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Abstract

Accurate cancer subtype classification is a cornerstone of precision oncology, in-
forming therapeutic decisions and improving prognostic assessment. Gastrointesti-
nal adenocarcinoma (GIAC), however, presents a particularly challenging case due
to its molecular heterogeneity and overlapping histological features. Traditional ap-
proaches based on single-omic biomarkers or naive multi-omic concatenation often
fail to capture the complex interdependencies across genomic, epigenomic, and tran-
scriptomic layers. We introduce MoXGATE (Mixture-of-Experts Guided Multi-
Omic Integration), a deep learning framework that leverages modality-specific
expert encoders, cross-attention fusion, and learnable modality weights to enable
robust and interpretable integration of gene expression, DNA methylation, and
miRNA profiles. By combining expert specialization with attention-driven fu-
sion, MoXGATE effectively captures cross-omic dependencies while adaptively
weighting each modality according to its predictive relevance. To address severe
class imbalance in GIAC subtyping, we further incorporate focal loss, enhancing
sensitivity to underrepresented subtypes. Comprehensive evaluation on TCGA
GIAC demonstrates that MoXGATE achieves superior accuracy compared to state-
of-the-art baselines, while ablation studies confirm the contributions of expert
routing, cross-attention, and modality weighting. Moreover, transfer experiments
on the TCGA BRCA cohort highlight the model’s adaptability beyond GIAC,
underscoring its generalizability to other cancer types.

1 Introduction

Cancer subtyping is essential in precision oncology, as it informs targeted therapy decisions and
improves patient outcomes [[1,[18]]. Gastrointestinal adenocarcinoma (GIAC), a heterogeneous class
of malignancies, poses particular challenges for subtype classification due to its molecular complexity
and overlapping clinical features [[26, 22]. Conventional histopathology and single-omic biomarkers
often fail to capture the breadth of tumor heterogeneity, highlighting the need for integrative, data-
driven approaches [7} [11].

The advent of next-generation sequencing (NGS) has enabled large-scale multi-omic profiling,
spanning gene expression (mMRNA), DNA methylation, and miRNA signatures [29} [15, 3]]. Multi-
omic integration offers a more comprehensive view of tumor biology [2, 16], yet leveraging such
data remains challenging. Existing methods struggle with modality heterogeneity, redundancy, and
computational scalability, limiting their ability to extract robust cross-omic signals [27} 12} 30].

Recent deep learning approaches have advanced multi-omic cancer classification by employing
attention or graph-based architectures. For example, moBRCA-net [4] employs self-attention with
simple concatenation, which does not fully capture cross-modality dependencies. DeepMolC [30]]
uses graph convolutional networks (GCNs) for pan-cancer analysis but is restricted to a small number
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of subtypes and incurs computational overhead from autoencoders. MOGONET [27] and MoGCN
[12]] apply graph-based fusion but depend heavily on well-defined similarity graphs, which are
difficult to construct and sensitive to hyperparameters. Attention-based methods such as MMCA [28]]
have shown promise by modeling inter-modality alignment, yet most lack mechanisms to control
modality imbalance or reduce redundancy.

In this work, we propose a Mixture-of-Experts (MoE) attention framework for multi-omic cancer
subtyping, specifically focusing on GIAC. MoE architectures [9, |19 6] enable expert specialization
and selective routing, making them well-suited for heterogeneous biological modalities. Our model
assigns each modality (gene expression, DNA methylation, miRNA) to a set of expert encoders,
with a gating mechanism dynamically selecting expert contributions. The expert outputs are refined
through self-attention [23]], and modality-specific embeddings are integrated via cross-attention fusion
[28]], ensuring that cross-omic dependencies are explicitly modeled. To address class imbalance,
which is a critical issue in cancer cohorts [24], we applied focal loss [13]], improving the sensitivity
of classification for minority subtypes.

Our contributions are as follows:
* MoE-based multi-omic encoding: We introduce modality-specific expert encoders with
gating to promote specialization and diversity in feature extraction.

» Attention-driven integration: We refine expert outputs using self-attention and employ
cross-attention to model interdependencies across modalities.

» Adaptive fusion: Learnable modality weights dynamically adjust the contribution of each
omic source, reducing redundancy and highlighting complementary signals.

* Robust classification under imbalance: Focal loss improves classification performance
for minority GIAC subtypes, mitigating skewed class distributions.

* Generalizability: Although designed for GIAC, the framework is adaptable to other cancers,
demonstrating strong transferability across multi-omic datasets.

2 Methodology

2.1 Model Architecture

We propose a Mixture-of-Experts (MoE) based multi-omics fusion framework that combines expert-
level specialization, self-attention encoding, cross-attention integration, and focal loss optimization.
As illustrated in Figure |1} the framework is designed to efficiently encode high-dimensional omics
data, capture interdependencies across modalities, and address class imbalance in cancer subtype
prediction.

