically grounded methods, reflecting the need to integrate physics
knowledge in models. On the other hand, for material design, generative models such as diffusion
models (Song et al., 2021) and flow matching methods (Liu et al., 2023) have greatly enhanced the
capacity to generate valid and diverse molecular and material structures (Watson et al., 2023). This
work aims to combine these two aspects for the task of molecular assembly prediction, where a finite
set of identical rigid molecules is packed into a crystalline structure.

A fundamental step in designing a material with specific properties is to know its crystallization
pattern. As represented in Figure 1, a crystal is conventionally described by a unit cell, the smallest
volume that contains all the structural and symmetry information necessary to generate the whole
crystal by translation. This three-dimensional infinitely periodic shape largely determines the physical
and chemical properties of the resulting material. This shape can be predicted either by regression
(Liang et al., 2020; Cao et al., 2024) or by flow matching/diffusion methods that allow for probabilistic
answers (Merchant et al., 2023; Xie et al., 2022; Luo et al., 2025; Pakornchote et al., 2024; Jiao et al.,
2023).
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Most of the previous methods model atoms in the unit cell individually. While such an approach
works well (Miller et al., 2024) for simple crystals of atomic point clouds from the Materials Project
(Jain et al., 2013), the performance degrades on more complex molecular materials with symmetries
other than translations. These contain internal point-group symmetries within the unit cell. An
asymmetric unit (ASU) is defined as an elementary pattern of the unit cell, irreducible under the
symmetry group transformations. A unit cell can be composed of multiple ASUs and an example
is shown in Figure 1-left. As this basic structure maintains a fixed internal structure, generating
the crystal by directly predicting the ASU position, orientation, and symmetry operations in the
world frame significantly reduces the dimensionality of the task, compared to moving each atom
individually. In this setting, the goal of the molecular assembly prediction problem can be formulated
as follows: given an elementary structure – an ASU –, predict its local crystalline structure, or in
other words, how it packs in space.

Related work Historically, the problem of computational material design has been extensively
studied through the lens of Crystal Structure Prediction (CSP) challenge. This was first tackled
through iterative process involving expensive spatial optimization (Martínez et al., 2009) and energy
assessment of predicted structures with first-principles calculations based on the density functional
theory (DFT) (Pickard & Needs, 2011; Kresse & Furthmüller, 1996). However, these methods
are slow, scale poorly with the number of atoms in the unit cell and thus may not be adapted to
infinite materials. More recently, generative models have emerged as promising candidates for this
task, especially for simple inorganic crystals (Xie et al., 2022; Jiao et al., 2023; Levy et al., 2025;
Nam et al., 2025). However, they have not yet been widely adapted for complex organic materials.
Nonetheless, very recent deep learning-based approaches study the molecular assembly prediction
task by atom-wise (Liu et al., 2024b) and rigid-body (Guo et al., 2025) flow matching. We detail
the SE(3) flow matching setup in Appendix B.6. Despite integrating sophisticated techniques, such
as diffusion and flow matching, some essential building blocks for non-polymeric crystal structure
prediction are still missing in these methods.

A thorough related works section is provided in Appendix A.

Contributions In this work we show the need of integration of domain-specific physics knowledge
in the training scheme of models and the challenges that constitute the task of material generation.
Our contributions can be summarised as follows:

1. Physics grounded loss. We show that a domain-specific rigid-body, model agnostic loss,
grounded in physical principles, leads to improved prediction of crystalline structures.

2. Permutation-invariant loss. We propose an effective differentiable soft matching objective
that is invariant to global geometric transformations and to the order permutation of repeated
molecular units.

3. Remaining challenges. While the proposed domain-driven learning objective enables us to
outperform prior approaches with a simple regression model, we also witness the challenges
that remain to be tackled to reach real-world applicability.

Figure 1: A crystalline material at three different scales. From left to right: (a) The asymmetric
subunit (ASU). (b) The unit cell with mirror images of the ASU. (c) The unit cell is repeated
periodically in all three directions. Illustrations correspond to the COD-4316210 crystal structure
from Crystallographic Open Database (Gražulis et al., 2009).
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2 PROBLEM SETTING

Problem formulation A -polymeric crystal is a solid material in which molecules are arranged in a
highly ordered pattern repeating in the three spatial dimensions (3D). The asymmetric units ASU that
constitute it are molecules that are identical objects in 3D. The unit cell is then defined by a finite
number of symmetry operators applied to the ASU. The pinnacle of crystalline structure prediction is
to compute the infinite 3D structure of a material given its substituent chemical compounds. To solve
this very challenging task, one can take a number of approximations and hypotheses. The molecular
assembly subproblem is a simplification of the original problem, where a finite set S of identical
rigid molecules is packed together from a state Sinitial into a state Sfinal which forms a pattern that can
be then replicated in space into a crystal. Our goal is thus to predict rigid spatial transformations
Ti for each molecule i that reconstruct the Sfinal set from the Sinitial set. We propose an efficient and
model-agnostic way to guide any machine learning model with physical knowledge of the task.

Dataset In this work we use the COD-Cluster17 assembly dataset introduced by Liu et al. (2024b),
specifically constructed for the task of non-polymeric crystal structure prediction. To the best of
our knowledge, this is currently the only available benchmark for this task. This dataset contains
111k assemblies and is a simplified, sanitized version of the 507k crystals from the real world
Crystallography Open Database (COD) (Gražulis et al., 2009). The procedure to build the dataset
is detailed in Liu et al. (2024b) and can be summarized as follows. Firstly, crystals are extracted
from the COD if: (1) their asymmetric unit contains only one molecule; (2) they do not present
disordered atoms (cases where some atoms do not occupy unique and uniquely attributed positions);
(3) they are non-polymeric. Then, the dataset is built by computing for each filtered crystal the
ground-truth supercell of an arbitrary asymmetric unit–referred to as the central molecule–, which is
the aggregation of 27 unit cells into a parallelepiped centered on the unit cell of the asymmetric unit
of interest. An example of a supercell is given in Figure 1-right. The authors of COD-Cluster17 then
extracted the central molecule’s 16 nearest neighbors using a cutoff in Euclidean space within this
supercell. This procedure outputs the final positions set consisting of each atom Cartesian coordinates.
Then, a random rigid-body transformation is applied to the atomic positions of each molecule, which
results in the initial positions set. The task for the COD-Cluster17 benchmark is then originally
a point cloud packing matching task of predicting all atoms final absolute positions, provided the
known correspondence with the initial positions. This task has also been formulated as a rigid-body
packing matching in Guo et al. (2025) as molecular integrity is preserved in both Sinitial and Sfinal sets.

However, the exact mapping enforcing specific index correspondences between the assembly atoms
or molecules is very unrealistic as the mapping is arbitrary. Indeed, all ASUs in a crystal are
geometrically, physically and chemically equivalent. Thanks to the filtering procedure of the COD-
Cluster17 dataset construction, as detailed above, the 17 molecules in Sinitial and Sfinal sets are thus
also equivalent. Then, there is no specific reason why i in Sinitial must be associated with i but
not a different index j in Sfinal. One of our contributions is thus to propose a more reasonable
task of packing molecules without enforcing index correspondences, preserving the invariance to
permutations of the set Sfinal of 17 molecules. It is important to note that despite the COD-Cluster17
benchmark is available in two distinct versions – with and without molecular inversion – Guo et al.
(2025) focus exclusively on the version without inversions for simplicity. While this assumption
ensures that molecules are identical under rigid transformations, we argue in Appendix D.1 that our
method can also be efficiently adapted to the inversion dataset.

Rigid body description We aim to predict the positions of rigid molecules in 3D, which can not
be described by single position vectors as for atoms. Instead, we represent the position of a rigid
molecule as a rigid spatial transformation operator T = (r⃗,q) composed of a 3D translation r⃗ ∈ R3

and a 3D rigid rotation quaternion q = [s, q⃗] ∈ SO(3), where s is its scalar part and q⃗ is its vector
part. See Appendix B for details.

3 METHODS

We will now refer to the global reference frame as an arbitrarily chosen coordinate system used
to represent the positions and orientations of the M molecules in the set S. In contrast, we define
local frames as those attached to the center of mass of each individual molecule, which rigidly move
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with them. These local frames are initialized using the principal components of each molecule’s
inertia tensor. While this initialization may not be unique, the specific choice does not affect the
relative transformations between local frames, which are the quantities actually used in the model
computations.

3.1 METRICS

Packing matching Current crystal structure prediction methods (Guo et al., 2025; Liu et al., 2024b)
typically use the Packing Matching (PM) score as an assessment metric. It is defined for atoms
positions x⃗ as follows,

PM2
atom =

1

N2

N∑

i=1

N∑

j=1

(
∥x⃗ pred

i − x⃗ pred
j ∥−∥x⃗ gt

i − x⃗ gt
j ∥

)2

, (1)

where N is the number of atoms in the assembly, x⃗pred
i (resp. x⃗gt

j ) is the position vector of atom i (resp.
j) in the predicted (resp. ground-truth) assembly. PM quantifies how well the pairwise distances
between the atoms are predicted, and is invariant to global rotations and translations. Also commonly
used, the PMcenter metric, is defined as follows,

PM2
center =

1

M2

M∑

i=1

M∑

j=1

(
||⃗c pred

i − c⃗ pred
j ||−||⃗c gt

i − c⃗ gt
j ||

)2

,

where M is the number of molecules in the assembly, c⃗ pred
i (resp. c⃗ gt

j ) is the position of ith molecule’s
(resp. jth) center of mass in the predicted (resp. ground-truth) assembly. It evaluates the quality of
the molecule positions regardless of their orientations.

Root mean square displacement RMSD is another metric common in chemistry, structural biology,
physics, and materials science. RMSD performs direct comparisons of atom positions, which requires
representing them in a common frame:

RMSD2
atom =

1

N

∑

i∈N

∥x⃗ pred
i − x⃗ gt

i ∥2. (2)

Note that Appendix C proves the relation PMatom ≤
√
2RMSDatom showing the correlation between

both metrics even though PM compares relative positions, whereas RMSD relies on absolute ones.
This relation shows that PM score is a good proxy for the RMSD assessment. In particular: "as
long as reported PM is greater than 2 times square root of 2 ȧngströms, RMSD is greater than 2
ȧngströms.".

S-Permutation invariant metric The molecular assembly task as defined in this paper aims at
matching a set Sinitial of M equivalent initial molecules to a set Sfinal of M final ones. As these
molecules are identical, positioning one at a given place or another is strictly equivalent physically. A
proper metric should thus reflect this S-permutation invariant property, which we now present.

