

000 001 CHALLENGES IN NON-POLYMERIC CRYSTAL 002 STRUCTURE PREDICTION: WHY A GEOMETRIC, 003 PERMUTATION-INVARIANT LOSS IS NEEDED 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010

011 ABSTRACT 012

013 Crystalline structure prediction is an essential prerequisite for designing materi-
014 als with targeted properties. Yet, it is still an open challenge in materials design
015 and drug discovery. Despite recent advances in computational materials science,
016 accurately predicting three-dimensional non-polymeric crystal structures remains
017 elusive. In this work, we focus on the molecular assembly problem, where a
018 set \mathcal{S} of identical rigid molecules is packed to form a crystalline structure. Such
019 a simplified formulation provides a useful approximation to the actual problem.
020 However, while recent state-of-the-art methods have increasingly adopted so-
021 phisticated techniques, the underlying learning objective remains ill-posed. We
022 propose a better formulation that introduces a loss function capturing key geometric
023 molecular properties while ensuring permutation invariance over \mathcal{S} . Remarkably,
024 we demonstrate that within this framework, a simple regression model already
025 outperforms prior approaches, including flow matching techniques, on the COD-
026 Cluster17 benchmark, a curated non-polymeric subset of the Crystallography
027 Open Database (COD). We release an anonymous version of the code available at
028 <https://anonymous.4open.science/r/SinkFast-CD4C/>.
029
030

031 1 INTRODUCTION 032

033 Generative modeling and deep learning have enabled rapid progress in the understanding and design
034 of materials, molecules, and drugs. On the one hand, for *material property prediction*, advances in
035 graph neural networks and transformers have significantly improved the understanding of molecular
036 structures (Joshi et al., 2023; Lin et al., 2023; Choudhary & DeCost, 2021), linking their three-
037 dimensional (3D) geometry to physical and chemical properties. Particular attention has been paid
038 to $SE(3)$ -equivariant representations, which present higher expressivity by preserving geometric
039 symmetries (Schütt et al., 2021). These methods have been adapted to crystalline structures, with
040 their inherent challenges of infinite periodicity and rich symmetry patterns (Yan et al., 2024a). Yan
041 et al. (2022; 2024a); Ito et al. (2025) yield state-of-the-art performance in property prediction of
042 crystalline structures thanks to physically grounded methods, reflecting the need to integrate physics
043 knowledge in models. On the other hand, for *material design*, generative models such as diffusion
044 models (Song et al., 2021) and flow matching methods (Liu et al., 2023) have greatly enhanced the
045 capacity to generate valid and diverse molecular and material structures (Watson et al., 2023). This
046 work aims to combine these two aspects for the task of *molecular assembly prediction*, where a finite
047 set of identical rigid molecules is packed into a crystalline structure.

048 A fundamental step in designing a material with specific properties is to know its crystallization
049 pattern. As represented in Figure 1, a crystal is conventionally described by a unit cell, the smallest
050 volume that contains all the structural and symmetry information necessary to generate the whole
051 crystal by translation. This three-dimensional infinitely periodic shape largely determines the physical
052 and chemical properties of the resulting material. This shape can be predicted either by regression
053 (Liang et al., 2020; Cao et al., 2024) or by flow matching/diffusion methods that allow for probabilistic
answers (Merchant et al., 2023; Xie et al., 2022; Luo et al., 2025; Pakornchote et al., 2024; Jiao et al.,
2023).

Most of the previous methods model atoms in the unit cell individually. While such an approach works well (Miller et al., 2024) for simple crystals of atomic point clouds from the Materials Project (Jain et al., 2013), the performance degrades on more complex molecular materials with symmetries other than translations. These contain internal *point-group* symmetries within the unit cell. An asymmetric unit (ASU) is defined as an elementary pattern of the unit cell, irreducible under the symmetry group transformations. A unit cell can be composed of multiple ASUs and an example is shown in Figure 1-left. As this basic structure maintains a fixed internal structure, generating the crystal by directly predicting the ASU position, orientation, and symmetry operations in the world frame significantly reduces the dimensionality of the task, compared to moving each atom individually. In this setting, the goal of the *molecular assembly prediction* problem can be formulated as follows: given an elementary structure – an ASU –, predict its local crystalline structure, or in other words, how it packs in space.

Related work Historically, the problem of computational material design has been extensively studied through the lens of Crystal Structure Prediction (CSP) challenge. This was first tackled through iterative process involving expensive spatial optimization (Martínez et al., 2009) and energy assessment of predicted structures with first-principles calculations based on the density functional theory (DFT) (Pickard & Needs, 2011; Kresse & Furthmüller, 1996). However, these methods are slow, scale poorly with the number of atoms in the unit cell and thus may not be adapted to infinite materials. More recently, generative models have emerged as promising candidates for this task, especially for simple inorganic crystals (Xie et al., 2022; Jiao et al., 2023; Levy et al., 2025; Nam et al., 2025). However, they have not yet been widely adapted for complex organic materials. Nonetheless, very recent deep learning-based approaches study the molecular assembly prediction task by atom-wise (Liu et al., 2024b) and rigid-body (Guo et al., 2025) flow matching. We detail the SE(3) flow matching setup in Appendix B.6. Despite integrating sophisticated techniques, such as diffusion and flow matching, some essential building blocks for non-polymeric crystal structure prediction are still missing in these methods.

A thorough related works section is provided in Appendix A.

Contributions In this work we show the need of integration of domain-specific physics knowledge in the training scheme of models and the challenges that constitute the task of material generation. Our contributions can be summarised as follows:

1. **Physics grounded loss.** We show that a domain-specific rigid-body, model agnostic loss, grounded in physical principles, leads to improved prediction of crystalline structures.
2. **Permutation-invariant loss.** We propose an effective differentiable *soft matching* objective that is invariant to global geometric transformations and to the order permutation of repeated molecular units.
3. **Remaining challenges.** While the proposed domain-driven learning objective enables us to outperform prior approaches with a simple regression model, we also witness the challenges that remain to be tackled to reach real-world applicability.

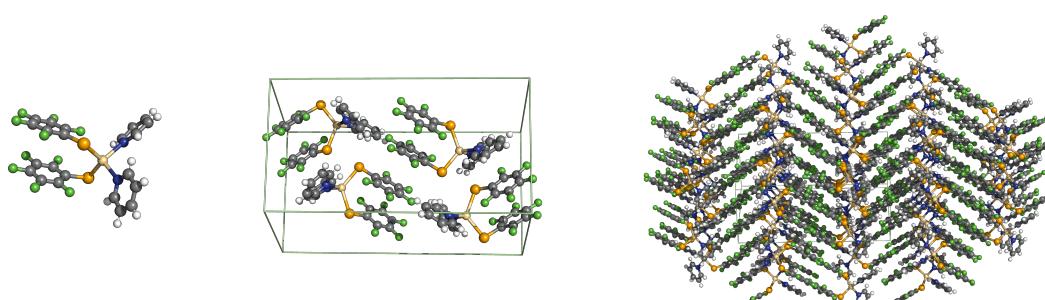


Figure 1: A crystalline material at three different scales. From left to right: (a) The asymmetric subunit (ASU). (b) The unit cell with mirror images of the ASU. (c) The unit cell is repeated periodically in all three directions. Illustrations correspond to the COD-4316210 crystal structure from Crystallographic Open Database (Gražulis et al., 2009).

108
109

2 PROBLEM SETTING

110
111
112
113
114
115
116
117
118
119
120

Problem formulation A -polymeric crystal is a solid material in which molecules are arranged in a highly ordered pattern repeating in the three spatial dimensions (3D). The asymmetric units ASU that constitute it are molecules that are identical objects in 3D. The unit cell is then defined by a finite number of symmetry operators applied to the ASU. The pinnacle of crystalline structure prediction is to compute the infinite 3D structure of a material given its substituent chemical compounds. To solve this very challenging task, one can take a number of approximations and hypotheses. The molecular assembly subproblem is a simplification of the original problem, where a finite set \mathcal{S} of identical rigid molecules is packed together from a state $\mathcal{S}_{\text{initial}}$ into a state $\mathcal{S}_{\text{final}}$ which forms a pattern that can be then replicated in space into a crystal. Our goal is thus to predict rigid spatial transformations \mathcal{T}_i for each molecule i that reconstruct the $\mathcal{S}_{\text{final}}$ set from the $\mathcal{S}_{\text{initial}}$ set. We propose an efficient and model-agnostic way to guide any machine learning model with physical knowledge of the task.

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

Dataset In this work we use the COD-Cluster17 assembly dataset introduced by [Liu et al. \(2024b\)](#), specifically constructed for the task of non-polymeric crystal structure prediction. To the best of our knowledge, this is currently the only available benchmark for this task. This dataset contains 111k assemblies and is a simplified, sanitized version of the 507k crystals from the real world Crystallography Open Database (COD) ([Gražulis et al., 2009](#)). The procedure to build the dataset is detailed in [Liu et al. \(2024b\)](#) and can be summarized as follows. Firstly, crystals are extracted from the COD if: (1) their asymmetric unit contains only one molecule; (2) they do not present disordered atoms (cases where some atoms do not occupy unique and uniquely attributed positions); (3) they are non-polymeric. Then, the dataset is built by computing for each filtered crystal the ground-truth supercell of an arbitrary asymmetric unit—referred to as the *central molecule*—, which is the aggregation of 27 unit cells into a parallelepiped centered on the unit cell of the asymmetric unit of interest. An example of a supercell is given in Figure 1-right. The authors of COD-Cluster17 then extracted the central molecule’s 16 nearest neighbors using a cutoff in Euclidean space within this supercell. This procedure outputs the *final positions* set consisting of each atom Cartesian coordinates. Then, a random rigid-body transformation is applied to the atomic positions of each molecule, which results in the *initial positions* set. The task for the COD-Cluster17 benchmark is then originally a point cloud packing matching task of predicting all atoms final absolute positions, provided the known correspondence with the initial positions. This task has also been formulated as a rigid-body packing matching in [Guo et al. \(2025\)](#) as molecular integrity is preserved in both $\mathcal{S}_{\text{initial}}$ and $\mathcal{S}_{\text{final}}$ sets.

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1

162 with them. These local frames are initialized using the principal components of each molecule's
 163 inertia tensor. While this initialization may not be unique, the specific choice does not affect the
 164 relative transformations between local frames, which are the quantities actually used in the model
 165 computations.

166

167 3.1 METRICS

168

169 **Packing matching** Current crystal structure prediction methods (Guo et al., 2025; Liu et al., 2024b)
 170 typically use the *Packing Matching* (PM) score as an assessment metric. It is defined for atoms
 171 positions \vec{x} as follows,

$$172 \quad 173 \quad \text{PM}_{\text{atom}}^2 = \frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N \left(\|\vec{x}_i^{\text{pred}} - \vec{x}_j^{\text{pred}}\| - \|\vec{x}_i^{\text{gt}} - \vec{x}_j^{\text{gt}}\| \right)^2, \quad (1)$$

174

175 where N is the number of atoms in the assembly, \vec{x}_i^{pred} (resp. \vec{x}_j^{gt}) is the position vector of atom i (resp.
 176 j) in the predicted (resp. ground-truth) assembly. PM quantifies how well the pairwise distances
 177 between the atoms are predicted, and is invariant to global rotations and translations. Also commonly
 178 used, the $\text{PM}_{\text{center}}$ metric, is defined as follows,

$$179 \quad 180 \quad \text{PM}_{\text{center}}^2 = \frac{1}{M^2} \sum_{i=1}^M \sum_{j=1}^M \left(\|\vec{c}_i^{\text{pred}} - \vec{c}_j^{\text{pred}}\| - \|\vec{c}_i^{\text{gt}} - \vec{c}_j^{\text{gt}}\| \right)^2,$$

181

182 where M is the number of molecules in the assembly, \vec{c}_i^{pred} (resp. \vec{c}_j^{gt}) is the position of i th molecule's
 183 (resp. j th) center of mass in the predicted (resp. ground-truth) assembly. It evaluates the quality of
 184 the molecule positions regardless of their orientations.

185

186 **Root mean square displacement** RMSD is another metric common in chemistry, structural biology,
 187 physics, and materials science. RMSD performs direct comparisons of atom positions, which requires
 188 representing them in a common frame:

$$189 \quad 190 \quad \text{RMSD}_{\text{atom}}^2 = \frac{1}{N} \sum_{i \in N} \|\vec{x}_i^{\text{pred}} - \vec{x}_i^{\text{gt}}\|^2. \quad (2)$$

191

192 Note that Appendix C proves the relation $\text{PM}_{\text{atom}} \leq \sqrt{2} \text{RMSD}_{\text{atom}}$ showing the correlation between
 193 both metrics even though PM compares relative positions, whereas RMSD relies on absolute ones.
 194 This relation shows that PM score is a good proxy for the RMSD assessment. In particular: "as
 195 long as reported PM is greater than 2 times square root of 2 ångströms, RMSD is greater than 2
 196 ångströms.".
 197

198 **S -Permutation invariant metric** The molecular assembly task as defined in this paper aims at
 199 matching a set S_{initial} of M equivalent initial molecules to a set S_{final} of M final ones. As these
 200 molecules are identical, positioning one at a given place or another is strictly equivalent physically. A
 201 proper metric should thus reflect this S -permutation invariant property, which we now present.

202 We represent molecules i from the predicted assembly and j from the ground truth assembly by their
 203 rigid-body positions $\mathcal{T}_{\text{pred}}^i$ and $\mathcal{T}_{\text{gt}}^j$ in the global reference frame, from which we can reconstruct atoms
 204 positions \vec{x}_i^{pred} and \vec{x}_j^{gt} to compute the PM scores. We consider the cost matrix $\mathcal{C}^{\mathcal{L}}$ of any metric \mathcal{L}
 205 such as PM_{atom} or $\text{PM}_{\text{center}}$, such that $\mathcal{C}_{ij}^{\mathcal{L}}$ is the cost of assigning molecule i from the ground truth
 206 assembly with the molecule j in the predicted assembly. This cost matrix is computed as follows:

$$207 \quad 208 \quad \forall \{i, j\} \in \llbracket 1, M \rrbracket^2, \quad \mathcal{C}_{ij}^{\mathcal{L}} = \mathcal{L} \left(\mathcal{T}_{\text{pred}}^i, \mathcal{T}_{\text{gt}}^j \right). \quad (3)$$

209

210 The goal is then to find a complete assignment of molecules in the predicted assembly with molecules
 211 in the ground truth assembly, which minimizes the metric \mathcal{L} over all S -permutations. This minimizer
 212 is denoted \mathcal{L}^* . Formally it is defined by the linear sum assignment problem. Let P be a boolean
 213 pairing matrix in which $P_{ij} = 1$ if and only if molecule i from ground truth assembly is mapped with
 214 molecule j in the predicted assembly:

$$215 \quad \mathcal{L}^* := \min_P \sum_{ij} \mathcal{C}_{ij}^{\mathcal{L}} \cdot P_{ij} \quad \text{with } P_{ij} \in \{0, 1\} \quad \text{s.t. } P \cdot \mathbf{1} = P^{\top} \cdot \mathbf{1} = 1. \quad (4)$$

216

217 In practice we use scipy's linear sum assignment method to compute this exact minimizer \mathcal{L}^* of \mathcal{L} .

216 3.2 PHYSICALLY GROUNDED LOSSES
217

218 While the previous paragraph introduces useful permutation invariant atom-wise metrics, well suited
219 for evaluating atomistic predictions, we now turn to defining trainable objectives that are better
220 adapted to the rigid-body formulation of the task. Concretely, we propose two rigid-body loss
221 functions: $\mathcal{L}_{\text{RMSD}}$, which operates on absolute positions of molecules, and $\mathcal{L}_{\text{Geom}}$, which extends this
222 formulation to relative molecular positions. We will further show how these objectives can be made
223 \mathcal{S} -permutation invariant through differentiable optimal assignment in section 3.3.

224 We now consider rigid body predicted (resp. ground-truth) positions in the global reference frame as
225 $\mathcal{T}_{\text{pred}} = (\vec{r}_{\text{pred}}, \mathbf{q}_{\text{pred}})$ (resp. $\mathcal{T}_{\text{gt}} = (\vec{r}_{\text{gt}}, \mathbf{q}_{\text{gt}})$). The loss currently used in the literature decouples \mathbb{R}^3
226 and $\text{SO}(3)$ spaces as:

$$\mathcal{L}_{\mathbb{R}^3}(\mathcal{T}_{\text{pred}}, \mathcal{T}_{\text{gt}}) = \|\vec{r}_{\text{pred}} - \vec{r}_{\text{gt}}\|^2 \quad \mathcal{L}_{\text{SO}(3)}(\mathcal{T}_{\text{pred}}, \mathcal{T}_{\text{gt}}) = \|\mathbf{q}_{\text{pred}} - \mathbf{q}_{\text{gt}}\|^2, \quad (5)$$

227 and then one can combine them with a tuned hyperparameter α as
228

$$\mathcal{L}_{\text{ML}} = \mathcal{L}_{\mathbb{R}^3} + \alpha \mathcal{L}_{\text{SO}(3)}. \quad (6)$$

229 The α parameter has to be adjusted to the task one is trying to solve. It has to balance the weight of
230 unbounded distance in \mathbb{R}^3 to the bounded distance in $\text{SO}(3)$. As different samples in the dataset may
231 have very different geometries, with inter-molecular distances spanning orders of magnitudes, having
232 a single parameter is suboptimal. Finally, as the space of rigid transformations $\text{SE}(3)$ is not a *direct*
233 *product* of \mathbb{R}^3 and $\text{SO}(3)$, this loss has no physical or geometrical meaning.