2.1.1 Mixture of Expert Encoding for Modality-Specific Representations

For each modality m € {1,..., M} and sample i, the input feature vector is Xz(m) € R%m. We define

a set of L,,, expert encoders {E,, ;} fgl, each parameterized by O,,_ ;. The latent representation is
modeled as a mixture distribution:

Ly,
p™ |5 =37 gimg p(™ %™, 0,,) (1)

j=1
where gating weights g; ,,, ; are computed via a softmax over a gating network:

exp(u,, Vi ;)

Ly,
Zk:l exp(uzmvm,,k)

@

gi,m,j =

with u; ,,, being a learned query vector for sample 7 in modality m. The final aggregated representation
is

.
H, — [hgmx N .,hg”)] e RVXd, 3)
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Figure 1: Overview of the proposed Mixture-of-Experts (MoE) based multi-omic cancer subtype
classification framework. The architecture consists of three main components: (a) Modality-Specific
Expert Encoders, where each modality (gene expression, DNA methylation, and miRNA expression)
is processed by a set of expert networks. A gating function dynamically routes inputs to experts, and
the aggregated expert outputs are further refined through modality-specific multi-head self-attention
to capture diverse feature representations. (b) Cross-Attention Fusion, which integrates modality-
specific embeddings via multi-head cross-attention to model interdependencies across omics layers.
This mechanism allows the network to emphasize complementary signals and mitigate redundancy
across modalities. (c) Subtype Classification Module, where the fused embedding is projected
through a feed-forward classifier and optimized using focal loss [17], ensuring robustness under
severe subtype imbalance.

2.1.2 Self-Attention within Modalities

After expert aggregation, modality-specific representations are refined via self-attention:

T
A, = softmax(Qme) 5)
Vd
Z,=A,V,+H, (6)

where Wqo, Wr, Wy, € R?*4 are learnable parameters.

2.1.3 Cross-Attention Fusion

The modality-level outputs {Z,, }}/_, are concatenated:

C=1(Z1,Z,...,Z)) € RM*Nxd (7
Cross-attention is then applied:
Q. =CW;, K. =CWg, V.=CWy ®)
T
A, = softmax(QcKC ) ©)]
Vd
F=A/.V, (10)

2.1.4 Classification with Focal Loss

The fused representation is classified as:
y=0(W;F+by) (11)
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where Wy € R4*K and K is the number of cancer subtypes.
We adopt Focal Loss to address class imbalance:

K
Leocal = — Z ai(l - pi)’yyi log p; (12)

i=1

where p; is the predicted probability for class 4, y; is the one-hot ground truth, «; is a class-specific
weight, and -y is the focusing parameter.

2.1.5 Overall Optimization and Training

The final loss combines focal loss with expert diversity regularization:

M
L= Lo +2 DS HL Hosl (13)

m=1 j#k

where the second term encourages diversity among experts by penalizing highly correlated outputs.

2.1.6 Experimental Setup

Each modality (gene expression, DNA methylation, and miRNA expression) was modeled using
a Mixture-of-Experts (MoE) design [19, 6], with multiple expert encoders assigned per modality.
A soft gating mechanism determined how expert outputs were combined, ensuring that the model
could adaptively emphasize different transformations of the same omic source. To further refine these
modality-specific representations, we applied multi-head self-attention [[23]] within each modality,
allowing the network to capture dependencies and reduce redundancy in high-dimensional input
features.

The resulting modality embeddings were integrated through a cross-attention fusion layer [28]], which
enabled the model to capture interdependencies across heterogeneous omics views. This fused
representation was then projected through a feed-forward classification network with non-linear
activation and dropout regularization [20], before being mapped to the set of cancer subtype classes.

Optimization was carried out using AdamW with weight decay [? ], together with focal loss [13] to
mitigate class imbalance. In addition, we introduced a diversity regularization term on the experts
[9} 25]] to discourage them from collapsing to similar solutions and to promote complementary
specialization.

A complete specification of hyperparameters, including the number of experts, attention heads,
embedding dimensions, and training parameters, is provided in Table[I]

Table 1: Hyperparameters used in the Mixture-of-Experts based multi-omics classification framework.

Component Setting

Number of experts per modality (L,,) 4 (for each of gene, methylation, miRNA)
Expert aggregation Soft gating (sample-dependent weights)
Self-attention heads (per modality) 8

Dropout (intra-modality attention) 0.1

Cross-attention heads 32

Cross-attention embedding dimension 256

Final embedding dimension 128

Classifier activation ReLU

Classifier dropout 0.3

Optimizer AdamW

Learning rate 1x107*

Weight decay 1x1072

Loss function Focal Loss (v = 2, = 1)
Regularization Expert diversity penalty (A = 0.01)
Batch size 64

Training epochs 200
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3 Results

3.1 Performance Comparison on GIAC Subtype Classification

Table 2] presents a comprehensive comparison between our proposed framework and a broad spec-
trum of baselines, ranging from classical machine learning classifiers to modern deep multi-omic
integration models and ablated variants of our approach. Several important trends emerge.

First, classical baselines such as multilayer perceptrons (MLP) and support vector machines (SVM)
achieved relatively poor performance (Accuracy 0.6757 / F1 0.5449), reflecting the difficulty of mod-
eling high-dimensional, heterogeneous omic data without explicit mechanisms for feature interaction.
Random Forest (RF) and simple ensemble strategies improved performance (Accuracy 0.8378 and
0.8270, respectively), but their gains remain limited by shallow feature integration. Deep matrix
factorization (DMF) performed slightly better (Accuracy 0.7946 / F1 0.7884) but still lagged behind
deep neural integration approaches.

