
Mixture-of-Experts Guided Multi-Omic Integration for Gastrointestinal Cancer Subtype Prediction

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Accurate cancer subtype classification is a cornerstone of precision oncology, in-
2 forming therapeutic decisions and improving prognostic assessment. Gastrointestinal
3 adenocarcinoma (GIAC), however, presents a particularly challenging case due
4 to its molecular heterogeneity and overlapping histological features. Traditional ap-
5 proaches based on single-omic biomarkers or naive multi-omic concatenation often
6 fail to capture the complex interdependencies across genomic, epigenomic, and tran-
7 scriptomic layers. We introduce **MoXGATE** (Mixture-of-Experts Guided Multi-
8 Omic Integration), a deep learning framework that leverages modality-specific
9 expert encoders, cross-attention fusion, and learnable modality weights to enable
10 robust and interpretable integration of gene expression, DNA methylation, and
11 miRNA profiles. By combining expert specialization with attention-driven fu-
12 sion, MoXGATE effectively captures cross-omic dependencies while adaptively
13 weighting each modality according to its predictive relevance. To address severe
14 class imbalance in GIAC subtyping, we further incorporate focal loss, enhancing
15 sensitivity to underrepresented subtypes. Comprehensive evaluation on TCGA
16 GIAC demonstrates that MoXGATE achieves superior accuracy compared to state-
17 of-the-art baselines, while ablation studies confirm the contributions of expert
18 routing, cross-attention, and modality weighting. Moreover, transfer experiments
19 on the TCGA BRCA cohort highlight the model’s adaptability beyond GIAC,
20 underscoring its generalizability to other cancer types.

21

1 Introduction

22 Cancer subtyping is essential in precision oncology, as it informs targeted therapy decisions and
23 improves patient outcomes [1, 18]. Gastrointestinal adenocarcinoma (GIAC), a heterogeneous class
24 of malignancies, poses particular challenges for subtype classification due to its molecular complexity
25 and overlapping clinical features [26, 22]. Conventional histopathology and single-omic biomarkers
26 often fail to capture the breadth of tumor heterogeneity, highlighting the need for integrative, data-
27 driven approaches [7, 11].

28 The advent of next-generation sequencing (NGS) has enabled large-scale multi-omic profiling,
29 spanning gene expression (mRNA), DNA methylation, and miRNA signatures [29, 15, 3]. Multi-
30 omic integration offers a more comprehensive view of tumor biology [2, 16], yet leveraging such
31 data remains challenging. Existing methods struggle with modality heterogeneity, redundancy, and
32 computational scalability, limiting their ability to extract robust cross-omic signals [27, 12, 30].

33 Recent deep learning approaches have advanced multi-omic cancer classification by employing
34 attention or graph-based architectures. For example, moBRCA-net [4] employs self-attention with
35 simple concatenation, which does not fully capture cross-modality dependencies. DeepMoIC [30]
36 uses graph convolutional networks (GCNs) for pan-cancer analysis but is restricted to a small number

37 of subtypes and incurs computational overhead from autoencoders. MOGONET [27] and MoGCN
 38 [12] apply graph-based fusion but depend heavily on well-defined similarity graphs, which are
 39 difficult to construct and sensitive to hyperparameters. Attention-based methods such as MMCA [28]
 40 have shown promise by modeling inter-modality alignment, yet most lack mechanisms to control
 41 modality imbalance or reduce redundancy.

42 In this work, we propose a **Mixture-of-Experts (MoE) attention framework** for multi-omic cancer
 43 subtyping, specifically focusing on GIAC. MoE architectures [9, 19, 6] enable expert specialization
 44 and selective routing, making them well-suited for heterogeneous biological modalities. Our model
 45 assigns each modality (gene expression, DNA methylation, miRNA) to a set of expert encoders,
 46 with a gating mechanism dynamically selecting expert contributions. The expert outputs are refined
 47 through self-attention [23], and modality-specific embeddings are integrated via cross-attention fusion
 48 [28], ensuring that cross-omic dependencies are explicitly modeled. To address class imbalance,
 49 which is a critical issue in cancer cohorts [24], we applied focal loss [13], improving the sensitivity
 50 of classification for minority subtypes.

51 Our contributions are as follows:

- 52 • **MoE-based multi-omic encoding:** We introduce modality-specific expert encoders with
 53 gating to promote specialization and diversity in feature extraction.
- 54 • **Attention-driven integration:** We refine expert outputs using self-attention and employ
 55 cross-attention to model interdependencies across modalities.
- 56 • **Adaptive fusion:** Learnable modality weights dynamically adjust the contribution of each
 57 omic source, reducing redundancy and highlighting complementary signals.
- 58 • **Robust classification under imbalance:** Focal loss improves classification performance
 59 for minority GIAC subtypes, mitigating skewed class distributions.
- 60 • **Generalizability:** Although designed for GIAC, the framework is adaptable to other cancers,
 61 demonstrating strong transferability across multi-omic datasets.

62 2 Methodology

63 2.1 Model Architecture

64 We propose a Mixture-of-Experts (MoE) based multi-omics fusion framework that combines expert-
 65 level specialization, self-attention encoding, cross-attention integration, and focal loss optimization.
 66 As illustrated in Figure 1, the framework is designed to efficiently encode high-dimensional omics
 67 data, capture interdependencies across modalities, and address class imbalance in cancer subtype
 68 prediction.

69 2.1.1 Mixture of Expert Encoding for Modality-Specific Representations

70 For each modality $m \in \{1, \dots, M\}$ and sample i , the input feature vector is $\mathbf{x}_i^{(m)} \in \mathbb{R}^{d_m}$. We define
 71 a set of L_m expert encoders $\{E_{m,j}\}_{j=1}^{L_m}$, each parameterized by $\Theta_{m,j}$. The latent representation is
 72 modeled as a mixture distribution:

$$p(\mathbf{h}_i^{(m)} \mid \mathbf{x}_i^{(m)}) = \sum_{j=1}^{L_m} g_{i,m,j} p(\mathbf{h}_i^{(m)} \mid \mathbf{x}_i^{(m)}, \Theta_{m,j}) \quad (1)$$

73 where gating weights $g_{i,m,j}$ are computed via a softmax over a gating network:

$$g_{i,m,j} = \frac{\exp(\mathbf{u}_{i,m}^\top \mathbf{v}_{m,j})}{\sum_{k=1}^{L_m} \exp(\mathbf{u}_{i,m}^\top \mathbf{v}_{m,k})} \quad (2)$$

74 with $\mathbf{u}_{i,m}$ being a learned query vector for sample i in modality m . The final aggregated representation
 75 is

$$\mathbf{H}_m = \left[\mathbf{h}_1^{(m)}, \dots, \mathbf{h}_N^{(m)} \right]^\top \in \mathbb{R}^{N \times d}. \quad (3)$$