234 **Rigid RMSD loss** Popov & Grudinin (2014) introduced a more suitable rigid-body transformation
235 loss that is *strictly equivalent* to the $\text{RMSD}_{\text{atom}}^2$ metric in eq. 2. It is defined for a rigid transformation
236 $\mathcal{T} = (\vec{r}, \mathbf{q})$, with quaternion $\mathbf{q} = (s, \vec{q})$ composed of a scalar s and a vector part \vec{q} , as follows.

$$\text{RMSD}^2(\mathcal{T}, \mathfrak{I}) = \frac{4}{N} \vec{q}^\top \mathfrak{I} \vec{q} + \vec{r}^2, \quad (7)$$

237 where \mathfrak{I} is an inertia tensor of the rigid body computed in its center-of-mass local frame (see Appendix
238 B for the definition). One can notice that in this frame the two RMSD^2 contributions, rotation and
239 translation, are additive. The inertia tensor naturally provides a weight between the rotation and the
240 translation contributions. However, the cross-terms appear in the equation if we change the reference
241 frame as detailed in Appendix B. Thus, given two spatial transformations $\mathcal{T}_{\text{pred}}$ and \mathcal{T}_{gt} , of the same
242 rigid body with the inertia tensor \mathfrak{I} , we can *naturally* define the physically-grounded RMSD loss
243 without additional hyperparameters as
244

$$\mathcal{L}_{\text{RMSD}}(\mathcal{T}_{\text{pred}}, \mathcal{T}_{\text{gt}}) = \text{RMSD}^2(\mathcal{T}_{\text{gt}} \circ \mathcal{T}_{\text{pred}}^{-1}, \mathfrak{I}). \quad (8)$$

245 We will use this RMSD loss as default during training and test to compare absolute positions in the
246 predicted assembly of molecules with the ground truth.

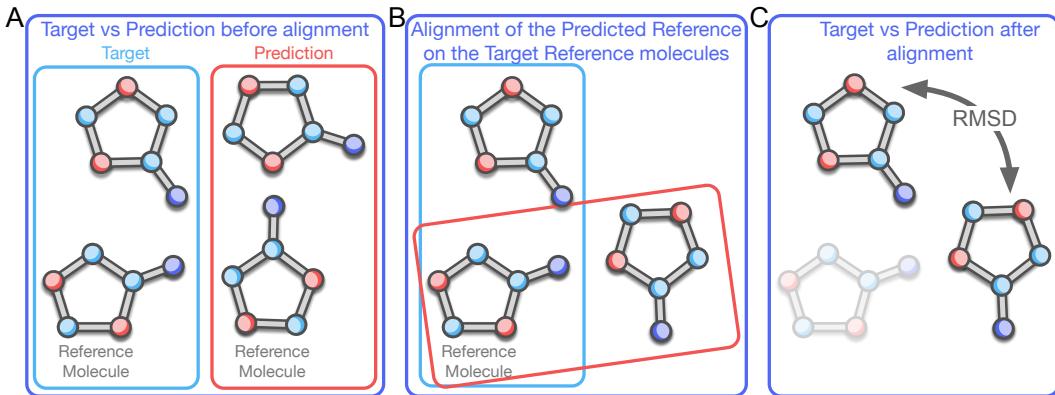
247 **Geometric loss** Regarding the task of molecular assembly prediction, we aim to define a loss that
248 better reflects the *relative packing* of molecules and not memorizing their absolute positions. Let us
249 consider two rigid molecules in an assembly \mathcal{S} consisting of M molecules, $i, j \in M$. Let us
250 assume we have predicted a packing $\mathcal{S}_{\text{pred}}$ of these molecules resulting in individual global spatial
251 transformations (or positions) $\mathcal{T}_{i,\text{pred}}$ and $\mathcal{T}_{j,\text{pred}}$. We want to compare these transformations to the
252 corresponding ground-truth ones $\mathcal{T}_{i,\text{gt}}$ and $\mathcal{T}_{j,\text{gt}}$ from the packing \mathcal{S}_{gt} . We can define the assembly
253 transformation-invariant PM metric for these molecules similar to the one in eq. 1. However, this
254 computation requires to first compute positions of all corresponding atoms. Instead, we propose a
255 more elegant rigid-body RMSD-based solution presented in Figure 2. Concretely, we compute the
256 RMSD² metric between the i th molecules in the superposed local frames of the j th molecules, as
257 follows,

$$\mathcal{L}_{\text{RMSD}}(\mathcal{T}_{j,\text{pred}}^{-1} \circ \mathcal{T}_{i,\text{pred}}, \mathcal{T}_{j,\text{gt}}^{-1} \circ \mathcal{T}_{i,\text{gt}}) = \text{RMSD}^2(\mathcal{T}_{j,\text{gt}}^{-1} \circ \mathcal{T}_{i,\text{gt}} \circ \mathcal{T}_{i,\text{pred}}^{-1} \circ \mathcal{T}_{j,\text{pred}}, \mathfrak{I}). \quad (9)$$

258 We can then extend the above expression to the comparison of $M - 1$ molecules to a *reference* one.
259 Without loss of generality, we can assume it is the M th molecule and define the *geometric loss* $\mathcal{L}_{\text{Geom}}$
260 as follows:

$$\mathcal{L}_{\text{Geom}}(\mathcal{T}_{\text{pred}}, \mathcal{T}_{\text{gt}}) = \frac{1}{M-1} \sum_{i=1}^{M-1} \mathcal{L}_{\text{RMSD}}(\mathcal{T}_{M,\text{pred}}^{-1} \circ \mathcal{T}_{i,\text{pred}}, \mathcal{T}_{M,\text{gt}}^{-1} \circ \mathcal{T}_{i,\text{gt}}). \quad (10)$$

270 In practice in COD-Cluster17, as detailed in section 2, the way the dataset is constructed defines a
 271 reference molecule around which we extract the 16 nearest neighbors. We show some illustration of
 272 the proposed losses in Appendix B.7.
 273



287 Figure 2: A schematic illustration of our geometric loss alignment and similarity measure computation.
 288 A: Predicted and target couples of molecules with local frames before alignment. B: The reference
 289 molecule from the predicted packing is aligned on the one from the target packing. C: Predicted and
 290 target molecules after aligning both reference molecules on each other. The similarity measure
 291 is then computed as the RMSD² between the non-reference molecules.

293 3.3 DIFFERENTIABLE OPTIMAL ASSIGNMENT

295 As metrics are computed with invariance to \mathcal{S} -permutations, it is essential to also train models with
 296 permutation invariant losses. However, the linear sum assignment problem 4 is not differentiable and
 297 results in training instabilities, as our preliminary experiments demonstrated. We thus use during
 298 training the differentiable version of it provided by the Sinkhorn algorithm with the boolean pairing
 299 P matrix being relaxed as $\forall \{i, j\}, 0 < P_{ij} < 1$. The problem is then defined for any training loss \mathcal{L} ,
 300 like \mathcal{L}_{ML} , $\mathcal{L}_{\text{RMSD}}$ or $\mathcal{L}_{\text{Geom}}$, such that:

$$\begin{aligned} \mathcal{L}_{\text{train}}^* &= \min_P \langle P, \mathcal{L} \rangle_F + \text{reg} \cdot \Omega(P) \\ \text{with } P_{ij} &\in [0, 1] \quad \text{s.t. } P \cdot \mathbf{1} = P^\top \cdot \mathbf{1} = 1 \text{ and } P \geq 0 \\ \text{with } \Omega(P) &= \sum_{ij} P_{ij} \log(P_{ij}) \end{aligned} \quad (11)$$

306 An implementation of this algorithm as defined in Cuturi (2013) can be found in Python Optimal
 307 Transport library (Flamary et al., 2021). This approach provides a feedback to the model with multiple
 308 possible assignments weighted by P , which behaves like a *probability map*.
 309

310 4 RESULTS

312 4.1 EXPERIMENTAL SETUP

314 **Dataset** We evaluate the performance of our approach on the COD-Cluster17 benchmark introduced
 315 in Liu et al. (2024b). The dataset and the task are detailed in section 2. It contains 111k assemblies
 316 and is a simplified, sanitized version of the 507k crystals from the real world Crystallography Open
 317 Database. Previous methods also benchmark on a subset of 5k assemblies. This benchmark comes
 318 with a splitting strategy into 80% for train, 10% for validation and 10% for test. The validation set is
 319 used for best method selection throughout the training epochs and the final performances presented
 320 in this section are obtained on the test set. Following previous works, we compare our approach on 3
 321 seeds and report below the average performance.

322 **Model** We primarily compare our method called *SinkFast* to the state-of-the-art AssembleFlow
 323 (Guo et al., 2025) method and thus reuse the same model. In particular, we consider here the atom-

324
 325 Table 1: Our best model *SinkFast* against state-of-the-art models on COD-Cluster17. Our method is
 326 trained with $\mathcal{L}_{\text{ML}}^*$ (Eq. 6) or $\mathcal{L}_{\text{RMSD}}^*$ (Eq. 8) with permutation-invariance (Eq. 11). The best results are
 327 marked in **bold**.

	Flow Matching	Packing Matching in Å↓			
		PM _{center}	PM _{atom}	PM _{center} [*]	PM _{atom} [*]
Dataset: COD-Cluster17-5K					
PackMol (Martínez et al., 2009)		6.05 \pm 0.05	7.10 \pm 0.05	-	-
CDVAE (Xie et al., 2022)		-	-	10.50 \pm 0.52	14.81 \pm 0.89
DiffCSP (Jiao et al., 2023)		-	-	23.50 \pm 2.44	30.61 \pm 2.53
GNN-MD (Liu et al., 2024a)		13.80 \pm 0.07	13.67 \pm 0.06	-	-
CrystalFlow-LERP (Liu et al., 2024b)	✓	13.26 \pm 0.09	13.59 \pm 0.09	-	-
AssembleFlow (Guo et al., 2025)	✓	6.13 \pm 0.10	7.27 \pm 0.04	3.86 \pm 0.13	5.79 \pm 0.012
SinkFast - $\mathcal{L}_{\text{ML}}^*$ (ours)		5.80 \pm 0.03	6.96 \pm 0.03	3.60 \pm 0.04	5.54 \pm 0.04
SinkFast - $\mathcal{L}_{\text{RMSD}}^*$ (ours)		5.85 \pm 0.05	6.98 \pm 0.05	3.77 \pm 0.12	5.67 \pm 0.08
Dataset: COD-Cluster17-All					
PackMol (Martínez et al., 2009)		6.09 \pm 0.01	7.15 \pm 0.01	-	-
GNN-MD (Liu et al., 2024a)		14.51 \pm 0.82	22.30 \pm 12.04	-	-
CrystalFlow-LERP (Liu et al., 2024b)	✓	13.28 \pm 0.01	13.61 \pm 0.00	-	-
AssembleFlow (Guo et al., 2025)	✓	6.21 \pm 0.01	7.37 \pm 0.01	3.51 \pm 0.05	5.60 \pm 0.03
SinkFast - $\mathcal{L}_{\text{ML}}^*$ (ours)		5.80 \pm 0.00	7.00 \pm 0.01	3.47 \pm 0.04	5.51 \pm 0.02
SinkFast - $\mathcal{L}_{\text{RMSD}}^*$ (ours)		5.80 \pm 0.00	7.00 \pm 0.01	3.41 \pm 0.04	5.54 \pm 0.01

345
 346 level SE(3)-equivariant model version described in Appendix D.2, that we refer to as the backbone.
 347 Then we will refer to AssembleFlow as this backbone trained with a flow matching scheme, while
 348 SinkFast refers to the same backbone trained with permutation invariance.
 349

350 **Training methods** AssembleFlow uses a flow matching setting, in which the model is trained on
 351 various interpolated rigid-body positions, which helps guide the optimization process. In contrast, our
 352 method *SinkFast* is trained in *simple regression*, which is defined as the task of predicting the target
 353 rigid-body positions directly from the initial positions. In this setting, the model takes exclusively as
 354 input the initial rigid-body positions. Simple regression is equivalent to a one-step flow matching.
 355

356 While AssembleFlow is trained with \mathcal{L}_{ML} (Eq. 6) as the training objective, our method *SinkFast* is
 357 trained with one of the following objectives: $\mathcal{L}_{\text{ML}}^*$ (Eq. 6), $\mathcal{L}_{\text{RMSD}}^*$ (Eq. 8) or $\mathcal{L}_{\text{Geom}}^*$ (Eq. 10) with
 358 permutation-invariance (Eq. 11). Standard hyperparameters and models’ parameters are provided in
 359 Appendix D.2. In particular, we keep the hyperparameter α in Eq. 6 fixed to 10, as it was tuned by
 360 AssembleFlow authors for the task, and use 50 time steps of flow matching.

361 **Baselines** Inorganic crystal structure prediction is a fast-moving domain in which many state-of-the-
 362 art models compete and innovate. As we want to compare the performance of current organic state of
 363 the art to the inorganic one, we conduct experiments on the COD-Cluster17-5k dataset by retraining
 364 both CDVAE (Xie et al., 2022) and DiffCSP (Jiao et al., 2023) models. Implementation details are
 365 provided in Appendix F.1. Three other baselines, PackMol, GNN-MD and CrystalFlow-LERP, are
 366 motivated by the AssembleFlow paper (Guo et al., 2025), from which their results are extracted.

367 All models were trained on a single NVidia H100 GPU system, with 80GB memory and 67 TFlops.
 368 We trained them for 500 epochs, with a batch size of 8, Adam optimizer with a learning rate 10^{-4}
 369 adapted by a Cosine Annealing scheduler.

371 4.2 MAIN RESULTS

372
 373 In Table 1 we present our models performance against six other state-of-the-art models on the COD-
 374 Cluster17 dataset. First, while original state-of-the-art results are presented in $\text{PM}_{\text{center}}$ and PM_{atom} ,
 375 we show under $\text{PM}_{\text{center}}^*$ and $\text{PM}_{\text{atom}}^*$ the importance of optimal assignment to get the best metric
 376 performance over the set of S -permutations of the predicted assembly as detailed in section 3.3.
 377 Indeed the metric decreases greatly under this optimal assignment, indicating the inability of models
 378 to memorize positions for each molecule as they are equivalent. Then, we show that our method

378
 379 Table 2: Ablation study of using physically grounded losses during training on COD-Cluster17 in
 380 two different training schemes: flow matching or simple regression with permutation-invariant loss.

381 382 383 Loss	384 385 386 387 388 389 Flow Matching	390 391 392 393 394 395 396 397 398 399 400 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1	

432
 433 Table 3: Execution times for our method reported on COD-Cluster17-5k. Results are presented as
 434 average over 10 epochs at training and over 10 batches at inference. AssembleFlow is trained with 50
 435 timesteps.

436 437 Method	438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 779 780 781 782 783 784 785 786 787 788 789 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 809 810 811 812 813 814 815 816 817 818 819 819 820 821 822 823 824 825 826 827 828 829 829 830 831 832 833 834 835 836 837 838 839 839 840 841 842 843 844 845 846 847 848 849 849 850 851 852 853 854 855 856 857 858 859 859 860 861 862 863 864 865 866 867 868 869 869 870 871 872 873 874 875 876 877 878 879 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 909 910 911 912 913 914 915 916 917 918 919 919 920 921 922 923 924 925 926 927 928 929 929 930 931 932 933 934 935 936 937 938 939 939 940 941 942 943 944 945 946 947 948 949 949 950 951 952 953 954 955 956 957 958 959 959 960 961 962 963 964 965 966 967 968 969 969 970 971 972 973 974 975 976 977 978 979 979 980 981 982 983 984 985 986 987 988 989 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2249 2250 2251 2252 2253 2254 2255 2256 22

486 learning objective simplifies the problem, boosts the performance and speeds up the training scheme.
 487 We release a simple implementation of the method to be used in future benchmarks. This work invites
 488 to take a step back from large generative models and expensive methods, and instead focus on proper
 489 problem definition and principled, physics-inspired solutions.
 490

491 **Ethics statement** This paper is about machine learning models for crystallography. The research
 492 is entirely computational and does not involve human subjects, animals, or sensitive data. All the
 493 datasets are public. We do not anticipate any direct societal, ethical, or environmental risks arising
 494 from this work.

495 **Reproducibility statement** This topic is of main importance to the authors of the paper. This
 496 work's reproducibility is ensured through the following key points.
 497

- 498 • The implementation is provided through the anonymous repository <https://anonymous.4open.science/r/SinkFast-CD4C/>.
 499
- 500 • A complete description of the data processing step is provided in section 2.
 501
- 502 • Details of our method and proofs are provided in Appendix B, C, D.
 503

504 REFERENCES

505 Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
 506 interpolants. In *International Conference on Learning Representations (ICLR)*, 2023.

507 Luis M Antunes, Keith T Butler, and Ricardo Grau-Crespo. Crystal structure generation with
 508 autoregressive large language modeling. *Nature Communications*, 15(1):1–16, 2024.

509 Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
 510 for property prediction and molecular generation. *Scientific Data*, 9(1):185, 2022.

511 Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Kornbluth,
 512 Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural networks for
 513 data-efficient and accurate interatomic potentials. *Nature communications*, 13(1):2453, 2022.

514 Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Geometric
 515 and physical quantities improve E(3) equivariant message passing. In *International Conference on
 516 Learning Representations (ICLR)*, 2022.

517 Zhendong Cao, Xiaoshan Luo, Jian Lv, and Lei Wang. Space group informed transformer for
 518 crystalline materials generation. *preprint arXiv:2403.15734*, 2024.