Among deep multi-omic methods, the Multi-Modal Autoencoder (MAE) performed strongly (Ac-
curacy 0.9081 / F1 0.8969), suggesting that reconstruction-based objectives can capture shared
structure across modalities. However, the Multi-Modal Variational Autoencoder (MVAE) suffered
from instability and weaker discriminative capacity (Accuracy 0.7622 / F1 0.7173). Graph-based
integration with MOGONET also underperformed (Accuracy 0.6710 / F1 0.6710), likely due to
sensitivity to graph construction and modality-specific noise. moBRCA-net, a recent attention-based
model, achieved competitive performance (Accuracy 0.8837 / F1 0.8972) but still fell short of our
approach.

Our ablation variants reveal the contributions of individual components. Simple concatenation of
MOoE outputs (Accuracy 0.8486 / F1 0.8518) was consistently weaker than cross-attention fusion
(Accuracy 0.8739 / F1 0.8712), highlighting that explicitly modeling inter-modality dependencies
is superior to naive feature aggregation. The removal of weighted focal loss degraded performance
(Accuracy 0.8631 / F1 0.8676), confirming its role in handling severe class imbalance. Furthermore,
replacing hard routing with soft routing in the MoE layer reduced accuracy (0.8739 vs. 0.9117),
suggesting that selective expert allocation encourages complementary specialization among experts.

Finally, our full model, MoXGATE (Mixture-of-Experts Guided Attention), achieved the strongest
overall results, with Accuracy 0.9117, F1 0.9104, Precision 0.9117, and Recall 0.9061. These
improvements, while moderate compared to strong deep baselines such as MAE and self-attention +
cross-attention, demonstrate the additive benefit of combining expert specialization, attention-driven
fusion, and focal loss. Importantly, the gains are consistent across all metrics, indicating a balanced
improvement in both sensitivity and precision. Nonetheless, the relatively narrow margins over strong
baselines suggest that while MoXGATE is robust, further investigation is warranted into scalability,
interpretability, and the trade-off between focal loss reweighting and potential overfitting to minority
subtypes.

3.2 Impact of Single vs. Multi-Omic Modalities

The ablation study highlights several clear trends. To examine the contribution of each modality,
we performed ablation experiments under a fixed training recipe: Self-Attention + Cross-Attention
encoders, Mixture-of-Experts with hard routing, and weighted focal loss. The results (single run) are
summarized in Table 3l

(1) Methylation remains the strongest individual signal. Among the single modalities, methylation
achieved the best performance (Acc 0.8973 / F1 0.8806), slightly higher than gene expression and well
above miRNA. This suggests that methylation carries the most subtype-discriminative information
in our dataset. Gene expression also performed competitively, while miRNA consistently lagged,
indicating it may contribute more as a complementary source rather than as a standalone predictor.

(2) Bimodal fusion does not always surpass unimodal baselines. Gene+Methylation did not
improve over Methylation alone (Acc 0.8973 in both cases), and the F1 score even decreased
marginally (0.8805 vs. 0.8806). Gene+miRNA also offered no clear advantage compared to gene
expression by itself. By contrast, Methylation+miRNA showed a modest benefit (Acc 0.8919 / F1
0.8827), slightly outperforming the Methylation baseline in F1. These mixed outcomes suggest
that combining modalities introduces interactions that are not uniformly beneficial, and that fusion
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Table 2: Model comparison with baselines and related methods. Metrics are Accuracy, F1,
Precision, and Recall. All models were trained and evaluated under the same experimental protocol.

Model Accuracy F1 Precision Recall
Classical Machine Learning Baselines

MLP 0.6757 0.5449 0.7809 0.6757
SVM 0.6757 0.5449 0.7809 0.6757
Random Forest (RF) 0.8378 0.8080 0.8474 0.8378
DMF 0.7946 0.7884 0.7859 0.7946
Ensemble 0.8270 0.7721 0.8555 0.8270
Deep Multi-Omic Integration Models

MAE 0.9081 0.8969 0.9084 0.9081
MVAE 0.7622 0.7173 0.7138 0.7622
MOGONET 0.6710 0.6710 0.6240 0.6340
moBRCA-net 0.8837 0.8934 0.8892 0.8972
Ablation Variants

MOoE + Concat 0.8486 0.8486 0.8486 0.8518
Self-Attn + Cross-Attn 0.8955 0.8873 0.8955 0.8948
MoE (Soft routing) + Cross-Attn 0.8739 0.8612 0.8739 0.8712
MoE w/o weighted Focal Loss + Cross-Attn 0.8631 0.8541 0.8631 0.8676
MoXGATE (Ours) 0.9117 0.9061 0.9117 0.9104

Table 3: Ablation on input modalities (single run; Self-Attn + Cross-Attn encoders, MoE hard
routing, weighted focal loss). Metrics are Accuracy, F1, Precision, and Recall.

