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Abstract

Accurate cancer subtype classification is a cornerstone of precision oncology, in-1

forming therapeutic decisions and improving prognostic assessment. Gastrointesti-2

nal adenocarcinoma (GIAC), however, presents a particularly challenging case due3

to its molecular heterogeneity and overlapping histological features. Traditional ap-4

proaches based on single-omic biomarkers or naive multi-omic concatenation often5

fail to capture the complex interdependencies across genomic, epigenomic, and tran-6

scriptomic layers. We introduce MoXGATE (Mixture-of-Experts Guided Multi-7

Omic Integration), a deep learning framework that leverages modality-specific8

expert encoders, cross-attention fusion, and learnable modality weights to enable9

robust and interpretable integration of gene expression, DNA methylation, and10

miRNA profiles. By combining expert specialization with attention-driven fu-11

sion, MoXGATE effectively captures cross-omic dependencies while adaptively12

weighting each modality according to its predictive relevance. To address severe13

class imbalance in GIAC subtyping, we further incorporate focal loss, enhancing14

sensitivity to underrepresented subtypes. Comprehensive evaluation on TCGA15

GIAC demonstrates that MoXGATE achieves superior accuracy compared to state-16

of-the-art baselines, while ablation studies confirm the contributions of expert17

routing, cross-attention, and modality weighting. Moreover, transfer experiments18

on the TCGA BRCA cohort highlight the model’s adaptability beyond GIAC,19

underscoring its generalizability to other cancer types.20

1 Introduction21

Cancer subtyping is essential in precision oncology, as it informs targeted therapy decisions and22

improves patient outcomes [1, 18]. Gastrointestinal adenocarcinoma (GIAC), a heterogeneous class23

of malignancies, poses particular challenges for subtype classification due to its molecular complexity24

and overlapping clinical features [26, 22]. Conventional histopathology and single-omic biomarkers25

often fail to capture the breadth of tumor heterogeneity, highlighting the need for integrative, data-26

driven approaches [7, 11].27

The advent of next-generation sequencing (NGS) has enabled large-scale multi-omic profiling,28

spanning gene expression (mRNA), DNA methylation, and miRNA signatures [29, 15, 3]. Multi-29

omic integration offers a more comprehensive view of tumor biology [2, 16], yet leveraging such30

data remains challenging. Existing methods struggle with modality heterogeneity, redundancy, and31

computational scalability, limiting their ability to extract robust cross-omic signals [27, 12, 30].32

Recent deep learning approaches have advanced multi-omic cancer classification by employing33

attention or graph-based architectures. For example, moBRCA-net [4] employs self-attention with34

simple concatenation, which does not fully capture cross-modality dependencies. DeepMoIC [30]35

uses graph convolutional networks (GCNs) for pan-cancer analysis but is restricted to a small number36
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of subtypes and incurs computational overhead from autoencoders. MOGONET [27] and MoGCN37

[12] apply graph-based fusion but depend heavily on well-defined similarity graphs, which are38

difficult to construct and sensitive to hyperparameters. Attention-based methods such as MMCA [28]39

have shown promise by modeling inter-modality alignment, yet most lack mechanisms to control40

modality imbalance or reduce redundancy.41

In this work, we propose a Mixture-of-Experts (MoE) attention framework for multi-omic cancer42

subtyping, specifically focusing on GIAC. MoE architectures [9, 19, 6] enable expert specialization43

and selective routing, making them well-suited for heterogeneous biological modalities. Our model44

assigns each modality (gene expression, DNA methylation, miRNA) to a set of expert encoders,45

with a gating mechanism dynamically selecting expert contributions. The expert outputs are refined46

through self-attention [23], and modality-specific embeddings are integrated via cross-attention fusion47

[28], ensuring that cross-omic dependencies are explicitly modeled. To address class imbalance,48

which is a critical issue in cancer cohorts [24], we applied focal loss [13], improving the sensitivity49

of classification for minority subtypes.50

Our contributions are as follows:51

• MoE-based multi-omic encoding: We introduce modality-specific expert encoders with52

gating to promote specialization and diversity in feature extraction.53

• Attention-driven integration: We refine expert outputs using self-attention and employ54

cross-attention to model interdependencies across modalities.55

• Adaptive fusion: Learnable modality weights dynamically adjust the contribution of each56

omic source, reducing redundancy and highlighting complementary signals.57

• Robust classification under imbalance: Focal loss improves classification performance58

for minority GIAC subtypes, mitigating skewed class distributions.59

• Generalizability: Although designed for GIAC, the framework is adaptable to other cancers,60

demonstrating strong transferability across multi-omic datasets.61

2 Methodology62

2.1 Model Architecture63

We propose a Mixture-of-Experts (MoE) based multi-omics fusion framework that combines expert-64

level specialization, self-attention encoding, cross-attention integration, and focal loss optimization.65