We represent molecules i from the predicted assembly and j from the ground truth assembly by their
rigid-body positions T i

pred and T j
gt in the global reference frame, from which we can reconstruct atoms

positions x⃗pred
i and x⃗gt

j to compute the PM scores. We consider the cost matrix CL of any metric L
such as PMatom or PMcenter, such that CLij is the cost of assigning molecule i from the ground truth
assembly with the molecule j in the predicted assembly. This cost matrix is computed as follows:

∀{i, j} ∈ J1,MK2, CLij = L
(
T i

pred, T j
gt

)
. (3)

The goal is then to find a complete assignment of molecules in the predicted assembly with molecules
in the ground truth assembly, which minimizes the metric L over all S-permutations. This minimizer
is denoted L∗. Formally it is defined by the linear sum assignment problem. Let P be a boolean
pairing matrix in which Pij = 1 if and only if molecule i from ground truth assembly is mapped with
molecule j in the predicted assembly:

L∗ := min
P

∑

ij

CL
ij .Pij with Pij ∈ {0, 1} s.t. P · 1 = P⊤ · 1 = 1. (4)

In practice we use scipy’s linear sum assignment method to compute this exact minimizer L∗ of L.
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3.2 PHYSICALLY GROUNDED LOSSES

While the previous paragraph introduces useful permutation invariant atom-wise metrics, well suited
for evaluating atomistic predictions, we now turn to defining trainable objectives that are better
adapted to the rigid-body formulation of the task. Concretely, we propose two rigid-body loss
functions: LRMSD, which operates on absolute positions of molecules, and LGeom, which extends this
formulation to relative molecular positions. We will further show how these objectives can be made
S-permutation invariant through differentiable optimal assignment in section 3.3.

We now consider rigid body predicted (resp. ground-truth) positions in the global reference frame as
T pred = (r⃗ pred,q pred) (resp. T gt = (r⃗ gt,q gt)). The loss currently used in the literature decouples R3

and SO(3) spaces as:

L R3(T pred, T gt) = ∥r⃗ pred − r⃗ gt∥2 L SO(3)(T pred, T gt) = ∥q pred − q gt∥2, (5)

and then one can combine them with a tuned hyperparameter α as

LML = LR3 + αLSO(3). (6)

The α parameter has to be adjusted to the task one is trying to solve. It has to balance the weight of
unbounded distance in R3 to the bounded distance in SO(3). As different samples in the dataset may
have very different geometries, with inter-molecular distances spanning orders of magnitudes, having
a single parameter is suboptimal. Finally, as the space of rigid transformations SE(3) is not a direct
product of R3 and SO(3), this loss has no physical or geometrical meaning.

Rigid RMSD loss Popov & Grudinin (2014) introduced a more suitable rigid-body transformation
loss that is strictly equivalent to the RMSD2

atom metric in eq. 2. It is defined for a rigid transformation
T = (r⃗,q), with quaternion q = (s, q⃗) composed of a scalar s and a vector part q⃗, as follows.

RMSD2(T , I) = 4

N
q⃗ ⊤Iq⃗ + r⃗ 2, (7)

where I is an inertia tensor of the rigid body computed in its center-of-mass local frame (see Appendix
B for the definition). One can notice that in this frame the two RMSD2 contributions, rotation and
translation, are additive. The inertia tensor naturally provides a weight between the rotation and the
translation contributions. However, the cross-terms appear in the equation if we change the reference
frame as detailed in Appendix B. Thus, given two spatial transformations Tpred and Tgt, of the same
rigid body with the inertia tensor I, we can naturally define the physically-grounded RMSD loss
without additional hyperparameters as

LRMSD(Tpred, Tgt) = RMSD2(Tgt ◦ T −1
pred , I). (8)

We will use this RMSD loss as default during training and test to compare absolute positions in the
predicted assembly of molecules with the ground truth.

Geometric loss Regarding the task of molecular assembly prediction, we aim to define a loss that
better reflects the relative packing of molecules and not memorizing their absolute positions. Let
us consider two rigid molecules in an assembly S consisting of M molecules, i, j ∈ M . Let us
assume we have predicted a packing Spred of these molecules resulting in individual global spatial
transformations (or positions) Ti,pred and Tj,pred. We want to compare these transformations to the
corresponding ground-truth ones Ti,gt and Tj,gt from the packing Sgt. We can define the assembly
transformation-invariant PM metric for these molecules similar to the one in eq. 1. However, this
computation requires to first compute positions of all corresponding atoms. Instead, we propose a
more elegant rigid-body RMSD-based solution presented in Figure 2. Concretely, we compute the
RMSD2 metric between the ith molecules in the superposed local frames of the jth molecules, as
follows,

LRMSD(T −1
j,pred ◦ Ti,pred, T −1

j,gt ◦ Ti,gt) = RMSD2(T −1
j,gt ◦ Ti,gt ◦ T −1

i,pred ◦ Tj,pred, I). (9)

We can then extend the above expression to the comparison of M − 1 molecules to a reference one.
Without loss of generality, we can assume it is the M th molecule and define the geometric loss LGeom
as follows:

LGeom (Tpred, Tgt) =
1

M − 1

M−1∑

i=1

LRMSD(T −1
M,pred ◦ Ti,pred, T −1

M,gt ◦ Ti,gt). (10)
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In practice in COD-Cluster17, as detailed in section 2, the way the dataset is constructed defines a
reference molecule around which we extract the 16 nearest neighbors. We show some illustration of
the proposed losses in Appendix B.7.

A B

Reference
Molecule

Reference
Molecule

Target Prediction
Target vs Prediction before alignment Alignment of the Predicted Reference 

on the Target Reference molecules

Reference
Molecule

C

RMSD

Target vs Prediction after 
alignment

Figure 2: A schematic illustration of our geometric loss alignment and similarity measure computation.
A: Predicted and target couples of molecules with local frames before alignment. B: The reference
molecule from the predicted packing is aligned on the one from the target packing. C: Predicted and
target molecules after aligning both reference molecules on each other. The similarity measure is
then computed as the RMSD2 between the non-reference molecules.

3.3 DIFFERENTIABLE OPTIMAL ASSIGNMENT

As metrics are computed with invariance to S-permutations, it is essential to also train models with
permutation invariant losses. However, the linear sum assignment problem 4 is not differentiable and
results in training instabilities, as our preliminary experiments demonstrated. We thus use during
training the differentiable version of it provided by the Sinkhorn algorithm with the boolean pairing
P matrix being relaxed as ∀{i, j}, 0 < Pij < 1. The problem is then defined for any training loss L,
like LML,LRMSD or LGeom, such that:

L∗
train = min

P
⟨P, CL⟩F + reg · Ω(P )

with Pij ∈ [0, 1] s.t. P · 1 = P⊤ · 1 = 1 and P ≥ 0

with Ω(P ) =
∑

ij

Pij log(Pij)

(11)

An implementation of this algorithm as defined in Cuturi (2013) can be found in Python Optimal
Transport library (Flamary et al., 2021). This approach provides a feedback to the model with multiple
possible assignments weighted by P , which behaves like a probability map.

4 RESULTS

4.1 EXPERIMENTAL SETUP

Dataset We evaluate the performance of our approach on the COD-Cluster17 benchmark introduced
in Liu et al. (2024b). The dataset and the task are detailed in section 2. It contains 111k assemblies
and is a simplified, sanitized version of the 507k crystals from the real world Crystallography Open
Database. Previous methods also benchmark on a subset of 5k assemblies. This benchmark comes
with a splitting strategy into 80% for train, 10% for validation and 10% for test. The validation set is
used for best method selection throughout the training epochs and the final performances presented
in this section are obtained on the test set. Following previous works, we compare our approach on 3
seeds and report below the average performance.

Model We primarily compare our method called SinkFast to the state-of-the-art AssembleFlow
(Guo et al., 2025) method and thus reuse the same model. In particular, we consider here the atom-
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Table 1: Our best model SinkFast against state-of-the-art models on COD-Cluster17. Our method is
trained with L∗

ML (Eq. 6) or L∗
RMSD (Eq. 8) with permutation-invariance (Eq. 11). The best results are

marked in bold.

Flow
Matching

Packing Matching in Å↓
PMcenter PMatom PM∗

center PM∗
atom

Dataset: COD-Cluster17-5K
PackMol (Martínez et al., 2009) 6.05±0.05 7.10±0.05 - -
CDVAE (Xie et al., 2022) - - 10.50±0.52 14.81±0.89

DiffCSP (Jiao et al., 2023) - - 23.50±2.44 30.61±2.53

GNN-MD (Liu et al., 2024a) 13.80±0.07 13.67±0.06 - -
CrystalFlow-LERP (Liu et al., 2024b) ✓ 13.26±0.09 13.59±0.09 - -
AssembleFlow (Guo et al., 2025) ✓ 6.13±0.10 7.27±0.04 3.86±0.13 5.79±0.012

SinkFast - L∗
ML (ours) 5.80±0.03 6.96±0.03 3.60±0.04 5.54±0.04

SinkFast - L∗
RMSD (ours) 5.85±0.05 6.98±0.05 3.77±0.12 5.67±0.08

Dataset: COD-Cluster17-All
PackMol (Martínez et al., 2009) 6.09±0.01 7.15±0.01 - -
GNN-MD (Liu et al., 2024a) 14.51±0.82 22.30±12.04 - -
CrystalFlow-LERP (Liu et al., 2024b) ✓ 13.28±0.01 13.61±0.00 - -
AssembleFlow (Guo et al., 2025) ✓ 6.21±0.01 7.37±0.01 3.51±0.05 5.60±0.03

SinkFast - L∗
ML (ours) 5.80±0.00 7.00±0.01 3.47±0.04 5.51±0.02

SinkFast - L∗
RMSD (ours) 5.80±0.00 7.00±0.01 3.41±0.04 5.54±0.01

level SE(3)-equivariant model version described in Appendix D.2, that we refer to as the backbone.
Then we will refer to AssembleFlow as this backbone trained with a flow matching scheme, while
SinkFast refers to the same backbone trained with permutation invariance.

Training methods AssembleFlow uses a flow matching setting, in which the model is trained on
various interpolated rigid-body positions, which helps guide the optimization process. In contrast, our
method SinkFast is trained in simple regression, which is defined as the task of predicting the target
rigid-body positions directly from the initial positions. In this setting, the model takes exclusively as
input the initial rigid-body positions. Simple regression is equivalent to a one-step flow matching.

While AssembleFlow is trained with LML (Eq. 6) as the training objective, our method SinkFast is
trained with one of the following objectives: L∗

ML (Eq. 6), L∗
RMSD (Eq. 8) or L∗

Geom (Eq. 10) with
permutation-invariance (Eq. 11). Standard hyperparameters and models’ parameters are provided in
Appendix D.2. In particular, we keep the hyperparameter α in Eq. 6 fixed to 10, as it was tuned by
AssembleFlow authors for the task, and use 50 time steps of flow matching.

Baselines Inorganic crystal structure prediction is a fast-moving domain in which many state-of-the-
art models compete and innovate. As we want to compare the performance of current organic state of
the art to the inorganic one, we conduct experiments on the COD-Cluster17-5k dataset by retraining
both CDVAE (Xie et al., 2022) and DiffCSP (Jiao et al., 2023) models. Implementation details are
provided in Appendix F.1. Three other baselines, PackMol, GNN-MD and CrystalFlow-LERP, are
motivated by the AssembleFlow paper (Guo et al., 2025), from which their results are extracted.