519 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
 520 Zagoruyko. End-to-end object detection with transformers. In *European Conference on Computer
 521 Vision (ECCV)*, 2020. URL <https://arxiv.org/abs/2005.12872>.

522 Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. Graph networks as a universal
 523 machine learning framework for molecules and crystals. *Chemistry of Materials*, 31(9):3564–3572,
 524 2019.

525 Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries. In *The Twelfth
 526 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=g7ohD1T1L>.

527 Kamal Choudhary and Brian DeCost. Atomistic line graph neural network for improved
 528 materials property predictions. *npj Computational Materials*, 7(1), November 2021. ISSN
 529 2057-3960. doi: 10.1038/s41524-021-00650-1. URL <http://dx.doi.org/10.1038/s41524-021-00650-1>.

530 Kamal Choudhary, Kevin F Garrity, Andrew CE Reid, Brian DeCost, Adam J Biacchi, Angela R
 531 Hight Walker, Zachary Trautt, Jason Hattrick-Simpers, A Gilad Kusne, Andrea Centrone, et al.
 532 The joint automated repository for various integrated simulations (jarvis) for data-driven materials
 533 design. *npj computational materials*, 6(1):173, 2020.

540 François Cornet, Grigory Bartosh, Mikkel Schmidt, and Christian Andersson Naesseth. Equivariant
 541 neural diffusion for molecule generation. *Advances in Neural Information Processing Systems*,
 542 2024.

543 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transportation distances. In
 544 *Adv. in Neural Information Processing Systems (NIPS)*, 2013. URL <https://arxiv.org/abs/1306.0895>.

545 Alexandre Duval, Simon V Mathis, Chaitanya K Joshi, Victor Schmidt, Santiago Miret, Fragkiskos D
 546 Malliaros, Taco Cohen, Pietro Liò, Yoshua Bengio, and Michael Bronstein. A hitchhiker’s guide
 547 to geometric gnns for 3D atomic systems. *arXiv preprint arXiv:2312.07511*, 2023.

548 Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas
 549 Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
 550 Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
 551 Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and
 552 Titouan Vayer. Pot: Python optimal transport. *Journal of Machine Learning Research*, 22(78):1–8,
 553 2021. URL <http://jmlr.org/papers/v22/20-451.html>.

554 Vahe Gharakhanyan, Luis Barroso-Luque, Yi Yang, Muhammed Shuaibi, Kyle Michel, Daniel S.
 555 Levine, Misko Dzamba, Xiang Fu, Meng Gao, Xingyu Liu, Haoran Ni, Keian Noori, Brandon M.
 556 Wood, Matt Uyttendaele, Arman Boromand, C. Lawrence Zitnick, Noa Marom, Zachary W. Ulissi,
 557 and Anuroop Sriram. Open molecular crystals 2025 (omc25) dataset and models, 2025. URL
 558 <https://arxiv.org/abs/2508.02651>.

559 Colin W Glass, Artem R Oganov, and Nikolaus Hansen. Uspex—evolutionary crystal structure
 560 prediction. *Computer physics communications*, 175(11-12):713–720, 2006.

561 Saulius Gražulis, Daniel Chateigner, Robert T. Downs, A. F. T. Yokochi, Miguel Quirós, Luca
 562 Lutterotti, Elena Manakova, Justas Butkus, Peter Moeck, and Armel Le Bail. Crystallography Open
 563 Database – an open-access collection of crystal structures. *Journal of Applied Crystallography*,
 564 42(4):726–729, Aug 2009. doi: 10.1107/S0021889809016690. URL <https://doi.org/10.1107/S0021889809016690>.

565 Hongyu Guo, Yoshua Bengio, and Shengchao Liu. Assembleflow: Rigid flow matching with inertial
 566 frames for molecular assembly. In *International Conference on Learning Representations (ICLR)*,
 567 2025. URL <https://openreview.net/forum?id=jckKNzYYA6>.

568 Yusei Ito, Tatsunori Taniai, Ryo Igarashi, Yoshitaka Ushiku, and Kanta Ono. Rethinking the role of
 569 frames for SE(3)-invariant crystal structure modeling. In *International Conference on Learning
 570 Representations (ICLR)*, 2025.

571 A Jain, SP Ong, G Hautier, W Chen, WD Richards, S Dacek, S Cholia, D Gunter, D Skinner, G Ceder,
 572 et al. The materials project: a materials genome approach to accelerating materials innovation, *apl
 573 mater.* 1 (2013) 011002, 2013.

574 Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal
 575 structure prediction by joint equivariant diffusion. In *Adv. in Neural Information Processing
 576 Systems (NeurIPS)*, 2023. URL <https://arxiv.org/abs/2309.04475>.

577 Chaitanya K. Joshi, Cristian Bodnar, Simon V. Mathis, Taco Cohen, and Pietro Liò. On the expressive
 578 power of geometric graph neural networks. In *International Conference on Machine Learning
 579 (ICML)*, 2023. URL <https://arxiv.org/abs/2301.09308>.

580 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 581 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 582 protein structure prediction with alphafold. *Nature*, 596(7873):583–589, 2021.

583 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 584 In *International Conference on Learning Representations (ICLR)*, 2017.

585 Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects.
 586 *Physical review*, 140(4A):A1133, 1965.

594 Avinash Kori, Francesco Locatello, Fabio De Sousa Ribeiro, Francesca Toni, and Ben Glocker.
 595 Grounded object-centric learning. In *International Conference on Learning Representations*
 596 (*ICLR*), 2024.

597 Georg Kresse and Jürgen Furthmüller. Efficient iterative schemes for ab initio total-energy calculations
 598 using a plane-wave basis set. *Physical review B*, 54(16):11169, 1996.

600 Greg Landrum, Paolo Tosco, Brian Kelley, Ricardo Rodriguez, David Cosgrove, Riccardo Vianello,
 601 sriniker, Peter Gedeck, Gareth Jones, Eisuke Kawashima, Nadine Schneider, Dan Nealschneider,
 602 Andrew Dalke, tadhurst cdd, Matt Swain, Brian Cole, Samo Turk, Aleksandr Savelev, Alain
 603 Vaucher, Maciej Wójcikowski, Ichiru Take, Hussein Faara, Vincent F. Scalfani, Rachel Walker,
 604 Daniel Probst, Kazuya Ujihara, Niels Maeder, Jeremy Monat, Juuso Lehtivarjo, and guillaume
 605 godin. rdkit/rdkit: 2025_03_5 (q1 2025) release, July 2025. URL <https://doi.org/10.5281/zenodo.16439048>.

607 Daniel S Levine, Muhammed Shuaibi, Evan Walter Clark Spotte-Smith, Michael G Taylor, Muham-
 608 mad R Hasyim, Kyle Michel, Ilyes Batatia, Gábor Csányi, Misko Dzamba, Peter Eastman, et al. The
 609 open molecules 2025 (omol25) dataset, evaluations, and models. *arXiv preprint arXiv:2505.08762*,
 610 2025.

611 Daniel Levy, Siba Smarak Panigrahi, Sekou-Oumar Kaba, Qiang Zhu, Kin Long Kelvin Lee, Mikhail
 612 Galkin, Santiago Miret, and Siamak Ravankhahsh. Symmcmd: Symmetry-preserving crystal
 613 generation with diffusion models. In *International Conference on Learning Representations*
 614 (*ICLR*), 2025.

615 Haotong Liang, Valentin Stanev, A. Gilad Kusne, and Ichiro Takeuchi. Cryspnet: Crystal structure
 616 predictions via neural networks. *Physical Review Materials*, 4(12), December 2020. ISSN 2475-
 617 9953. doi: 10.1103/physrevmaterials.4.123802. URL <http://dx.doi.org/10.1103/PhysRevMaterials.4.123802>.

618 Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3D atomistic
 619 graphs. In *International Conference on Learning Representations* (*ICLR*), 2023.

620 Yuchao Lin, Keqiang Yan, Youzhi Luo, Yi Liu, Xiaoning Qian, and Shuiwang Ji. Efficient approxima-
 621 tions of complete interatomic potentials for crystal property prediction. In *International Conference*
 622 *on Machine Learning* (*ICML*), 2023. URL <https://arxiv.org/abs/2306.10045>.

623 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 624 matching for generative modeling. In *International Conference on Learning Representations*
 625 (*ICLR*), 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.

626 Shengchao Liu, Weitao Du, Hannan Xu, Yanjing Li, Zhuoxinran Li, Vignesh Bhethanabotla, Divin
 627 Yan, Christian Borgs, Anima Anandkumar, Hongyu Guo, and Jennifer Chayes. A multi-grained
 628 symmetric differential equation model for learning protein-ligand binding dynamics. In *ICLR 2024*
 629 *Workshop on AI4DifferentialEquations In Science*, 2024a. URL <https://arxiv.org/abs/2401.15122>.

630 Shengchao Liu, Divin Yan, Hongyu Guo, and Anima Anandkumar. An equivariant flow matching
 631 framework for learning molecular crystallization. In *ICML 2024 Workshop on Geometry-grounded*
 632 *Representation Learning and Generative Modeling*, 2024b.

633 Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and
 634 transfer data with rectified flow. In *International Conference on Learning Representations* (*ICLR*),
 635 2023. URL <https://openreview.net/forum?id=XVjTT1nw5z>.

636 Yi Liu, Limei Wang, Meng Liu, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical message
 637 passing for 3d molecular graphs. In *International Conference on Learning Representations* (*ICLR*),
 638 2022. URL <https://arxiv.org/abs/2102.05013>.

639 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg
 640 Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learn-
 641 ing with slot attention. In *Adv. in Neural Information Processing Systems* (*NeurIPS*),
 642 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/8511df98c02ab60aealb2356c013bc0f-Paper.pdf.

648 Steph-Yves Louis, Yong Zhao, Alireza Nasiri, Xiran Wang, Yuqi Song, Fei Liu, and Jianjun Hu. Graph
 649 convolutional neural networks with global attention for improved materials property prediction.
 650 *Physical Chemistry Chemical Physics*, 22(32):18141–18148, 2020.

651 Xiaoshan Luo, Zhenyu Wang, Qingchang Wang, Jian Lv, Lei Wang, Yanchao Wang, and Yanming
 652 Ma. Crystalfow: A flow-based generative model for crystalline materials, 2025. URL <https://arxiv.org/abs/2412.11693>.

653 L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez. Packmol: A package for building initial
 654 configurations for molecular dynamics simulations. *Journal of Computational Chemistry*, 30(13):
 655 2157–2164, 2009. ISSN 1096-987X. doi: 10.1002/jcc.21224. URL <http://dx.doi.org/10.1002/jcc.21224>.

656 Rocco Meli and Philip C. Biggin. spyrmsd: symmetry-corrected rmsd calculations in python. *Journal
 657 of Cheminformatics*, 12(1):49, 2020.

658 Romain Menegaux, Emmanuel Jehanno, Margot Selosse, and Julien Mairal. Self-attention in colors:
 659 Another take on encoding graph structure in transformers, 2023. URL <https://arxiv.org/abs/2304.10933>.

660 Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and
 661 Ekin Dogus Cubuk. Scaling deep learning for materials discovery. *Nature*, 624(7990):80–85,
 662 2023.

663 Benjamin Kurt Miller, Ricky T. Q. Chen, Anuroop Sriram, and Brandon M Wood. FlowMM:
 664 Generating materials with Riemannian flow matching. In *International Conference on Machine
 665 Learning (ICML)*, 2024. URL <https://openreview.net/forum?id=W4pB7VbzZI>.

666 Juno Nam, Sulin Liu, Gavin Winter, KyuJung Jun, Soojung Yang, and Rafael Gómez-Bombarelli.
 667 Flow matching for accelerated simulation of atomic transport in materials, 2025. URL <https://arxiv.org/abs/2410.01464>.

668 Guillaume Pagès and Sergei Grudinin. Analytical symmetry detection in protein assemblies. ii.
 669 dihedral and cubic symmetries. *Journal of structural biology*, 203(3):185–194, 2018.

670 Guillaume Pagès, Elvira Kinzina, and Sergei Grudinin. Analytical symmetry detection in protein
 671 assemblies. i. cyclic symmetries. *Journal of Structural Biology*, 203(2):142–148, 2018.

672 G. Dias Pais, Pedro Miraldo, Sri Kumar Ramalingam, Jacinto C. Nascimento, Venu Madhav Govindu,
 673 and Rama Chellappa. 3Dregnet: A deep neural network for 3D point registration. In *IEEE/CVF
 674 Conference on Computer Vision and Pattern Recognition (CVPR)*, 2019.

675 Teerachote Pakornchote, Natthaphon Choomphon-anomakhun, Sorrjit Arrerut, Chayanon Atthapak,
 676 Sakarn Khamkaeo, Thiparat Chotibut, and Thiti Bovornratanaraks. Diffusion probabilistic models
 677 enhance variational autoencoder for crystal structure generative modeling. *Scientific Reports*, 14,
 678 2024. URL <https://arxiv.org/abs/2308.02165>.

679 Sungheon Park, Minsik Lee, and Nojun Kwak. Procrustean regression networks: Learning 3d
 680 structure of non-rigid objects from 2d annotations. In *European Conference on Computer Vision
 681 (ECCV)*, 2020. URL <https://arxiv.org/abs/2007.10961>.

682 Chris J Pickard and R J Needs. Ab initiorandom structure searching. *Journal of Physics: Condensed
 683 Matter*, 23(5):053201, January 2011. ISSN 1361-648X. doi: 10.1088/0953-8984/23/5/053201.
 684 URL <http://dx.doi.org/10.1088/0953-8984/23/5/053201>.

685 P Popov and S Grudinin. Rapid determination of rmsds corresponding to macromolecular rigid body
 686 motions. *Journal of Computational Chemistry*, 35(12):950–956, 2014.

687 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
 688 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014.

689 Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
 690 minique Beaini. Recipe for a general, powerful, scalable graph transformer. In *Adv. in Neural
 691 Information Processing Systems (NeurIPS)*, 2022.

702 Jonathan Schmidt, Noah Hoffmann, Hai-Chen Wang, Pedro Borlido, Pedro JMA Carriço, Tiago FT
 703 Cerqueira, Silvana Botti, and Miguel AL Marques. Large-scale machine-learning-assisted explo-
 704 ration of the whole materials space. *arXiv preprint arXiv:2210.00579*, 2022.

705

706 Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. November 2015.

707

708 Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
 709 Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
 710 for modeling quantum interactions. In *Adv. in Neural Information Processing Systems (NIPS)*,
 2017.

711

712 Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
 713 of tensorial properties and molecular spectra. In Marina Meila and Tong Zhang (eds.), *Proceedings
 714 of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine
 715 Learning Research*, pp. 9377–9388. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/schutt21a.html>.

716

717 Ken Shoemake. Animating rotation with quaternion curves. In *Proceedings of the 12th Annual
 718 Conference on Computer Graphics and Interactive Techniques*, SIGGRAPH '85, pp. 245–254,
 719 New York, NY, USA, 1985. Association for Computing Machinery. ISBN 0897911660. doi:
 720 10.1145/325334.325242. URL <https://doi.org/10.1145/325334.325242>.

721

722 Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1: an extensible neural network
 723 potential with dft accuracy at force field computational cost. *Chemical science*, 8(4):3192–3203,
 2017.

724

725 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 726 national Conference on Learning Representations (ICLR)*, 2021. URL <https://openreview.net/forum?id=St1giarCHLP>.

727

728 Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou,
 729 and Wei-Ying Ma. Equivariant flow matching with hybrid probability transport for 3d molecule
 730 generation. In *Adv. in Neural Information Processing Systems (NIPS)*, 2023.

731

732 Hai-Chen Wang, Silvana Botti, and Miguel AL Marques. Predicting stable crystalline compounds
 733 using chemical similarity. *npj Computational Materials*, 7(1):12, 2021.

734

735 Yue Wang and Justin M. Solomon. Deep closest point: Learning representations for point cloud
 736 registration. In *International Conference on Computer Vision (ICCV)*, 2019. URL <https://arxiv.org/abs/1905.03304>.

737

738 Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
 739 Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
 740 Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
 741 Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
 742 Mathieu, Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung
 743 Baek, and David Baker. De novo design of protein structure and function with rfdiffusion. *Nature*,
 620(7976):1089–1100, 2023.

744

745 Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
 746 interpretable prediction of material properties. *Physical review letters*, 120(14):145301, 2018.

747

748 Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crystal diffusion
 749 variational autoencoder for periodic material generation. In *International Conference on Learning
 750 Representations (ICLR)*, 2022. URL <https://arxiv.org/abs/2110.06197>.

751

752 Yihong Xu, Aljosa Osep, Yutong Ban, Radu Horaud, Laura Leal-Taixé, and Xavier Alameda-Pineda.
 753 How to train your deep multi-object tracker. In *Proceedings of the IEEE/CVF Conference on
 754 Computer Vision and Pattern Recognition*, pp. 6787–6796, 2020.

755

756 Keqiang Yan, Yi Liu, Yuchao Lin, and Shuiwang Ji. Periodic graph transformers for crystal material
 757 property prediction. In *Adv. in Neural Information Processing Systems (NeurIPS)*, 2022. URL
<https://arxiv.org/abs/2209.11807>.