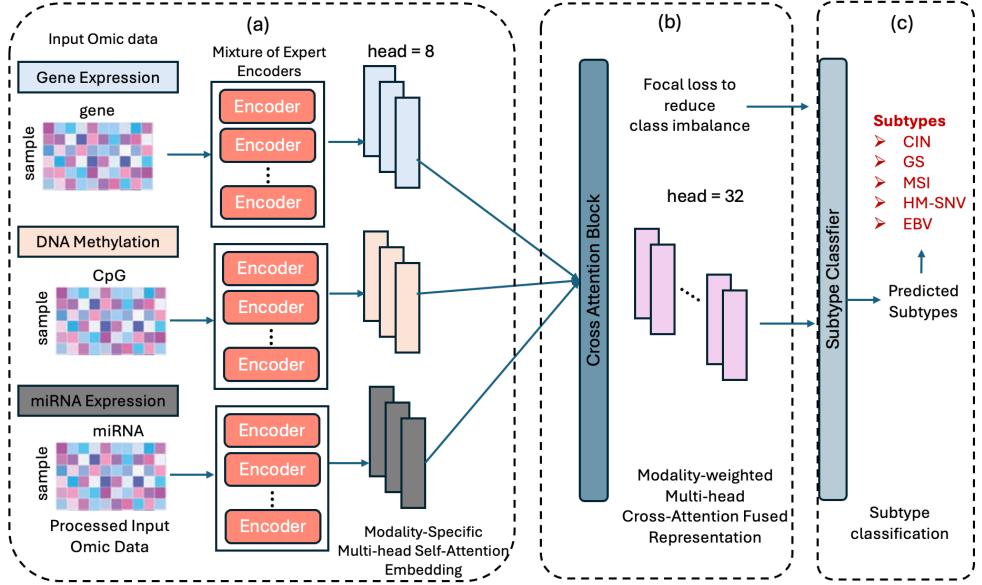


Figure 1: Overview of the proposed Mixture-of-Experts (MoE) based multi-omic cancer subtype classification framework. The architecture consists of three main components: (a) Modality-Specific Expert Encoders, where each modality (gene expression, DNA methylation, and miRNA expression) is processed by a set of expert networks. A gating function dynamically routes inputs to experts, and the aggregated expert outputs are further refined through modality-specific multi-head self-attention to capture diverse feature representations. (b) Cross-Attention Fusion, which integrates modality-specific embeddings via multi-head cross-attention to model interdependencies across omics layers. This mechanism allows the network to emphasize complementary signals and mitigate redundancy across modalities. (c) Subtype Classification Module, where the fused embedding is projected through a feed-forward classifier and optimized using focal loss [17], ensuring robustness under severe subtype imbalance.

76 2.1.2 Self-Attention within Modalities

77 After expert aggregation, modality-specific representations are refined via self-attention:

$$\mathbf{Q}_m = \mathbf{H}_m \mathbf{W}_Q, \quad \mathbf{K}_m = \mathbf{H}_m \mathbf{W}_K, \quad \mathbf{V}_m = \mathbf{H}_m \mathbf{W}_V \quad (4)$$

$$\mathbf{A}_m = \text{softmax} \left(\frac{\mathbf{Q}_m \mathbf{K}_m^\top}{\sqrt{d}} \right) \quad (5)$$

$$\mathbf{Z}_m = \mathbf{A}_m \mathbf{V}_m + \mathbf{H}_m \quad (6)$$

78 where $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{d \times d}$ are learnable parameters.

79 2.1.3 Cross-Attention Fusion

80 The modality-level outputs $\{\mathbf{Z}_m\}_{m=1}^M$ are concatenated:

$$\mathbf{C} = [\mathbf{Z}_1, \mathbf{Z}_2, \dots, \mathbf{Z}_M] \in \mathbb{R}^{M \times N \times d} \quad (7)$$

81 Cross-attention is then applied:

$$\mathbf{Q}_c = \mathbf{C} \mathbf{W}_Q^c, \quad \mathbf{K}_c = \mathbf{C} \mathbf{W}_K^c, \quad \mathbf{V}_c = \mathbf{C} \mathbf{W}_V^c \quad (8)$$

$$\mathbf{A}_c = \text{softmax} \left(\frac{\mathbf{Q}_c \mathbf{K}_c^\top}{\sqrt{d}} \right) \quad (9)$$

$$\mathbf{F} = \mathbf{A}_c \mathbf{V}_c \quad (10)$$

82 2.1.4 Classification with Focal Loss

83 The fused representation is classified as:

$$\hat{y} = \sigma(\mathbf{W}_f \mathbf{F} + \mathbf{b}_f) \quad (11)$$

84 where $\mathbf{W}_f \in \mathbb{R}^{d \times K}$ and K is the number of cancer subtypes.

85 We adopt Focal Loss to address class imbalance:

$$\mathcal{L}_{\text{focal}} = - \sum_{i=1}^K \alpha_i (1 - p_i)^\gamma y_i \log p_i \quad (12)$$

86 where p_i is the predicted probability for class i , y_i is the one-hot ground truth, α_i is a class-specific
87 weight, and γ is the focusing parameter.

88 2.1.5 Overall Optimization and Training

89 The final loss combines focal loss with expert diversity regularization:

$$\mathcal{L} = \mathcal{L}_{\text{focal}} + \lambda \sum_{m=1}^M \sum_{j \neq k} \|\mathbf{H}_{m,j}^\top \mathbf{H}_{m,k}\|_F^2 \quad (13)$$

90 where the second term encourages diversity among experts by penalizing highly correlated outputs.

91 2.1.6 Experimental Setup

92 Each modality (gene expression, DNA methylation, and miRNA expression) was modeled using
93 a Mixture-of-Experts (MoE) design [19, 6], with multiple expert encoders assigned per modality.
94 A soft gating mechanism determined how expert outputs were combined, ensuring that the model
95 could adaptively emphasize different transformations of the same omic source. To further refine these
96 modality-specific representations, we applied multi-head self-attention [23] within each modality,
97 allowing the network to capture dependencies and reduce redundancy in high-dimensional input
98 features.

99 The resulting modality embeddings were integrated through a cross-attention fusion layer [28], which
100 enabled the model to capture interdependencies across heterogeneous omics views. This fused
101 representation was then projected through a feed-forward classification network with non-linear
102 activation and dropout regularization [20], before being mapped to the set of cancer subtype classes.

103 Optimization was carried out using AdamW with weight decay [?], together with focal loss [13] to
104 mitigate class imbalance. In addition, we introduced a diversity regularization term on the experts
105 [9, 25] to discourage them from collapsing to similar solutions and to promote complementary
106 specialization.

107 A complete specification of hyperparameters, including the number of experts, attention heads,
108 embedding dimensions, and training parameters, is provided in Table 1.

Table 1: Hyperparameters used in the Mixture-of-Experts based multi-omics classification framework.

Component	Setting
Number of experts per modality (L_m)	4 (for each of gene, methylation, miRNA)
Expert aggregation	Soft gating (sample-dependent weights)
Self-attention heads (per modality)	8
Dropout (intra-modality attention)	0.1
Cross-attention heads	32
Cross-attention embedding dimension	256
Final embedding dimension	128
Classifier activation	ReLU
Classifier dropout	0.3
Optimizer	AdamW
Learning rate	1×10^{-4}
Weight decay	1×10^{-2}
Loss function	Focal Loss ($\gamma = 2, \alpha = 1$)
Regularization	Expert diversity penalty ($\lambda = 0.01$)
Batch size	64
Training epochs	200

109 **3 Results**

110 **3.1 Performance Comparison on GIAC Subtype Classification**

111 Table 2 presents a comprehensive comparison between our proposed framework and a broad spec-
112 trum of baselines, ranging from classical machine learning classifiers to modern deep multi-omic
113 integration models and ablated variants of our approach. Several important trends emerge.

114 First, classical baselines such as multilayer perceptrons (MLP) and support vector machines (SVM)
115 achieved relatively poor performance (Accuracy 0.6757 / F1 0.5449), reflecting the difficulty of mod-
116 eling high-dimensional, heterogeneous omic data without explicit mechanisms for feature interaction.
117 Random Forest (RF) and simple ensemble strategies improved performance (Accuracy 0.8378 and
118 0.8270, respectively), but their gains remain limited by shallow feature integration. Deep matrix
119 factorization (DMF) performed slightly better (Accuracy 0.7946 / F1 0.7884) but still lagged behind
120 deep neural integration approaches.