All models were trained on a single NVidia H100 GPU system, with 80GB memory and 67 TFlops.
We trained them for 500 epochs, with a batch size of 8, Adam optimizer with a learning rate 10−4

adapted by a Cosine Annealing scheduler.

4.2 MAIN RESULTS

In Table 1 we present our models performance against six other state-of-the-art models on the COD-
Cluster17 dataset. First, while original state-of-the-art results are presented in PMcenter and PMatom,
we show under PM∗

center and PM∗
atom the importance of optimal assignment to get the best metric

performance over the set of S-permutations of the predicted assembly as detailed in section 3.3.
Indeed the metric decreases greatly under this optimal assignment, indicating the inability of models
to memorize positions for each molecule as they are equivalent. Then, we show that our method

7
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Table 2: Ablation study of using physically grounded losses during training on COD-Cluster17 in
two different training schemes: flow matching or simple regression with permutation-invariant loss.

Test Loss in Å↓ Packing matching in Å↓
Loss Flow Matching L∗

RMSD L∗
Geom PM∗

center PM∗
atom PMcenter PMatom

Dataset: COD-Cluster17-5K

LML ✓ 9.56±0.07 13.35±0.30 3.86±0.13 5.79±0.12 6.28±0.15 7.39±0.16

LRMSD ✓ 9.41±0.19 13.37±0.24 3.89±0.16 5.80±0.16 6.26±0.20 7.35±0.21

LGeom ✓ 9.22±0.06 10.45±0.55 3.90±0.08 5.85±0.04 6.14±0.02 7.20±0.05

L∗
ML 8.69±0.06 12.16±0.12 3.60±0.04 5.54±0.04 5.80±0.03 6.96±0.03
L∗

RMSD 8.73±0.07 12.05±0.15 3.77±0.12 5.67±0.08 5.85±0.05 6.98±0.05
L∗

Geom 9.32±0.06 8.78±0.05 5.55±0.15 6.54±0.07 6.92±0.07 7.46±0.02

Dataset: COD-Cluster17-All

LML ✓ 9.26±0.18 12.02±0.30 3.51±0.05 5.60±0.03 5.96±0.02 7.15±0.03

LRMSD ✓ 9.08±0.12 12.17±0.33 3.51±0.04 5.60±0.03 5.97±0.05 7.18±0.05

LGeom ✓ 9.33±0.10 10.77±0.13 3.78±0.09 5.76±0.05 6.09±0.07 7.21±0.05

L∗
ML 8.65±0.02 12.10±0.10 3.47±0.04 5.51±0.02 5.80±0.00 7.00±0.01
L∗

RMSD 8.70±0.03 12.16±0.08 3.41±0.04 5.54±0.01 5.80±0.00 7.00±0.01
L∗

Geom 9.35±0.00 8.71±0.03 5.43±0.10 6.52±0.05 6.84±0.06 7.45±0.02

outperforms all other baselines on both 5k subset and the full dataset by a significant margin. Notably
our method is the only deep learning method that outperforms PackMol on both datasets.

4.3 ABLATION STUDIES

Training with introduced losses Table 2 lists experiments conducted when training with physically
grounded losses, both in flow matching as in AssembleFlow (Guo et al., 2025) and in our simple
regression model with permutation invariant loss. We can draw 2 main conclusions: (1) training with
LRMSD (Eq. 8) performs on par with training with the tuned standard LML (Eq. 6) while having no
parameter to tune. And (2) both previous absolute losses fail to perform on the geometric relative
packing loss metric L∗

Geom (Eq. 10) while training with it is the solution. In reverse, training with this
relative loss yields poor results on absolute ones. This mainly shows the limitations of the absolute
packing matching task of interest here.

Moreover, these results along with ablation in Appendix E show a significant gain, dividing by up
to 3.8 the evaluation metric, when training with the S-permutation invariant losses, while not being
useful in flow matching. This reveals a redundancy between the two and that the main interest of flow
matching on this task thus lies in being an optimal transport approximator. While the added value of
flow matching is yet to be proven, its usage out of the box may not come handy. We believe it should
be better adapted to the domain specificities and tasks in further studies.

As rigid body transformations are composed here of both a rotation and a translation individually
predicted by our model, we present in Appendix E.4 the individual pure R3 and SO(3) performances.
This experiment shows that both AssembleFlow and SinkFast focus on positioning molecules in
space while mostly discarding their orientation.

Execution time Table 3 lists the execution time for the different methods. In particular, we are
interested in the expense of our S-permutation invariant loss and how it compares to the cost of
using a flow matching scheme. While it increases the training execution time by 20% compared to
simple regression without the permutation invariance, it saves by a factor 42 the overall training time
compared to flow matching. And as it is only used during training, the gain at inference is a factor 50
(number of time steps) compared to flow matching. However, as only one timestep is usually sampled
at training in flow matching, it is better to compare convergence time in terms of number of epochs
before convergence. While AssembleFlow converges after 350 epochs, SinkFast converges after less
than 100 epochs. The actual gain at training time is then a factor 3.5. As mentioned in Guo et al.
(2025), PackMol is 25 times slower than AssembleFlow, which makes it about 1,000 times slower
than SinkFast.
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Table 3: Execution times for our method reported on COD-Cluster17-5k. Results are presented as
average over 10 epochs at training and over 10 batches at inference. AssembleFlow is trained with 50
timesteps.

Method Training time (s)
per epoch

Test time (s)
per batch

AssembleFlow 2678.5 0.89
SinkFast - without permutation-invariant loss 53.6 0.02
SinkFast - with permutation-invariant loss 64.1 0.02

5 LIMITATIONS

Prediction quality Although our objective function refinement helps to boost the reported metrics,
the visualizations reported in Appendix G also show the large performance gap remaining to be closed
in discovering plausible and stable crystal structures. In particular, the orientations of molecules are
highly incorrect as reported and discussed in the ablation study in Appendix E.4. We believe new
methods should make use of all the geometrical properties of materials science to design powerful
yet efficient algorithms that can reliably perform on tasks always closer to real-life data. To the best
of our knowledge, this limitation affects all published work on the topic, including ours, highlighting
the current boundaries of the field and future research challenges.

Generalization While this work pushes the frontier of materials discovery on a specific benchmark,
its usefulness to other benchmarks is yet to be assessed. Our work has been designed to tackle a
weakness in the problem definition of common molecular assembly tasks and highlights the need for
a revised dataset definition. With a real-life application in mind, the absence of periodic boundary
conditions is a fundamental limitation of the COD-Cluster17 dataset and thus to this method. Indeed,
a predicted molecule position should be correct up to any unit cell translation. However, as no
periodicity information is available, prediction has to match absolute target positions, which hinders
the generalisation capability of any model. A second major limitation in COD-Cluster17 is the
absence of space group information for each training sample. The same rigid molecule can crystallize
in different configurations according to specific symmetry groups inside a unit cell that then replicates
infinitely in space. This conditions global structure prediction – and thus also the subtask of molecules
assembly – and can give different targets for the same common data. As a result, the generalisation
capability of any model is greatly hindered.

Applicability On the one hand, the molecule assembly task of COD-Cluster17 is far from the
non-polymeric crystal structure prediction one. While it is the only available benchmark in this field,
the community needs a more physically meaningful dataset with a proper benchmark definition, based
either on COD (Gražulis et al., 2009) (about 500k crystals) or OMC25 (Gharakhanyan et al., 2025)
(about 25 million crystals). However, OMC25 consists of simulated zero-temperature structures,
unlike the experimentally observed COD data.

On the other hand, if we want to use our model in practice, the molecular conformation is usually
not known and deeply related to the crystal structure. We study in Appendix F.2 the rigid body
approximation and our model’s performance on a different real-world test set, in which we generate
new molecular conformations through RDKit (Landrum et al., 2025). We conclude that the cur-
rent approximation is valid, however future models should be trained end-to-end, jointly learning
conformation and crystal structure prediction.

6 CONCLUSION

In this paper we have focused on a simpler subtask of the complex organic crystal structure prediction.
We have shown the necessity to use meaningful metrics on a benchmark and proven its utmost
importance to accurately compare methods. We have also demonstrated the importance to train
models with rigid-body losses grounded in physical principles that greatly improve performance
on molecule assembly. Such metrics are also essential to assess real-world applicability of current
methods. Our main contribution is the demonstration that the appropriate definition of a meaningful
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learning objective simplifies the problem, boosts the performance and speeds up the training scheme.
We release a simple implementation of the method to be used in future benchmarks. This work invites
to take a step back from large generative models and expensive methods, and instead focus on proper
problem definition and principled, physics-inspired solutions.

Ethics statement This paper is about machine learning models for crystallography. The research
is entirely computational and does not involve human subjects, animals, or sensitive data. All the
datasets are public. We do not anticipate any direct societal, ethical, or environmental risks arising
from this work.

Reproducibility statement This topic is of main importance to the authors of the paper. This
work’s reproducibility is ensured through the following key points.

• The implementation is provided through the anonymous repository https://
anonymous.4open.science/r/SinkFast-CD4C/.

• A complete description of the data processing step is provided in section 2.
• Details of our method and proofs are provided in Appendix B, C, D.
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APPENDIX

We release an anonymous version of the code available at https://anonymous.4open.
science/r/SinkFast-CD4C/.

A RELATED WORKS

A.1 PHYSICS INFORMED GNN FOR PROPERTY PREDICTION

Datasets. The fast-moving field of materials science has seen significant advances in recent years,
largely driven by the release of large-scale open-source datasets. Many of the works discussed here
rely on the QM9 database (Ramakrishnan et al., 2014), the Materials Project (Jain et al., 2013) and
JARVIS (Choudhary et al., 2020). With the recent release of even larger datasets such as OMol25
(Levine et al., 2025), the domain of materials property prediction and small molecule generation
continues to push the boundaries of materials discovery. OMol25 includes over 100 million DFT
calculations for larger molecular structures, providing an unprecedented wealth of properties to be
predicted.

GNN models. Graph Neural Networks (GNNs) with message passing (Kipf & Welling, 2017;
Rampášek et al., 2022) and transformer-based architectures (Ying et al., 2021; Menegaux et al., 2023)
have been widely applied to molecular property prediction. Initially adapted from 2D molecular
representations, GNNs have been extended to crystalline materials. Notable models include CGCNN
(Xie & Grossman, 2018), MEGNet (Chen et al., 2019), and GATGNN (Louis et al., 2020), which
pioneered the application of GNNs to materials property prediction.

Geometry informed GNN models. To better capture the geometric and physical properties of
materials, geometry-aware GNNs have been developed (Duval et al., 2023). Physically grounded
models such as ALIGNN (Choudhary & DeCost, 2021), Matformer (Yan et al., 2022), PotNet (Lin
et al., 2023) and ComFormer (Yan et al., 2024a) achieve state-of-the-art results on the Materials
Project dataset, demonstrating the importance of incorporating materials science knowledge into
predictive models. Concurrently, SE(3)-equivariant methods, known for their expressivity, have
emerged with models such as SchNet (Schütt et al., 2017), PaiNN (Schütt et al., 2021), SEGNN
(Brandstetter et al., 2022), SphereNet (Liu et al., 2022), NequIP (Batzner et al., 2022) and Equiformer
(Liao & Smidt, 2023).