756 Keqiang Yan, Cong Fu, Xiaofeng Qian, Xiaoning Qian, and Shuiwang Ji. Complete and efficient
757 graph transformers for crystal material property prediction. In *International Conference on*
758 *Learning Representations (ICLR)*, 2024a. URL <https://arxiv.org/abs/2403.11857>.
759

760 Keqiang Yan, Xiner Li, Hongyi Ling, Kenna Ashen, Carl Edwards, Raymundo Arróyave, Marinka
761 Zitnik, Heng Ji, Xiaofeng Qian, Xiaoning Qian, et al. Invariant tokenization of crystalline materials
762 for language model enabled generation. In *Adv. in Neural Information Processing Systems*
(*NeurIPS*), 2024b.
763

764 Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
765 Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
766 protein backbone generation with se (3) flow matching. *arXiv preprint arXiv:2310.05297*, 2023a.
767

768 Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
769 and Tommi Jaakkola. SE(3) diffusion model with application to protein backbone generation. In
770 *International Conference on Machine Learning (ICML)*, 2023b.
771

772 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
773 Tie-Yan Liu. Do transformers really perform badly for graph representation? In *Adv. in Neural*
774 *Information Processing Systems (NeurIPS)*, 2021.
775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 APPENDIX
811812 We release an anonymous version of the code available at [https://anonymous.4open.
813 science/r/SinkFast-CD4C/](https://anonymous.4open.science/r/SinkFast-CD4C/).
814815 A RELATED WORKS
816817 A.1 PHYSICS INFORMED GNN FOR PROPERTY PREDICTION
818819 **Datasets.** The fast-moving field of materials science has seen significant advances in recent years,
820 largely driven by the release of large-scale open-source datasets. Many of the works discussed here
821 rely on the QM9 database (Ramakrishnan et al., 2014), the Materials Project (Jain et al., 2013) and
822 JARVIS (Choudhary et al., 2020). With the recent release of even larger datasets such as OMol25
823 (Levine et al., 2025), the domain of materials property prediction and small molecule generation
824 continues to push the boundaries of materials discovery. OMol25 includes over 100 million DFT
825 calculations for larger molecular structures, providing an unprecedented wealth of properties to be
826 predicted.
827828 **GNN models.** Graph Neural Networks (GNNs) with message passing (Kipf & Welling, 2017;
829 Rampášek et al., 2022) and transformer-based architectures (Ying et al., 2021; Menegaux et al., 2023)
830 have been widely applied to molecular property prediction. Initially adapted from 2D molecular
831 representations, GNNs have been extended to crystalline materials. Notable models include CGCNN
832 (Xie & Grossman, 2018), MEGNet (Chen et al., 2019), and GATGNN (Louis et al., 2020), which
833 pioneered the application of GNNs to materials property prediction.
834835 **Geometry informed GNN models.** To better capture the geometric and physical properties of
836 materials, geometry-aware GNNs have been developed (Duval et al., 2023). Physically grounded
837 models such as ALIGNN (Choudhary & DeCost, 2021), Matformer (Yan et al., 2022), PotNet (Lin
838 et al., 2023) and ComFormer (Yan et al., 2024a) achieve state-of-the-art results on the Materials
839 Project dataset, demonstrating the importance of incorporating materials science knowledge into
840 predictive models. Concurrently, SE(3)-equivariant methods, known for their expressivity, have
841 emerged with models such as SchNet (Schütt et al., 2017), PaiNN (Schütt et al., 2021), SEGNN
842 (Brandstetter et al., 2022), SphereNet (Liu et al., 2022), NequIP (Batzner et al., 2022) and Equiformer
843 (Liao & Smidt, 2023).
844845 A.2 OBJECT-CENTRIC LEARNING
846847 **Permutation invariance in object detection.** In computer vision, permutation-invariant loss
848 functions have been used and developed in multiple object detection and segmentation (Carion et al.,
849 2020) and multi-object tracking (Xu et al., 2020). Locatello et al. (2020) and Kori et al. (2024) learn a
850 binding scheme for assigning objects to slots in object property prediction and unsupervised instance
851 discovery.
852853 **Point cloud rigid alignment distances.** In the point cloud registration domain, Wang & Solomon
854 (2019) have studied rigid alignment of point clouds as well as prediction to target assignment.
855 However, they decorrelate \mathbb{R}^3 and $SO(3)$ in the loss and reassign predictions to target only when
856 correspondence is unknown. Pais et al. (2019) study the registration of 3D scans and learn the rigid
857 alignment using different distances. Park et al. (2020) use Procrustes-alignment of 3D shapes to learn
858 a regression problem of predicting 3D positions of a deformable object from 2D frame observations.
859860 A.3 GENERATIVE MODELS IN MATERIALS SCIENCE
861862 **Single molecule conformation prediction.** Generating the 3D stable configuration of a single
863 molecule is essential for materials discovery. Datasets such as GEOM-Drugs (Axelrod & Gomez-
864 Bombarelli, 2022) and OMol25 (Levine et al., 2025) are tailored for this task. The OMol25 dataset
865 includes evaluations based on linear sum assignment for assessing optimal conformers, guided by
866 machine learning interatomic potentials (Smith et al., 2017) and Density Functional Theory (DFT)
867

(Kohn & Sham, 1965). Generative approaches include flow matching models and SE(3)-equivariant generative models such as those by Cornet et al. (2024) and Song et al. (2023).

Crystal Structure Prediction (CSP). Historically, CSP has relied on computationally expensive iterative methods based on DFT (Kohn & Sham, 1965), including techniques by Wang et al. (2021); Glass et al. (2006); Pickard & Needs (2011), where atoms are iteratively replaced by chemically similar ones and validated with DFT calculations. Recently, machine learning has accelerated this process (Schmidt et al., 2022; Merchant et al., 2023).

Generative models for atomic point clouds. For simple crystals from the Materials Project (Jain et al., 2013), heir 3D infinitely periodic structures can now be directly predicted (Liang et al., 2020; Cao et al., 2024). These methods are further enhanced by diffusion models (Merchant et al., 2023; Xie et al., 2022; Pakornchote et al., 2024; Jiao et al., 2023; Levy et al., 2025) and flow-matching approaches (Luo et al., 2025; Miller et al., 2024). Inspired by their success in other domains, Large Language Models have been adapted to CSP, as seen in CrystalLLM (Antunes et al., 2024) and models that integrate SE(3) equivariance and periodic boundary conditions (Yan et al., 2024b).

Rigid-body generative models for organic molecular CSP. Rigid-body generative models are extensively explored in protein design and backbone generation, as in AlphaFold2 (Jumper et al., 2021), FrameDiff (Yim et al., 2023b), and FrameFlow (Yim et al., 2023a). Closer to molecular crystals, studies now focus on assembly prediction. For example, Liu et al. (2024b) propose atom-wise equivariant flow matching, while Guo et al. (2025) introduce a rigid body flow matching model for molecular cluster packing prediction.

B RMSD AND RIGID MOTIONS

B.1 NOTATIONS

Throughout this section we will be generally dealing with 3×3 matrices and 3-vectors. Therefore, for linear algebra operations we will stick to the following notation. Bold upper case letters (i.e., \mathbf{A}) will denote matrices, normal weight lower case letters (i.e., c) will denote scalars, and we will also use an arrow notation for 3-vectors, such as \vec{v} . Most of the information reported here can be found in the original papers that deal with rigid-body measures for rigid molecules by Popov & Grudinin (2014); Pagès et al. (2018); Pagès & Grudinin (2018).

B.2 RIGID-BODY ARITHMETIC

As we introduced in the main text, a rigid spatial transformation operator $\mathcal{T} = (\vec{t}, Q)$ is composed of a 3D translation $\vec{t} \in \mathbb{R}^3$ and a 3D rigid rotation quaternion $Q = [s, \vec{q}] \in \text{SO}(3)$, which can also be represented with a rotation matrix \mathbf{R} , such that $\mathcal{T} = (\vec{t}, \mathbf{R})$. It is useful to introduce a composition of spatial transformation operators $\mathcal{T}_2 \circ \mathcal{T}_1$, where the operator \mathcal{T}_1 on the right is applied first, and an inverse \mathcal{T}^{-1} . The composition will be given as

$$\mathcal{T}_2 \circ \mathcal{T}_1 = (\vec{t}_2 + \mathbf{R}_2 \vec{t}_1, \mathbf{R}_2 \mathbf{R}_1) \equiv (\vec{t}_2 + Q_2 \cdot \vec{t}_1, Q_2 \cdot Q_1), \quad (\text{B.1})$$

where we define the quaternion product in the next section. The inverse will be:

$$\mathcal{T}^{-1} = (-\mathbf{R}^{-1} \vec{t}, \mathbf{R}^{-1}) \equiv (-\mathbf{R}^T \vec{t}, \mathbf{R}^T) \equiv (-Q^{-1} \cdot \vec{t}, Q^{-1}), \quad (\text{B.2})$$

with an inverse quaternion defined below.

B.3 QUATERNION ARITHMETIC

It is very convenient to express three-dimensional rotations using quaternion arithmetic. Thus, we will give a brief summary of it here. We consider a quaternion Q as a combination of a scalar s with a 3-component vector $\vec{q} = \{q_x, q_y, q_z\}$, $Q = [s, \vec{q}]$. Quaternion algebra defines multiplication, division, inversion and norm, among other operations. The product of two quaternions $Q_1 = [s_1, \vec{q}_1]$ and $Q_2 = [s_2, \vec{q}_2]$ is a quaternion and can be expressed through a combination of scalar and vector products:

$$Q_1 \cdot Q_2 \equiv [s_1, \vec{q}_1] \cdot [s_2, \vec{q}_2] = [s_1 s_2 - (\vec{q}_1 \cdot \vec{q}_2), s_1 \vec{q}_2 + s_2 \vec{q}_1 + (\vec{q}_1 \times \vec{q}_2)]. \quad (\text{B.3})$$

The squared norm of a quaternion Q is given as $|Q|^2 = s^2 + \vec{q} \cdot \vec{q}$, and a unit quaternion \hat{Q} is a quaternion with its norm equal to 1. An inverse quaternion Q^{-1} is given as $Q^{-1} = [s, -\vec{q}] / |Q|^2$. A vector \vec{v} can be treated as a quaternion with a zero scalar component, $\vec{v} \equiv [0, \vec{v}]$. Then, a unit quaternion \hat{Q} can be used to rotate vector \vec{v} to a new position \vec{v}' as follows

$$[0, \vec{v}'] = \hat{Q} [0, \vec{v}] \hat{Q}^{-1} = [0, (s^2 - \vec{q}^2)\vec{v} + 2s(\vec{q} \times \vec{v}) + 2(\vec{q} \cdot \vec{v})\vec{q}] = [0, \vec{v} + 2\vec{q} \times (\vec{q} \times \vec{v} + s\vec{v})]. \quad (\text{B.4})$$

Equivalently, the same rotation can be represented with a rotation matrix \mathbf{R} , such that $\vec{v}' = \mathbf{R}\vec{v}$, where \mathbf{R} can be expressed through the components of the quaternion \hat{Q} as

$$\mathbf{R} = \begin{pmatrix} s^2 + q_x^2 - q_y^2 - q_z^2 & 2q_x q_y - 2s q_z & 2q_x q_z + 2s q_y \\ 2q_x q_y + 2s q_z & s^2 - q_x^2 + q_y^2 - q_z^2 & 2q_y q_z - 2s q_x \\ 2q_x q_z - 2s q_y & 2q_y q_z + 2s q_x & s^2 - q_x^2 - q_y^2 + q_z^2 \end{pmatrix}. \quad (\text{B.5})$$

A unit quaternion \hat{Q} corresponding to a rotation by an angle α around a unit axis \vec{u} is given as $\hat{Q} = [\cos \frac{\alpha}{2}, \vec{u} \sin \frac{\alpha}{2}]$, and its inverse is $\hat{Q}^{-1} = [\cos \frac{\alpha}{2}, -\vec{u} \sin \frac{\alpha}{2}]$. Finally, N sequential rotations around different unit axes defined by unit quaternions $\{\hat{Q}_i\}_N$ result in a new vector \vec{v}' according to

$$[0, \vec{v}'] = \hat{Q}_N \hat{Q}_{N-1} \dots \hat{Q}_2 \hat{Q}_1 [0, \vec{v}] \hat{Q}_1^{-1} \hat{Q}_2^{-1} \dots \hat{Q}_{N-1}^{-1} \hat{Q}_N^{-1}. \quad (\text{B.6})$$

B.4 ROOT MEAN SQUARE DEVIATION

The root mean square deviation (RMSD) is one of the most widely used similarity criteria in chemistry, structural biology, bioinformatics, and material science. We will stick to this measure here, as it is very powerful, easy to understand and also because it can be computed very efficiently. For our particular needs we will use the definition of RMSD between two ordered sets of points, where each point has an equal contribution to the overall RMSD loss. More precisely, given a set of N points $A = \{\vec{a}_i\}_N$ and $B = \{\vec{b}_i\}_N$ with associated weights $w = \{w_i\}_N$, the RMSD between them is defined as

$$\text{RMSD}(A, B)^2 = \frac{1}{W} \sum_{1 \leq i \leq N} w_i \left| \vec{a}_i - \vec{b}_i \right|^2, \quad (\text{B.7})$$

where $W = \sum_i w_i$. Here, $\{w_i\}_N$ are statistical weights that may emphasize the importance of a certain part of the molecular structure, for example in case of a protein, the backbone or C_α atoms. These weights can also be equal to atomic masses (in this case W equals to the total mass of the molecule) or may be set to unity (in this case $W = N$). In this work, we set the weights to unity, thus

$$\text{RMSD}(A, B)^2 = \frac{1}{N} \sum_{1 \leq i \leq N} \left| \vec{a}_i - \vec{b}_i \right|^2, \quad (\text{B.8})$$

since it makes the following equations simpler to read and to use in practice. However, we should keep in mind that the weights can be easily added to all the corresponding equations.

B.5 RIGID BODY MOTION DESCRIBED WITH QUATERNIONS

Let \mathbf{R} be a rotation matrix and \vec{t} a translation vector applied to a molecule with N atoms at positions $A = \{\vec{a}_i\}_N$ with $\vec{a}_i = \{x_i, y_i, z_i\}^T$, such that the new positions $A' = \{\vec{a}'_i\}_N$ are given as $\vec{a}'_i = \mathbf{R}\vec{a}_i + \vec{t}$. Then, the weighted RMSD between A and A' will be given as

$$\text{RMSD}^2(A, A') = \frac{1}{W} \sum_i w_i \left| \vec{a}_i - \mathbf{R}\vec{a}_i - \vec{t} \right|^2. \quad (\text{B.9})$$

We can rewrite the previous expression using quaternion representation of vectors \vec{a}_i and \vec{t} as

$$\text{RMSD}^2 = \frac{1}{W} \sum_i w_i \left| [0, \vec{a}_i] - \hat{Q}[0, \vec{a}_i]\hat{Q}^{-1} - [0, \vec{t}] \right|^2. \quad (\text{B.10})$$

972 Here, the unit quaternion \hat{Q} corresponds to the rotation matrix \mathbf{R} . Since the norm of a quaternion does
 973 not change if we multiply it by a unit quaternion, we may right-multiply the kernel of the previous
 974 expression by \hat{Q} to obtain
 975

$$976 \text{RMSD}^2 = \frac{1}{W} \sum_i w_i \left| [0, \vec{a}_i] \hat{Q} - \hat{Q} [0, a_i] - [0, \vec{t}] \hat{Q} \right|^2. \quad (B.11)$$

979 Using the scalar–vector representation of a quaternion, $\hat{Q} = [s, \vec{q}]$, we rewrite the previous RMSD
 980 expression as
 981

$$982 \text{RMSD}^2 = \frac{1}{W} \sum_i w_i \left[-\vec{q} \cdot \vec{t}, -s\vec{t} + (2\vec{a}_i - \vec{t}) \times \vec{q} \right]^2. \quad (B.12)$$

983 Performing scalar and vector products in Eq. (B.12), we obtain
 984

$$985 \text{RMSD}^2 = \frac{1}{W} \sum_i w_i \left([q_x t_x + q_y t_y + q_z t_z]^2 \right. \\ 986 \quad + \left. [-s t_x + q_y (2z_i - t_z) - q_z (2y_i - t_y)]^2 \right. \\ 987 \quad + \left. [-s t_y + q_z (2x_i - t_x) - q_x (2z_i - t_z)]^2 \right. \\ 988 \quad + \left. [-s t_z + q_x (2y_i - t_y) - q_y (2x_i - t_x)]^2 \right). \quad (B.13)$$

993 Grouping terms in Eq. (B.13) that depend on atomic positions together, we obtain
 994

$$995 \text{RMSD}^2 = t_x^2 + t_y^2 + t_z^2 + \frac{4}{W} \sum_i w_i \{ q_x^2 (y_i^2 + z_i^2) + q_y^2 (x_i^2 + z_i^2) + q_z^2 (x_i^2 + y_i^2) \\ 996 \quad - 2q_x q_y x_i y_i - 2q_x q_z x_i z_i - 2q_y q_z z_i y_i \} \\ 997 \quad + \frac{4}{W} \{ q_x q_z t_z + q_x q_y t_y - q_z^2 t_x - q_y^2 t_x + s q_z t_y - s q_y t_z \} \sum_i w_i x_i \\ 998 \quad + \frac{4}{W} \{ q_y q_z t_z + q_x q_y t_x - q_x^2 t_y - q_z^2 t_y + s q_x t_z - s q_z t_x \} \sum_i w_i y_i \\ 999 \quad + \frac{4}{W} \{ q_y q_z t_y + q_x q_z t_x - q_x^2 t_z - q_y^2 t_z + s q_y t_x - s q_x t_y \} \sum_i w_i z_i. \quad (B.14)$$