121 Among deep multi-omic methods, the Multi-Modal Autoencoder (MAE) performed strongly (Ac-
122 curacy 0.9081 / F1 0.8969), suggesting that reconstruction-based objectives can capture shared
123 structure across modalities. However, the Multi-Modal Variational Autoencoder (MVAE) suffered
124 from instability and weaker discriminative capacity (Accuracy 0.7622 / F1 0.7173). Graph-based
125 integration with MOGONET also underperformed (Accuracy 0.6710 / F1 0.6710), likely due to
126 sensitivity to graph construction and modality-specific noise. moBRCA-net, a recent attention-based
127 model, achieved competitive performance (Accuracy 0.8837 / F1 0.8972) but still fell short of our
128 approach.

129 Our ablation variants reveal the contributions of individual components. Simple concatenation of
130 MoE outputs (Accuracy 0.8486 / F1 0.8518) was consistently weaker than cross-attention fusion
131 (Accuracy 0.8739 / F1 0.8712), highlighting that explicitly modeling inter-modality dependencies
132 is superior to naive feature aggregation. The removal of weighted focal loss degraded performance
133 (Accuracy 0.8631 / F1 0.8676), confirming its role in handling severe class imbalance. Furthermore,
134 replacing hard routing with soft routing in the MoE layer reduced accuracy (0.8739 vs. 0.9117),
135 suggesting that selective expert allocation encourages complementary specialization among experts.

136 Finally, our full model, MoXGATE (Mixture-of-Experts Guided Attention), achieved the strongest
137 overall results, with Accuracy 0.9117, F1 0.9104, Precision 0.9117, and Recall 0.9061. These
138 improvements, while moderate compared to strong deep baselines such as MAE and self-attention +
139 cross-attention, demonstrate the additive benefit of combining expert specialization, attention-driven
140 fusion, and focal loss. Importantly, the gains are consistent across all metrics, indicating a balanced
141 improvement in both sensitivity and precision. Nonetheless, the relatively narrow margins over strong
142 baselines suggest that while MoXGATE is robust, further investigation is warranted into scalability,
143 interpretability, and the trade-off between focal loss reweighting and potential overfitting to minority
144 subtypes.

145 **3.2 Impact of Single vs. Multi-Omic Modalities**

146 The ablation study highlights several clear trends. To examine the contribution of each modality,
147 we performed ablation experiments under a fixed training recipe: Self-Attention + Cross-Attention
148 encoders, Mixture-of-Experts with hard routing, and weighted focal loss. The results (single run) are
149 summarized in Table 3.

150 **(1) Methylation remains the strongest individual signal.** Among the single modalities, methylation
151 achieved the best performance (Acc 0.8973 / F1 0.8806), slightly higher than gene expression and well
152 above miRNA. This suggests that methylation carries the most subtype-discriminative information
153 in our dataset. Gene expression also performed competitively, while miRNA consistently lagged,
154 indicating it may contribute more as a complementary source rather than as a standalone predictor.

155 **(2) Bimodal fusion does not always surpass unimodal baselines.** Gene+Methylation did not
156 improve over Methylation alone (Acc 0.8973 in both cases), and the F1 score even decreased
157 marginally (0.8805 vs. 0.8806). Gene+miRNA also offered no clear advantage compared to gene
158 expression by itself. By contrast, Methylation+miRNA showed a modest benefit (Acc 0.8919 / F1
159 0.8827), slightly outperforming the Methylation baseline in F1. These mixed outcomes suggest
160 that combining modalities introduces interactions that are not uniformly beneficial, and that fusion

Table 2: **Model comparison with baselines and related methods.** Metrics are Accuracy, F1, Precision, and Recall. All models were trained and evaluated under the same experimental protocol.

Model	Accuracy	F1	Precision	Recall
Classical Machine Learning Baselines				
MLP	0.6757	0.5449	0.7809	0.6757
SVM	0.6757	0.5449	0.7809	0.6757
Random Forest (RF)	0.8378	0.8080	0.8474	0.8378
DMF	0.7946	0.7884	0.7859	0.7946
Ensemble	0.8270	0.7721	0.8555	0.8270
Deep Multi-Omic Integration Models				
MAE	0.9081	0.8969	0.9084	0.9081
MVAE	0.7622	0.7173	0.7138	0.7622
MOGONET	0.6710	0.6710	0.6240	0.6340
moBRCA-net	0.8837	0.8934	0.8892	0.8972
Ablation Variants				
MoE + Concat	0.8486	0.8486	0.8486	0.8518
Self-Attn + Cross-Attn	0.8955	0.8873	0.8955	0.8948
MoE (Soft routing) + Cross-Attn	0.8739	0.8612	0.8739	0.8712
MoE w/o weighted Focal Loss + Cross-Attn	0.8631	0.8541	0.8631	0.8676
MoXGATE (Ours)	0.9117	0.9061	0.9117	0.9104

Table 3: **Ablation on input modalities** (single run; Self-Attn + Cross-Attn encoders, MoE hard routing, weighted focal loss). Metrics are Accuracy, F1, Precision, and Recall.

Input Modality	Accuracy	F1	Precision	Recall
Gene	0.8757	0.8688	0.8757	0.8698
Methylation	0.8973	0.8806	0.8973	0.8881
miRNA	0.8162	0.7976	0.8162	0.7958
Gene + Methylation	0.8973	0.8805	0.8973	0.8884
Gene + miRNA	0.8703	0.8674	0.8703	0.8682
Methylation + miRNA	0.8919	0.8827	0.8919	0.8865
Gene + Methylation + miRNA	0.9117	0.9104	0.9117	0.9061

161 mechanisms may require additional calibration to prevent strong modalities from being diluted by
 162 weaker ones.

163 **(3) Trimodal fusion provides consistent gains.** The full three-modality setup yielded the highest
 164 overall performance (Acc 0.9117 / F1 0.9104), clearly above any unimodal or bimodal setting.
 165 This supports the intuition that gene expression, methylation, and miRNA carry complementary
 166 information, and that cross-attention fusion can exploit this complementarity when all channels are
 167 present.

168 3.3 Performance on Other Cancer Data

Model	Accuracy	F1-Score
AE+Cross Attn	0.82	0.79
moBRCANet	0.87	0.86
Ours	0.89	0.88

Table 4: Performance comparison on breast cancer subtype classification. Our model achieves the best performance, demonstrating strong generalization.

169 To further validate the generalizability of our method, we conducted experiments on the TCGA-
 170 BRCA dataset shown in Table 4, which consists of 1,057 breast cancer samples. The dataset includes
 171 five intrinsic subtypes from the PAM50 classification: luminal A, luminal B, HER2 overexpression,
 172 basal-like, and normal-like cancers. We followed the same preprocessing steps as applied to the

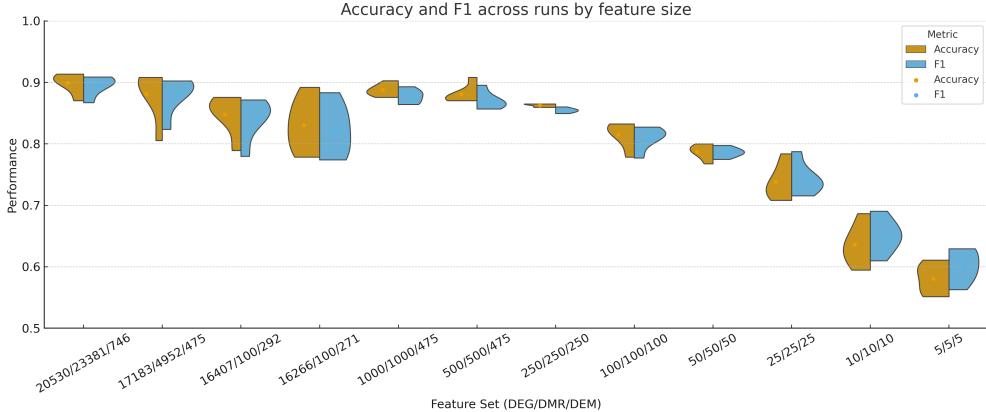


Figure 2: Performance variability across five runs for different feature set sizes. For each feature configuration (DEG/DMR/DEM), paired violin plots represent the distribution of Accuracy and F1-score. Violin width indicates the density of values, while overlaid dots mark run-level results. The plot highlights that full feature sets yield the strongest performance, but intermediate subsets (e.g., 500–1000 features per modality) preserve much of the predictive signal, whereas aggressive reductions lead to a systematic decline in both metrics.