A.2 OBJECT-CENTRIC LEARNING

Permutation invariance in object detection. In computer vision, permutation-invariant loss
functions have been used and developed in multiple object detection and segmentation (Carion et al.,
2020) and multi-object tracking (Xu et al., 2020). Locatello et al. (2020) and Kori et al. (2024) learn a
binding scheme for assigning objects to slots in object property prediction and unsupervised instance
discovery.

Point cloud rigid alignment distances. In the point cloud registration domain, Wang & Solomon
(2019) have studied rigid alignment of point clouds as well as prediction to target assignment.
However, they decorrelate R3 and SO(3) in the loss and reassign predictions to target only when
correspondence is unknown. Pais et al. (2019) study the registration of 3D scans and learn the rigid
alignment using different distances. Park et al. (2020) use Procrustes-alignment of 3D shapes to learn
a regression problem of predicting 3D positions of a deformable object from 2D frame observations.

A.3 GENERATIVE MODELS IN MATERIALS SCIENCE

Single molecule conformation prediction. Generating the 3D stable configuration of a single
molecule is essential for materials discovery. Datasets such as GEOM-Drugs (Axelrod & Gomez-
Bombarelli, 2022) and OMol25 (Levine et al., 2025) are tailored for this task. The OMol25 dataset
includes evaluations based on linear sum assignment for assessing optimal conformers, guided by
machine learning interatomic potentials (Smith et al., 2017) and Density Functional Theory (DFT)
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(Kohn & Sham, 1965). Generative approaches include flow matching models and SE(3)-equivariant
generative models such as those by Cornet et al. (2024) and Song et al. (2023).

Crystal Structure Prediction (CSP). Historically, CSP has relied on computationally expensive
iterative methods based on DFT (Kohn & Sham, 1965), including techniques by Wang et al. (2021);
Glass et al. (2006); Pickard & Needs (2011), where atoms are iteratively replaced by chemically
similar ones and validated with DFT calculations. Recently, machine learning has accelerated this
process (Schmidt et al., 2022; Merchant et al., 2023).

Generative models for atomic point clouds. For simple crystals from the Materials Project (Jain
et al., 2013), heir 3D infinitely periodic structures can now be directly predicted (Liang et al., 2020;
Cao et al., 2024). These methods are further enhanced by diffusion models (Merchant et al., 2023;
Xie et al., 2022; Pakornchote et al., 2024; Jiao et al., 2023; Levy et al., 2025) and flow-matching
approaches (Luo et al., 2025; Miller et al., 2024). Inspired by their success in other domains, Large
Language Models have been adapteed to CSP, as seen in CrystalLLM (Antunes et al., 2024) and
models that integrate SE(3) equivariance and periodic boundary conditions (Yan et al., 2024b).

Rigid-body generative models for organic molecular CSP. Rigid-body generative models are
extensively explored in protein design and backbone generation, as in AlphaFold2 (Jumper et al.,
2021), FrameDiff (Yim et al., 2023b), and FrameFlow (Yim et al., 2023a). Closer to molecular
crystals, studies now focus on assembly prediction. For example, Liu et al. (2024b) propose atom-
wise equivariant flow matching, while Guo et al. (2025) introduce a rigid body flow matching model
for molecular cluster packing prediction.

B RMSD AND RIGID MOTIONS

B.1 NOTATIONS

Throughout this section we will be generally dealing with 3× 3 matrices and 3-vectors. Therefore,
for linear algebra operations we will stick to the following notation. Bold upper case letters (i.e., A)
will denote matrices, normal weight lower case letters (i.e., c) will denote scalars, and we will also
use an arrow notation for 3-vectors, such as v⃗. Most of the information reported here can be found
in the original papers that deal with rigid-body measures for rigid molecules by Popov & Grudinin
(2014); Pagès et al. (2018); Pagès & Grudinin (2018).

B.2 RIGID-BODY ARITHMETIC

As we introduced in the main text, a rigid spatial transformation operator T = (⃗t, Q) is composed of
a 3D translation t⃗ ∈ R3 and a 3D rigid rotation quaternion Q = [s, q⃗] ∈ SO(3), which can also be
represented with a rotation matrix R, such that T = (⃗t,R). It is useful to introduce a composition of
spatial transformation operators T2 ◦ T1, where the operator T1 on the right is applied first, and an
inverse T −1. The composition will be given as

T2 ◦ T1 = (⃗t2 +R2t⃗1,R2R1) ≡ (⃗t2 +Q2 · t⃗1, Q2 ·Q1), (B.1)
where we define the quternion product in the next section. The inverse will be:

T −1 = (−R−1t⃗,R−1) ≡ (−RT t⃗,RT ) ≡ (−Q−1 · t⃗, Q−1), (B.2)
with an inverse quternion defined below.

B.3 QUATERNION ARITHMETIC

It is very convenient to express three-dimensional rotations using quaternion arithmetic. Thus, we
will give a brief summary of it here. We consider a quaternion Q as a combination of a scalar s
with a 3-component vector q⃗ = {qx, qy, qz}, Q = [s, q⃗]. Quaternion algebra defines multiplication,
division, inversion and norm, among other operations. The product of two quaternions Q1 = [s1, q⃗1]
and Q2 = [s2, q⃗2] is a quaternion and can be expressed through a combination of scalar and vector
products:

Q1 ·Q2 ≡ [s1, q⃗1] · [s2, q⃗2] = [s1s2 − (q⃗1 · q⃗2), s1q⃗2 + s2q⃗1 + (q⃗1 × q⃗2)] . (B.3)
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The squared norm of a quaternion Q is given as |Q|2 = s2 + q⃗ · q⃗, and a unit quaternion Q̂ is a
quaternion with its norm equal to 1. An inverse quaternion Q−1 is given as Q−1 = [s,−q⃗]/|Q|2.
A vector v⃗ can be treated as a quaternion with a zero scalar component, v⃗ ≡ [0, v⃗]. Then, a unit
quaternion Q̂ can be used to rotate vector v⃗ to a new position v⃗′ as follows

[0, v⃗′] = Q̂ [0, v⃗] Q̂−1 =
[
0, (s2 − q⃗2)v⃗ + 2s(q⃗ × v⃗) + 2(q⃗ · v⃗)q⃗

]
= [0, v⃗ + 2q⃗ × (q⃗ × v⃗ + sv⃗)] .

(B.4)
Equivalently, the same rotation can be represented with a rotation matrix R, such that v⃗′ = Rv⃗,

where R can be expressed through the components of the quaternion Q̂ as

R =




s2 + q2x − q2y − q2z 2qxqy − 2sqz 2qxqz + 2sqy
2qxqy + 2sqz s2 − q2x + q2y − q2z 2qyqz − 2sqx
2qxqz − 2sqy 2qyqz + 2sqx s2 − q2x − q2y + q2z


 . (B.5)

A unit quaternion Q̂ corresponding to a rotation by an angle α around a unit axis u⃗ is given as
Q̂ = [cos α

2 , u⃗ sin
α
2 ], and its inverse is Q̂−1 = [cos α

2 ,−u⃗ sin α
2 ]. Finally, N sequential rotations

around different unit axes defined by unit quaternions {Q̂i}N result in a new vector v⃗′ according to

[0, v⃗′] = Q̂N Q̂N−1...Q̂2Q̂1 [0, v⃗] Q̂
−1
1 Q̂−1

2 ...Q̂−1
N−1Q̂

−1
N . (B.6)

B.4 ROOT MEAN SQUARE DEVIATION

The root mean square deviation (RMSD) is one of the most widely used similarity criteria in chemistry,
structural biology, bioinformatics, and material science. We will stick to this measure here, as it
is very powerful, easy to understand and also because it can be computed very efficiently. For our
particular needs we will use the definition of RMSD between two ordered sets of points, where each
point has an equal contribution to the overall RMSD loss. More precisely, given a set of N points
A = {a⃗i}N and B = {⃗bi}N with associated weights w = {wi}N , the RMSD between them is
defined as

RMSD(A,B)2 =
1

W

∑

1≤i≤N

wi

∣∣∣⃗ai − b⃗i

∣∣∣
2

, (B.7)

where W =
∑

i wi. Here, {wi}N are statistical weights that may emphasize the importance of a
certain part of the molecular structure, for example in case of a protein, the backbone or Cα atoms.
These weights can also be equal to atomic masses (in this case W equals to the total mass of the
molecule) or may be set to unity (in this case W = N ). In this work, we set the weights to unity, thus

RMSD(A,B)2 =
1

N

∑

1≤i≤N

∣∣∣⃗ai − b⃗i

∣∣∣
2

, (B.8)

since it makes the following equations simpler to read and to use in practice. However, we should
keep in mind that the weights can be easily added to all the corresponding equations.

B.5 RIGID BODY MOTION DESCRIBED WITH QUATERNIONS

Let R be a rotation matrix and t⃗ a translation vector applied to a molecule with N atoms at positions
A = {a⃗i}N with a⃗i = {xi, yi, zi}T , such that the new positions A′ = {a⃗′i}N are given as a⃗′i =

Ra⃗i + t⃗. Then, the weighted RMSD between A and A′ will be given as

RMSD2(A,A′) =
1

W

∑

i

wi

∣∣⃗ai −Ra⃗i − t⃗
∣∣2 . (B.9)

We can rewrite the previous expression using quaternion representation of vectors a⃗i and t⃗ as

RMSD2 =
1

W

∑

i

wi

∣∣∣[0, a⃗i]− Q̂[0, a⃗i]Q̂
−1 −

[
0, t⃗

]∣∣∣
2

. (B.10)
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Here, the unit quaternion Q̂ corresponds to the rotation matrix R. Since the norm of a quaternion does
not change if we multiply it by a unit quaternion, we may right-multiply the kernel of the previous
expression by Q̂ to obtain

RMSD2 =
1

W

∑

i

wi

∣∣∣[0, a⃗i]Q̂− Q̂[0, ai]− [0, t⃗]Q̂
∣∣∣
2

. (B.11)

Using the scalar–vector representation of a quaternion, Q̂ = [s, q⃗], we rewrite the previous RMSD
expression as

RMSD2 =
1

W

∑

i

wi

[
−q⃗ · t⃗,−st⃗+ (2a⃗i − t⃗)× q⃗

]2
. (B.12)

Performing scalar and vector products in Eq. (B.12), we obtain

RMSD2 =
1

W

∑

i

wi

(
[qxtx + qyty + qztz]

2

+ [−stx + qy(2zi − tz)− qz(2yi − ty)]
2 (B.13)

+ [−sty + qz(2xi − tx)− qx(2zi − tz)]
2

+ [−stz + qx(2yi − ty)− qy(2xi − tx)]
2
)
.