1000 Introducing the inertia tensor \mathbf{I} , the rotation matrix \mathbf{R} , the center of mass vector \vec{c} , and the 3×3
 1001 identity matrix \mathbf{E}_3 , we may simplify the previous expression to
 1002

$$1003 \text{RMSD}^2 = \vec{t}^2 + \frac{4}{W} \vec{q}^T \mathbf{I} \vec{q} + 2\vec{t}^T (\mathbf{R} - \mathbf{E}_3) \vec{c}, \quad (B.15)$$

1004 where $\vec{c} = \frac{1}{W} \{ \sum w_i x_i, \sum w_i y_i, \sum w_i z_i \}^T$, rotation matrix \mathbf{R} corresponds to the rotation with the
 1005 unit quaternion \hat{Q} according to Eq. (B.5), and the inertia tensor \mathbf{I} is given as
 1006

$$1007 \mathbf{I} = \begin{pmatrix} \sum w_i (y_i^2 + z_i^2) & -\sum w_i x_i y_i & -\sum w_i x_i z_i \\ -\sum w_i x_i y_i & \sum w_i (x_i^2 + z_i^2) & -\sum w_i y_i z_i \\ -\sum w_i x_i z_i & -\sum w_i y_i z_i & \sum w_i (x_i^2 + y_i^2) \end{pmatrix}. \quad (B.16)$$

1008 The RMSD expression (B.15) consists of three parts, the pure translational contribution \vec{t}^2 , the
 1009 pure rotational contribution $\frac{4}{W} \vec{q}^T \mathbf{I} \vec{q}$, and the cross term $2\vec{t}^T (\mathbf{R} - \mathbf{E}_3) \vec{c}$. In this equation, only two
 1010 variables depend on the atomic positions $\{\vec{a}_i\}_N$, the inertia tensor \mathbf{I} , and the center of mass vector \vec{c} .
 1011 These depend only on the reference structure of a rigid molecule, and can be precomputed. Moreover,
 1012 it is practical to choose a reference frame centred on the molecular center of mass. In this frame, the
 1013 cross term vanishes and the above RMSD equation simplifies to
 1014

$$1015 \text{RMSD}^2 = \vec{t}^2 + \frac{4}{W} \vec{q}^T \mathbf{I} \vec{q}. \quad (B.17)$$

1016 However, we must bring reader’s attention that the inertia tensor must be specifically computed in the
 1017 chosen reference frame.
 1018

1026 B.6 SE(3) FLOW MATCHING
1027

1028 **In the Euclidean space** Conditional Flow Matching (Liu et al., 2023; Lipman et al., 2023; Albergo
1029 & Vanden-Eijnden, 2023) is a simple scalable method to train generative models. The basic principle
1030 is to choose a family $\mathbf{X} = \{(X_t)_{t \in [0,1]}\}$ of interpolating paths between any source distribution \mathbb{P}_0
1031 and the target distribution \mathbb{P}_1 . The paths should be differentiable and have their marginal laws at
1032 both ends $t = 0$ and $t = 1$ match the source and target distributions: $\mathcal{L}(X_0) = \mathbb{P}_0$ and $\mathcal{L}(X_1) = \mathbb{P}_1$,
1033 respectively. The flow matching procedure consists in training a neural network u to match the
1034 conditional velocity field $v^{\mathbf{X}}$ induced by these paths:

1035

1036
$$v^{\mathbf{X}}(t, x) = \mathbb{E} \left[\dot{X}_t | X_t = x \right]. \quad (\text{B.18})$$

1037

1038

1039 In practice, this family path is created with linear interpolations (LERP) between samples X_0, X_1
1040 from $\mathbb{P}_0, \mathbb{P}_1$:

1041

$$X_t = (1 - t)X_0 + tX_1 = \text{LERP}(X_0, X_1, t). \quad (\text{B.19})$$

1042

1043 At inference time, samples are generated by solving the forward ODE induced by the velocity field,
1044 by Euler discretization for example.

1045

1046 **In SO(3)** While this framework was originally designed for \mathbb{R}^d , there exists an extension to SO(3)
1047 (Chen & Lipman, 2024). Indeed, by representing rotations with unit quaternions, there is a natural
1048 equivalent to linear interpolation, called Spherical Linear Interpolation (SLERP) (Shoemake, 1985).
1049 This creates differentiable interpolation paths (\mathbf{q}_t) between source and target quaternions $\mathbf{q}_0, \mathbf{q}_1$:

1050

1051
$$\mathbf{q}_t = \text{SLERP}(\mathbf{q}_0, \mathbf{q}_1; t) = \mathbf{q}_0(\mathbf{q}_0^T \mathbf{q}_1)^t. \quad (\text{B.20})$$

1052

1053

1054 Combining LERP and SLERP, it is possible to linearly interpolate between two rigid-body transfor-
1055 mations $\mathcal{T}_0 = (\vec{r}_0, \mathbf{q}_0)$ and $\mathcal{T}_1 = (\vec{r}_1, \mathbf{q}_1)$ as $\mathcal{T}_t = (\text{LERP}(\vec{r}_0, \vec{r}_1, t), \text{SLERP}(\mathbf{q}_0, \mathbf{q}_1; t))$.

1056

1057 B.7 ILLUSTRATION OF THE PROPOSED PHYSICALLY-GROUNDED LOSSES

1058

1059 We illustrate in Figure B.1 how the different proposed losses evolve when the prediction is similar to
1060 the ground-truth up to a certain rigid-body transformation, either rotation, translation or permutation.
1061 In each of these cases, the predicted structure is correct chemically and physically and the loss
1062 should thus be 0. This figure helps us illustrate 3 main motivations. First, the difference between
1063 the parameter dependent \mathcal{L}_{ML} and the physically meaningful $\mathcal{L}_{\text{RMSD}}$. Second, the geometric loss is
1064 invariant to SE(3) transformations of the global picture but is not invariant to the index permutation
1065 of the arbitrarily chosen ordering of identical molecules. Third, this invariance to index permutation
1066 is enabled through the use of the linear sum assignment problem as detailed in section 3.1.

1067

1068

C METRICS

1069

1070 **Theorem C.1.** $\text{PM}_{\text{atom}}^2 \leq 2\text{RMSD}_{\text{atom}}^2$

1071

1072 *Proof.* Let us first define two metrics PM_{atom} and $\text{RMSD}_{\text{atom}}$ as

1073

1074

$$\text{PM}_{\text{atom}}^2 = \frac{1}{n_{\text{atom}}^2} \sum_{i \in n_{\text{atom}}} \sum_{j \in n_{\text{atom}}} (\|\vec{x}_{i,\text{pred}} - \vec{x}_{j,\text{pred}}\| - \|\vec{x}_{i,\text{gt}} - \vec{x}_{j,\text{gt}}\|)^2, \quad (\text{C.1})$$

1075

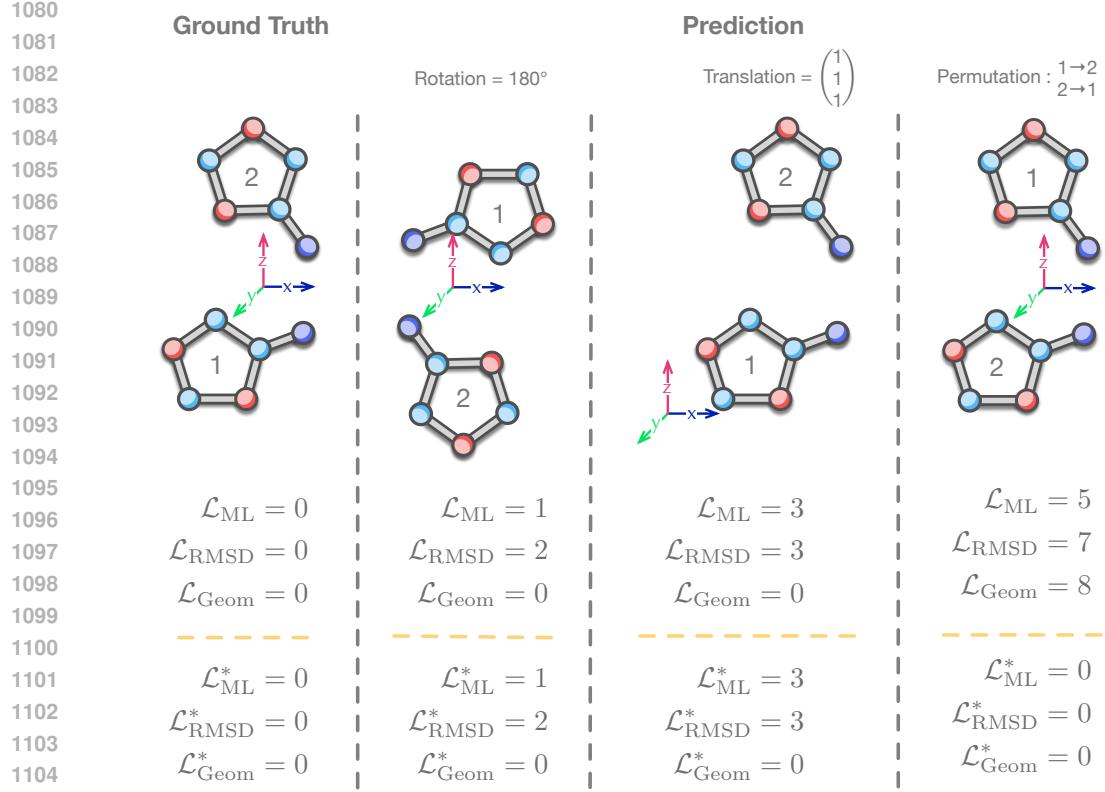
1076

1077

1078

1079

$$\text{RMSD}_{\text{atom}}^2 = \frac{1}{n_{\text{atom}}} \sum_{i \in n_{\text{atom}}} \|\vec{x}_{i,\text{pred}} - \vec{x}_{i,\text{gt}}\|^2. \quad (\text{C.2})$$



1106 Figure B.1: Illustration how the proposed physically-grounded losses evolve under some transformations
1107 on a toy example. The numbers are arbitrary and not physically related.

1109 We also define $\bar{x}_{\text{pred}} = \frac{1}{n_{\text{atom}}} \sum_i \vec{x}_{i,\text{pred}}$, $\bar{x}_{\text{gt}} = \frac{1}{n_{\text{atom}}} \sum_i \vec{x}_{i,\text{gt}}$, and use \cdot as the scalar product. Let us
1110 write down the following expression,

$$\begin{aligned}
 \text{PM}_{\text{atom}}^2 - 2\text{RMSD}_{\text{atom}}^2 &= \frac{1}{n_{\text{atom}}} \sum_{i \in n_{\text{atom}}} \sum_{j \in n_{\text{atom}}} \left(4\vec{x}_{i,\text{pred}} \cdot \vec{x}_{i,\text{gt}} - 2(\vec{x}_{i,\text{pred}} \cdot \vec{x}_{j,\text{pred}} + \vec{x}_{i,\text{gt}} \cdot \vec{x}_{j,\text{gt}} \right. \\
 &\quad \left. + ||\vec{x}_{i,\text{pred}} - \vec{x}_{j,\text{pred}}|| ||\vec{x}_{i,\text{gt}} - \vec{x}_{j,\text{gt}}||) \right) \\
 &= 4(\bar{x}_{\text{pred}} \cdot \bar{x}_{\text{gt}}) - 2\bar{x}_{\text{pred}} \cdot \bar{x}_{\text{pred}} - 2\bar{x}_{\text{gt}} \cdot \bar{x}_{\text{gt}} - \frac{2}{n_{\text{atom}}^2} \sum_{i \in n_{\text{atom}}} \sum_{j \in n_{\text{atom}}} ||\vec{x}_{i,\text{pred}} - \vec{x}_{j,\text{pred}}|| ||\vec{x}_{i,\text{gt}} - \vec{x}_{j,\text{gt}}|| \tag{C.3}
 \end{aligned}$$

1120 By Cauchy-Schwarz inequality (or maximizing the cosine of an angle between two vectors), we obtain

$$\begin{aligned}
 \frac{2}{n_{\text{atom}}^2} \sum_{i \in n_{\text{atom}}} \sum_{j \in n_{\text{atom}}} ||\vec{x}_{i,\text{pred}} - \vec{x}_{j,\text{pred}}|| ||\vec{x}_{i,\text{gt}} - \vec{x}_{j,\text{gt}}|| &\geq \\
 \frac{2}{n_{\text{atom}}^2} \sum_{i \in n_{\text{atom}}} \sum_{j \in n_{\text{atom}}} (\vec{x}_{i,\text{pred}} - \vec{x}_{j,\text{pred}}) \cdot (\vec{x}_{i,\text{gt}} - \vec{x}_{j,\text{gt}}), \tag{C.4}
 \end{aligned}$$

1128 which gives

$$\text{PM}_{\text{atom}}^2 - 2\text{RMSD}_{\text{atom}}^2 \leq -2(\bar{x}_{\text{pred}} - \bar{x}_{\text{gt}})^2, \tag{C.5}$$

1131 thus,

$$\text{PM}_{\text{atom}}^2 - 2\text{RMSD}_{\text{atom}}^2 \leq 0. \tag{C.6}$$

□

1134 **Theorem C.2.** *PM metric is SE3-invariant.*

1135 *Proof.* Let us again consider

$$1138 \text{PM}^2(x_{\text{pred}}, x_{\text{gt}}) = \frac{1}{n_{\text{atom}}^2} \sum_{i \in n_{\text{atom}}} \sum_{j \in n_{\text{atom}}} (||\vec{x}_{i,\text{pred}} - \vec{x}_{j,\text{pred}}|| - ||\vec{x}_{i,\text{gt}} - \vec{x}_{j,\text{gt}}||)^2. \quad (C.7)$$

1141 This quantity is invariant up to any rigid transformation $\mathcal{T} = (\mathcal{R}, \vec{t})$ of one of its inputs. Indeed,

$$\begin{aligned} 1144 \text{PM}_{\text{atom}}^2(\mathcal{T} \circ x_{\text{pred}}, \vec{x}_{\text{gt}}) &= \frac{1}{n_{\text{atom}}^2} \sum_{i \in n_{\text{atom}}} \sum_{j \in n_{\text{atom}}} (||\mathcal{T} \circ \vec{x}_{i,\text{pred}} - \mathcal{T} \circ \vec{x}_{j,\text{pred}}|| - ||\vec{x}_{i,\text{gt}} - \vec{x}_{j,\text{gt}}||)^2 \\ 1145 &= \frac{1}{n_{\text{atom}}^2} \sum_{i \in n_{\text{atom}}} \sum_{j \in n_{\text{atom}}} (||\mathcal{R}\vec{x}_{i,\text{pred}} - \vec{t} - \mathcal{R}\vec{x}_{j,\text{pred}} + \vec{t}|| - ||\vec{x}_{i,\text{gt}} - \vec{x}_{j,\text{gt}}||)^2 \\ 1146 &= \frac{1}{n_{\text{atom}}^2} \sum_{i \in n_{\text{atom}}} \sum_{j \in n_{\text{atom}}} (||\mathcal{R}(\vec{x}_{i,\text{pred}} - \vec{x}_{j,\text{pred}})|| - ||\vec{x}_{i,\text{gt}} - \vec{x}_{j,\text{gt}}||)^2 \\ 1147 &= \frac{1}{n_{\text{atom}}^2} \sum_{i \in n_{\text{atom}}} \sum_{j \in n_{\text{atom}}} (||\vec{x}_{i,\text{pred}} - \vec{x}_{j,\text{pred}}|| - ||\vec{x}_{i,\text{gt}} - \vec{x}_{j,\text{gt}}||)^2 \\ 1148 &= \text{PM}_{\text{atom}}^2(x_{\text{pred}}, x_{\text{gt}}) \end{aligned} \quad (C.8)$$

1156 \square

1158 **Theorem C.3.** *Geometric loss is SE3-invariant.*

1160 *Proof.* We consider:

$$1162 \mathcal{L}_{\text{Geom}}(\mathcal{T}_{\text{pred}}, \mathcal{T}_{\text{gt}}) = \frac{1}{M-1} \sum_{i=1}^{M-1} \mathcal{L}_{\text{RMSD}}(\mathcal{T}_{M,\text{pred}}^{-1} \circ \mathcal{T}_{i,\text{pred}}, \mathcal{T}_{M,\text{gt}}^{-1} \circ \mathcal{T}_{i,\text{gt}}). \quad (C.9)$$

1165 This quantity is invariant up to any transformation $\mathcal{T}_{\text{noise}}$ of one of its inputs:

$$\begin{aligned} 1167 \mathcal{L}_{\text{Geom}}(\mathcal{T}_{\text{noise}} \circ \mathcal{T}_{\text{pred}}, \mathcal{T}_{\text{gt}}) &= \frac{1}{M-1} \sum_{i=1}^{M-1} \mathcal{L}_{\text{RMSD}}\left(\mathcal{T}_{\text{noise}} \circ \mathcal{T}_{M,\text{pred}}^{-1} \circ \mathcal{T}_{i,\text{pred}}, \mathcal{T}_{M,\text{gt}}^{-1} \circ \mathcal{T}_{i,\text{gt}} \right) \\ 1168 &= \frac{1}{M-1} \sum_{i=1}^{M-1} \mathcal{L}_{\text{RMSD}}\left(\mathcal{T}_{M,\text{pred}}^{-1} \circ \mathcal{T}_{\text{noise}} \circ \mathcal{T}_{i,\text{pred}}, \mathcal{T}_{M,\text{gt}}^{-1} \circ \mathcal{T}_{i,\text{gt}} \right) \\ 1169 &= \frac{1}{M-1} \sum_{i=1}^{M-1} \mathcal{L}_{\text{RMSD}}\left(\mathcal{T}_{M,\text{pred}}^{-1} \circ \mathcal{T}_{i,\text{pred}}, \mathcal{T}_{M,\text{gt}}^{-1} \circ \mathcal{T}_{i,\text{gt}} \right) \\ 1170 &= \mathcal{L}_{\text{Geom}}(\mathcal{T}_{\text{pred}}, \mathcal{T}_{\text{gt}}) \end{aligned}$$

1181 \square

1183 D METHOD AND IMPLEMENTATION

1184 D.1 EXTENSION TO THE INVERSION DATASET

1185 We argue that our method can also be applied to the inversion version of the dataset. Indeed this
1186 version, defined in [Liu et al. \(2024b\)](#), presents half of the 17 molecules in each assembly as the

1188 left-handed and right-handed geometries of a chiral or achiral molecule. The latter molecules can
 1189 interconvert during crystallization and thus, our permutation-invariant approach can be applied on
 1190 this dataset. In the case of chiral molecules which can not interconvert during crystallization, the
 1191 invariance to permutation can be adapted to the 2 subsets of left-handed and right handed geometries
 1192 individually.