173 GIAC dataset, ensuring consistency across experiments. The dataset was split into 80% training and
 174 20% testing, with 10% of the training data used for validation.
 175 As shown in Table 3, our model achieves an accuracy of 0.89 and an F1-score of 0.88, outperforming
 176 existing approaches such as AE+Cross Attention (0.82 accuracy) and moBRCA (0.87 accuracy).
 177 These results demonstrate that our modality-aware cross-attention approach effectively generalizes
 178 across different cancer types, reinforcing its robustness in multi-omic cancer subtype classification.

179 3.4 Effect of Expert Count on Model Performance

180 Table 6 reports the effect of varying the number of experts assigned to each modality. Several patterns
 181 are evident from this experiment.

182 When only a single expert is used, performance is already competitive, with an accuracy of 0.8955
 183 and an F1 score of 0.8948. This indicates that the combination of self-attention within modalities and
 184 cross-attention across modalities captures a substantial amount of the available signal even without
 185 expert diversity.

186 The best results were obtained with two experts per modality, reaching an accuracy of 0.9117
 187 and an F1 score of 0.9104. This suggests that a limited degree of expert specialization provides
 188 complementary representations that enhance the model’s ability to distinguish cancer subtypes.

189 Increasing the number of experts beyond two did not yield further improvements. With four experts,
 190 performance declined slightly, and with eight experts the accuracy dropped to 0.8919. This decrease
 191 may reflect redundancy among experts, over-parameterization relative to the dataset size, or instability
 192 introduced by hard routing when too many experts compete for limited training data.

193 Overall, these results indicate that a moderate number of experts, specifically two per modality,
 194 offers the most effective balance between specialization and stability. Larger expert pools appear to
 195 introduce inefficiency without improving predictive power, underscoring the importance of tuning the
 196 expert count to the data scale and complexity of the classification task.

197 3.5 Impact of Reducing Feature Space Across Modalities

198 Table 10 in Appendix summarizes the effect of progressively reducing the number of features across
 199 the three modalities (DEG, DMR, DEM). The violin plots in Figure 2 illustrate the distribution of
 200 accuracy and F1 across five independent runs for each feature set size, while line plots with mean \pm
 201 standard deviation are provided in the Appendix (Figures 5 and 6) as an alternative view of the same
 202 results.

Table 5: **Pathway overlap between predicted and real subtype enrichments.** Top-50 KEGG pathways (ranked by FDR) were compared, and Jaccard index was computed per subtype.

Subtype	#Predicted	#Real	#Overlap	%Overlap	Jaccard
EBV	50	50	50	100.0%	1.0000
GS	50	50	13	26.0%	0.1494
CIN	50	50	10	20.0%	0.1111
MSI	50	50	6	12.0%	0.0638
HM-SNV	50	50	4	8.0%	0.0417

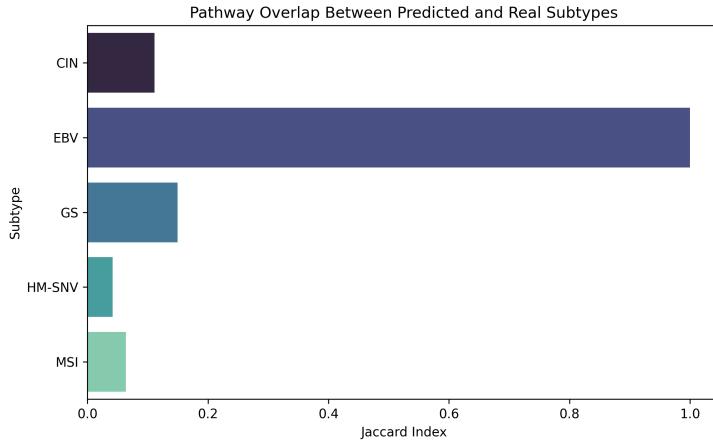


Figure 3: Pathway concordance between predicted and real subtype enrichments. The Jaccard index was computed between the top-50 KEGG pathways (ranked by FDR) for each subtype. EBV showed perfect overlap ($J = 1.0$), reflecting its distinct viral-response signature. CIN and GS exhibited moderate concordance ($J = 0.11$ and $J = 0.15$), while MSI and HM-SNV showed weak recovery ($J = 0.06$ and $J = 0.04$), consistent with their smaller sample sizes and greater intra-class variability.

203 The full feature sets (20,530 DEGs, 23,381 DMRs, and 746 DEMs) yield the strongest overall
 204 performance, with an accuracy of 0.9117 and an F1 score of 0.9061. As expected, reducing the
 205 feature space generally leads to a gradual decline in performance, consistent with the information
 206 loss incurred when fewer discriminative signals are available.

207 Intermediate feature sizes, however, sustain competitive results. For example, limiting each modality
 208 to 1,000 features still achieves accuracy of 0.8865 and F1 of 0.8824, only modestly lower than the
 209 full configuration. This suggests that a large fraction of the predictive power is concentrated in a
 210 smaller set of highly informative features. In contrast, very aggressive reductions (e.g., 50 features or
 211 fewer per modality) lead to sharp declines, with accuracy dropping below 0.77 and F1 below 0.78.

212 At mid-range feature sizes (e.g., 500–1,000 features), we also observe modest non-monotonic
 213 fluctuations. These are likely due to both training stochasticity and the heterogeneous informativeness
 214 of the selected features. The overall trend becomes more consistent at very small feature sets, where
 215 under-representation of critical biological signals is unavoidable.

216 Taken together, the results show that while maximal coverage of the omics space provides the
 217 strongest performance, much of the signal can still be retained with reduced feature sets. For practical
 218 applications where dimensionality is a concern, selecting on the order of 500–1,000 features per
 219 modality appears to strike a good balance between efficiency and predictive accuracy.

220 3.6 Pathway Enrichment and Biological Specificity Across Cancer Subtypes

221 To assess whether model-predicted subtypes recover biologically meaningful signatures, we per-
 222 formed KEGG pathway [10] enrichment analysis using GSEA (prerank) [21, 5] on the test-set gene
 223 expression profiles. Enrichment was computed separately for predicted and ground-truth subtype
 224 labels, and results were compared in terms of both overlap and pathway specificity.

225 **3.6.1 Concordance Between Predicted and Real Subtypes**

226 We first evaluated the overlap between predicted and real enrichment profiles by computing the Jaccard
227 index [8] on the top-50 pathways per subtype (Table 5, Appendix Figure 3). The EBV subtype showed
228 perfect concordance ($J = 1.0$), with all 50 predicted pathways overlapping those from the ground
229 truth, reflecting the distinct viral-response signature characteristic of EBV-driven GIAC. CIN and
230 GS subtypes demonstrated moderate agreement ($J = 0.11$ and $J = 0.15$, respectively), suggesting
231 that the model partially captured their hallmark pathways but missed others. MSI and HM-SNV
232 showed weaker concordance ($J = 0.06$ and $J = 0.04$), which may be attributed to smaller sample
233 sizes and higher intra-subtype heterogeneity. These results highlight that while MoXGATE preserves
234 strong biological signal for distinct subtypes such as EBV, performance is uneven across rarer or
235 more heterogeneous categories.