Input Modality Accuracy F1 Precision Recall
Gene 0.8757 0.8688 0.8757 0.8698
Methylation 0.8973 0.8806 0.8973 0.8881
miRNA 0.8162 0.7976 0.8162 0.7958
Gene + Methylation 0.8973 0.8805 0.8973 0.8884
Gene + miRNA 0.8703 0.8674 0.8703 0.8682
Methylation + miRNA 0.8919 0.8827 0.8919 0.8865

Gene + Methylation + miRNA 0.9117 0.9104 0.9117 0.9061

mechanisms may require additional calibration to prevent strong modalities from being diluted by
weaker ones.

(3) Trimodal fusion provides consistent gains. The full three-modality setup yielded the highest
overall performance (Acc 0.9117 / F1 0.9104), clearly above any unimodal or bimodal setting.
This supports the intuition that gene expression, methylation, and miRNA carry complementary
information, and that cross-attention fusion can exploit this complementarity when all channels are
present.

3.3 Performance on Other Cancer Data

Model Accuracy F1-Score
AE+Cross Attn 0.82 0.79
moBRCANet 0.87 0.86
Ours 0.89 0.88

Table 4: Performance comparison on breast cancer subtype classification. Our model achieves the
best performance, demonstrating strong generalization.

To further validate the generalizability of our method, we conducted experiments on the TCGA-
BRCA dataset shown in Table E], which consists of 1,057 breast cancer samples. The dataset includes
five intrinsic subtypes from the PAMS0 classification: luminal A, luminal B, HER2 overexpression,
basal-like, and normal-like cancers. We followed the same preprocessing steps as applied to the
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Figure 2: Performance variability across five runs for different feature set sizes. For each feature
configuration (DEG/DMR/DEM), paired violin plots represent the distribution of Accuracy and
Fl-score. Violin width indicates the density of values, while overlaid dots mark run-level results.
The plot highlights that full feature sets yield the strongest performance, but intermediate subsets
(e.g., 500-1000 features per modality) preserve much of the predictive signal, whereas aggressive
reductions lead to a systematic decline in both metrics.

GIAC dataset, ensuring consistency across experiments. The dataset was split into 80% training and
20% testing, with 10% of the training data used for validation.

As shown in Table 3, our model achieves an accuracy of 0.89 and an F1-score of 0.88, outperforming
existing approaches such as AE+Cross Attention (0.82 accuracy) and moBRCANet (0.87 accuracy).
These results demonstrate that our modality-aware cross-attention approach effectively generalizes
across different cancer types, reinforcing its robustness in multi-omic cancer subtype classification.

3.4 Effect of Expert Count on Model Performance

Table [6reports the effect of varying the number of experts assigned to each modality. Several patterns
are evident from this experiment.

When only a single expert is used, performance is already competitive, with an accuracy of 0.8955
and an F1 score of 0.8948. This indicates that the combination of self-attention within modalities and
cross-attention across modalities captures a substantial amount of the available signal even without
expert diversity.

The best results were obtained with two experts per modality, reaching an accuracy of 0.9117
and an F1 score of 0.9104. This suggests that a limited degree of expert specialization provides
complementary representations that enhance the model’s ability to distinguish cancer subtypes.

Increasing the number of experts beyond two did not yield further improvements. With four experts,
performance declined slightly, and with eight experts the accuracy dropped to 0.8919. This decrease
may reflect redundancy among experts, over-parameterization relative to the dataset size, or instability
introduced by hard routing when too many experts compete for limited training data.

Overall, these results indicate that a moderate number of experts, specifically two per modality,
offers the most effective balance between specialization and stability. Larger expert pools appear to
introduce inefficiency without improving predictive power, underscoring the importance of tuning the
expert count to the data scale and complexity of the classification task.

3.5 Impact of Reducing Feature Space Across Modalities

Table[10/in Appendix summarizes the effect of progressively reducing the number of features across
the three modalities (DEG, DMR, DEM). The violin plots in Figure E] illustrate the distribution of
accuracy and F1 across five independent runs for each feature set size, while line plots with mean +
standard deviation are provided in the Appendix (Figures [5|and [6) as an alternative view of the same
results.
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Table 5: Pathway overlap between predicted and real subtype enrichments. Top-50 KEGG
pathways (ranked by FDR) were compared, and Jaccard index was computed per subtype.

Subtype #Predicted #Real #Overlap % Overlap Jaccard

EBV 50 50 50 100.0% 1.0000
GS 50 50 13 26.0% 0.1494
CIN 50 50 10 20.0% 0.1111
MSI 50 50 6 12.0% 0.0638
HM-SNV 50 50 4 8.0% 0.0417

Pathway Overlap Between Predicted and Real Subtypes

CIN

EBV

GS

Subtype

HM-SNV

MSI|

0.0 02 0.4 06 08 10
Jaccard Index
Figure 3: Pathway concordance between predicted and real subtype enrichments. The Jaccard index
was computed between the top-50 KEGG pathways (ranked by FDR) for each subtype. EBV showed
perfect overlap (J = 1.0), reflecting its distinct viral-response signature. CIN and GS exhibited
moderate concordance (J = 0.11 and J = 0.15), while MSI and HM-SNV showed weak recovery
(J = 0.06 and J = 0.04), consistent with their smaller sample sizes and greater intra-class variability.