1193

1194

1195 D.2 ASSEMBLEFLOW ATOM-LEVEL MODEL

1196

1197 We use the Atom-level implemented in AssembleFlow and which can be described in Algorithm D.1.
 1198 It is composed of a PaiNN embedding layer to encode each molecular structure individually followed
 1199 by N layers of atom-to-molecules attention message passing. Each molecule's transformation
 1200 prediction is then obtained by aggregating the resulting atomic embeddings per molecule and passed
 1201 through a projection head.

1202

1203

Algorithm D.1 Atom-level model.

1204

1205 **def** AtomModel($\{a_i\}$: atoms, t : time, $\{\vec{\mathbf{P}}_i^t\}$: positions, $N_{\text{layer}} = 5$, $N_{\text{conv}} = 5$, $c = 128$)
 1206 1: $t = \text{Linear}(\text{SiLU}(\text{Linear}(\text{time_embed}(t))))$ [c]
 1207 2: $\{h_i^t\} = \text{PaiNN}(\{a_i\}, \{\vec{\mathbf{P}}_i^t\}) + \text{Linear}(\text{SiLU}(t))$ [N_{atom}, c]
 1208 3: $\{s_i^t\} = \text{ScatterMean}_{\text{per mol}}(\{h_i^t\})$ [N_{mol}, c]
 1209 4: $\{\vec{\mathbf{X}}_i^t\} = \text{ScatterMean}_{\text{per mol}}(\{\vec{\mathbf{P}}_i^t\})$ [$N_{\text{mol}}, 3$]
 1210 5: $\{e_{ij}^t\} = \text{RadialGraph}(\{\vec{\mathbf{P}}_i^t\}, \{\vec{\mathbf{X}}_i^t\})$ Atom to Molecules edges
 1211 6: **for all** $\{i, j\}/e_{ij}^t = 1$:
 1212 7: $\Delta_{ij}^t = \vec{\mathbf{P}}_i^t - \vec{\mathbf{X}}_j^t / \|\vec{\mathbf{P}}_i^t - \vec{\mathbf{X}}_j^t\|$
 1213 8: $\chi_{ij}^t = \vec{\mathbf{P}}_i^t \times \vec{\mathbf{X}}_j^t / \|\vec{\mathbf{P}}_i^t \times \vec{\mathbf{X}}_j^t\|$
 1214 9: $\Lambda_{ij}^t = \Delta_{ij}^t \times \chi_{ij}^t$
 1215 10: $\text{Base}_{ij}^t = \text{concat}(\Delta_{ij}^t, \chi_{ij}^t, \Lambda_{ij}^t)$ [Edges, 3, 3]
 1216 11: $\mathbf{E}_i^t = \text{MLP}(\text{GaussianFourierEmbed}(\text{Base}_{ij}^t \cdot \vec{\mathbf{P}}_i^t))$ [Edges, c]
 1217 12: $\mathbf{E}_j^t = \text{MLP}(\text{GaussianFourierEmbed}(\text{Base}_{ij}^t \cdot \vec{\mathbf{X}}_j^t))$ [Edges, c]
 1218 13: $\{\mathbf{z}_{ij}^t\} = \text{MLP}(\text{concat}(\mathbf{E}_i^t, \mathbf{E}_j^t))$ [Edges, c]
 1219 14:**end for**
 1220 15: $\mathcal{R}_i^t = \mathbf{0}$ and $\mathcal{S}_i^t = \mathbf{0}$
 1221 16:**for all** $l \in [1, \dots, N_{\text{layer}}]$:
 1222 17: **for all** $f \in [1, \dots, N_{\text{conv}}]$:
 1223 18: $\{\tilde{\mathbf{h}}_i^t\} = \text{GAT}_{\text{conv}}^f(\{h_i^t\}, \{s_j^t\}, \{\mathbf{z}_{ij}^t\})$
 1224 18: $\{\mathbf{h}_i^t\} = \{\tilde{\mathbf{h}}_i^t\} + \text{LayerNorm}(\{\tilde{\mathbf{h}}_i^t\})$
 1225 19: $\{\tilde{\mathbf{h}}_i^t\} = \text{FFN}^f(\{\mathbf{h}_i^t\})$
 1226 20: $\{\mathbf{h}_i^t\} = \{\tilde{\mathbf{h}}_i^t\} + \text{LayerNorm}(\{\tilde{\mathbf{h}}_i^t\}) + \text{Linear}(\text{SiLU}(t))$
 1227 21: **if** $l < N_{\text{conv}}$:
 1228 22: $\{\mathbf{h}_i^t\} = \text{SiLU}(\{\mathbf{h}_i^t\})$
 1229 23: **end if**
 1230 24: **end for**
 1231 25: $\{s_i^t\} = \text{ScatterMean}_{\text{per mol}}(\{h_i^t\})$
 1232 26: $\mathcal{R}_i^t \leftarrow \mathcal{R}_i^t + \text{ScatterMean}_{\text{per mol}} \left(\text{Mean}_{j \in \mathcal{N}(i)} \{ \text{MLP}(\text{concat}(h_i^t + s_j^t, \mathbf{z}_{ij}^t)) \cdot \text{Base}_{ij}^t \} \right)$ [$N_{\text{mol}}, 3$]
 1233 27: $\mathcal{S}_i^t \leftarrow \mathcal{S}_i^t + \text{ScatterMean}_{\text{per mol}} \left(\text{Mean}_{j \in \mathcal{N}(i)} \{ \text{Proj}(\text{Linear}(\text{MLP}(\text{concat}(h_i^t + s_j^t, \mathbf{z}_{ij}^t)) \cdot \text{Base}_{ij}^t)) \} \right)$ [$N_{\text{mol}}, 4$]
 1234 28: **end for**
 1235 29: **return** $\{\mathcal{S}_i^t, \mathcal{R}_i^t\}$

1241

1242 D.3 IMPLEMENTATION DETAILS
12431244 D.3.1 HYPERPARAMETERS AND NUMBER OF PARAMETERS
12451246 Table D.1 lists the hyperparameters used during training along with the number of parameters for the
1247 model and the memory usage.
12481249
1250
1251 Table D.1: **Hyperparameters used in the model.**
1252

Model part	Function	Parameters
Training	Epochs	{500}
	Batch size	{8}
	Loss	{LM: {alpha: 10}} {RMSD: Ø} {Geometric: Ø}
	Assignment	{None: Ø} {'Exact': Ø} {'Differentiable': {reg=5.10 ⁻² .median_score}}
Optimizer	Name	{Adam}
	Learning rate	{10 ⁻⁴ }
	Weight decay	{0}
	Scheduler	{'CosineAnnealingLR'}
Molecular Encoder (PaiNN)	cutoff	{5}
	embedding dim	{128}
	number of interactions	{3}
	number of rbf	{20}
	scatter	{'mean'}
	gamma	{3.25}
Backbone (AssembleFlow Atom)	emb_dim	{128}
	hidden dim	{128}
	cutoff	{10}
	cluster cutoff	{50}
	number of timesteps	{1, 50}
	scatter	{'mean'}
	number of Gaussians	{20}
	number of heads	{8}
	number of layers	{5}
	number of convolutions	{5}
	gamma	{3.25}
Total number of parameters: 4 292 718		
Total memory usage: 38.9 GB		

1288
1289
1290
1291
1292 D.3.2 LICENSES AND VERSIONS
12931294 The common environment packages are released with the code through a conda environment. We
1295 also report in Table D.2 the versions and licenses of the main packages used.

1296

Table D.2: Versions and licenses.

1297

1298

Package	Version	License
COD-Cluster17	git commit	MIT
AssembleFlow Model	git commit	MIT
POT	0.9.5	MIT
RMSD	-	CeCILL

1305

1306

E ABLATION STUDIES

1308

E.1 DIFFERENTIAL ASSIGNMENT WITH DIRECT REGRESSION

1310

In Table E.1, we list the experiments of training or not with differential assignment in direct regression with the AssembleFlow atom-level model. We want to draw the attention to the \mathbf{PM}^* methods and the great added value of using our assignment method regardless of the loss being used.

1314

1315

Table E.1: Ablation study of using differentiable assignment (Diff. assign.) losses during training on COD-Cluster17 with direct regression.

1317

Loss	Diff. assign.	Test Loss in Å↓		Packing matching in Å↓			
		$\mathcal{L}_{\text{RMSD}}^*$	$\mathcal{L}_{\text{Geom}}^*$	$\mathbf{PM}_{\text{center}}^*$	$\mathbf{PM}_{\text{atom}}^*$	$\mathbf{PM}_{\text{center}}$	$\mathbf{PM}_{\text{atom}}$
Dataset: COD-Cluster17-5K							
\mathcal{L}_{ML}		9.64 \pm 0.21	11.43 \pm 0.08	5.62 \pm 0.31	6.68 \pm 0.24	6.97 \pm 0.23	7.62 \pm 0.18
$\mathcal{L}_{\text{RMSD}}$		9.64 \pm 0.03	11.24 \pm 0.15	5.57 \pm 0.19	6.67 \pm 0.07	6.93 \pm 0.12	7.61 \pm 0.02
$\mathcal{L}_{\text{Geom}}$		10.10 \pm 0.14	10.05 \pm 0.11	8.44 \pm 0.43	8.37 \pm 0.26	9.05 \pm 0.37	8.74 \pm 0.22
$\mathcal{L}_{\text{ML}}^*$	✓	8.69 \pm 0.06	12.16 \pm 0.12	3.60 \pm 0.04	5.54 \pm 0.04	5.80 \pm 0.03	6.96 \pm 0.03
$\mathcal{L}_{\text{RMSD}}^*$	✓	8.73 \pm 0.07	12.05 \pm 0.15	3.77 \pm 0.12	5.67 \pm 0.08	5.85 \pm 0.05	6.98 \pm 0.05
$\mathcal{L}_{\text{Geom}}^*$	✓	9.32 \pm 0.06	8.78 \pm 0.05	5.55 \pm 0.15	6.54 \pm 0.07	6.92 \pm 0.07	7.46 \pm 0.02
Dataset: COD-Cluster17-All							
\mathcal{L}_{ML}		11.67 \pm 0.07	11.33 \pm 0.05	12.94 \pm 0.16	10.47 \pm 0.03	13.03 \pm 0.15	10.47 \pm 0.02
$\mathcal{L}_{\text{RMSD}}$		11.58 \pm 0.04	11.20 \pm 0.12	12.98 \pm 0.13	10.44 \pm 0.01	13.07 \pm 0.12	10.43 \pm 0.01
$\mathcal{L}_{\text{Geom}}$		11.90 \pm 0.08	11.38 \pm 0.09	13.62 \pm 0.07	10.52 \pm 0.01	13.66 \pm 0.06	10.49 \pm 0.01
$\mathcal{L}_{\text{ML}}^*$	✓	8.65 \pm 0.02	12.10 \pm 0.10	3.47 \pm 0.04	5.51 \pm 0.02	5.80 \pm 0.00	7.00 \pm 0.01
$\mathcal{L}_{\text{RMSD}}^*$	✓	8.70 \pm 0.03	12.16 \pm 0.08	3.41 \pm 0.04	5.54 \pm 0.01	5.80 \pm 0.00	7.00 \pm 0.01
$\mathcal{L}_{\text{Geom}}^*$	✓	9.35 \pm 0.00	8.71 \pm 0.03	5.43 \pm 0.10	6.52 \pm 0.05	6.84 \pm 0.06	7.45 \pm 0.02

1337

1338

E.2 DIFFERENTIAL ASSIGNMENT WITH FLOW MATCHING

1340

Table E.2 lists the experiments of switching on and off the expensive flow matching framework (table 3) along with using the differential assignment. The added value of flow matching when using the differential assignment loss is not very clear in the current framework. As it does not always significantly help the method, we suspect a need to further adapt the assignment method to the iterative flow matching scheme. However, we would like to point out two things. Firstly, it greatly improves the performance of the *relative* geometric method on the *absolute* metrics while decreasing it on the *relative* metric. Secondly, it enable to reach the overall best performance in the $\mathbf{PM}_{\text{center}}^*$ metric.

1348

1349

We report in Table E.3 (resp. E.4) a clearer ablation study conducted with $\mathcal{L}_{\text{RMSD}}$ (resp. $\mathcal{L}_{\text{Geom}}$) of training the AssembleFlow backbone with or without flow matching and permutation-invariant loss.

Table E.2: Ablation study of using flow matching in addition to differentiable assignment losses during training on COD-Cluster17.

Loss	Flow Matching	Test Loss in Å↓		Packing matching in Å↓			
		$\mathcal{L}_{\text{RMSD}}^*$	$\mathcal{L}_{\text{Geom}}^*$	$\mathbf{PM}_{\text{center}}^*$	$\mathbf{PM}_{\text{atom}}^*$	$\mathbf{PM}_{\text{center}}$	$\mathbf{PM}_{\text{atom}}$
Dataset: COD-Cluster17-5K							
$\mathcal{L}_{\text{ML}}^*$		8.69 ± 0.06	12.16 ± 0.12	3.60 ± 0.04	5.54 ± 0.04	5.80 ± 0.03	6.96 ± 0.03
$\mathcal{L}_{\text{RMSD}}^*$		8.73 ± 0.07	12.05 ± 0.15	3.77 ± 0.12	5.67 ± 0.08	5.85 ± 0.05	6.98 ± 0.05
$\mathcal{L}_{\text{Geom}}^*$		9.32 ± 0.06	8.78 ± 0.05	5.55 ± 0.15	6.54 ± 0.07	6.92 ± 0.07	7.46 ± 0.02
$\mathcal{L}_{\text{ML}}^*$	✓	9.31 ± 0.25	13.54 ± 0.50	3.48 ± 0.19	5.60 ± 0.14	6.12 ± 0.23	7.29 ± 0.21
$\mathcal{L}_{\text{RMSD}}^*$	✓	9.53 ± 0.54	13.71 ± 0.40	3.43 ± 0.20	5.56 ± 0.14	6.12 ± 0.19	7.28 ± 0.17
$\mathcal{L}_{\text{Geom}}^*$	✓	9.09 ± 0.09	10.48 ± 0.18	3.72 ± 0.11	5.73 ± 0.04	6.04 ± 0.10	7.19 ± 0.05
Dataset: COD-Cluster17-All							
$\mathcal{L}_{\text{ML}}^*$		8.65 ± 0.02	12.10 ± 0.10	3.47 ± 0.04	5.51 ± 0.02	5.80 ± 0.00	7.00 ± 0.01
$\mathcal{L}_{\text{RMSD}}^*$		8.70 ± 0.03	12.16 ± 0.08	3.41 ± 0.04	5.54 ± 0.01	5.80 ± 0.00	7.00 ± 0.01
$\mathcal{L}_{\text{Geom}}^*$		9.35 ± 0.00	8.71 ± 0.03	5.43 ± 0.10	6.52 ± 0.05	6.84 ± 0.06	7.45 ± 0.02
$\mathcal{L}_{\text{ML}}^*$	✓	9.37 ± 0.09	13.69 ± 0.21	3.42 ± 0.12	5.63 ± 0.07	6.15 ± 0.12	7.36 ± 0.09
$\mathcal{L}_{\text{RMSD}}^*$	✓	9.51 ± 0.38	13.42 ± 0.22	3.29 ± 0.04	5.53 ± 0.04	6.01 ± 0.06	7.23 ± 0.07
$\mathcal{L}_{\text{Geom}}^*$	✓	9.28 ± 0.09	10.72 ± 0.13	3.89 ± 0.23	5.88 ± 0.12	6.27 ± 0.17	7.40 ± 0.12

Table E.3: Ablation study of using flow matching and differentiable assignment loss during training on COD-Cluster17-All with $\mathcal{L}_{\text{RMSD}}$.

Flow Matching	Permutation Invariance	$\mathcal{L}_{\text{RMSD}}^*$	$\mathbf{PM}_{\text{center}}^*$	$\mathbf{PM}_{\text{atom}}^*$
✓		11.58 ± 0.04	12.98 ± 0.13	10.44 ± 0.01
	✓	9.08 ± 0.12	3.51 ± 0.04	5.60 ± 0.03
✓	✓	8.70 ± 0.03	3.41 ± 0.04	5.54 ± 0.01
	✓	9.51 ± 0.38	3.29 ± 0.04	5.53 ± 0.04

Table E.4: Ablation study of using flow matching and differentiable assignment loss during training on COD-Cluster17-All with $\mathcal{L}_{\text{Geom}}$.