236 **3.6.2 Pathway Specificity Across Subtypes**

237 To identify which pathways most strongly discriminate between subtypes, we computed a Pathway
238 Specificity Score (PSS), which quantifies the relative enrichment of a pathway in a single subtype
239 compared to its variability across others. The top-20 pathways ranked by PSS are shown in Appendix
240 Figure 7. Several biologically relevant categories emerge: immune processes (intestinal immune
241 network for IgA production, hematopoietic cell lineage, proteasome), metabolic pathways (tyrosine
242 metabolism, taurine and hypotaurine metabolism, drug metabolism), and genomic stability mech-
243 anisms (DNA replication). The enrichment of immune-related pathways is consistent with EBV
244 tumors, which are characterized by strong antiviral and immune signatures. CIN and MSI subtypes,
245 which are associated with chromosomal and microsatellite instability, showed enrichment in DNA
246 replication and repair pathways, while GS subtypes were more strongly associated with metabolic
247 processes such as glycosaminoglycan biosynthesis and choline metabolism.
248 Taken together, these analyses demonstrate that MoXGATE does more than label assignment: it
249 preserves pathway-level signals that align with known biological hallmarks of GIAC subtypes.
250 However, the low concordance for MSI and HM-SNV suggests that small sample sizes and high
251 heterogeneity limit recovery of consistent pathways. Expanding sample cohorts, incorporating
252 additional omics (e.g., proteomics), or applying subtype-aware regularization may further improve
253 pathway-level fidelity.

254 **4 Discussions**

255 Our proposed Modality-Aware Cross-Attention model demonstrates state-of-the-art performance for
256 multi-omic cancer subtype classification, effectively integrating heterogeneous omics data sources.
257 The cross-attention mechanism, combined with learnable modality weights, enhances the fusion of
258 gene expression, DNA methylation, and miRNA data, capturing intricate inter-modality dependencies.
259 The ablation studies confirm that cross-attention outperforms simple concatenation, emphasizing its
260 significance in multi-omic integration. Additionally, the results highlight the dominance of methyla-
261 tion and gene expression data in driving classification performance, aligning with biological insights
262 into cancer heterogeneity. The strong generalization to breast cancer subtypes further underscores the
263 robustness and transferability of our approach beyond gastrointestinal adenocarcinoma (GIAC).

264 Despite these advancements, certain limitations persist. First, while cross-attention improves modality
265 fusion, it inherently increases computational complexity, making it less scalable for ultra-large
266 datasets. Additionally, although modality weights provide insight into the relative importance of
267 omics data, they do not explicitly model dynamic feature importance at the patient level, potentially
268 limiting interpretability for individualized cancer profiling. Future work should explore efficient
269 self-attention mechanisms to reduce complexity and incorporate patient-specific attention weighting
270 for improved personalization.

271 **References**

272 [1] Bo Ahren. Islet g protein-coupled receptors as potential targets for treatment of type 2 diabetes.
273 *Nature reviews Drug discovery*, 8(5):369–385, 2009.

Table 6: **Ablation on the number of MoE experts.** All models use self-attention within modalities, cross-attention for fusion, hard expert routing, and weighted focal loss. Metrics are Accuracy, F1, Precision, and Recall.

# Experts	Accuracy	F1	Precision	Recall
1	0.8955	0.8948	0.8955	0.8873
2	0.9117	0.9104	0.9117	0.9061
4	0.9009	0.8972	0.9009	0.8923
8	0.8919	0.8940	0.8919	0.8809

274 [2] Matteo Bersanelli et al. Methods for the integration of multi-omics data: mathematical aspects.
 275 *BMC Bioinformatics*, 17:S15, 2016.

276 [3] Kasit Chatsirisupachai, Tom Lesluyes, Luminita Paraoan, Peter Van Loo, and João Pedro
 277 De Magalhães. An integrative analysis of the age-associated multi-omic landscape across
 278 cancers. *Nature communications*, 12(1):2345, 2021.

279 [4] Joung Min Choi and Heejoon Chae. mobrca-net: a breast cancer subtype classification frame-
 280 work based on multi-omics attention neural networks. *BMC bioinformatics*, 24(1):169, 2023.

281 [5] Zhuoqing Fang, Xinyuan Liu, and Gary Peltz. Gseapy: a comprehensive package for performing
 282 gene set enrichment analysis in python. *Bioinformatics*, 39(1):btac757, 2023.

283 [6] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
 284 parameter models with simple and efficient sparsity. *Journal of Machine Learning Research*,
 285 23(120):1–39, 2022.

286 [7] Claudio Isella, Francesco Brundu, Sara E Bellomo, Francesco Galimi, Eugenia Zanella, Roberta
 287 Porporato, Consalvo Petti, Alessandro Fiori, Francesca Orzan, Rebecca Senetta, et al. Selective
 288 analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes
 289 of colorectal cancer. *Nature communications*, 8(1):15107, 2017.

290 [8] Paul Jaccard. Étude comparative de la distribution florale dans une portion des alpes et des jura.
 291 *Bull Soc Vaudoise Sci Nat*, 37:547–579, 1901.

292 [9] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures
 293 of local experts. *Neural computation*, 3(1):79–87, 1991.

294 [10] Minoru Kanehisa and Susumu Goto. Kegg: kyoto encyclopedia of genes and genomes. *Nucleic
 295 acids research*, 28(1):27–30, 2000.

296 [11] Vessela N Kristensen, Ole Christian Lingjærde, Hege G Russnes, Hans Kristian M Vollan,
 297 Arnoldo Frigessi, and Anne-Lise Børresen-Dale. Principles and methods of integrative genomic
 298 analyses in cancer. *Nature Reviews Cancer*, 14(5):299–313, 2014.

299 [12] Xiao Li, Jie Ma, Ling Leng, Mingfei Han, Mansheng Li, Fuchu He, and Yunping Zhu. Mogen:
 300 a multi-omics integration method based on graph convolutional network for cancer subtype
 301 analysis. *Frontiers in Genetics*, 13:806842, 2022.

302 [13] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
 303 object detection. In *Proceedings of the IEEE international conference on computer vision*,
 304 pages 2980–2988, 2017.

305 [14] Yang Liu, Nilay S Sethi, Toshinori Hinoue, Barbara G Schneider, Andrew D Cherniack,
 306 Francisco Sanchez-Vega, Jose A Seoane, Farshad Farshidfar, Reanne Bowlby, Mirazul Islam,
 307 et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. *Cancer cell*,
 308 33(4):721–735, 2018.

309 [15] Joaquin Mateo, Lotte Steuten, Philippe Aftimos, Fabrice André, Mark Davies, Elena Garralda,
 310 Jan Geissler, Don Husereau, Iciar Martinez-Lopez, Nicola Normanno, et al. Delivering precision
 311 oncology to patients with cancer. *Nature medicine*, 28(4):658–665, 2022.

312 [16] Otfelia Menyhárt and Balázs Győrffy. Multi-omics approaches in cancer research with applica-
 313 tions in tumor subtyping, prognosis, and diagnosis. *Computational and structural biotechnology
 314 journal*, 19:949–960, 2021.

315 [17] T-YLPG Ross and GKHP Dollár. Focal loss for dense object detection. In *proceedings of the*
316 *IEEE conference on computer vision and pattern recognition*, pages 2980–2988, 2017.

317 [18] Daniela Senft, Mark DM Leiserson, Eytan Ruppin, and Ze’ev A Ronai. Precision oncology: the
318 road ahead. *Trends in molecular medicine*, 23(10):874–898, 2017.

319 [19] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
320 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
321 layer. *arXiv preprint arXiv:1701.06538*, 2017.

322 [20] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
323 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine*
324 *learning research*, 15(1):1929–1958, 2014.