As illustrated in Figure 1, the framework is designed to efficiently encode high-dimensional omics66

data, capture interdependencies across modalities, and address class imbalance in cancer subtype67

prediction.68

2.1.1 Mixture of Expert Encoding for Modality-Specific Representations69

For each modality m ∈ {1, . . . ,M} and sample i, the input feature vector is x(m)
i ∈ Rdm . We define70

a set of Lm expert encoders {Em,j}Lm
j=1, each parameterized by Θm,j . The latent representation is71

modeled as a mixture distribution:72

p(h
(m)
i | x(m)

i ) =

Lm∑
j=1

gi,m,j p(h
(m)
i | x(m)

i ,Θm,j) (1)

where gating weights gi,m,j are computed via a softmax over a gating network:73

gi,m,j =
exp(u⊤

i,mvm,j)∑Lm

k=1 exp(u
⊤
i,mvm,k)

(2)

with ui,m being a learned query vector for sample i in modality m. The final aggregated representation74

is75

Hm =
[
h
(m)
1 , . . . ,h

(m)
N

]⊤
∈ RN×d. (3)
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Figure 1: Overview of the proposed Mixture-of-Experts (MoE) based multi-omic cancer subtype
classification framework. The architecture consists of three main components: (a) Modality-Specific
Expert Encoders, where each modality (gene expression, DNA methylation, and miRNA expression)
is processed by a set of expert networks. A gating function dynamically routes inputs to experts, and
the aggregated expert outputs are further refined through modality-specific multi-head self-attention
to capture diverse feature representations. (b) Cross-Attention Fusion, which integrates modality-
specific embeddings via multi-head cross-attention to model interdependencies across omics layers.
This mechanism allows the network to emphasize complementary signals and mitigate redundancy
across modalities. (c) Subtype Classification Module, where the fused embedding is projected
through a feed-forward classifier and optimized using focal loss [17], ensuring robustness under
severe subtype imbalance.

2.1.2 Self-Attention within Modalities76

After expert aggregation, modality-specific representations are refined via self-attention:77

Qm = HmWQ, Km = HmWK , Vm = HmWV (4)

Am = softmax
(
QmK⊤

m√
d

)
(5)

Zm = AmVm +Hm (6)

where WQ,WK ,WV ∈ Rd×d are learnable parameters.78

2.1.3 Cross-Attention Fusion79

The modality-level outputs {Zm}Mm=1 are concatenated:80

C = [Z1,Z2, . . . ,ZM ] ∈ RM×N×d (7)

Cross-attention is then applied:81

Qc = CWc
Q, Kc = CWc

K , Vc = CWc
V (8)

Ac = softmax
(
QcK

⊤
c√

d

)
(9)

F = AcVc (10)

2.1.4 Classification with Focal Loss82

The fused representation is classified as:83

ŷ = σ (WfF+ bf ) (11)
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where Wf ∈ Rd×K and K is the number of cancer subtypes.84

We adopt Focal Loss to address class imbalance:85

Lfocal = −
K∑
i=1

αi(1− pi)
γyi log pi (12)

where pi is the predicted probability for class i, yi is the one-hot ground truth, αi is a class-specific86

weight, and γ is the focusing parameter.87

2.1.5 Overall Optimization and Training88

The final loss combines focal loss with expert diversity regularization:89

L = Lfocal + λ

M∑
m=1

∑
j ̸=k

∥∥H⊤
m,jHm,k

∥∥2
F

(13)

where the second term encourages diversity among experts by penalizing highly correlated outputs.90

2.1.6 Experimental Setup91

Each modality (gene expression, DNA methylation, and miRNA expression) was modeled using92

a Mixture-of-Experts (MoE) design [19, 6], with multiple expert encoders assigned per modality.93

A soft gating mechanism determined how expert outputs were combined, ensuring that the model94

could adaptively emphasize different transformations of the same omic source. To further refine these95

modality-specific representations, we applied multi-head self-attention [23] within each modality,96

allowing the network to capture dependencies and reduce redundancy in high-dimensional input97

features.98

The resulting modality embeddings were integrated through a cross-attention fusion layer [28], which99

enabled the model to capture interdependencies across heterogeneous omics views. This fused100

representation was then projected through a feed-forward classification network with non-linear101

activation and dropout regularization [20], before being mapped to the set of cancer subtype classes.102

Optimization was carried out using AdamW with weight decay [? ], together with focal loss [13] to103

mitigate class imbalance. In addition, we introduced a diversity regularization term on the experts104

[9, 25] to discourage them from collapsing to similar solutions and to promote complementary105

specialization.106

A complete specification of hyperparameters, including the number of experts, attention heads,107

embedding dimensions, and training parameters, is provided in Table 1.108

Table 1: Hyperparameters used in the Mixture-of-Experts based multi-omics classification framework.