Grouping terms in Eq. (B.13) that depend on atomic positions together, we obtain

RMSD2 = t2x + t2y + t2z +
4

W

∑

i

wi{q2x(y2i + z2i ) + q2y(x
2
i + z2i ) + q2z(x

2
i + y2i )

− 2qxqyxiyi − 2qxqzxizi − 2qyqzziyi} (B.14)

+
4

W

{
qxqztz + qxqyty − q2ztx − q2ytx + sqzty − sqytz

}∑

i

wixi

+
4

W

{
qyqztz + qxqytx − q2xty − q2zty + sqxtz − sqztx

}∑

i

wiyi

+
4

W

{
qyqzty + qxqztx − q2xtz − q2ytz + sqytx − sqxty

}∑

i

wizi.

Introducing the inertia tensor I, the rotation matrix R, the center of mass vector c⃗, and the 3 × 3
identity matrix E3, we may simplify the previous expression to

RMSD2 = t⃗2 +
4

W
q⃗T Iq⃗ + 2t⃗T (R−E3) c⃗, (B.15)

where c⃗ = 1
W {

∑
wixi,

∑
wiyi,

∑
wizi}T , rotation matrix R corresponds to the rotation with the

unit quaternion Q̂ according to Eq. (B.5), and the inertia tensor I is given as

I =




∑
wi(y

2
i + z2i ) −∑

wixiyi −∑
wixizi

−∑
wixiyi

∑
wi(x

2
i + z2i ) −∑

wiyizi
−∑

wixizi −∑
wiyizi

∑
wi(x

2
i + y2i )


 . (B.16)

The RMSD expression (B.15) consists of three parts, the pure translational contribution t⃗2, the
pure rotational contribution 4

W q⃗T Iq⃗, and the cross term 2t⃗T (R−E3) c⃗. In this equation, only two
variables depend on the atomic positions {a⃗i}N , the inertia tensor I, and the center of mass vector c⃗.
These depend only on the reference structure of a rigid molecule, and can be precomputed. Moreover,
it is practical to choose a reference frame centred on the molecular center of mass. In this frame, the
cross term vanishes and the above RMSD equation simplifies to

RMSD2 = t⃗2 +
4

W
q⃗T Iq⃗. (B.17)

However, we must bring reader’s attention that the inertia tensor must be specifically computed in the
chosen reference frame.
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B.6 SE(3) FLOW MATCHING

In the Euclidean space Conditional Flow Matching (Liu et al., 2023; Lipman et al., 2023; Albergo
& Vanden-Eijnden, 2023) is a simple scalable method to train generative models. The basic principle
is to choose a family X = {(Xt)t∈[0,1]} of interpolating paths between any source distribution P0

and the target distribution P1. The paths should be differentiable and have their marginal laws at
both ends t = 0 and t = 1 match the source and target distributions: L(X0) = P0 and L(X1) = P1,
respectively. The flow matching procedure consists in training a neural network u to match the
conditional velocity field vX induced by these paths:

vX(t, x) = E
[
Ẋt|Xt = x

]
. (B.18)

In practice, this family path is created with linear interpolations (LERP) between samples X0, X1

from P0,P1:
Xt = (1− t)X0 + tX1 = LERP(X0, X1, t). (B.19)

At inference time, samples are generated by solving the forward ODE induced by the velocity field,
by Euler discretization for example.

In SO(3) While this framework was originally designed for Rd, there exists an extension to SO(3)
(Chen & Lipman, 2024). Indeed, by representing rotations with unit quaternions, there is a natural
equivalent to linear interpolation, called Spherical Linear Interpolation (SLERP) (Shoemake, 1985).
This creates differentiable interpolation paths (qt) between source and target quaternions q0,q1:

qt = SLERP(q0,q1; t) = q0(q
1
0q1)

t. (B.20)

Combining LERP and SLERP, it is possible to linearly interpolate between two rigid-body transfor-
mations T0 = (r⃗0,q0) and T1 = (r⃗1,q1) as Tt = (LERP(r⃗0, r⃗1, t),SLERP(q0,q1; t)).

B.7 ILLUSTRATION OF THE PROPOSED PHYSICALLY-GROUNDED LOSSES

We illustrate in Figure B.1 how the different proposed losses evolve when the prediction is similar to
the ground-truth up to a certain rigid-body transformation, either rotation, translation or permutation.
In each of these cases, the predicted structure is correct chemically and physically and the loss
should thus be 0. This figure helps us illustrate 3 main motivations. First, the difference between
the parameter dependent LML and the physically meaningful LRMSD. Second, the geometric loss is
invariant to SE(3) transformations of the global picture but is not invariant to the index permutation
of the arbitrarily chosen ordering of identical molecules. Third, this invariance to index permutation
is enabled through the use of the linear sum assignment problem as detailed in section 3.1.

C METRICS

Theorem C.1. PM2
atom ≤ 2RMSD2

atom

Proof. Let us first define two metrics PMatom and RMSDatom as

PM2
atom =

1

n2
atom

∑

i∈natom

∑

j∈natom

(||x⃗i,pred − x⃗j,pred||−||x⃗i,gt − x⃗j,gt||)2, (C.1)

RMSD2
atom =

1

natom

∑

i∈natom

||x⃗i,pred − x⃗i,gt||2. (C.2)
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<latexit sha1_base64="Vp8ZIA/zOIq06X+gu5ch7aIs/Tk="></latexit> LML = 1

LRMSD = 2

LGeom = 0

L⇤
ML = 1

L⇤
RMSD = 2

L⇤
Geom = 0

1

2

z

xy

1

2

z

xy

1

2

z

xy

2

1

z

xy

Ground Truth Prediction

Rotation = 180° Translation = 

<latexit sha1_base64="NSHdYzU+W/NxG5AbRsZ4PeHH2DY="></latexit>✓ ◆1
1
1

Permutation : 1→2
2→1

<latexit sha1_base64="gDXREmmlfsNcqdsjNZT12S0dOtk="></latexit> LML = 0

LRMSD = 0

LGeom = 0

L⇤
ML = 0

L⇤
RMSD = 0

L⇤
Geom = 0

<latexit sha1_base64="l8N9Fng6c5PXDt6q0iScnSNY8gQ="></latexit> LML = 3

LRMSD = 3

LGeom = 0

L⇤
ML = 3

L⇤
RMSD = 3

L⇤
Geom = 0

<latexit sha1_base64="guswpYWXvbCN9TXE6gCSKcPmm2o="></latexit> LML = 5

LRMSD = 7

LGeom = 8

L⇤
ML = 0

L⇤
RMSD = 0

L⇤
Geom = 0

Figure B.1: Illustration how the proposed physically-grounded losses evolve under some transforma-
tions on a toy example. The numbers are arbitrary and not physically related.

We also define x̄pred = 1
natom

∑
i x⃗i,pred, x̄gt =

1
natom

∑
i x⃗i,gt, and use · as the scalar product. Let us

write down the following expression,

PM2
atom − 2RMSD2

atom =
1

n2
atom

∑

i∈natom

∑

j∈natom

(
4x⃗i,pred · x⃗i,gt − 2(x⃗i,pred · x⃗j,pred + x⃗i,gt · x⃗j,gt

+ ||x⃗i,pred − x⃗j,pred||||x⃗i,gt − x⃗j,gt||)
)

= 4(xpred · xgt)− 2x̄pred · x̄pred − 2x̄gt · x̄gt −
2

n2
atom

∑

i∈natom

∑

j∈natom

||x⃗i,pred − x⃗j,pred||||x⃗i,gt − x⃗j,gt||

(C.3)

By Cauchy-Schwarz enquality (or maximizing the cosine of an angle between two vectors), we obtain

2

n2
atom

∑

i∈natom

∑

j∈natom

||x⃗i,pred − x⃗j,pred||||x⃗i,gt − x⃗j,gt||≥

2

n2
atom

∑

i∈natom

∑

j∈natom

(x⃗i,pred − x⃗j,pred) · (x⃗i,gt − x⃗j,gt),

(C.4)

which gives

PM2
atom − 2RMSD2

atom ≤ −2(̄⃗xpred −¯⃗xgt)
2, (C.5)

thus,

PM2
atom − 2RMSD2

atom ≤ 0. (C.6)
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Theorem C.2. PM metric is SE3-invariant.

Proof. Let us again consider

PM2(xpred, xgt) =
1

n2
atom

∑

i∈natom

∑

j∈natom

(||x⃗i,pred − x⃗j,pred||−||x⃗i,gt − x⃗j,gt||)2. (C.7)

This quantity is invariant up to any rigid transformation T = (R, t⃗) of one of its inputs. Indeed,

PM2
atom(T ◦ xpred, x⃗gt) =

1

n2
atom

∑

i∈natom

∑

j∈natom

(||T ◦ x⃗i,pred − T ◦ x⃗j,pred||−||x⃗i,gt − x⃗j,gt||)2

=
1

n2
atom

∑

i∈natom

∑

j∈natom

(||Rx⃗i,pred − t⃗−Rx⃗j,pred + t⃗||−||x⃗i,gt − x⃗j,gt||)2

=
1

n2
atom

∑

i∈natom

∑

j∈natom

(||R(x⃗i,pred − x⃗j,pred)||−||x⃗i,gt − x⃗j,gt||)2

=
1

n2
atom

∑

i∈natom

∑

j∈natom

(||x⃗i,pred − x⃗j,pred||−||x⃗i,gt − x⃗j,gt||)2

= PM2
atom(x

pred, xgt)
(C.8)

Theorem C.3. Geometric loss is SE3-invariant.

Proof. We consider:

LGeom (Tpred, Tgt) =
1

M − 1

M−1∑

i=1

LRMSD(T −1
M,pred ◦ Ti,pred, T −1

M,gt ◦ Ti,gt). (C.9)

This quantity is invariant up to any transformation Tnoise of one of its inputs:

LGeom (Tnoise ◦ Tpred, Tgt) =
1

M − 1

M−1∑

i=1

LRMSD

(
(Tnoise ◦ TM,pred)

−1 ◦ Tnoise ◦ Ti,pred,

T −1
M,gt ◦ Ti,gt

)

=
1

M − 1

M−1∑

i=1

LRMSD

(
T −1
M,pred ◦ T −1

noise ◦ Tnoise ◦ Ti,pred,

T −1
M,gt ◦ Ti,gt

)

=
1

M − 1

M−1∑

i=1

LRMSD

(
T −1
M,pred ◦ Ti,pred, T −1

M,gt ◦ Ti,gt

)

= LGeom (Tpred, Tgt)

D METHOD AND IMPLEMENTATION

D.1 EXTENSION TO THE INVERSION DATASET

We argue that our method can also be applied to the inversion version of the dataset. Indeed this
version, defined in Liu et al. (2024b), presents half of the 17 molecules in each assembly as the
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left-handed and right-handed geometries of a chiral or achiral molecule. The latter molecules can
interconvert during crystallization and thus, our permutation-invariant approach can be applied on
this dataset. In the case of chiral molecules which can not interconvert during crystallization, the
invariance to permutation can be adapted to the 2 subsets of left-handed and right handed geometries
individually.