325 [21] Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert,
326 Michael A Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S Lander, et al.
327 Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide
328 expression profiles. *Proceedings of the National Academy of Sciences*, 102(43):15545–15550,
329 2005.

330 [22] Carmine Valenza, Lorenzo Guidi, Elena Battaiotto, Dario Trapani, Andrea Sartore Bianchi,
331 Salvatore Siena, and Giuseppe Curigliano. Targeting her2 heterogeneity in breast and gastroin-
332 testinal cancers. *Trends in Cancer*, 10(2):113–123, 2024.

333 [23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
334 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information*
335 *processing systems*, 30, 2017.

336 [24] Christine Walko, Patrick J Kiel, and Jill Kolesar. Precision medicine in oncology: New practice
337 models and roles for oncology pharmacists. *American Journal of Health-System Pharmacy*,
338 73(23):1935–1942, 2016.

339 [25] Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in reinforce-
340 ment learning with mixture regularization. *Advances in Neural Information Processing Systems*,
341 33:7968–7978, 2020.

342 [26] Qianqian Wang, Ganglei Liu, and Chunhong Hu. Molecular classification of gastric adenocarci-
343 noma. *Gastroenterology research*, 12(6):275, 2019.

344 [27] Tongxin Wang, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zhengming Ding, and Kun
345 Huang. Mogonet integrates multi-omics data using graph convolutional networks allowing
346 patient classification and biomarker identification. *Nature communications*, 12(1):3445, 2021.

347 [28] Xi Wei, Tianzhu Zhang, Yan Li, Yongdong Zhang, and Feng Wu. Multi-modality cross attention
348 network for image and sentence matching. In *Proceedings of the IEEE/CVF conference on*
349 *computer vision and pattern recognition*, pages 10941–10950, 2020.

350 [29] John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Shaw, Brad A Ozenberger,
351 Kyle Ellrott, Ilya Shmulevich, Chris Sander, and Joshua M Stuart. The cancer genome atlas
352 pan-cancer analysis project. *Nature genetics*, 45(10):1113–1120, 2013.

353 [30] Jiecheng Wu, Zhaoliang Chen, Shunxin Xiao, Genggeng Liu, Wenjie Wu, and Shiping Wang.
354 Deepmoic: multi-omics data integration via deep graph convolutional networks for cancer
355 subtype classification. *BMC genomics*, 25(1):1–13, 2024.

356 **A Appendix**

357 **A.1 Dataset**

358 **A.2 GIAC Cancer and Subtypes**

359 Gastrointestinal Adenocarcinomas (GIACs) include four major cancer types: Colon Adenocarcinoma
360 (COAD), Rectum Adenocarcinoma (READ), Stomach Adenocarcinoma (STAD), and Esophageal
361 Carcinoma (ESCA). These cancers exhibit distinct histopathological and molecular characteristics:

- 362 • **COAD (Colon Adenocarcinoma):** A common gastrointestinal malignancy characterized
363 by chromosomal instability (CIN) and microsatellite instability (MSI), with additional
364 classifications based on molecular features.
- 365 • **READ (Rectum Adenocarcinoma):** Similar to COAD but arises in the rectum, sharing
366 molecular features but influenced by distinct anatomic and treatment considerations.
- 367 • **STAD (Stomach Adenocarcinoma):** A highly heterogeneous cancer associated with
368 multiple subtypes, including Epstein-Barr virus (EBV)-associated tumors, MSI-high tumors,
369 and genetically stable (GS) subtypes.
- 370 • **ESCA (Esophageal Carcinoma):** A rare but aggressive cancer exhibiting CIN and MSI
371 features, often linked to environmental and genetic risk factors.

372 **A.3 Dataset Statistics**

373 The dataset used in this study is sourced from The Cancer Genome Atlas (TCGA) [29], containing
374 multi-omic profiles for GIAC cancers. We specifically focus on molecular subtyping based on genetic
375 and epigenetic alterations. The dataset includes the following samples:

Abbreviation	Study Name	Subtype		Subtypes	Samples
		Classification			
COAD	Colon Adenocarcinoma	Molecular	CIN, GS, MSI, HM-SNV, EBV	341	
ESCA	Esophageal Carcinoma	Molecular	CIN, GS, MSI, HM-SNV, EBV	79	
READ	Rectum Adenocarcinoma	Molecular	CIN, GS, MSI, HM-SNV, EBV	118	
STAD	Stomach Adenocarcinoma	Molecular	CIN, GS, MSI, HM-SNV, EBV	383	

Table 7: GIAC Cancer Subtypes and Sample Distribution from TCGA. The four studied cancers include Colon Adenocarcinoma (COAD), Esophageal Carcinoma (ESCA), Rectum Adenocarcinoma (READ), and Stomach Adenocarcinoma (STAD), with five molecular subtypes.

376 **A.4 Molecular Subtypes in GIACs**

377 Molecular subtyping in GIACs has been extensively studied using gene expression, oncogenic
378 pathways, and histopathological criteria. However, traditional clustering approaches often struggle
379 with the biological complexity inherent to these cancers. Our study leverages genomic, epigenomic,
380 and transcriptomic data to define robust molecular subtypes. [14]

381 **Key Subtype Characteristics:**

- 382 • **EBV+ (Epstein-Barr Virus Positive):** Predominantly found in stomach cancers, characterized
383 by extensive DNA hypermethylation.
- 384 • **MSI (Microsatellite Instability):** Associated with defective DNA mismatch repair, leading
385 to a high mutation burden.
- 386 • **HM-SNV(Hypermutated-Single Nucleotide Variants):** Defined by an SNV-predominant
387 mutation profile, often linked to POLE mutations.
- 388 • **CIN (Chromosomal Instability):** Characterized by large-scale chromosomal alterations,
389 frequently found in GIAC tumors.

390 • **GS (Genome Stable):** Lacks significant chromosomal aberrations, representing a smaller
 391 but distinct subset of tumors.

392 The dataset integrates multiple molecular modalities, including mutation profiles, copy-number
 393 variations, and DNA methylation, ensuring a comprehensive framework for subtype classification.

394 **A.5 Subtype Distribution for the Combined GIAC Dataset**

395 Table 8 reports the distribution of GIAC subtypes across training, validation, and test sets. For a visual
 396 summary, Figure 4 shows a grouped bar chart that makes the imbalance across subtypes explicit.

Table 8: Distribution of GIAC subtypes across training, validation, and test sets.

ID	Subtype	Train	Validation	Test	Total
0	CIN	450	50	125	625
1	EBV	22	2	6	30
2	GS	78	9	22	109
3	HM-SNV	13	2	4	19
4	MSI	99	11	28	138
Total		662	74	185	921

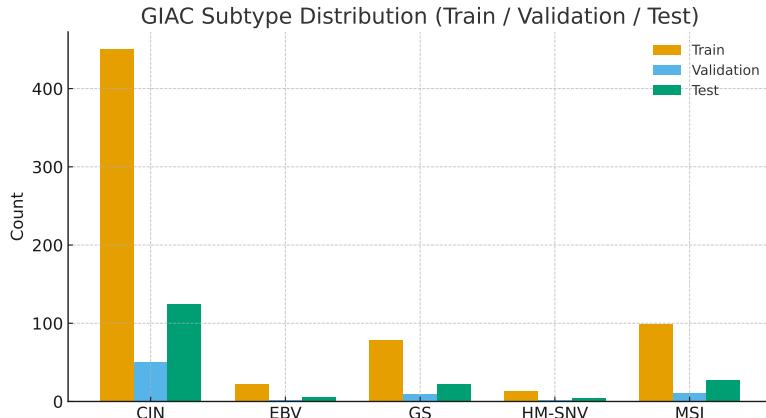


Figure 4: Grouped bar chart of GIAC subtype counts in the train, validation, and test splits. CIN is the dominant class, while EBV and HM-SNV are underrepresented.