Component Setting

Number of experts per modality (Lm) 4 (for each of gene, methylation, miRNA)
Expert aggregation Soft gating (sample-dependent weights)
Self-attention heads (per modality) 8
Dropout (intra-modality attention) 0.1
Cross-attention heads 32
Cross-attention embedding dimension 256
Final embedding dimension 128
Classifier activation ReLU
Classifier dropout 0.3
Optimizer AdamW
Learning rate 1× 10−4

Weight decay 1× 10−2

Loss function Focal Loss (γ = 2, α = 1)
Regularization Expert diversity penalty (λ = 0.01)
Batch size 64
Training epochs 200
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3 Results109

3.1 Performance Comparison on GIAC Subtype Classification110

Table 2 presents a comprehensive comparison between our proposed framework and a broad spec-111

trum of baselines, ranging from classical machine learning classifiers to modern deep multi-omic112

integration models and ablated variants of our approach. Several important trends emerge.113

First, classical baselines such as multilayer perceptrons (MLP) and support vector machines (SVM)114

achieved relatively poor performance (Accuracy 0.6757 / F1 0.5449), reflecting the difficulty of mod-115

eling high-dimensional, heterogeneous omic data without explicit mechanisms for feature interaction.116

Random Forest (RF) and simple ensemble strategies improved performance (Accuracy 0.8378 and117

0.8270, respectively), but their gains remain limited by shallow feature integration. Deep matrix118

factorization (DMF) performed slightly better (Accuracy 0.7946 / F1 0.7884) but still lagged behind119

deep neural integration approaches.120

Among deep multi-omic methods, the Multi-Modal Autoencoder (MAE) performed strongly (Ac-121

curacy 0.9081 / F1 0.8969), suggesting that reconstruction-based objectives can capture shared122

structure across modalities. However, the Multi-Modal Variational Autoencoder (MVAE) suffered123

from instability and weaker discriminative capacity (Accuracy 0.7622 / F1 0.7173). Graph-based124

integration with MOGONET also underperformed (Accuracy 0.6710 / F1 0.6710), likely due to125

sensitivity to graph construction and modality-specific noise. moBRCA-net, a recent attention-based126

model, achieved competitive performance (Accuracy 0.8837 / F1 0.8972) but still fell short of our127

approach.128

Our ablation variants reveal the contributions of individual components. Simple concatenation of129

MoE outputs (Accuracy 0.8486 / F1 0.8518) was consistently weaker than cross-attention fusion130

(Accuracy 0.8739 / F1 0.8712), highlighting that explicitly modeling inter-modality dependencies131

is superior to naive feature aggregation. The removal of weighted focal loss degraded performance132

(Accuracy 0.8631 / F1 0.8676), confirming its role in handling severe class imbalance. Furthermore,133

replacing hard routing with soft routing in the MoE layer reduced accuracy (0.8739 vs. 0.9117),134

suggesting that selective expert allocation encourages complementary specialization among experts.135

Finally, our full model, MoXGATE (Mixture-of-Experts Guided Attention), achieved the strongest136

overall results, with Accuracy 0.9117, F1 0.9104, Precision 0.9117, and Recall 0.9061. These137

improvements, while moderate compared to strong deep baselines such as MAE and self-attention +138

cross-attention, demonstrate the additive benefit of combining expert specialization, attention-driven139

fusion, and focal loss. Importantly, the gains are consistent across all metrics, indicating a balanced140

improvement in both sensitivity and precision. Nonetheless, the relatively narrow margins over strong141

baselines suggest that while MoXGATE is robust, further investigation is warranted into scalability,142

interpretability, and the trade-off between focal loss reweighting and potential overfitting to minority143

subtypes.144

3.2 Impact of Single vs. Multi-Omic Modalities145

The ablation study highlights several clear trends. To examine the contribution of each modality,146

we performed ablation experiments under a fixed training recipe: Self-Attention + Cross-Attention147

encoders, Mixture-of-Experts with hard routing, and weighted focal loss. The results (single run) are148

summarized in Table 3.149

(1) Methylation remains the strongest individual signal. Among the single modalities, methylation150

achieved the best performance (Acc 0.8973 / F1 0.8806), slightly higher than gene expression and well151

above miRNA. This suggests that methylation carries the most subtype-discriminative information152

in our dataset. Gene expression also performed competitively, while miRNA consistently lagged,153

indicating it may contribute more as a complementary source rather than as a standalone predictor.154

(2) Bimodal fusion does not always surpass unimodal baselines. Gene+Methylation did not155

improve over Methylation alone (Acc 0.8973 in both cases), and the F1 score even decreased156

marginally (0.8805 vs. 0.8806). Gene+miRNA also offered no clear advantage compared to gene157

expression by itself. By contrast, Methylation+miRNA showed a modest benefit (Acc 0.8919 / F1158

0.8827), slightly outperforming the Methylation baseline in F1. These mixed outcomes suggest159

that combining modalities introduces interactions that are not uniformly beneficial, and that fusion160
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Table 2: Model comparison with baselines and related methods. Metrics are Accuracy, F1,
Precision, and Recall. All models were trained and evaluated under the same experimental protocol.