The full feature sets (20,530 DEGs, 23,381 DMRs, and 746 DEMs) yield the strongest overall
performance, with an accuracy of 0.9117 and an F1 score of 0.9061. As expected, reducing the
feature space generally leads to a gradual decline in performance, consistent with the information
loss incurred when fewer discriminative signals are available.

Intermediate feature sizes, however, sustain competitive results. For example, limiting each modality
to 1,000 features still achieves accuracy of 0.8865 and F1 of 0.8824, only modestly lower than the
full configuration. This suggests that a large fraction of the predictive power is concentrated in a
smaller set of highly informative features. In contrast, very aggressive reductions (e.g., 50 features or
fewer per modality) lead to sharp declines, with accuracy dropping below 0.77 and F1 below 0.78.

At mid-range feature sizes (e.g., 500-1,000 features), we also observe modest non-monotonic
fluctuations. These are likely due to both training stochasticity and the heterogeneous informativeness
of the selected features. The overall trend becomes more consistent at very small feature sets, where
under-representation of critical biological signals is unavoidable.

Taken together, the results show that while maximal coverage of the omics space provides the
strongest performance, much of the signal can still be retained with reduced feature sets. For practical
applications where dimensionality is a concern, selecting on the order of 500-1,000 features per
modality appears to strike a good balance between efficiency and predictive accuracy.

3.6 Pathway Enrichment and Biological Specificity Across Cancer Subtypes

To assess whether model-predicted subtypes recover biologically meaningful signatures, we per-
formed KEGG pathway [10] enrichment analysis using GSEA (prerank) [5]] on the test-set gene
expression profiles. Enrichment was computed separately for predicted and ground-truth subtype
labels, and results were compared in terms of both overlap and pathway specificity.
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3.6.1 Concordance Between Predicted and Real Subtypes

We first evaluated the overlap between predicted and real enrichment profiles by computing the Jaccard
index [8]] on the top-50 pathways per subtype (Table[5} Appendix Figure[3). The EBV subtype showed
perfect concordance (J = 1.0), with all 50 predicted pathways overlapping those from the ground
truth, reflecting the distinct viral-response signature characteristic of EBV-driven GIAC. CIN and
GS subtypes demonstrated moderate agreement (J = 0.11 and J = 0.15, respectively), suggesting
that the model partially captured their hallmark pathways but missed others. MSI and HM-SNV
showed weaker concordance (J = 0.06 and J = 0.04), which may be attributed to smaller sample
sizes and higher intra-subtype heterogeneity. These results highlight that while MoXGATE preserves
strong biological signal for distinct subtypes such as EBV, performance is uneven across rarer or
more heterogeneous categories.

3.6.2 Pathway Specificity Across Subtypes

To identify which pathways most strongly discriminate between subtypes, we computed a Pathway
Specificity Score (PSS), which quantifies the relative enrichment of a pathway in a single subtype
compared to its variability across others. The top-20 pathways ranked by PSS are shown in Appendix
Figure[7] Several biologically relevant categories emerge: immune processes (intestinal immune
network for IgA production, hematopoietic cell lineage, proteasome), metabolic pathways (tyrosine
metabolism, taurine and hypotaurine metabolism, drug metabolism), and genomic stability mech-
anisms (DNA replication). The enrichment of immune-related pathways is consistent with EBV
tumors, which are characterized by strong antiviral and immune signatures. CIN and MSI subtypes,
which are associated with chromosomal and microsatellite instability, showed enrichment in DNA
replication and repair pathways, while GS subtypes were more strongly associated with metabolic
processes such as glycosaminoglycan biosynthesis and choline metabolism.

Taken together, these analyses demonstrate that MoXGATE does more than label assignment: it
preserves pathway-level signals that align with known biological hallmarks of GIAC subtypes.
However, the low concordance for MSI and HM-SNV suggests that small sample sizes and high
heterogeneity limit recovery of consistent pathways. Expanding sample cohorts, incorporating
additional omics (e.g., proteomics), or applying subtype-aware regularization may further improve
pathway-level fidelity.

4 Discussions

Our proposed Modality-Aware Cross-Attention model demonstrates state-of-the-art performance for
multi-omic cancer subtype classification, effectively integrating heterogeneous omics data sources.
The cross-attention mechanism, combined with learnable modality weights, enhances the fusion of
gene expression, DNA methylation, and miRNA data, capturing intricate inter-modality dependencies.
The ablation studies confirm that cross-attention outperforms simple concatenation, emphasizing its
significance in multi-omic integration. Additionally, the results highlight the dominance of methyla-
tion and gene expression data in driving classification performance, aligning with biological insights
into cancer heterogeneity. The strong generalization to breast cancer subtypes further underscores the
robustness and transferability of our approach beyond gastrointestinal adenocarcinoma (GIAC).