397 **B Data Processing Pipeline**

398 To ensure a robust and unbiased evaluation, we utilized three cancer datasets (COAD, READ, STAD)
 399 for training and validation, while reserving the ESCA dataset exclusively for testing. Each cancer
 400 type in our dataset is categorized into five molecular subtypes. We performed a 90-10 split on the
 401 training dataset, where 90% of the samples were used for model training, and 10% for validation.

402 For feature preprocessing, we applied a two-step missing value handling strategy. First, we eliminated
 403 features with more than 40% missing values to ensure data reliability. Second, for the remaining
 404 missing values, we applied median imputation, filling in missing entries with the median value of the
 405 respective feature.

406 To maintain biological consistency across datasets, we selected only features that were common
 407 across all four cancer types. This yielded the following shared features:

408 • **Common Gene Expression Features:** 20,530
 409 • **Common DNA Methylation Features:** 23,381
 410 • **Common miRNA Features:** 746

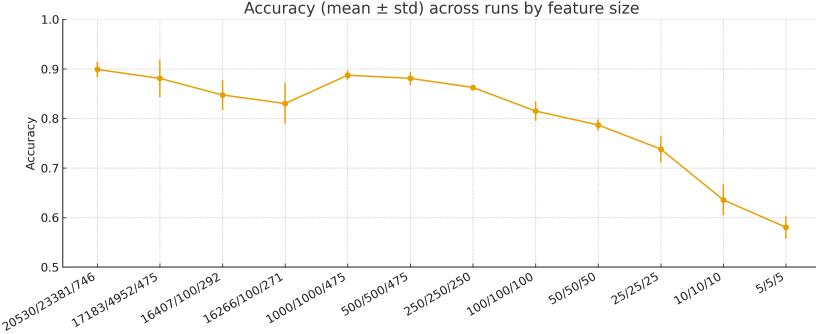


Figure 5: Accuracy (mean \pm std) across five runs by feature size. Error bars denote standard deviation.

411 Following this preprocessing, our **final dataset** consisted of:

412 • **Training and validation set:** 842 samples
 413 • **Test set (ESCA):** 79 samples
 414 • **Final train-validation split:** 757 training samples and 85 validation samples

415 This data processing pipeline ensures that the model is trained on a diverse set of cancers while
 416 testing on a separate cancer type, providing a realistic evaluation of model generalizability across
 417 GIAC subtypes.

418 **C Ablation Study**

419 **C.1 Ablation Study of Attention head**

420 The number of heads in a multi-head cross-attention layer plays a critical role in capturing diverse
 421 feature interactions across omics modalities. The ablation study, as presented in Table 9, evaluates the
 422 performance of our model with 8, 16, and 32 attention heads. The results indicate that increasing the
 423 number of heads from 8 to 16 does not significantly impact performance, maintaining an accuracy of
 424 94%. However, when the number of heads is increased to 32, the model achieves a slight improvement,
 425 reaching the highest accuracy of 95% along with a higher recall (0.95) and precision (0.96).

426 This improvement suggests that with a greater number of heads, the model is able to attend to finer-
 427 grained relationships among multi-omic features, thereby improving its ability to extract meaningful
 428 subtype-specific patterns. However, while a larger number of heads provides marginal gains, further
 429 increasing this number may introduce computational overhead without substantial performance
 430 benefits. Thus, 32 heads was selected as the optimal configuration, balancing both accuracy and
 computational efficiency.

Heads	Accuracy	Precision	Recall	F1-Score
8	0.94	0.96	0.94	0.94
16	0.94	0.96	0.94	0.94
32	0.95	0.96	0.95	0.94

Table 9: Ablation study on the effect of different numbers of heads in the cross-attention layer. The best-performing setting is highlighted.

431

432 **C.2 Effect of Feature Set Size**

433 Table 10 summarizes the effect of progressively reducing the number of features across the three
 434 modalities (DEG, DMR, DEM). The violin plots in Figure 2 illustrate the distribution of accuracy
 435 and F1 across five independent runs for each feature set size, while line plots with mean \pm standard
 436 deviation are provided in the Appendix (Figures 5 and 6) as an alternative view of the same results.

Table 10: **Ablation on feature set size.** Performance reported as the average of 5 independent runs. Metrics are Accuracy, Precision, Recall, and F1-score. DEG = differentially expressed genes, DMR = differentially methylated regions, DEM = differentially expressed miRNAs.

DEG	DMR	DEM	Accuracy	Precision	Recall	F1
20530	23381	746	0.9117	0.9104	0.9117	0.9061
17183	4952	475	0.8973	0.8969	0.8973	0.8915
16407	100	292	0.8595	0.8595	0.8595	0.8543
16266	100	271	0.8324	0.8169	0.8324	0.8245
1000	1000	475	0.8865	0.8841	0.8865	0.8824
500	500	475	0.8757	0.8616	0.8757	0.8641
250	250	250	0.8649	0.8706	0.8649	0.8557
100	100	100	0.8324	0.8134	0.8324	0.8185
50	50	50	0.7676	0.7919	0.7676	0.7748
25	25	25	0.7514	0.7325	0.7514	0.7408
10	10	10	0.6324	0.6794	0.6324	0.6496
5	5	5	0.6108	0.6692	0.6108	0.6293

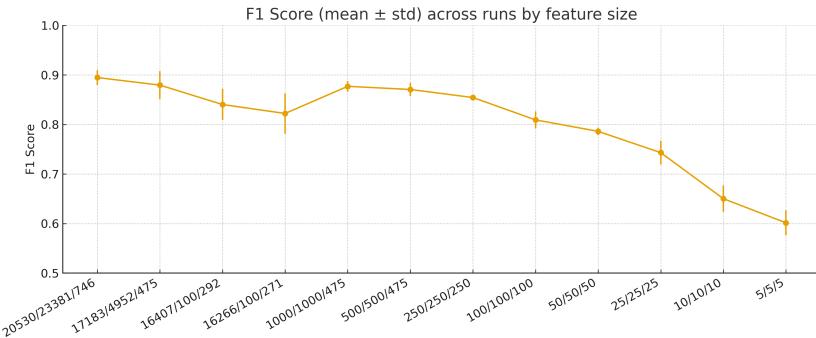


Figure 6: F1-score (mean \pm std) across five runs by feature size. Error bars denote standard deviation.

437 C.3 Feature Selection Strategies

438 Table 11 summarizes the different criteria used to construct feature subsets for the ablation study. We
439 varied statistical thresholds on differential expression and methylation (p-value, log fold change) to
440 balance between sensitivity (capturing more candidate features) and specificity (focusing on fewer,
441 high-confidence features). In addition, fixed top- k feature sets were evaluated for direct comparison.

442 To evaluate how feature dimensionality and statistical thresholds influence performance, we con-
443 structed multiple feature subsets using different selection criteria. For sensitivity-oriented strategies,
444 we applied a lenient threshold (p-value ≤ 0.05 , logFC ≥ 0.2), resulting in more than 17,000 genes
445 and thousands of CpGs being retained. This maximizes coverage but may include weaker signals.

446 For balanced selection, we tightened the log fold change requirement (logFC ≥ 0.5), reducing CpGs
447 to 100 and miRNAs to 292 while still retaining over 16,000 genes. Stricter specificity thresholds
448 (p-value ≤ 0.01 or ≤ 0.001 , logFC ≥ 0.5 –1.0) further reduced the feature pool, trading breadth for
449 high-confidence markers. Notably, the strictest criteria (p-value ≤ 0.001 , logFC ≥ 1.0) eliminated all
450 CpGs and miRNAs, leaving only 15,000 genes.