Model Accuracy F1 Precision Recall

Classical Machine Learning Baselines
MLP 0.6757 0.5449 0.7809 0.6757
SVM 0.6757 0.5449 0.7809 0.6757
Random Forest (RF) 0.8378 0.8080 0.8474 0.8378
DMF 0.7946 0.7884 0.7859 0.7946
Ensemble 0.8270 0.7721 0.8555 0.8270

Deep Multi-Omic Integration Models
MAE 0.9081 0.8969 0.9084 0.9081
MVAE 0.7622 0.7173 0.7138 0.7622
MOGONET 0.6710 0.6710 0.6240 0.6340
moBRCA-net 0.8837 0.8934 0.8892 0.8972

Ablation Variants
MoE + Concat 0.8486 0.8486 0.8486 0.8518
Self-Attn + Cross-Attn 0.8955 0.8873 0.8955 0.8948
MoE (Soft routing) + Cross-Attn 0.8739 0.8612 0.8739 0.8712
MoE w/o weighted Focal Loss + Cross-Attn 0.8631 0.8541 0.8631 0.8676

MoXGATE (Ours) 0.9117 0.9061 0.9117 0.9104

Table 3: Ablation on input modalities (single run; Self-Attn + Cross-Attn encoders, MoE hard
routing, weighted focal loss). Metrics are Accuracy, F1, Precision, and Recall.

Input Modality Accuracy F1 Precision Recall

Gene 0.8757 0.8688 0.8757 0.8698
Methylation 0.8973 0.8806 0.8973 0.8881
miRNA 0.8162 0.7976 0.8162 0.7958
Gene + Methylation 0.8973 0.8805 0.8973 0.8884
Gene + miRNA 0.8703 0.8674 0.8703 0.8682
Methylation + miRNA 0.8919 0.8827 0.8919 0.8865
Gene + Methylation + miRNA 0.9117 0.9104 0.9117 0.9061

mechanisms may require additional calibration to prevent strong modalities from being diluted by161

weaker ones.162

(3) Trimodal fusion provides consistent gains. The full three-modality setup yielded the highest163

overall performance (Acc 0.9117 / F1 0.9104), clearly above any unimodal or bimodal setting.164

This supports the intuition that gene expression, methylation, and miRNA carry complementary165

information, and that cross-attention fusion can exploit this complementarity when all channels are166

present.167

3.3 Performance on Other Cancer Data168

Model Accuracy F1-Score

AE+Cross Attn 0.82 0.79
moBRCANet 0.87 0.86
Ours 0.89 0.88

Table 4: Performance comparison on breast cancer subtype classification. Our model achieves the
best performance, demonstrating strong generalization.

To further validate the generalizability of our method, we conducted experiments on the TCGA-169

BRCA dataset shown in Table 4, which consists of 1,057 breast cancer samples. The dataset includes170

five intrinsic subtypes from the PAM50 classification: luminal A, luminal B, HER2 overexpression,171

basal-like, and normal-like cancers. We followed the same preprocessing steps as applied to the172
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Figure 2: Performance variability across five runs for different feature set sizes. For each feature
configuration (DEG/DMR/DEM), paired violin plots represent the distribution of Accuracy and
F1-score. Violin width indicates the density of values, while overlaid dots mark run-level results.
The plot highlights that full feature sets yield the strongest performance, but intermediate subsets
(e.g., 500–1000 features per modality) preserve much of the predictive signal, whereas aggressive
reductions lead to a systematic decline in both metrics.

GIAC dataset, ensuring consistency across experiments. The dataset was split into 80% training and173

20% testing, with 10% of the training data used for validation.174

As shown in Table 3, our model achieves an accuracy of 0.89 and an F1-score of 0.88, outperforming175

existing approaches such as AE+Cross Attention (0.82 accuracy) and moBRCANet (0.87 accuracy).176

These results demonstrate that our modality-aware cross-attention approach effectively generalizes177

across different cancer types, reinforcing its robustness in multi-omic cancer subtype classification.178

3.4 Effect of Expert Count on Model Performance179

Table 6 reports the effect of varying the number of experts assigned to each modality. Several patterns180

are evident from this experiment.181

When only a single expert is used, performance is already competitive, with an accuracy of 0.8955182

and an F1 score of 0.8948. This indicates that the combination of self-attention within modalities and183

cross-attention across modalities captures a substantial amount of the available signal even without184

expert diversity.185

The best results were obtained with two experts per modality, reaching an accuracy of 0.9117186

and an F1 score of 0.9104. This suggests that a limited degree of expert specialization provides187

complementary representations that enhance the model’s ability to distinguish cancer subtypes.188

Increasing the number of experts beyond two did not yield further improvements. With four experts,189

performance declined slightly, and with eight experts the accuracy dropped to 0.8919. This decrease190

may reflect redundancy among experts, over-parameterization relative to the dataset size, or instability191

introduced by hard routing when too many experts compete for limited training data.192