Flow Matching	Permutation Invariance	$\mathcal{L}_{\text{Geom}}^*$	$\mathbf{PM}_{\text{center}}^*$	$\mathbf{PM}_{\text{atom}}^*$
✓		11.38 ± 0.09	13.62 ± 0.07	10.52 ± 0.01
	✓	10.77 ± 0.13	3.78 ± 0.09	5.76 ± 0.05
✓	✓	8.71 ± 0.03	5.43 ± 0.10	6.52 ± 0.05
		10.72 ± 0.13	3.89 ± 0.23	5.88 ± 0.12

1404
 1405 **E.3 USING LINEAR SUM ASSIGNMENT DURING TRAINING AGAINST DIFFERENTIABLE**
 1406 **ASSIGNMENT**

1407 We report in Table E.5 the experiment of using the linear sum assignment (*exact*) during training
 1408 against the differential assignment (*relaxed*). On the one hand, using the exact solver during training
 1409 enables backpropagation for each molecule in the assembly along the path leading to its assigned
 1410 target, while killing the other gradients corresponding to other paths to unassigned targets. On the
 1411 other hand, the relaxed differential version preserves the gradients to all possible paths with probability
 1412 attached to each, which enables a more diverse learning. While being suboptimal compared to the
 1413 differential assignment, the added value of using the latter is very small as shown in Table E.5. We
 1414 report here the performance obtained without tuning the regularization parameter of the Sinkhorn
 1415 algorithm and exploring its influence on the overall performance. Nonetheless we argue that this
 1416 hyperparameter should play an important role with better-performing methods in the future.
 1417 Indeed we believe that if the method learned nearly perfectly to match a molecule to its target position,
 1418 this relaxed method would diversify the search space and act as a data augmentation method, the
 1419 amount of which would be set by the regularization parameter.

1420 Table E.5: Ablation study of using differential or exact assignment losses during training on COD-
 1421 Cluster17 with direct regression.

Loss	Assignment type	Test Loss in Å↓		Packing matching in Å↓			
		$\mathcal{L}_{\text{RMSD}}^*$	$\mathcal{L}_{\text{Geom}}^*$	$\mathbf{PM}_{\text{center}}^*$	$\mathbf{PM}_{\text{atom}}^*$	$\mathbf{PM}_{\text{center}}$	$\mathbf{PM}_{\text{atom}}$
Dataset: COD-Cluster17-5K							
$\mathcal{L}_{\text{ML}}^*$	Exact	8.70 ± 0.06	12.24 ± 0.14	3.64 ± 0.12	5.56 ± 0.08	5.81 ± 0.04	6.96 ± 0.04
$\mathcal{L}_{\text{RMSD}}^*$	Exact	8.72 ± 0.07	12.19 ± 0.05	3.65 ± 0.05	5.61 ± 0.03	5.81 ± 0.02	6.96 ± 0.04
$\mathcal{L}_{\text{Geom}}^*$	Exact	9.32 ± 0.05	8.80 ± 0.08	5.51 ± 0.25	6.53 ± 0.14	6.90 ± 0.14	7.45 ± 0.06
$\mathcal{L}_{\text{ML}}^*$	Diff.	8.69 ± 0.06	12.16 ± 0.12	3.60 ± 0.04	5.54 ± 0.04	5.80 ± 0.03	6.96 ± 0.03
$\mathcal{L}_{\text{RMSD}}^*$	Diff.	8.73 ± 0.07	12.05 ± 0.15	3.77 ± 0.12	5.67 ± 0.08	5.85 ± 0.05	6.98 ± 0.05
$\mathcal{L}_{\text{Geom}}^*$	Diff.	9.32 ± 0.06	8.78 ± 0.05	5.55 ± 0.15	6.54 ± 0.07	6.92 ± 0.07	7.46 ± 0.02
Dataset: COD-Cluster17-All							
$\mathcal{L}_{\text{ML}}^*$	Exact	8.65 ± 0.02	12.18 ± 0.02	3.37 ± 0.03	5.47 ± 0.02	5.78 ± 0.01	6.99 ± 0.01
$\mathcal{L}_{\text{RMSD}}^*$	Exact	8.70 ± 0.03	12.14 ± 0.09	3.44 ± 0.09	5.56 ± 0.03	5.80 ± 0.01	7.00 ± 0.01
$\mathcal{L}_{\text{Geom}}^*$	Exact	9.35 ± 0.03	8.71 ± 0.03	5.40 ± 0.07	6.51 ± 0.05	6.84 ± 0.05	7.46 ± 0.03
$\mathcal{L}_{\text{ML}}^*$	Diff.	8.65 ± 0.02	12.10 ± 0.10	3.47 ± 0.04	5.51 ± 0.02	5.80 ± 0.00	7.00 ± 0.01
$\mathcal{L}_{\text{RMSD}}^*$	Diff.	8.70 ± 0.03	12.16 ± 0.08	3.41 ± 0.04	5.54 ± 0.01	5.80 ± 0.00	7.00 ± 0.01
$\mathcal{L}_{\text{Geom}}^*$	Diff.	9.35 ± 0.00	8.71 ± 0.03	5.43 ± 0.10	6.52 ± 0.05	6.84 ± 0.06	7.45 ± 0.02

1441 **E.4 ANGULAR VS TRANSLATIONAL PREDICTION**

1442 We report in table E.6 the decomposition of the RMSD score in both its translation $\mathcal{L}_{\mathbb{R}^3}^*$ and rotation
 1443 $\mathcal{L}_{\text{SO}(3)}^*$ parts. Please note that $\mathcal{L}_{\text{RMSD}}^* = \mathcal{L}_{\mathbb{R}^3}^* + \mathcal{L}_{\text{SO}(3)}^*$, following eq. 7. The noise baseline is
 1444 computed by always using an identity transformation as a prediction, meaning, a zero translation and
 1445 an identity rotation, and computing the RMSD between the sets $\mathcal{S}_{\text{initial}}$ of initial positions and $\mathcal{S}_{\text{final}}$ of
 1446 final positions. Presented results indicate the scale of the problem and show in particular that initial
 1447 orientations are better than predicted ones. This table shows that both models mainly focus on the
 1448 translation part of the problem, while discarding rotations completely.

1449 **Equivariant version.** We have made an attempt to make the output of the model equivariant with
 1450 the aim to improve in particular the orientation predictions. The implementation of this adaptation is
 1451 presented in Algorithm E.1. We report the results of the experiment in Table E.7. Unfortunately, the
 1452 problem remains unsolved and we believe that the model definition requires deeper modifications. It
 1453 requires more advanced equivariant techniques to improve the expressivity of its intermediate layers,
 1454 which results in changing completely the AssembleFlow backbone.

1455 **E.5 DEPENDENCY TO SKINHORN REGULARIZATION PARAMETER**

1458
1459
1460
1461Table E.6: Both AssembleFlow and SinkFast RMSD performance decomposed between translation and rotation on COD-Cluster17-5K. Baseline scores indicate the scale of the metric and are computed between $\mathcal{S}_{\text{initial}}$ and $\mathcal{S}_{\text{final}}$ as if the model always predicts identity transformations.1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474

Model	Loss	Test Loss in Å↓		
		$\mathcal{L}_{\text{RMSD}}^*$	$\mathcal{L}_{\mathbb{R}^3}^*$	$\mathcal{L}_{\text{SO}(3)}^*$
Dataset: COD-Cluster17-5K				
Noise (Baseline)		12.83 ± 0.05	11.55 ± 0.02	5.42 ± 0.06
AssembleFlow	\mathcal{L}_{ML}	9.53 ± 0.09	7.60 ± 0.09	5.65 ± 0.06
	$\mathcal{L}_{\text{RMSD}}$	9.43 ± 0.23	7.47 ± 0.21	5.66 ± 0.10
	$\mathcal{L}_{\text{Geom}}$	9.12 ± 0.05	7.10 ± 0.07	5.65 ± 0.14
SinkFast	$\mathcal{L}_{\text{ML}}^*$	8.90 ± 0.11	6.63 ± 0.06	5.87 ± 0.09
	$\mathcal{L}_{\text{RMSD}}^*$	8.86 ± 0.09	6.66 ± 0.06	5.77 ± 0.07
	$\mathcal{L}_{\text{Geom}}^*$	9.33 ± 0.11	7.49 ± 0.09	5.50 ± 0.07

1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511**Algorithm E.1** Equivariant atom-level model.

```

def AtomModel( $\{f_a\}$  : atomic features,  $t$  : time,  $\{\vec{P}_a^t\}$  : atomic positions,
 $\{\mathcal{Q}_m^t\}$  : molecular orientations,  $N_{\text{layer}} = 5$ ,  $N_{\text{conv}} = 5$ ,  $c = 128$ )
  1:  $t = \text{MLP}(\text{time\_embed}(t))$  [c]
  2:  $\{h_a^t\} = \text{PaiNN}(\{f_a\}, \{\vec{P}_a^t\}) + \text{Linear}(\text{SiLU}(t))$  [Natom, c]
  3:  $\{s_m^t\} = \text{ScatterMean}_{\text{per mol}}(\{h_a^t\})$  [Nmol, c]
  4:  $\{\vec{X}_m^t\} = \text{ScatterMean}_{\text{per mol}}(\{\vec{P}_a^t\})$  [Nmol, 3]
  5:  $\{e_{ij}^t\} = \text{RadialGraph}(\{\vec{P}_a^t\}, \{\vec{X}_m^t\})$  Atom to Molecules edges
  6: for all  $i, j \in \{e_{ij}^t\}$  :  $e_{ij}^t = 1$  : Each molecule j that is the neighbor of each atom i
    7:  $\Delta_{ij}^t, \chi_{ij}^t, \Lambda_{ij}^t = \text{OrthNorm}(\vec{P}_{m,0}^t, \vec{P}_{m,2}^t, \vec{P}_{m,3}^t)$  3 first atoms of molecule m s.t.  $i \in m$ .
    8:  $\text{Base}_{ij}^t = \text{concat}(\Delta_{ij}^t, \chi_{ij}^t, \Lambda_{ij}^t) \mid \text{origin: } \vec{O}_{ij}^t = \vec{P}_{m,0}^t$  [Edges, 3, 3]
    9:  $\mathbf{E}_i^t = \text{MLP}(\text{GaussianFourierEmbed}(\text{Base}_{ij}^t \cdot [\vec{P}_i^t - \vec{O}_{ij}^t]))$  [Edges, c]
    10:  $\mathbf{E}_j^t = \text{MLP}(\text{GaussianFourierEmbed}(\text{Base}_{ij}^t \cdot [\vec{X}_j^t - \vec{O}_{ij}^t]))$  [Edges, c]
    11:  $\{\mathbf{z}_{ij}^t\} = \text{MLP}(\text{concat}(\mathbf{E}_i^t, \mathbf{E}_j^t))$  [Edges, c]
    12: end for
    13:  $\mathcal{R}_m^t = \vec{P}_m^t$  and  $\mathcal{S}_m^t = \text{Base}_{m,j=0}^t$  as quaternion
    14:  $\mathcal{A}_i^t = \mathcal{S}_m^t \quad \forall m \leq N_{\text{mol}}$  s.t.  $i \in$  molecule m.
    15: for all  $l \in [1, \dots, N_{\text{layer}}]$ :
      16: for all  $f \in [1, \dots, N_{\text{conv}}]$ :
        17:  $\{\tilde{\mathbf{h}}_i^t\} = \text{GAT}_{\text{conv}}^f(\{\mathbf{h}_i^t\}, \{s_j^t\}, \{\text{concat}(\mathbf{z}_{ij}^t, \mathcal{A}_i^t(\mathcal{Q}_j^t)^{-1}, (\text{Base}_{ij}^t)^{-1}(\mathbf{P}_i^t - \mathbf{X}_j^t))\})$ 
        18:  $\{\mathbf{h}_i^t\} = \{\tilde{\mathbf{h}}_i^t\} + \text{LayerNorm}(\{\tilde{\mathbf{h}}_i^t\})$ 
        19:  $\{\tilde{\mathbf{h}}_i^t\} = \text{FFN}^f(\{\mathbf{h}_i^t\})$ 
        20:  $\{\mathbf{h}_i^t\} = \{\tilde{\mathbf{h}}_i^t\} + \text{LayerNorm}(\{\tilde{\mathbf{h}}_i^t\}) + \text{Linear}(\text{SiLU}(t))$ 
        21: if  $l < N_{\text{conv}}$  :
          22:  $\{\mathbf{h}_i^t\} = \text{SiLU}(\{\mathbf{h}_i^t\})$ 
        23: end if
        24: end for
        25:  $\{\mathbf{s}_m^t\} = \text{Mean}_{i \in m}(\{h_{ij}^t\})$ 
        26:  $\{\mathcal{F}_{ij}^t\} = \text{concat}(h_i^t + s_j^t, \mathbf{z}_{ij}^t, \mathcal{A}_i^t(\mathcal{Q}_j^t)^{-1}, (\text{Base}_{ij}^t)^{-1}(\mathbf{P}_i^t - \mathbf{X}_j^t))$  [Edges, 2*c+7]
        27:  $\mathcal{R}_m^t \leftarrow \mathcal{R}_m^t + \text{Mean}_{i \in m} \left( \text{Mean}_{j \in \mathcal{N}(i)} \{ \text{MLP}(\mathcal{F}_{ij}^t) \cdot \text{Base}_{ij}^t \} \right)$  [Nmol, 3]
        28:  $\mathcal{A}_i^t \leftarrow \text{Mean}_{j \in \mathcal{N}(i)} \left( \text{Proj} \left( \text{Linear} \left( \text{MLP}(\mathcal{F}_{ij}^t) \cdot \text{Base}_{ij}^t \right) \right) \right) \cdot \mathcal{A}_i^t$  [Nmol, 4]
        29:  $\mathcal{S}_m^t \leftarrow \text{RotationMean}_{i \in m}(\mathcal{S}_m^t, \mathcal{A}_i^t, h_i^t)$  [Nmol, 4]
        30: end for
      31: return  $\{\mathcal{S}_i^t, \mathcal{R}_i^t\}$ 

```

```

1512
1513 Algorithm E.2 Aggregation function of quaternions.
1514 def RotationMeanindex( $\{\mathbf{q}_{1,i}\}$  : initial quaternions,  $\{\mathbf{q}_{2,j}\}$  : quaternions to aggregate,
1515  $\{\mathcal{E}_{ij}\}$  : edge attribute between i and j,  $\lambda = 1$  : regularization)
1516     2:  $\{w_{ij}\} = \text{Linear}(\{\mathcal{E}_{ij}\})$  [Edges, 1]
1517     3:  $\mathcal{M}_i = \frac{\sum_{j \in \mathcal{N}(i)} w_{ij}^{-1} \mathbf{q}_{2,j}^{-1} \times \mathbf{q}_{2,j}^{-1}}{\sum_{j \in \mathcal{N}(i)} w_{ij}^{-1}}$  with  $\times$  the outer product [N1, 4, 4]
1518     4:  $\mathcal{M}^{\text{Sym}} = \frac{1}{2}(\mathcal{M} + \mathcal{M}^T)$  [N1, 4, 4]
1519     3:  $U_i = \text{DomEigVec}(\mathcal{M}_i^{\text{Sym}} + \lambda \cdot \mathbf{q}_{1,i}^{-1} \times \mathbf{q}_{1,i}^{-1})$  get dominant eigen vector [N1, 4]
1520     5:  $\mathbf{q}_{1,i} \leftarrow \mathbf{q}_{1,i} \cdot U_i \cdot \mathbf{q}_{1,i}$ 
1521     6: return  $\{\mathbf{q}_{1,i}\}$ 

```

Table E.7: Ablation study of making SinkFast’s backbone equivariant and trained with flow matching on COD-Clutser17 - 5k. The model is trained with L_{Geom} loss as it is then purposed for relative prediction tasks.

Flow Matching	Equivariant Backbone	$\mathcal{L}_{\text{Geom}}^*$	$\mathbf{PM}_{\text{center}}^*$	$\mathbf{PM}_{\text{atom}}^*$
	✓	8.87	5.48	6.53
✓		9.22	5.55	6.66
✓	✓	10.34	3.99	5.88
✓	✓	10.26	4.79	6.27

In Table E.8, we report the experiments of training our SinkFast model with different values of the regularization coefficient in the Sinkhorn algorithm. We can observe that the model is quite sensitive to this parameter with the best results obtained with a regularization value of 10. For such a value of this parameter, the permutation probability matrix is smooth, neither too uniform nor too sharp.

Table E.8: Sensitivity experiment of SinkFast method to Sinkhorn's regularization coefficient. The model is trained with L_{RMSD}^* loss on COD-Clutser-5k.