Despite these advancements, certain limitations persist. First, while cross-attention improves modality
fusion, it inherently increases computational complexity, making it less scalable for ultra-large
datasets. Additionally, although modality weights provide insight into the relative importance of
omics data, they do not explicitly model dynamic feature importance at the patient level, potentially
limiting interpretability for individualized cancer profiling. Future work should explore efficient
self-attention mechanisms to reduce complexity and incorporate patient-specific attention weighting
for improved personalization.
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A Appendix

A.1 Dataset
A.2 GIAC Cancer and Subtypes

Gastrointestinal Adenocarcinomas (GIACs) include four major cancer types: Colon Adenocarcinoma
(COAD), Rectum Adenocarcinoma (READ), Stomach Adenocarcinoma (STAD), and Esophageal
Carcinoma (ESCA). These cancers exhibit distinct histopathological and molecular characteristics:

* COAD (Colon Adenocarcinoma): A common gastrointestinal malignancy characterized
by chromosomal instability (CIN) and microsatellite instability (MSI), with additional
classifications based on molecular features.

* READ (Rectum Adenocarcinoma): Similar to COAD but arises in the rectum, sharing
molecular features but influenced by distinct anatomic and treatment considerations.

* STAD (Stomach Adenocarcinoma): A highly heterogeneous cancer associated with
multiple subtypes, including Epstein-Barr virus (EBV)-associated tumors, MSI-high tumors,
and genomically stable (GS) subtypes.

* ESCA (Esophageal Carcinoma): A rare but aggressive cancer exhibiting CIN and MSI
features, often linked to environmental and genetic risk factors.

A.3 Dataset Statistics

The dataset used in this study is sourced from The Cancer Genome Atlas (TCGA) [29], containing
multi-omic profiles for GIAC cancers. We specifically focus on molecular subtyping based on genetic
and epigenetic alterations. The dataset includes the following samples:

Abbreviation Study Name Subtype

Classification Subtypes Samples
COAD Colon Adenocarcinoma Molecular CIN, GS, MSI, HM-SNV, EBV 341
ESCA Esophageal Carcinoma Molecular CIN, GS, MSI, HM-SNV, EBV 79
READ Rectum Adenocarcinoma  Molecular CIN, GS, MSI, HM-SNV, EBV 118
STAD Stomach Adenocarcinoma Molecular CIN, GS, MSI, HM-SNV, EBV 383

Table 7: GIAC Cancer Subtypes and Sample Distribution from TCGA. The four studied cancers
include Colon Adenocarcinoma (COAD), Esophageal Carcinoma (ESCA), Rectum Adenocarcinoma
(READ), and Stomach Adenocarcinoma (STAD), with five molecular subtypes.

A.4 Molecular Subtypes in GIACs

Molecular subtyping in GIACs has been extensively studied using gene expression, oncogenic
pathways, and histopathological criteria. However, traditional clustering approaches often struggle
with the biological complexity inherent to these cancers. Our study leverages genomic, epigenomic,
and transcriptomic data to define robust molecular subtypes. [14]]

Key Subtype Characteristics:
* EBV+ (Epstein-Barr Virus Positive): Predominantly found in stomach cancers, character-
ized by extensive DNA hypermethylation.

* MSI (Microsatellite Instability): Associated with defective DNA mismatch repair, leading
to a high mutation burden.

« HM-SNV(Hypermutated-Single Nucleotide Variants): Defined by an SN'V-predominant
mutation profile, often linked to POLE mutations.

* CIN (Chromosomal Instability): Characterized by large-scale chromosomal alterations,
frequently found in GIAC tumors.
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* GS (Genome Stable): Lacks significant chromosomal aberrations, representing a smaller
but distinct subset of tumors.

The dataset integrates multiple molecular modalities, including mutation profiles, copy-number
variations, and DNA methylation, ensuring a comprehensive framework for subtype classification.

A.5 Subtype Distribution for the Combined GIAC Dataset

Table | reports the distribution of GIAC subtypes across training, validation, and test sets. For a visual
summary, Figure ] shows a grouped bar chart that makes the imbalance across subtypes explicit.

Table 8: Distribution of GIAC subtypes across training, validation, and test sets.

ID  Subtype Train  Validation  Test  Total

0 CIN 450 50 125 625
1 EBV 22 2 6 30
2 GS 78 9 22 109
3 HM-SNV 13 2 4 19
4 MSI 99 11 28 138

Total 662 74 185 921

GIAC Subtype Distribution (Train / Validation / Test)

Train
Validation
400 . Test
300
o
c
>
S
200
100
. : | . | =
CIN EBV GS HM-SNV MSI

Figure 4: Grouped bar chart of GIAC subtype counts in the train, validation, and test splits. CIN is
the dominant class, while EBV and HM-SNV are underrepresented.

B Data Processing Pipeline

To ensure a robust and unbiased evaluation, we utilized three cancer datasets (COAD, READ, STAD)
for training and validation, while reserving the ESCA dataset exclusively for testing. Each cancer
type in our dataset is categorized into five molecular subtypes. We performed a 90-10 split on the
training dataset, where 90% of the samples were used for model training, and 10% for validation.