Overall, these results indicate that a moderate number of experts, specifically two per modality,193

offers the most effective balance between specialization and stability. Larger expert pools appear to194

introduce inefficiency without improving predictive power, underscoring the importance of tuning the195

expert count to the data scale and complexity of the classification task.196

3.5 Impact of Reducing Feature Space Across Modalities197

Table 10 in Appendix summarizes the effect of progressively reducing the number of features across198

the three modalities (DEG, DMR, DEM). The violin plots in Figure 2 illustrate the distribution of199

accuracy and F1 across five independent runs for each feature set size, while line plots with mean ±200

standard deviation are provided in the Appendix (Figures 5 and 6) as an alternative view of the same201

results.202
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Table 5: Pathway overlap between predicted and real subtype enrichments. Top-50 KEGG
pathways (ranked by FDR) were compared, and Jaccard index was computed per subtype.

Subtype #Predicted #Real #Overlap %Overlap Jaccard

EBV 50 50 50 100.0% 1.0000
GS 50 50 13 26.0% 0.1494
CIN 50 50 10 20.0% 0.1111
MSI 50 50 6 12.0% 0.0638
HM-SNV 50 50 4 8.0% 0.0417

Figure 3: Pathway concordance between predicted and real subtype enrichments. The Jaccard index
was computed between the top-50 KEGG pathways (ranked by FDR) for each subtype. EBV showed
perfect overlap (J = 1.0), reflecting its distinct viral-response signature. CIN and GS exhibited
moderate concordance (J = 0.11 and J = 0.15), while MSI and HM-SNV showed weak recovery
(J = 0.06 and J = 0.04), consistent with their smaller sample sizes and greater intra-class variability.

The full feature sets (20,530 DEGs, 23,381 DMRs, and 746 DEMs) yield the strongest overall203

performance, with an accuracy of 0.9117 and an F1 score of 0.9061. As expected, reducing the204

feature space generally leads to a gradual decline in performance, consistent with the information205

loss incurred when fewer discriminative signals are available.206

Intermediate feature sizes, however, sustain competitive results. For example, limiting each modality207

to 1,000 features still achieves accuracy of 0.8865 and F1 of 0.8824, only modestly lower than the208

full configuration. This suggests that a large fraction of the predictive power is concentrated in a209

smaller set of highly informative features. In contrast, very aggressive reductions (e.g., 50 features or210

fewer per modality) lead to sharp declines, with accuracy dropping below 0.77 and F1 below 0.78.211

At mid-range feature sizes (e.g., 500–1,000 features), we also observe modest non-monotonic212

fluctuations. These are likely due to both training stochasticity and the heterogeneous informativeness213

of the selected features. The overall trend becomes more consistent at very small feature sets, where214

under-representation of critical biological signals is unavoidable.215

Taken together, the results show that while maximal coverage of the omics space provides the216

strongest performance, much of the signal can still be retained with reduced feature sets. For practical217

applications where dimensionality is a concern, selecting on the order of 500–1,000 features per218

modality appears to strike a good balance between efficiency and predictive accuracy.219

3.6 Pathway Enrichment and Biological Specificity Across Cancer Subtypes220

To assess whether model-predicted subtypes recover biologically meaningful signatures, we per-221

formed KEGG pathway [10] enrichment analysis using GSEA (prerank) [21, 5] on the test-set gene222

expression profiles. Enrichment was computed separately for predicted and ground-truth subtype223

labels, and results were compared in terms of both overlap and pathway specificity.224
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3.6.1 Concordance Between Predicted and Real Subtypes225

We first evaluated the overlap between predicted and real enrichment profiles by computing the Jaccard226

index [8] on the top-50 pathways per subtype (Table 5, Appendix Figure 3). The EBV subtype showed227

perfect concordance (J = 1.0), with all 50 predicted pathways overlapping those from the ground228

truth, reflecting the distinct viral-response signature characteristic of EBV-driven GIAC. CIN and229

GS subtypes demonstrated moderate agreement (J = 0.11 and J = 0.15, respectively), suggesting230

that the model partially captured their hallmark pathways but missed others. MSI and HM-SNV231

showed weaker concordance (J = 0.06 and J = 0.04), which may be attributed to smaller sample232

sizes and higher intra-subtype heterogeneity. These results highlight that while MoXGATE preserves233

strong biological signal for distinct subtypes such as EBV, performance is uneven across rarer or234

more heterogeneous categories.235

3.6.2 Pathway Specificity Across Subtypes236

To identify which pathways most strongly discriminate between subtypes, we computed a Pathway237

Specificity Score (PSS), which quantifies the relative enrichment of a pathway in a single subtype238

compared to its variability across others. The top-20 pathways ranked by PSS are shown in Appendix239