451 In parallel, we evaluated fixed top- k subsets (100, 250, 500, 1000 features per modality). These allow
452 controlled comparisons where each modality contributes an equal number of features, providing in-
453 sight into the trade-off between dataset size, computational efficiency, and classification performance.
454 Together, these strategies enabled us to explore how both statistical filtering and dimensionality
455 constraints affect downstream subtype prediction.

Table 11: Feature selection strategies and resulting feature counts across genes, CpGs, and miRNAs.

Strategy	p-value	logFC	Genes	CpGs	miRNAs
High Sensitivity (More Genes)	0.05	0.2	17183	4952	475
Moderate Sensitivity (Balanced Selection)	0.05	0.5	16407	100	292
High Specificity (Fewer, High-Confidence)	0.01	0.5	16266	100	271
High Specificity (Very Few, Strict Thresholds)	0.001	1.0	15178	0	0
Top 1000 Features	0.05	0.2	1000	1000	475
Top 500 Features	0.05	0.2	500	500	475
Top 250 Features	0.05	0.2	250	250	250
Top 100 Features	0.05	0.2	100	100	100

456 C.4 Additional Details on Pathway Enrichment Analysis

457 C.4.1 Methodological Details

458 For each GIAC subtype, we performed subtype-versus-rest enrichment using GSEAp's prerank
 459 implementation of Gene Set Enrichment Analysis (GSEA) [21, 5]. Gene-level statistics were derived
 460 from log fold changes:

$$\Delta_k(g) = \log_2 \left(\frac{\bar{X}_k(g) + \epsilon}{\bar{X}_{-k}(g) + \epsilon} \right), \quad (14)$$

461 where $\bar{X}_k(g)$ is the mean expression of gene g among samples of subtype k , $\bar{X}_{-k}(g)$ is the mean
 462 among all other samples, and $\epsilon = 10^{-5}$ prevents division by zero. Genes were ranked by $\Delta_k(g)$
 463 for each subtype, and enrichment was assessed against the KEGG 2021 Human pathways [10]. We
 464 restricted gene sets to size $5 \leq |S| \leq 500$ and used 100 permutations per run. Both nominal p -values
 465 and FDR q -values were reported, with top-20 pathways saved per subtype.

466 To evaluate subtype specificity, we constructed a pathway–subtype NES (normalized enrichment
 467 score) matrix and computed a Pathway Specificity Score (PSS):

$$PSS(p) = \frac{\max_k \text{NES}_{p,k} - \text{median}_k(\text{NES}_{p,k})}{\text{sd}_k(\text{NES}_{p,k}) + \delta}, \quad \delta = 10^{-6}, \quad (15)$$

468 ranking pathways that are highly enriched in one subtype relative to their variability across others.

469 C.4.2 Concordance Between Predicted and Real Subtypes

470 To test whether the model recapitulates real biological signals, we compared the top-50 predicted
 471 versus real enriched pathways for each subtype. Concordance was quantified using the Jaccard index:

$$J(k) = \frac{|\mathcal{P}_k^{\text{pred}} \cap \mathcal{P}_k^{\text{real}}|}{|\mathcal{P}_k^{\text{pred}} \cup \mathcal{P}_k^{\text{real}}| + \delta}. \quad (16)$$

472 Results (Table 5) show perfect recovery for EBV ($J = 1.0$), moderate recovery for CIN and GS
 473 ($J = 0.11$, $J = 0.15$), and weaker agreement for MSI and HM-SNV. These patterns are consistent
 474 with sample size effects (EBV being the most distinct, MSI/HM-SNV being smallest cohorts) and the
 475 biological distinctiveness of viral-driven tumors compared to genetically unstable ones.

476 C.4.3 Insights from Pathway Specificity

477 The PSS ranking (Figure 7) highlights several biologically coherent trends:

- 478 • **Immune-related pathways** (intestinal immune network for IgA production, hematopoietic
 479 cell lineage, proteasome) were enriched, particularly aligning with EBV subtypes where
 480 viral antigens drive immune activation.
- 481 • **Metabolic pathways** (tyrosine metabolism, taurine/hypotaurine metabolism, drug
 482 metabolism) appeared across CIN and GS, reflecting tumor metabolic rewiring.

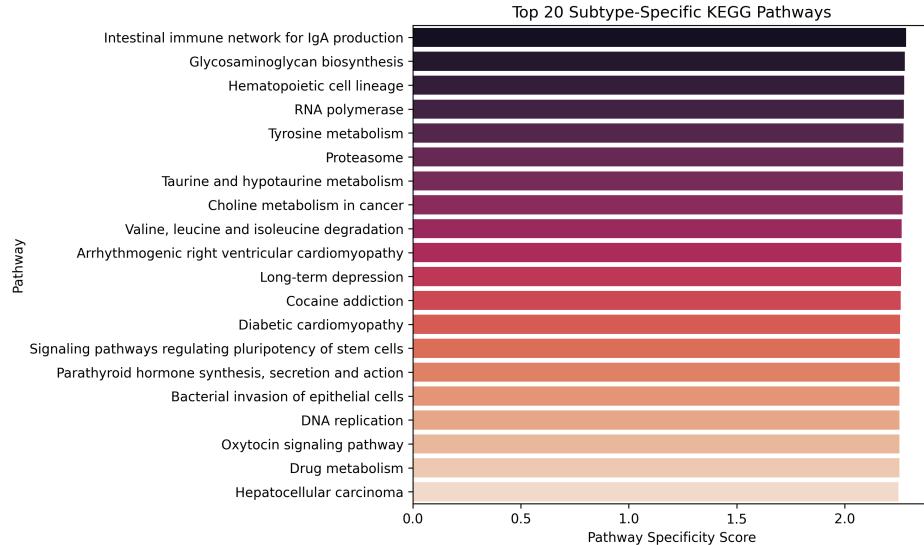


Figure 7: Top 20 subtype-specific KEGG pathways ranked by Pathway Specificity Score (PSS). PSS highlights pathways that show selective enrichment in one subtype compared to others. Immune-related and metabolic pathways (e.g., intestinal immune network for IgA production, proteasome, tyrosine metabolism) rank highly, reflecting biologically relevant processes underlying GIAC heterogeneity.

- **Genome stability pathways** (DNA replication, RNA polymerase, proteasome) were associated with MSI and CIN, consistent with their mutational instability profiles.
- **Cardiac and neuronal signaling pathways** (arrhythmogenic right ventricular cardiomyopathy, long-term depression, oxytocin signaling) also surfaced, which may reflect tissue-of-origin contamination or secondary effects rather than primary oncogenic mechanisms.

488 C.4.4 Limitations and Future Directions

489 While the enrichment results validate that MoXGATE predictions retain biologically coherent signals,
 490 several caveats remain:

- 491 1. **Permutation depth:** We used 100 permutations for efficiency, but more robust estimates
 492 would require 1,000+.
- 493 2. **Gene set choice:** KEGG [10] provides well-annotated metabolic and signaling pathways, but
 494 alternative databases (Reactome, Hallmark MSigDB) could yield complementary insights.
- 495 3. **Sample imbalance:** MSI and HM-SNV subtypes had fewer cases, which weakens pathway
 496 reproducibility. Future work could apply data augmentation or subtype-specific reweighting.
- 497 4. **Biological interpretation:** Some pathways with high scores may represent secondary effects
 498 or tissue background, not direct drivers of subtype biology. Careful curation is needed.

499 The pathway analysis confirms that MoXGATE does more than label assignment: it preserves
 500 subtype-distinguishing pathways, recapitulates known immune/viral hallmarks (EBV), and highlights
 501 instability-associated signatures (CIN, MSI). However, concordance is uneven across subtypes, and
 502 more systematic validation with larger, balanced cohorts and additional pathway collections will be
 503 essential for clinical translation.