Sinkhorn Regularization Parameter	$\mathcal{L}_{\text{RMSD}}^*$	$\mathbf{PM}_{\text{center}}^*$	$\mathbf{PM}_{\text{atom}}^*$
100	9.56 ± 0.07	6.58 ± 0.21	7.27 ± 0.07
50	8.95 ± 0.06	3.73 ± 0.08	5.73 ± 0.07
10	8.87 ± 0.05	3.64 ± 0.06	5.66 ± 0.05
5	8.89 ± 0.05	3.76 ± 0.04	5.72 ± 0.04
2	8.89 ± 0.10	3.87 ± 0.13	5.79 ± 0.10
1	8.91 ± 0.09	3.99 ± 0.05	5.85 ± 0.04
1e-1	8.92 ± 0.08	4.11 ± 0.04	5.91 ± 0.05
1e-2	8.99 ± 0.02	4.07 ± 0.00	5.90 ± 0.02
1e-3	9.12 ± 0.07	4.50 ± 0.03	6.09 ± 0.03

F ADDITIONAL EXPERIMENTS

F.1 COMPARISON TO INORGANIC-BASED METHODS

Inorganic crystal structure prediction is a fast-moving domain in which many state of the art models compete and innovate. We here want to compare the performance of current organic state of the art to the inorganic one. Thus, we conduct experiments on the COD-Cluster17-5k dataset by retraining both CDVAE (Xie et al., 2022) and DiffCSP (Jiao et al., 2023) models. In both cases, the models are trained to predict the target set of atomic positions from a noise distribution, where the same atoms are randomly positioned in space. Both methods operate in fractional coordinates and require a lattice definition. However, since the COD-Cluster17 dataset provides only point clouds without explicit

lattice parameters or periodic boundary conditions, we define a pseudo lattice as the bounding box that encompasses all sets of molecules. Atom positions are then expressed in fractional coordinates relative to this pseudo lattice.

This setup introduces a stringent constraint that is not optimal for symmetry-based algorithms like CDVAE and DiffCSP, as we do not supply accurate information about atomic density or minimal symmetry groups. Despite this, both methods were able to produce high-quality predictions in certain cases. Notably, their performance did not show a strong correlation with the number of atoms per ASU.

At inference, we sample from the learned distribution of atomic positions rather than using initial positions provided by COD-Cluster17. As shown in Table F.1, both CDVAE and DiffCSP underperform significantly compared to rigid-body-based AssembleFlow and SinkFast methods, indicating that these point cloud models are not well suited to this task out-of-the-box. In Tables F.2 and F.3 we explore whether these methods perform particularly well on small graphs, but this tendency is actually also shared by both AssembleFlow and SinkFast.

Table F.1: Performance in Å(\downarrow) of our proposed SinkFast and AssembleFlow rigid-body methods against inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k test set.

Method	$\mathbf{PM}_{\text{center}}^*$	$\mathbf{PM}_{\text{atom}}^*$
CDVAE	10.50 ± 0.52	14.81 ± 0.89
DiffCSP	23.50 ± 2.44	30.61 ± 2.53
AssembleFlow	3.76 ± 0.00	5.73 ± 0.02
SinkFast	3.60 ± 0.04	5.54 ± 0.04

Table F.2: Performance in Å(\downarrow) of our proposed SinkFast and AssembleFlow rigid-body methods against inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k test set filtered on $n_{\text{atom}} \leq 16$ corresponding to the 20 smallest graphs.

Method	$\mathbf{PM}_{\text{center}}^*$	$\mathbf{PM}_{\text{atom}}^*$
CDVAE	8.17 ± 0.07	12.34 ± 0.91
DiffCSP	19.74 ± 0.42	25.89 ± 0.48
AssembleFlow	2.58 ± 0.19	3.49 ± 0.19
SinkFast	2.60 ± 0.04	3.48 ± 0.11

Table F.3: Performance in Å(\downarrow) of our proposed SinkFast and AssembleFlow rigid-body methods against inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k test set filtered on $n_{\text{atom}} \leq 50$ corresponding to half of the dataset.

Method	$\mathbf{PM}_{\text{center}}^*$	$\mathbf{PM}_{\text{atom}}^*$
CDVAE	10.37 ± 0.82	14.63 ± 1.10
DiffCSP	22.93 ± 2.66	29.98 ± 2.91
AssembleFlow	3.26 ± 0.06	4.96 ± 0.03
SinkFast	3.35 ± 0.11	4.95 ± 0.06

We present in Table F.4 for each model the best predictions based on minimal Packing Matching (PM) score, and in Tables F.5 and F.6 the 5th and 10th percentiles, respectively. However, due to CDVAE’s long training and very slow inference time, we compute its performance on 120 test samples. To ensure a fair comparison, we evaluate all models on this shared subset, which we refer to as the CDVAE subset. We observe from these experiments that CDVAE and DiffCSP can perform extremely well on very few structures. However, their effectiveness quickly decreases across the dataset. This suggests that while these models have potential, they require further adaptation to be competitive on this task. In our view, adapting such models meaningfully goes beyond a quick out-of-the-box comparison. Nonetheless, they represent promising directions and could enrich the set of baselines on COD-Cluster17 in future dedicated studies or reviews.

1620
1621
1622
1623
1624

Table F.4: Single best structure performance in Å(\downarrow) of our proposed SinkFast and AssembleFlow rigid-body methods against inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k test set : filtered on the CDVAE subset.

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642

Method	PM _{center} [*]	PM _{atom} [*]
CDVAE	1.19	2.57
DiffCSP	0.99	4.61
AssembleFlow	2.04	3.03
SinkFast	2.06	2.73

1643
1644
1645

Table F.5: 5th percentile performance in Å(\downarrow) of our proposed SinkFast and AssembleFlow rigid-body methods against inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k test set : filtered on the CDVAE subset.

1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660

Method	PM _{center} [*]	PM _{atom} [*]
CDVAE	1.91	3.21
DiffCSP	6.61	11.08
AssembleFlow	2.67	3.86
SinkFast	2.66	3.83

1661

Table F.6: 1st quantile performance in Å(\downarrow) of our proposed SinkFast and AssembleFlow rigid-body methods against inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k test set : filtered on the CDVAE subset.

1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Method	PM _{center} [*]	PM _{atom} [*]
CDVAE	2.55	4.67
DiffCSP	9.61	15.19
AssembleFlow	2.77	4.43
SinkFast	2.84	4.23

1674
 1675
 1676
 1677
 1678
 1679
 1680
Extension to matching loss. A Sinkhorn-based matching loss could also be applied to inorganic
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 CSP models. In this non-rigid-body case the model would not be penalized when identical atoms
 are correctly predicted but swapped. We have tried to train a simple adaptation of DiffCSP with this
 matching loss. However, as a diffusion based model, DiffCSP predicts the noise that has been applied
 to each atomic position to denoise it and progressively reconstruct the crystal. The target is then a
 noise attached to each atom and the Sinkhorn-based matching loss applicability is more complex and
 questionable.

Similarly, in order to make it work with flow matching on AssembleFlow, we have had to make
 some adjustments. For instance, an initial reassignment needs to be computed before interpolating
 trajectories X_t between X_0 initial positions and X_1 final ones which are not the dataset's target ones
 in this case. Also, we have observed that the model needs to predict X_1 from intermediate positions
 X_t rather than predicting some noise in order to make it work.

We believe our quick implementation of DiffCSP is already not well adapted to organic CSP. This
 leads to serious limitations at the current time for this task and questions the motivation to increase
 the complexity of it with a Sinkhorn matching loss. However it could be adapted and applied to
 inorganic CSP datasets such as the Materials Project. We believe it could have great potential on this
 task if appropriately adapted.

1694 F.2 DEPENDENCE TO THE CORRECTNESS OF THE CONFORMATION

1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 To evaluate our model's dependency on the correctness of the initial molecular conformations, and to
 support the rigid molecule formulation of the initial packing probelm, we conducted the following
 experiment. For each molecule in the COD-Cluster17-5k test set, we extracted the corresponding
 SMILES representation of the ASU molecule and generated five stable conformations using RDKit
 (Landrum et al., 2025), using EmbedMolecule followed by UFFOptimizeMolecule functions. Each
 generated conformation is then passed through our model to predict the packed molecular positions.

1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 To assess the quality of RDKit-generated conformations, we computed the symmetry-corrected
 RMSD values between RDKit-generated conformation and crystallographic structures using the
 spyrmisd algorithm (Meli & Biggin, 2020) from RDKit (Landrum et al., 2025) and present the
 results in Figure F.1. We can see that about 25% of the generated conformations are sufficiently
 close to the crystallographic ones (within 2 Å RMSD) and the median RMSD is below 4 Å. This
 experiment supports the rigid-body approximation in our model. We also computed Packing Matching
 (PM) between each RDKit sampled molecule conformation and its corresponding COD-Cluster17
 conformation. On average, PM was 3.27 Å with a standard deviation of 2.19 Å and a median of 3.11
 Å. Due to RDKit failures on 170 of the 500 test set structures caused by issues such as improper
 valences or atom count mismatches—typically to experimentally invisible hydrogens—our analysis
 focuses on a subset of 330 molecules, referred to as the RDKit subset.

1723
 1724
 1725
 1726
 1727
 The results are presented in Tables F.7, F.8 and F.9 under the RDKit column. First, we compare
 performance on RDKit-generated versus crystallographic conformations for both SinkFast and
 AssembleFlow. In terms of center-of-mass alignment (PM_{center}), the methods perform comparably
 across the two types of input. However, the performance are slightly hindered in the atom-to-atom
 comparison. This shows that conformations are not well represented in our model. Second, comparing
 Table F.8 to Table F.9 we observe that both methods perform much better on crystallographic structures
 from which we generate five different conformations that are close to the crystallographic ones. This
 confirms the importance of initial conformational accuracy. However, we suspect a correlation
 between the size of the rigid molecule and how close are conformations generated by RDKit. The
 good performance of the model could also be explained through this aspect.

1723
 1724
 1725
 1726
 1727
 Our conclusion is that while the models get a sense of how important initial conformations are,
 the learned representations are independent to the molecular conformations. We therefore believe
 that future models should be trained end-to-end, jointly learning conformation and crystal structure
 prediction. This represents a promising direction for advancing research in this very complex domain.
 We believe our study helps to identify key challenges and can serve as a foundation for future work
 in organic crystal structure prediction.

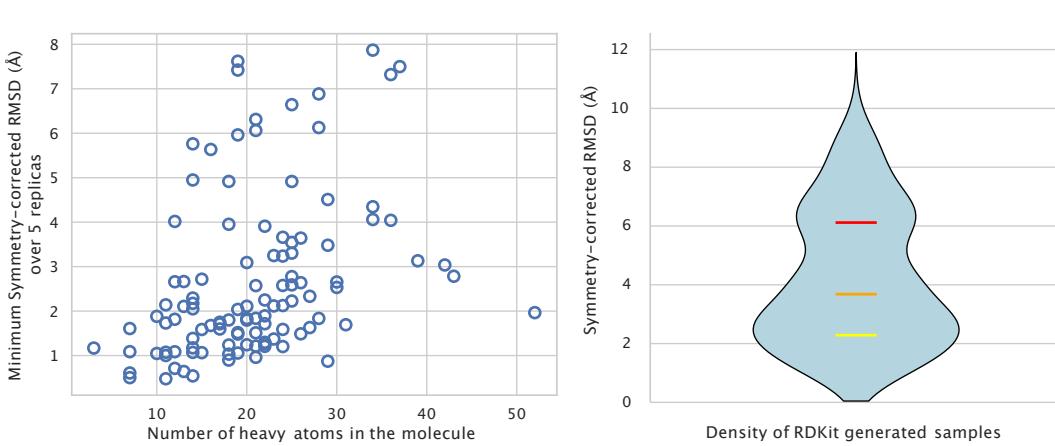


Figure F.1: Left: Distribution of minimum symmetry-corrected RMSD values (\AA) over 5 RDKit conformations with respect to the number of heavy atoms in the ASU molecule. Symmetry-corrected RMSD values were computed between RDKit-generated conformations and crystallographic structures with sprmsd (Meli & Biggin, 2020). Right: Distribution of symmetry-corrected RMSD values between RDKit-generated conformations and crystallographic structures. The yellow bar indicates the first quartile, the orange one the median and the red one the last quartile.

Table F.7: Performance in $\text{\AA}(\downarrow)$ of our proposed SinkFast and AssembleFlow methods on both crystallographic and RDKit generated conformations on COD-Cluster17-5k test set : filtered on the RDKit subset.

Method	RDKit	$\text{PM}_{\text{center}}^*$	$\text{PM}_{\text{atom}}^*$
AssembleFlow		3.54 ± 0.01	5.44 ± 0.00
AssembleFlow	✓	3.58 ± 0.00	5.59 ± 0.08
SinkFast		3.59 ± 0.13	5.41 ± 0.08
SinkFast	✓	3.55 ± 0.13	5.53 ± 0.15

Table F.8: Performance in $\text{\AA}(\downarrow)$ of our proposed SinkFast and AssembleFlow methods on both crystallographic and RDKit generated conformations on COD-Cluster17-5k test set : filtered on the RDKit subset with the **lowest packing matching distance** to original ones.

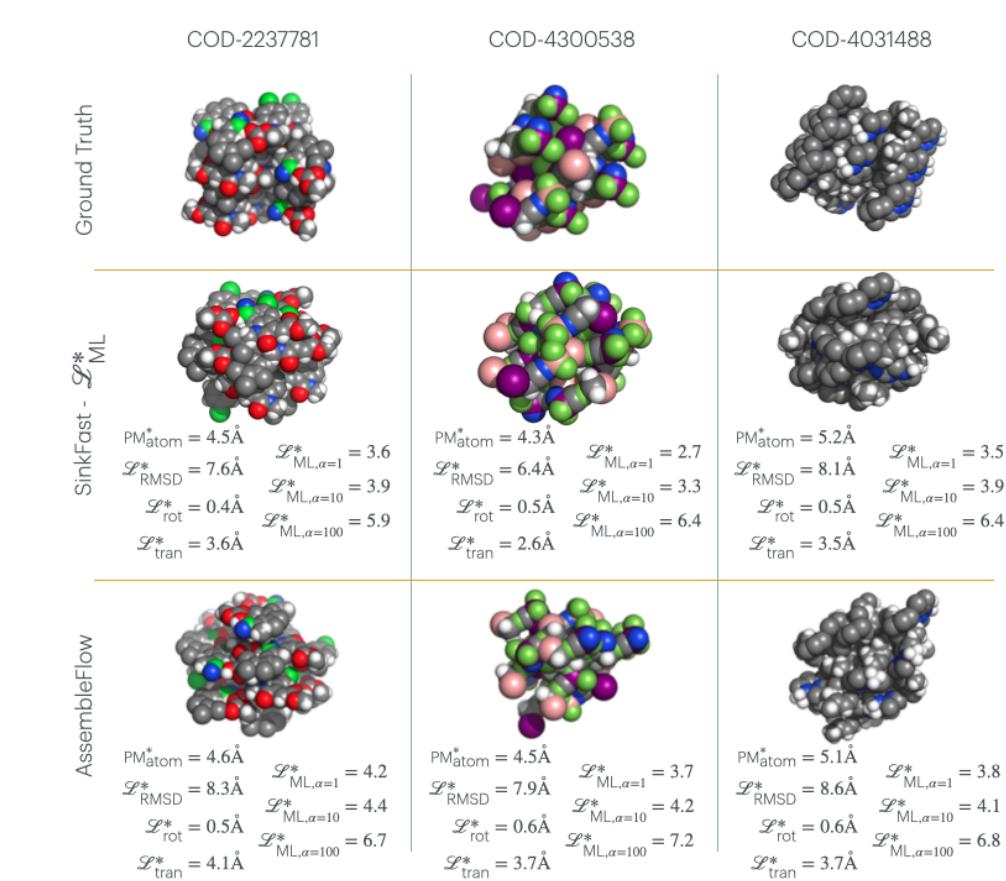
Method	RDKit	$\text{PM}_{\text{center}}^*$	$\text{PM}_{\text{atom}}^*$
AssembleFlow		3.27 ± 0.01	4.92 ± 0.03
AssembleFlow	✓	3.27 ± 0.03	4.90 ± 0.03
SinkFast		3.28 ± 0.13	4.88 ± 0.11
SinkFast	✓	3.18 ± 0.11	4.81 ± 0.12

Table F.9: Performance in $\text{\AA}(\downarrow)$ of our proposed SinkFast and AssembleFlow methods on both crystallographic and RDKit generated conformations on COD-Cluster17-5k test set : filtered on the RDKit subset with the **highest packing matching distance** to original ones.

Method	RDKit	$\text{PM}_{\text{center}}^*$	$\text{PM}_{\text{atom}}^*$
AssembleFlow		3.80 ± 0.03	5.95 ± 0.08
AssembleFlow	✓	3.89 ± 0.01	6.27 ± 0.09
SinkFast		3.88 ± 0.11	5.92 ± 0.00
SinkFast	✓	3.92 ± 0.12	6.25 ± 0.14

1782 **G VISUALIZATIONS**
1783

1784 Figure G.1 shows the packing of three assemblies randomly picked from the test set. We visualize all
 1785 atoms as van der Waals (vdW) spheres. We took the standard vdW radii for chemical elements, colored
 1786 using Jmol colors and ray-traced the scenes with PyMol. The image does not demonstrate common
 1787 patterns, only certain *packing* similarities. One can conclude on the generally poor reconstruction
 1788 obtained from the two compared algorithms. Indeed, the method and the problem formulation do not
 1789 allow to generalize well enough to be applied and used at large scale.



1818 Figure G.1: Visualization of our SinkFast- \mathcal{L}_{ML}^* prediction against ground truth and AssembleFlow
 1819 method on 3 examples randomly picked from the test set. Scores of each prediction are reported with
 1820 PM_{atom}^* , \mathcal{L}_{RMSD}^* , \mathcal{L}_{tran}^* the translational error, \mathcal{L}_{rot}^* the rotational error and 3 \mathcal{L}_{ML}^* errors with
 1821 different values of the α parameter. Atoms are colored using the Jmol color convention and shown using
 1822 PyMol molecular visualization system (Schrödinger, LLC, 2015).
 1823

1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835