D.2 ASSEMBLEFLOW ATOM-LEVEL MODEL

We use the Atom-level implemented in AssembleFlow and which can be described in Algorithm D.1.
It is composed of a PaiNN embedding layer to encode each molecular structure individually followed
by N layers of atom-to-molecules attention message passing. Each molecule’s transformation
prediction is then obtained by aggregating the resulting atomic embeddings per molecule and passed
through a projection head.

Algorithm D.1 Atom-level model.

def AtomModel({ai} : atoms, t : time, {P⃗t
i} : positions, Nlayer = 5, Nconv = 5, c = 128)

1: t = Linear(SiLU(Linear(time_embed(t)))) [c]
2: {ht

i} = PaiNN({ai}, {P⃗t
i}) + Linear(SiLU(t)) [Natom, c]

3: {sti} = ScatterMeanper mol({ht
i}) [Nmol, c]

4: {X⃗t
i} = ScatterMeanper mol({P⃗t

i}) [Nmol, 3]
5: {etij} = RadialGraph({P⃗t

i}, {X⃗t
i}) Atom to Molecules edges

6: for all {i, j}/etij = 1 :

7: ∆t
ij = P⃗t

i − X⃗t
j/∥P⃗t

i − X⃗t
j∥

8: χt
ij = P⃗t

i × X⃗t
j/∥P⃗t

i × X⃗t
j∥

9: Λt
ij = ∆t

ij × χt
ij

10: Basetij = concat(∆t
ij , χ

t
ij ,Λ

t
ij) [Edges, 3, 3]

11: Et
i = MLP(GaussianFourierEmbed(Basetij · P⃗t

i)) [Edges, c]
12: Et

j = MLP(GaussianFourierEmbed(Basetij · X⃗t
j)) [Edges, c]

13: {ztij} = MLP(concat(Et
i,Et

j)) [Edges, c]
14:end for
15:Rt

i = 0 and Sti = 0
16:for all l ∈ [1, ..., Nlayer]:
17: for all f ∈ [1, ..., Nconv]:
18: {h̃t

i} = GATf
conv({ht

i}, {stj}, {ztij})
18: {ht

i} = {ht
i}+ LayerNorm({h̃t

i})
19: {h̃t

i} = FFNf ({ht
i})

20: {ht
i} = {ht

i}+ LayerNorm({h̃t

i}) + Linear(SiLU(t))
21: if l < Nconv :
22: {ht

i} = SiLU({ht
i})

23: end if
24: end for
25: {sti} = ScatterMeanper mol({ht

i})
26: Rt

i ← Rt
i + ScatterMeanper mol

(

Meanj∈N (i){MLP(concat(ht
i + stj , ztij)) · Basetij}

)
[Nmol, 3]

27: Sti ← Sti + ScatterMeanper mol

(

Meanj∈N (i){Proj
(
Linear

(
MLP(concat(ht

i + stj , ztij)) · Basetij
))
}
)

[Nmol, 4]
28: end for
29: return {Sti ,Rt

i}
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D.3 IMPLEMENTATION DETAILS

D.3.1 HYPERPARAMETERS AND NUMBER OF PARAMETERS

Table D.1 lists the hyperparameters used during training along with the number of parameters for the
model and the memory usage.

Table D.1: Hyperparameters used in the model.

Model part Function Parameters

Training Epochs {500}
Batch size {8}

Loss {LM: {alpha: 10}}
{RMSD: ∅ }

{Geometric: ∅ }

Assignment {None: ∅}
{’Exact’: ∅}

{’Differentiable’:
{reg=5.10−2.median_score}}

Optimizer Name {Adam}
Learning rate {10−4}
Weight decay {0}
Scheduler {’CosineAnnealingLR’}

Molecular Encoder cutoff {5}
(PaiNN) embedding dim {128}

number of interactions {3}
number of rbf {20}
scatter {’mean’}
gamma {3.25}

Backbone emb_dim {128}
(AssembleFlow Atom) hidden dim {128}

cutoff {10}
cluster cutoff {50}
number of timesteps {1, 50}
scatter {’mean’}
number of Gaussians {20}
number of heads {8}
number of layers {5}
number of convolutions {5}
gamma {3.25}

Total number of parameters: 4 292 718

Total memory usage: 38.9 GB

D.3.2 LICENSES AND VERSIONS

The common environment packages are released with the code through a conda environment. We
also report in Table D.2 the versions and licenses of the main packages used.
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Table D.2: Versions and licenses.

Package Version License

COD-Cluster17 git commit MIT

AssembleFlow Model git commit MIT

POT 0.9.5 MIT

RMSD - CeCILL

E ABLATION STUDIES

E.1 DIFFERENTIAL ASSIGNMENT WITH DIRECT REGRESSION

In Table E.1, we list the experiments of training or not with differential assignment in direct regression
with the AssembleFlow atom-level model. We want to draw the attention to the PM∗ methods and
the great added value of using our assignment method regardless of the loss being used.

Table E.1: Ablation study of using differentiable assignment (Diff. assign.) losses during training on
COD-Cluster17 with direct regression.

Test Loss in Å↓ Packing matching in Å↓

Loss Diff.
assign. L∗

RMSD L∗
Geom PM∗

center PM∗
atom PMcenter PMatom

Dataset: COD-Cluster17-5K

LML 9.64±0.21 11.43±0.08 5.62±0.31 6.68±0.24 6.97±0.23 7.62±0.18

LRMSD 9.64±0.03 11.24±0.15 5.57±0.19 6.67±0.07 6.93±0.12 7.61±0.02

LGeom 10.10±0.14 10.05±0.11 8.44±0.43 8.37±0.26 9.05±0.37 8.74±0.22

L∗
ML ✓ 8.69±0.06 12.16±0.12 3.60±0.04 5.54±0.04 5.80±0.03 6.96±0.03

L∗
RMSD ✓ 8.73±0.07 12.05±0.15 3.77±0.12 5.67±0.08 5.85±0.05 6.98±0.05

L∗
Geom ✓ 9.32±0.06 8.78±0.05 5.55±0.15 6.54±0.07 6.92±0.07 7.46±0.02

Dataset: COD-Cluster17-All

LML 11.67±0.07 11.33±0.05 12.94±0.16 10.47±0.03 13.03±0.15 10.47±0.02

LRMSD 11.58±0.04 11.20±0.12 12.98±0.13 10.44±0.01 13.07±0.12 10.43±0.01

LGeom 11.90±0.08 11.38±0.09 13.62±0.07 10.52±0.01 13.66±0.06 10.49±0.01

L∗
ML ✓ 8.65±0.02 12.10±0.10 3.47±0.04 5.51±0.02 5.80±0.00 7.00±0.01

L∗
RMSD ✓ 8.70±0.03 12.16±0.08 3.41±0.04 5.54±0.01 5.80±0.00 7.00±0.01

L∗
Geom ✓ 9.35±0.00 8.71±0.03 5.43±0.10 6.52±0.05 6.84±0.06 7.45±0.02

E.2 DIFFERENTIAL ASSIGNMENT WITH FLOW MATCHING

Table E.2 lists the experiments of switching on and off the expensive flow matching framework
(table 3) along with using the differential assignment. The added value of flow matching when using
the differential assignment loss is not very clear in the current framework. As it does not always
significantly help the method, we suspect a need to further adapt the assignment method to the
iterative flow matching scheme. However, we would like to point out two things. Firstly, it greatly
improves the performance of the relative geometric method on the absolute metrics while decreasing
it on the relative metric. Secondly, it enable to reach the overall best performance in the PM∗

center
metric.

We report in Table E.3 (resp. E.4) a clearer ablation study conducted with LRMSD (resp. LGeom) of
training the AssembleFlow backbone with or without flow matching and permutation-invariant loss.
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Table E.2: Ablation study of using flow matching in addition to differentiable assignment losses
during training on COD-Cluster17.

Test Loss in Å↓ Packing matching in Å↓

Loss Flow
Matching L∗

RMSD L∗
Geom PM∗

center PM∗
atom PMcenter PMatom

Dataset: COD-Cluster17-5K

L∗
ML 8.69±0.06 12.16±0.12 3.60±0.04 5.54±0.04 5.80±0.03 6.96±0.03

L∗
RMSD 8.73±0.07 12.05±0.15 3.77±0.12 5.67±0.08 5.85±0.05 6.98±0.05

L∗
Geom 9.32±0.06 8.78±0.05 5.55±0.15 6.54±0.07 6.92±0.07 7.46±0.02

L∗
ML ✓ 9.31±0.25 13.54±0.50 3.48±0.19 5.60±0.14 6.12±0.23 7.29±0.21

L∗
RMSD ✓ 9.53±0.54 13.71±0.40 3.43±0.20 5.56±0.14 6.12±0.19 7.28±0.17

L∗
Geom ✓ 9.09±0.09 10.48±0.18 3.72±0.11 5.73±0.04 6.04±0.10 7.19±0.05

Dataset: COD-Cluster17-All

L∗
ML 8.65±0.02 12.10±0.10 3.47±0.04 5.51±0.02 5.80±0.00 7.00±0.01

L∗
RMSD 8.70±0.03 12.16±0.08 3.41±0.04 5.54±0.01 5.80±0.00 7.00±0.01

L∗
Geom 9.35±0.00 8.71±0.03 5.43±0.10 6.52±0.05 6.84±0.06 7.45±0.02

L∗
ML ✓ 9.37±0.09 13.69±0.21 3.42±0.12 5.63±0.07 6.15±0.12 7.36±0.09

L∗
RMSD ✓ 9.51±0.38 13.42±0.22 3.29±0.04 5.53±0.04 6.01±0.06 7.23±0.07

L∗
Geom ✓ 9.28±0.09 10.72±0.13 3.89±0.23 5.88±0.12 6.27±0.17 7.40±0.12

Table E.3: Ablation study of using flow matching and differentiable assignment loss during training
on COD-Cluster17-All with LRMSD.

Flow
Matching

Permutation
Invariance L∗

RMSD PM∗
center PM∗

atom

11.58±0.04 12.98±0.13 10.44±0.01

✓ 9.08±0.12 3.51±0.04 5.60±0.03

✓ 8.70±0.03 3.41±0.04 5.54±0.01

✓ ✓ 9.51±0.38 3.29±0.04 5.53±0.04

Table E.4: Ablation study of using flow matching and differentiable assignment loss during training
on COD-Cluster17-All with LGeom.

Flow
Matching

Permutation
Invariance L∗

Geom PM∗
center PM∗

atom

11.38±0.09 13.62±0.07 10.52±0.01

✓ 10.77±0.13 3.78±0.09 5.76±0.05

✓ 8.71±0.03 5.43±0.10 6.52±0.05

✓ ✓ 10.72±0.13 3.89±0.23 5.88±0.12
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E.3 USING LINEAR SUM ASSIGNMENT DURING TRAINING AGAINST DIFFERENTIABLE
ASSIGNMENT

We report in Table E.5 the experiment of using the linear sum assignment (exact) during training
against the differential assignment (relaxed). On the one hand, using the exact solver during training
enables backpropagation for each molecule in the assembly along the path leading to its assigned
target, while killing the other gradients corresponding to other paths to unassigned targets. On the
other hand, the relaxed differential version preserves the gradients to all possible paths with probability
attached to each, which enables a more diverse learning. While being suboptimal compared to the
differential assignment, the added value of using the latter is very small as shown in Table E.5. We
report here the performance obtained without tuning the regularization parameter of the Sinkhorn
algorithm and exploring its influence on the overall performance. Nonetheless we argue that this
hyperparameter should should play an important role with better-performing methods in the future.
Indeed we believe that if the method learned nearly perfectly to match a molecule to its target position,
this relaxed method would diversify the search space and act as a data augmentation method, the
amount of which would be set by the regularization parameter.