Figure 7. Several biologically relevant categories emerge: immune processes (intestinal immune240

network for IgA production, hematopoietic cell lineage, proteasome), metabolic pathways (tyrosine241

metabolism, taurine and hypotaurine metabolism, drug metabolism), and genomic stability mech-242

anisms (DNA replication). The enrichment of immune-related pathways is consistent with EBV243

tumors, which are characterized by strong antiviral and immune signatures. CIN and MSI subtypes,244

which are associated with chromosomal and microsatellite instability, showed enrichment in DNA245

replication and repair pathways, while GS subtypes were more strongly associated with metabolic246

processes such as glycosaminoglycan biosynthesis and choline metabolism.247

Taken together, these analyses demonstrate that MoXGATE does more than label assignment: it248

preserves pathway-level signals that align with known biological hallmarks of GIAC subtypes.249

However, the low concordance for MSI and HM-SNV suggests that small sample sizes and high250

heterogeneity limit recovery of consistent pathways. Expanding sample cohorts, incorporating251

additional omics (e.g., proteomics), or applying subtype-aware regularization may further improve252

pathway-level fidelity.253

4 Discussions254

Our proposed Modality-Aware Cross-Attention model demonstrates state-of-the-art performance for255

multi-omic cancer subtype classification, effectively integrating heterogeneous omics data sources.256

The cross-attention mechanism, combined with learnable modality weights, enhances the fusion of257

gene expression, DNA methylation, and miRNA data, capturing intricate inter-modality dependencies.258

The ablation studies confirm that cross-attention outperforms simple concatenation, emphasizing its259

significance in multi-omic integration. Additionally, the results highlight the dominance of methyla-260

tion and gene expression data in driving classification performance, aligning with biological insights261

into cancer heterogeneity. The strong generalization to breast cancer subtypes further underscores the262

robustness and transferability of our approach beyond gastrointestinal adenocarcinoma (GIAC).263

Despite these advancements, certain limitations persist. First, while cross-attention improves modality264

fusion, it inherently increases computational complexity, making it less scalable for ultra-large265

datasets. Additionally, although modality weights provide insight into the relative importance of266

omics data, they do not explicitly model dynamic feature importance at the patient level, potentially267

limiting interpretability for individualized cancer profiling. Future work should explore efficient268

self-attention mechanisms to reduce complexity and incorporate patient-specific attention weighting269

for improved personalization.270
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A Appendix356

A.1 Dataset357

A.2 GIAC Cancer and Subtypes358

Gastrointestinal Adenocarcinomas (GIACs) include four major cancer types: Colon Adenocarcinoma359

(COAD), Rectum Adenocarcinoma (READ), Stomach Adenocarcinoma (STAD), and Esophageal360

Carcinoma (ESCA). These cancers exhibit distinct histopathological and molecular characteristics:361

• COAD (Colon Adenocarcinoma): A common gastrointestinal malignancy characterized362

by chromosomal instability (CIN) and microsatellite instability (MSI), with additional363

classifications based on molecular features.364

• READ (Rectum Adenocarcinoma): Similar to COAD but arises in the rectum, sharing365

molecular features but influenced by distinct anatomic and treatment considerations.366

• STAD (Stomach Adenocarcinoma): A highly heterogeneous cancer associated with367

multiple subtypes, including Epstein-Barr virus (EBV)-associated tumors, MSI-high tumors,368

and genomically stable (GS) subtypes.369

• ESCA (Esophageal Carcinoma): A rare but aggressive cancer exhibiting CIN and MSI370

features, often linked to environmental and genetic risk factors.371

A.3 Dataset Statistics372

The dataset used in this study is sourced from The Cancer Genome Atlas (TCGA) [29], containing373

multi-omic profiles for GIAC cancers. We specifically focus on molecular subtyping based on genetic374

and epigenetic alterations. The dataset includes the following samples:375

Abbreviation Study Name Subtype
Classification Subtypes Samples

COAD Colon Adenocarcinoma Molecular CIN, GS, MSI, HM-SNV, EBV 341
ESCA Esophageal Carcinoma Molecular CIN, GS, MSI, HM-SNV, EBV 79
READ Rectum Adenocarcinoma Molecular CIN, GS, MSI, HM-SNV, EBV 118
STAD Stomach Adenocarcinoma Molecular CIN, GS, MSI, HM-SNV, EBV 383
Table 7: GIAC Cancer Subtypes and Sample Distribution from TCGA. The four studied cancers
include Colon Adenocarcinoma (COAD), Esophageal Carcinoma (ESCA), Rectum Adenocarcinoma
(READ), and Stomach Adenocarcinoma (STAD), with five molecular subtypes.