For feature preprocessing, we applied a two-step missing value handling strategy. First, we eliminated
features with more than 40% missing values to ensure data reliability. Second, for the remaining
missing values, we applied median imputation, filling in missing entries with the median value of the
respective feature.

To maintain biological consistency across datasets, we selected only features that were common
across all four cancer types. This yielded the following shared features:

¢ Common Gene Expression Features: 20,530
¢ Common DNA Methylation Features: 23,381
¢ Common miRNA Features: 746
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Figure 5: Accuracy (mean =+ std) across five runs by feature size. Error bars denote standard deviation.

Following this preprocessing, our final dataset consisted of:

* Training and validation set: 842 samples
* Test set (ESCA): 79 samples

* Final train-validation split: 757 training samples and 85 validation samples

This data processing pipeline ensures that the model is trained on a diverse set of cancers while
testing on a separate cancer type, providing a realistic evaluation of model generalizability across
GIAC subtypes.

C Ablation Study

C.1 Ablation Study of Attention head

The number of heads in a multi-head cross-attention layer plays a critical role in capturing diverse
feature interactions across omics modalities. The ablation study, as presented in Table[J] evaluates the
performance of our model with 8, 16, and 32 attention heads. The results indicate that increasing the
number of heads from 8 to 16 does not significantly impact performance, maintaining an accuracy of
94%. However, when the number of heads is increased to 32, the model achieves a slight improvement,
reaching the highest accuracy of 95% along with a higher recall (0.95) and precision (0.96).

This improvement suggests that with a greater number of heads, the model is able to attend to finer-
grained relationships among multi-omic features, thereby improving its ability to extract meaningful
subtype-specific patterns. However, while a larger number of heads provides marginal gains, further
increasing this number may introduce computational overhead without substantial performance
benefits. Thus, 32 heads was selected as the optimal configuration, balancing both accuracy and
computational efficiency.

Heads Accuracy Precision Recall F1-Score

8 0.94 0.96 0.94 0.94
16 0.94 0.96 0.94 0.94
32 0.95 0.96 0.95 0.94

Table 9: Ablation study on the effect of different numbers of heads in the cross-attention layer. The
best-performing setting is highlighted.

C.2 Effect of Feature Set Size

Table [I0] summarizes the effect of progressively reducing the number of features across the three
modalities (DEG, DMR, DEM). The violin plots in Figure [2|illustrate the distribution of accuracy
and F1 across five independent runs for each feature set size, while line plots with mean =+ standard
deviation are provided in the Appendix (Figures[5|and [6) as an alternative view of the same results.
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Table 10: Ablation on feature set size. Performance reported as the average of 5 independent runs.
Metrics are Accuracy, Precision, Recall, and F1-score. DEG = differentially expressed genes, DMR
= differentially methylated regions, DEM = differentially expressed miRNAs.

DEG DMR DEM Accuracy Precision Recall F1

20530 23381 746 09117 0.9104 09117  0.9061
17183 4952 475 0.8973 0.8969 0.8973  0.8915
16407 100 292 0.8595 0.8595 0.8595 0.8543
16266 100 271 0.8324 0.8169 0.8324  0.8245
1000 1000 475 0.8865 0.8841 0.8865 0.8824
500 500 475 0.8757 0.8616 0.8757 0.8641
250 250 250 0.8649 0.8706 0.8649  0.8557
100 100 100 0.8324 0.8134 0.8324  0.8185

50 50 50 0.7676 0.7919 0.7676  0.7748
25 25 25 0.7514 0.7325 0.7514  0.7408
10 10 10 0.6324 0.6794 0.6324  0.6496

5 5 5 0.6108 0.6692 0.6108 0.6293

10 F1 Score (mean =+ std) across runs by feature size
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Figure 6: Fl-score (mean = std) across five runs by feature size. Error bars denote standard deviation.
C.3 Feature Selection Strategies

Table [[T] summarizes the different criteria used to construct feature subsets for the ablation study. We
varied statistical thresholds on differential expression and methylation (p-value, log fold change) to
balance between sensitivity (capturing more candidate features) and specificity (focusing on fewer,
high-confidence features). In addition, fixed top-k feature sets were evaluated for direct comparison.

To evaluate how feature dimensionality and statistical thresholds influence performance, we con-
structed multiple feature subsets using different selection criteria. For sensitivity-oriented strategies,
we applied a lenient threshold (p-value < 0.05, logFC > 0.2), resulting in more than 17,000 genes
and thousands of CpGs being retained. This maximizes coverage but may include weaker signals.

For balanced selection, we tightened the log fold change requirement (logFC > 0.5), reducing CpGs
to 100 and miRNAs to 292 while still retaining over 16,000 genes. Stricter specificity thresholds
(p-value < 0.01 or < 0.001, logFC > 0.5-1.0) further reduced the feature pool, trading breadth for
high-confidence markers. Notably, the strictest criteria (p-value < 0.001, logFC > 1.0) eliminated all
CpGs and miRNAs, leaving only 15,000 genes.