Table E.5: Ablation study of using differential or exact assignment losses during training on COD-
Cluster17 with direct regression.

Test Loss in Å↓ Packing matching in Å↓

Loss Assignment
type L∗

RMSD L∗
Geom PM∗

center PM∗
atom PMcenter PMatom

Dataset: COD-Cluster17-5K

L∗
ML Exact 8.70±0.06 12.24±0.14 3.64±0.12 5.56±0.08 5.81±0.04 6.96±0.04

L∗
RMSD Exact 8.72±0.07 12.19±0.05 3.65±0.05 5.61±0.03 5.81±0.02 6.96±0.04

L∗
Geom Exact 9.32±0.05 8.80±0.08 5.51±0.25 6.53±0.14 6.90±0.14 7.45±0.06

L∗
ML Diff. 8.69±0.06 12.16±0.12 3.60±0.04 5.54±0.04 5.80±0.03 6.96±0.03

L∗
RMSD Diff. 8.73±0.07 12.05±0.15 3.77±0.12 5.67±0.08 5.85±0.05 6.98±0.05

L∗
Geom Diff. 9.32±0.06 8.78±0.05 5.55±0.15 6.54±0.07 6.92±0.07 7.46±0.02

Dataset: COD-Cluster17-All

L∗
ML Exact 8.65±0.02 12.18±0.02 3.37±0.03 5.47±0.02 5.78±0.01 6.99±0.01

L∗
RMSD Exact 8.70±0.03 12.14±0.09 3.44±0.09 5.56±0.03 5.80±0.01 7.00±0.01

L∗
Geom Exact 9.35±0.03 8.71±0.03 5.40±0.07 6.51±0.05 6.84±0.05 7.46±0.03

L∗
ML Diff. 8.65±0.02 12.10±0.10 3.47±0.04 5.51±0.02 5.80±0.00 7.00±0.01

L∗
RMSD Diff. 8.70±0.03 12.16±0.08 3.41±0.04 5.54±0.01 5.80±0.00 7.00±0.01

L∗
Geom Diff. 9.35±0.00 8.71±0.03 5.43±0.10 6.52±0.05 6.84±0.06 7.45±0.02

E.4 ANGULAR VS TRANSLATIONAL PREDICTION

We report in table E.6 the decomposition of the RMSD score in both its translation L∗
R3 and rotation

L∗
SO(3) parts. Please note that L∗

RMSD
2 = L∗

R3
2 + L∗

SO(3)
2, following eq. 7. The noise baseline is

computed by always using an identity transformation as a prediction, meaning, a zero translation and
an identity rotation, and computing the RMSD between the sets Sinitial of initial positions and Sfinal of
final positions. Presented results indicate the scale of the problem and show in particular that initial
orientations are better than predicted ones. This table shows that both models mainly focus on the
translation part of the problem, while discarding rotations completely.

Equivariant version. We have made an attempt to make the output of the model equivariant with
the aim to improve in particular the orientation predictions. The implementation of this adaptation is
presented in Algorithm E.1. We report the results of the experiment in Table E.7. Unfortunately, the
problem remains unsolved and we believe that the model definition requires deeper modifications. It
requires more advanced equivariant techniques to improve the expressivity of its intermediate layers,
which results in changing completely the AssembleFlow backbone.

E.5 DEPENDENCY TO SKINHORN REGULARIZATION PARAMETER
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Table E.6: Both AssembleFlow and SinkFast RMSD performance decomposed between translation
and rotation on COD-Cluster17-5K. Baseline scores indicate the scale of the metric and are computed
between Sinitial and Sfinal as if the model always predicts identity transformations.

Test Loss in Å↓
Model Loss L∗

RMSD L∗
R3 L∗

SO(3)

Dataset: COD-Cluster17-5K

Noise (Baseline) 12.83±0.05 11.55±0.02 5.42±0.06

LML 9.53±0.09 7.60±0.09 5.65±0.06

AssembleFlow LRMSD 9.43±0.23 7.47±0.21 5.66±0.10

LGeom 9.12±0.05 7.10±0.07 5.65±0.14

L∗
ML 8.90±0.11 6.63±0.06 5.87±0.09

SinkFast L∗
RMSD 8.86±0.09 6.66±0.06 5.77±0.07

L∗
Geom 9.33±0.11 7.49±0.09 5.50±0.07

Algorithm E.1 Equivariant atom-level model.

def AtomModel({fa} : atomic features, t : time, {P⃗t
a} : atomic positions,

{Qt
m} : molecular orientations,Nlayer = 5, Nconv = 5, c = 128)

1 : t = MLP(time_embed(t)) [c]
2 : {ht

a} = PaiNN({fa}, {P⃗t
a}) + Linear(SiLU(t)) [Natom, c]

3 : {stm} = ScatterMeanper mol({ht
a}) [Nmol, c]

4 : {X⃗t
m} = ScatterMeanper mol({P⃗t

a}) [Nmol, 3]
5 : {etij} = RadialGraph({P⃗t

a}, {X⃗t
m}) Atom to Molecules edges

6 : for all {i, j}/etij = 1 : Each molecule j that is the neighbor of each atom i
7 : ∆t

ij , χ
t
ij ,Λ

t
ij = OrthNorm(P⃗t

m,0, P⃗
t
m,2, P⃗

t
m,3) 3 first atoms of molecule m s.t. i ∈ m.

8 : Basetij = concat(∆t
ij , χ

t
ij ,Λ

t
ij) | origin: O⃗t

ij = P⃗ t
m,0 [Edges, 3, 3]

9 : Et
i = MLP(GaussianFourierEmbed(Basetij · [P⃗t

i − O⃗t
ij ])) [Edges, c]

10: Et
j = MLP(GaussianFourierEmbed(Basetij · [X⃗t

j − O⃗t
ij ])) [Edges, c]

11: {ztij} = MLP(concat(Et
i,Et

j)) [Edges, c]
12: end for
13: Rt

m = P⃗t
m and Stm = Basetm,j=0 as quaternion

14: At
i = Stm ∀m ≤ Nmol s.t. i ∈ molecule m.

15: for all l ∈ [1, ..., Nlayer]:
16: for all f ∈ [1, ..., Nconv]:
17: {h̃t

i} = GATf
conv({ht

i}, {stj}, {concat(ztij ,At
i(Qt

j)
−1, (Basetij)

−1(Pt
i −Xt

j))})
18: {ht

i} = {ht
i}+ LayerNorm({h̃t

i})
19: {h̃t

i} = FFNf ({ht
i})

20: {ht
i} = {ht

i}+ LayerNorm({h̃t

i}) + Linear(SiLU(t))
21: if l < Nconv :
22: {ht

i} = SiLU({ht
i})

23: end if
24: end for
25: {stm} = Meani∈m({ht

i})
26: {F t

ij} = concat(ht
i + stj , ztij ,At

i(Qt
j)

−1, (Basetij)
−1(Pt

i −Xt
j)) [Edges, 2*c+7]

27: Rt
m ← Rt

m + Meani∈m

(
Meanj∈N (i){MLP(F t

ij) · Basetij}
)

[Nmol, 3]

28: At
i ← Meanj∈N (i)

(
Proj

(
Linear

(
MLP(F t

ij) · Basetij
)) )

.At
i [Nmol, 4]

29: Stm ← RotationMeani∈m (Stm,At
i, h

t
i) [Nmol, 4]

30: end for
31: return {Sti ,Rt

i}
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Algorithm E.2 Aggregation function of quaternions.
def RotationMeanindex({q1,i} : initial quaternions, {q2,j} : quaternions to aggregate,

{Eij} : edge attribute between i and j, λ = 1 : regularization)
2: {wij} = Linear({Eij}) [Edges, 1]

3:Mi =
∑

j∈N(i) w
2
ijq

−1
2,j×q−1

2,j∑
j∈N(i) w

2
ij

with × the outer product [N1, 4, 4]

4:MSym = 1
2 (M+MT ) [N1, 4, 4]

3: Ui = DomEigVec(MSym
i + λ.q−1

1,i × q−1
1,i ) get dominant eigen vector [N1, 4]

5: q1,i ← q1,i.Ui.q1,i

6: return {q1,i}

Table E.7: Ablation study of making SinkFast’s backbone equivariant and trained with flow matching
on COD-Clutser17 - 5k. The model is trained with LGeom loss as it is then purposed for relative
prediction tasks.

Flow
Matching

Equivariant
Backbone L∗

Geom PM∗
center PM∗

atom

8.87 5.48 6.53
✓ 9.22 5.55 6.66

✓ 10.34 3.99 5.88
✓ ✓ 10.26 4.79 6.27

In Table E.8, we report the experiments of training our SinkFast model with different values of the
regularization coefficient in the Sinkhorn algorithm. We can observe that the model is quite sensitive
to this parameter with the best results obtained with a regularization value of 10. For such a value of
this parameter, the permutation probability matrix is smooth, neither too uniform nor too sharp.

Table E.8: Sensitivity experiment of SinkFast method to Sinkhorn’s regularization coefficient. The
model is trained with L∗

RMSD loss on COD-Clutser-5k.

Sinkhorn
Regularization

Parameter
L∗

RMSD PM∗
center PM∗

atom

100 9.56±0.07 6.58±0.21 7.27±0.07

50 8.95±0.06 3.73±0.08 5.73±0.07

10 8.87±0.05 3.64±0.06 5.66±0.05

5 8.89±0.05 3.76±0.04 5.72±0.04

2 8.89±0.10 3.87±0.13 5.79±0.10

1 8.91±0.09 3.99±0.05 5.85±0.04

1e-1 8.92±0.08 4.11±0.04 5.91±0.05

1e-2 8.99±0.02 4.07±0.00 5.90±0.02

1e-3 9.12±0.07 4.50±0.03 6.09±0.03

F ADDITIONAL EXPERIMENTS

F.1 COMPARISON TO INORGANIC-BASED METHODS

Inorganic crystal structure prediction is a fast-moving domain in which many state of the art models
compete and innovate. We here want to compare the performance of current organic state of the art to
the inorganic one. Thus, we conduct experiments on the COD-Cluster17-5k dataset by retraining
both CDVAE (Xie et al., 2022) and DiffCSP (Jiao et al., 2023) models. In both cases, the models are
trained to predict the target set of atomic positions from a noise distribution, where the same atoms
are randomly positioned in space. Both methods operate in fractional coordinates and require a lattice
definition. However, since the COD-Cluster17 dataset provides only point clouds without explicit
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lattice parameters or periodic boundary conditions, we define a pseudo lattice as the bounding box
that encompasses all sets of molecules. Atom positions are then expressed in fractional coordinates
relative to this pseudo lattice.