A.4 Molecular Subtypes in GIACs376

Molecular subtyping in GIACs has been extensively studied using gene expression, oncogenic377

pathways, and histopathological criteria. However, traditional clustering approaches often struggle378

with the biological complexity inherent to these cancers. Our study leverages genomic, epigenomic,379

and transcriptomic data to define robust molecular subtypes. [14]380

Key Subtype Characteristics:381

• EBV+ (Epstein-Barr Virus Positive): Predominantly found in stomach cancers, character-382

ized by extensive DNA hypermethylation.383

• MSI (Microsatellite Instability): Associated with defective DNA mismatch repair, leading384

to a high mutation burden.385

• HM-SNV(Hypermutated-Single Nucleotide Variants): Defined by an SNV-predominant386

mutation profile, often linked to POLE mutations.387

• CIN (Chromosomal Instability): Characterized by large-scale chromosomal alterations,388

frequently found in GIAC tumors.389
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• GS (Genome Stable): Lacks significant chromosomal aberrations, representing a smaller390

but distinct subset of tumors.391

The dataset integrates multiple molecular modalities, including mutation profiles, copy-number392

variations, and DNA methylation, ensuring a comprehensive framework for subtype classification.393

A.5 Subtype Distribution for the Combined GIAC Dataset394

Table 8 reports the distribution of GIAC subtypes across training, validation, and test sets. For a visual395

summary, Figure 4 shows a grouped bar chart that makes the imbalance across subtypes explicit.396

Table 8: Distribution of GIAC subtypes across training, validation, and test sets.

ID Subtype Train Validation Test Total

0 CIN 450 50 125 625
1 EBV 22 2 6 30
2 GS 78 9 22 109
3 HM-SNV 13 2 4 19
4 MSI 99 11 28 138

Total 662 74 185 921

CIN EBV GS HM-SNV MSI0

100

200

300

400

Co
un

t

GIAC Subtype Distribution (Train / Validation / Test)
Train
Validation
Test

Figure 4: Grouped bar chart of GIAC subtype counts in the train, validation, and test splits. CIN is
the dominant class, while EBV and HM-SNV are underrepresented.

B Data Processing Pipeline397

To ensure a robust and unbiased evaluation, we utilized three cancer datasets (COAD, READ, STAD)398

for training and validation, while reserving the ESCA dataset exclusively for testing. Each cancer399

type in our dataset is categorized into five molecular subtypes. We performed a 90-10 split on the400

training dataset, where 90% of the samples were used for model training, and 10% for validation.401

For feature preprocessing, we applied a two-step missing value handling strategy. First, we eliminated402

features with more than 40% missing values to ensure data reliability. Second, for the remaining403

missing values, we applied median imputation, filling in missing entries with the median value of the404

respective feature.405

To maintain biological consistency across datasets, we selected only features that were common406

across all four cancer types. This yielded the following shared features:407

• Common Gene Expression Features: 20,530408

• Common DNA Methylation Features: 23,381409

• Common miRNA Features: 746410
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Figure 5: Accuracy (mean ± std) across five runs by feature size. Error bars denote standard deviation.

Following this preprocessing, our final dataset consisted of:411

• Training and validation set: 842 samples412

• Test set (ESCA): 79 samples413

• Final train-validation split: 757 training samples and 85 validation samples414

This data processing pipeline ensures that the model is trained on a diverse set of cancers while415

testing on a separate cancer type, providing a realistic evaluation of model generalizability across416

GIAC subtypes.417

C Ablation Study418

C.1 Ablation Study of Attention head419

The number of heads in a multi-head cross-attention layer plays a critical role in capturing diverse420

feature interactions across omics modalities. The ablation study, as presented in Table 9, evaluates the421

performance of our model with 8, 16, and 32 attention heads. The results indicate that increasing the422

number of heads from 8 to 16 does not significantly impact performance, maintaining an accuracy of423

94%. However, when the number of heads is increased to 32, the model achieves a slight improvement,424

reaching the highest accuracy of 95% along with a higher recall (0.95) and precision (0.96).425

This improvement suggests that with a greater number of heads, the model is able to attend to finer-426

grained relationships among multi-omic features, thereby improving its ability to extract meaningful427

subtype-specific patterns. However, while a larger number of heads provides marginal gains, further428

increasing this number may introduce computational overhead without substantial performance429

benefits. Thus, 32 heads was selected as the optimal configuration, balancing both accuracy and430

computational efficiency.

Heads Accuracy Precision Recall F1-Score

8 0.94 0.96 0.94 0.94
16 0.94 0.96 0.94 0.94
32 0.95 0.96 0.95 0.94

Table 9: Ablation study on the effect of different numbers of heads in the cross-attention layer. The
best-performing setting is highlighted.

431

C.2 Effect of Feature Set Size432

Table 10 summarizes the effect of progressively reducing the number of features across the three433

modalities (DEG, DMR, DEM). The violin plots in Figure 2 illustrate the distribution of accuracy434

and F1 across five independent runs for each feature set size, while line plots with mean ± standard435

deviation are provided in the Appendix (Figures 5 and 6) as an alternative view of the same results.436
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Table 10: Ablation on feature set size. Performance reported as the average of 5 independent runs.
Metrics are Accuracy, Precision, Recall, and F1-score. DEG = differentially expressed genes, DMR
= differentially methylated regions, DEM = differentially expressed miRNAs.