In parallel, we evaluated fixed top-% subsets (100, 250, 500, 1000 features per modality). These allow
controlled comparisons where each modality contributes an equal number of features, providing in-
sight into the trade-off between dataset size, computational efficiency, and classification performance.
Together, these strategies enabled us to explore how both statistical filtering and dimensionality
constraints affect downstream subtype prediction.
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Table 11: Feature selection strategies and resulting feature counts across genes, CpGs, and miRNAs.

Strategy p-value logFC Genes CpGs miRNAs
High Sensitivity (More Genes) 0.05 0.2 17183 4952 475
Moderate Sensitivity (Balanced Selection) 0.05 0.5 16407 100 292
High Specificity (Fewer, High-Confidence) 0.01 0.5 16266 100 271
High Specificity (Very Few, Strict Thresholds) 0.001 1.0 15178 0 0
Top 1000 Features 0.05 0.2 1000 1000 475
Top 500 Features 0.05 0.2 500 500 475
Top 250 Features 0.05 0.2 250 250 250
Top 100 Features 0.05 0.2 100 100 100

C.4 Additional Details on Pathway Enrichment Analysis
C.4.1 Methodological Details

For each GIAC subtype, we performed subtype-versus-rest enrichment using GSEApy’s prerank
implementation of Gene Set Enrichment Analysis (GSEA) [21,15]. Gene-level statistics were derived
from log fold changes:

Ax(g) = log, (%) : (14)

where X (g) is the mean expression of gene g among samples of subtype k, X _x(g) is the mean
among all other samples, and € = 10~° prevents division by zero. Genes were ranked by A(g)
for each subtype, and enrichment was assessed against the KEGG 2021 Human pathways [[10]. We
restricted gene sets to size 5 < |\S] < 500 and used 100 permutations per run. Both nominal p-values
and FDR g-values were reported, with top-20 pathways saved per subtype.

To evaluate subtype specificity, we constructed a pathway—subtype NES (normalized enrichment
score) matrix and computed a Pathway Specificity Score (PSS):

maxy, NES,, ;, — mediany (NES,, 1) 6
PSS = : =L 0=107"°, 15
) sd¢(NES, ) + 0 (15)

ranking pathways that are highly enriched in one subtype relative to their variability across others.

C.4.2 Concordance Between Predicted and Real Subtypes

To test whether the model recapitulates real biological signals, we compared the top-50 predicted
versus real enriched pathways for each subtype. Concordance was quantified using the Jaccard index:

pred real

— : (16)
|pPred | preal| 4§

Results (Table [5) show perfect recovery for EBV (J = 1.0), moderate recovery for CIN and GS
(J =0.11, J = 0.15), and weaker agreement for MSI and HM-SNV. These patterns are consistent
with sample size effects (EBV being the most distinct, MSI/HM-SNV being smallest cohorts) and the
biological distinctiveness of viral-driven tumors compared to genomically unstable ones.

C.4.3 Insights from Pathway Specificity
The PSS ranking (Figure[7) highlights several biologically coherent trends:

* Immune-related pathways (intestinal immune network for IgA production, hematopoietic
cell lineage, proteasome) were enriched, particularly aligning with EBV subtypes where
viral antigens drive immune activation.

* Metabolic pathways (tyrosine metabolism, taurine/hypotaurine metabolism, drug
metabolism) appeared across CIN and GS, reflecting tumor metabolic rewiring.
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Figure 7: Top 20 subtype-specific KEGG pathways ranked by Pathway Specificity Score (PSS). PSS
highlights pathways that show selective enrichment in one subtype compared to others. Immune-
related and metabolic pathways (e.g., intestinal immune network for IgA production, proteasome,
tyrosine metabolism) rank highly, reflecting biologically relevant processes underlying GIAC hetero-
geneity.
* Genome stability pathways (DNA replication, RNA polymerase, proteasome) were associ-
ated with MSTI and CIN, consistent with their mutational instability profiles.

* Cardiac and neuronal signaling pathways (arrhythmogenic right ventricular cardiomy-
opathy, long-term depression, oxytocin signaling) also surfaced, which may reflect tissue-of-
origin contamination or secondary effects rather than primary oncogenic mechanisms.

C.4.4 Limitations and Future Directions

While the enrichment results validate that MoXGATE predictions retain biologically coherent signals,
several caveats remain:

1. Permutation depth: We used 100 permutations for efficiency, but more robust estimates
would require 1,000+.

2. Gene set choice: KEGG [[10] provides well-annotated metabolic and signaling pathways, but
alternative databases (Reactome, Hallmark MSigDB) could yield complementary insights.

3. Sample imbalance: MSI and HM-SNV subtypes had fewer cases, which weakens pathway
reproducibility. Future work could apply data augmentation or subtype-specific reweighting.

4. Biological interpretation: Some pathways with high scores may represent secondary effects
or tissue background, not direct drivers of subtype biology. Careful curation is needed.

The pathway analysis confirms that MoXGATE does more than label assignment: it preserves
subtype-distinguishing pathways, recapitulates known immune/viral hallmarks (EBV), and highlights
instability-associated signatures (CIN, MSI). However, concordance is uneven across subtypes, and
more systematic validation with larger, balanced cohorts and additional pathway collections will be
essential for clinical translation.
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