This setup introduces a stringent constraint that is not optimal for symmetry-based algorithms like
CDVAE and DiffCSP, as we do not supply accurate information about atomic density or minimal
symmetry groups. Despite this, both methods were able to produce high-quality predictions in certain
cases. Notably, their performance did not show a strong correlation with the number of atoms per
ASU.

At inference, we sample from the learned distribution of atomic positions rather than using initial
positions provided by COD-Cluster17. As shown in Table F.1, both CDVAE and DiffCSP underper-
form significantly compared to rigid-body-based AssembleFlow and SinkFast methods, indicating
that these point cloud models are not well suited to this task out-of-the-box. In Tables F.2 and F.3
we explore whether these methods perform particularly well on small graphs, but this tendency is
actually also shared by both AssembleFlow and SinkFast.

Table F.1: Performance in Å(↓) of our proposed SinkFast and AssembleFlow rigid-body methods
against inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k
test set.

Method PM∗
center PM∗

atom

CDVAE 10.50±0.52 14.81±0.89

DiffCSP 23.50±2.44 30.61±2.53

AssembleFlow 3.76±0.00 5.73±0.02

SinkFast 3.60±0.04 5.54±0.04

Table F.2: Performance in Å(↓) of our proposed SinkFast and AssembleFlow rigid-body methods
against inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k
test set filtered on natom ≤ 16 corresponding to the 20 smallest graphs.

Method PM∗
center PM∗

atom

CDVAE 8.17±0.07 12.34±0.91

DiffCSP 19.74±0.42 25.89±0.48

AssembleFlow 2.58±0.19 3.49±0.19

SinkFast 2.60±0.04 3.48±0.11

Table F.3: Performance in Å(↓) of our proposed SinkFast and AssembleFlow rigid-body methods
against inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k
test set filtered on natom ≤ 50 corresponding to half of the dataset.

Method PM∗
center PM∗

atom

CDVAE 10.37±0.82 14.63±1.10

DiffCSP 22.93±2.66 29.98±2.91

AssembleFlow 3.26±0.06 4.96±0.03

SinkFast 3.35±0.11 4.95±0.06

We present in Table F.4 for each model the best predictions based on minimal Packing Matching (PM)
score, and in Tables F.5 and F.6 the 5th and 10th percentiles, respectively. However, due to CDVAE’s
long training and very slow inference time, we compute its performance on 120 test samples. To
ensure a fair comparison, we evaluate all models on this shared subset, which we refer to as the
CDVAE subset. We observe from these experiments that CDVAE and DiffCSP can perform extremely
well on very few structures. However, their effectiveness quickly decreases across the dataset. This
suggests that while these models have potential, they require further adaptation to be competitive
on this task. In our view, adapting such models meaningfully goes beyond a quick out-of-the-box
comparison. Nonetheless, they represent promising directions and could enrich the set of baselines
on COD-Cluster17 in future dedicated studies or reviews.
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Table F.4: Single best structure performance in Å(↓) of our proposed SinkFast and AssembleFlow
rigid-body methods against inorganic crystal structure prediction models CDVAE and DiffCSP on
COD_Cluster17 - 5k test set : filtered on the CDVAE subset.

Method PM∗
center PM∗

atom

CDVAE 1.19 2.57
DiffCSP 0.99 4.61
AssembleFlow 2.04 3.03
SinkFast 2.06 2.73

Table F.5: 5th percentile performance in Å(↓) of our proposed SinkFast and AssembleFlow rigid-
body methods against inorganic crystal structure prediction models CDVAE and DiffCSP on
COD_Cluster17 - 5k test set : filtered on the CDVAE subset.

Method PM∗
center PM∗

atom

CDVAE 1.91 3.21
DiffCSP 6.61 11.08
AssembleFlow 2.67 3.86
SinkFast 2.66 3.83

Table F.6: 1st quantile performance in Å(↓) of our proposed SinkFast and AssembleFlow rigid-
body methods against inorganic crystal structure prediction models CDVAE and DiffCSP on
COD_Cluster17 - 5k test set : filtered on the CDVAE subset.

Method PM∗
center PM∗

atom

CDVAE 2.55 4.67
DiffCSP 9.61 15.19
AssembleFlow 2.77 4.43
SinkFast 2.84 4.23
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Extension to matching loss. A Sinkhorn-based matching loss could also be applied to inorganic
CSP models. In this non-rigid-body case the model would not be penalized when identical atoms
are correctly predicted but swapped. We have tried to train a simple adaptation of DiffCSP with this
matching loss. However, as a diffusion based model, DiffCSP predicts the noise that has been applied
to each atomic position to denoise it and progressively reconstruct the crystal. The target is then a
noise attached to each atom and the Sinkhorn-based matching loss applicability is more complex and
questionable.

Similarly, in order to make it work with flow matching on AssembleFlow, we have had to make
some adjustments. For instance, an initial reassignment needs to be computed before interpolating
trajectories Xt between X0 initial positions and X1 final ones which are not the dataset’s target ones
in this case. Also, we have observed that the model needs to predict X1 from intermediate positions
Xt rather than predicting some noise in order to make it work.

We believe our quick implementation of DiffCSP is already not well adapted to organic CSP. This
leads to serious limitations at the current time for this task and questions the motivation to increase
the complexity of it with a Sinkhorn matching loss. However it could be adapted and applied to
inorganic CSP datasets such as the Materials Project. We believe it could have great potential on this
task if appropriately adapted.

F.2 DEPENDENCE TO THE CORRECTNESS OF THE CONFORMATION

To evaluate our model’s dependency on the correctness of the initial molecular conformations, and to
support the rigid molecule formulation of the initial packing probelm, we conducted the following
experiment. For each molecule in the COD-Cluster17-5k test set, we extracted the corresponding
SMILES representation of the ASU molecule and generated five stable conformations using RDKit
(Landrum et al., 2025), using EmbedMolecule followed by UFFOptimizeMolecule functions. Each
generated conformation is then passed through our model to predict the packed molecular positions.

To assess the quality of RDKit-generated conformtations, we computed the symmetry-corrected
RMSD values between RDKit-generated conformation and crystallographic structures using the
spyrmsd algorithm (Meli & Biggin, 2020) from RDKit (Landrum et al., 2025) and present the
results in Figure F.1. We can see that about 25% of the generated conformations are sufficiently
close to the crystallographic ones (within 2Å RMSD) and the median RMSD is below 4Å. This
experiment supports the rigid-body approximation in our model. We also computed Packing Matching
(PM) between each RDKit sampled molecule conformation and its corresponding COD-Cluster17
conformation. On average, PM was 3.27 Å with a standard deviation of 2.19 Å and a median of 3.11
Å. Due to RDKit failures on 170 of the 500 test set structures caused by issues such as improper
valences or atom count mismatches–typically to experimentally invisible hydrogens–our analysis
focuses on a subset of 330 molecules, referred to as the RDKit subset.

The results are presented in Tables F.7, F.8 and F.9 under the RDKit column. First, we compare
performance on RDKit-generated versus crystallographic conformations for both SinkFast and
AssembleFlow. In terms of center-of-mass alignment (PMcenter), the methods perform comparably
across the two types of input. However, the performance are slightly hindered in the atom-to-atom
comparison. This shows that conformations are not well represented in our model. Second, comparing
Table F.8 to Table F.9 we observe that both methods perform much better on crystallographic structures
from which we generate five different conformations that are close to the crystallographic ones. This
confirms the importance of initial conformational accuracy. However, we suspect a correlation
between the size of the rigid molecule and how close are conformations generated by RDKit. The
good performance of the model could also be explained through this aspect.

Our conclusion is that while the models get a sense of how important initial conformations are,
the learned representations are independent to the molecular conformations. We therefore believe
that future models should be trained end-to-end, jointly learning conformation and crystal structure
prediction. This represents a promising direction for advancing research in this very complex domain.
We believe our study helps to identify key challenges and can serve as a foundation for future work
in organic crystal structure prediction.
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Figure F.1: Left: Distribution of minimum symmetry-corrected RMSD values (Å) over 5 RDKit
conformations with respect to the number of heavy atoms in the ASU molecule. Symmetry-corrected
RMSD values were computed between RDKit-generated conformations and crystallgoraphic struc-
tures with spyrmsd (Meli & Biggin, 2020). Right: Distribution of symmetry-corrected RMSD values
between RDKit-generated conformations and crystallgoraphic structures. The yellow bar indicates
the first quartile, the orange one the median and the red one the last quartile.

Table F.7: Performance in Å(↓) of our proposed SinkFast and AssembleFlow methods on both
crystallographic and RDKit generated conformations on COD-Cluster17-5k test set : filtered on the
RDKit subset.

Method RDKit PM∗
center PM∗

atom

AssembleFlow 3.54±0.01 5.44±0.00

AssembleFlow ✓ 3.58±0.00 5.59±0.08

SinkFast 3.59±0.13 5.41±0.08

SinkFast ✓ 3.55±0.13 5.53±0.15

Table F.8: Performance in Å(↓) of our proposed SinkFast and AssembleFlow methods on both
crystallographic and RDKit generated conformations on COD-Cluster17-5k test set : filtered on the
RDKit subset with the lowest packing matching distance to original ones.

Method RDKit PM∗
center PM∗

atom

AssembleFlow 3.27±0.01 4.92±0.03

AssembleFlow ✓ 3.27±0.03 4.90±0.03

SinkFast 3.28±0.13 4.88±0.11

SinkFast ✓ 3.18±0.11 4.81±0.12

Table F.9: Performance in Å(↓) of our proposed SinkFast and AssembleFlow methods on both
crystallographic and RDKit generated conformations on COD-Cluster17-5k test set : filtered on the
RDKit subset with the highest packing matching distance to original ones.

Method RDKit PM∗
center PM∗

atom

AssembleFlow 3.80±0.03 5.95±0.08

AssembleFlow ✓ 3.89±0.01 6.27±0.09

SinkFast 3.88±0.11 5.92±0.00

SinkFast ✓ 3.92±0.12 6.25±0.14
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G VISUALIZATIONS

Figure G.1 shows the packing of three assemblies randomly picked from the test set. We visualize all
atoms as van der Waals (vdW) spheres. We took the standard vdW radii for chemical elements, colored
using JMol colors and ray-traced the scenes with PyMol. The image does not demonstrate common
patterns, only certain packing similarities. One can conclude on the generally poor reconstruction
obtained from the two compared algorithms. Indeed, the method and the problem formulation do not
allow to generalize well enough to be applied and used at large scale.

Figure G.1: Visualization of our SinkFast-L∗
ML prediction against ground truth and AssembleFlow

method on 3 examples randomly picked from the test set. Scores of each prediction are reported with
PM∗

atom, L∗
RMSD, L∗

tran the translational error, L∗
rot the rotational error and 3 L∗

ML errors with different
values of the α parameter. Atoms are colored using the JMol color convention and shown using
PyMol molecular visualization system (Schrödinger, LLC, 2015).
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