DEG DMR DEM Accuracy Precision Recall F1

20530 23381 746 0.9117 0.9104 0.9117 0.9061
17183 4952 475 0.8973 0.8969 0.8973 0.8915
16407 100 292 0.8595 0.8595 0.8595 0.8543
16266 100 271 0.8324 0.8169 0.8324 0.8245

1000 1000 475 0.8865 0.8841 0.8865 0.8824
500 500 475 0.8757 0.8616 0.8757 0.8641
250 250 250 0.8649 0.8706 0.8649 0.8557
100 100 100 0.8324 0.8134 0.8324 0.8185

50 50 50 0.7676 0.7919 0.7676 0.7748
25 25 25 0.7514 0.7325 0.7514 0.7408
10 10 10 0.6324 0.6794 0.6324 0.6496

5 5 5 0.6108 0.6692 0.6108 0.6293

Figure 6: F1-score (mean ± std) across five runs by feature size. Error bars denote standard deviation.

C.3 Feature Selection Strategies437

Table 11 summarizes the different criteria used to construct feature subsets for the ablation study. We438

varied statistical thresholds on differential expression and methylation (p-value, log fold change) to439

balance between sensitivity (capturing more candidate features) and specificity (focusing on fewer,440

high-confidence features). In addition, fixed top-k feature sets were evaluated for direct comparison.441

To evaluate how feature dimensionality and statistical thresholds influence performance, we con-442

structed multiple feature subsets using different selection criteria. For sensitivity-oriented strategies,443

we applied a lenient threshold (p-value ≤ 0.05, logFC ≥ 0.2), resulting in more than 17,000 genes444

and thousands of CpGs being retained. This maximizes coverage but may include weaker signals.445

For balanced selection, we tightened the log fold change requirement (logFC ≥ 0.5), reducing CpGs446

to 100 and miRNAs to 292 while still retaining over 16,000 genes. Stricter specificity thresholds447

(p-value ≤ 0.01 or ≤ 0.001, logFC ≥ 0.5–1.0) further reduced the feature pool, trading breadth for448

high-confidence markers. Notably, the strictest criteria (p-value ≤ 0.001, logFC ≥ 1.0) eliminated all449

CpGs and miRNAs, leaving only 15,000 genes.450

In parallel, we evaluated fixed top-k subsets (100, 250, 500, 1000 features per modality). These allow451

controlled comparisons where each modality contributes an equal number of features, providing in-452

sight into the trade-off between dataset size, computational efficiency, and classification performance.453

Together, these strategies enabled us to explore how both statistical filtering and dimensionality454

constraints affect downstream subtype prediction.455

15



Table 11: Feature selection strategies and resulting feature counts across genes, CpGs, and miRNAs.

Strategy p-value logFC Genes CpGs miRNAs

High Sensitivity (More Genes) 0.05 0.2 17183 4952 475
Moderate Sensitivity (Balanced Selection) 0.05 0.5 16407 100 292
High Specificity (Fewer, High-Confidence) 0.01 0.5 16266 100 271
High Specificity (Very Few, Strict Thresholds) 0.001 1.0 15178 0 0
Top 1000 Features 0.05 0.2 1000 1000 475
Top 500 Features 0.05 0.2 500 500 475
Top 250 Features 0.05 0.2 250 250 250
Top 100 Features 0.05 0.2 100 100 100

C.4 Additional Details on Pathway Enrichment Analysis456

C.4.1 Methodological Details457

For each GIAC subtype, we performed subtype-versus-rest enrichment using GSEApy’s prerank458

implementation of Gene Set Enrichment Analysis (GSEA) [21, 5]. Gene-level statistics were derived459

from log fold changes:460

∆k(g) = log2

(
Xk(g) + ϵ

X¬k(g) + ϵ

)
, (14)

where Xk(g) is the mean expression of gene g among samples of subtype k, X¬k(g) is the mean461

among all other samples, and ϵ = 10−5 prevents division by zero. Genes were ranked by ∆k(g)462

for each subtype, and enrichment was assessed against the KEGG 2021 Human pathways [10]. We463

restricted gene sets to size 5 ≤ |S| ≤ 500 and used 100 permutations per run. Both nominal p-values464

and FDR q-values were reported, with top-20 pathways saved per subtype.465

To evaluate subtype specificity, we constructed a pathway–subtype NES (normalized enrichment466

score) matrix and computed a Pathway Specificity Score (PSS):467

PSS(p) =
maxk NESp,k − mediank(NESp,k)

sdk(NESp,k) + δ
, δ = 10−6, (15)

ranking pathways that are highly enriched in one subtype relative to their variability across others.468

C.4.2 Concordance Between Predicted and Real Subtypes469

To test whether the model recapitulates real biological signals, we compared the top-50 predicted470

versus real enriched pathways for each subtype. Concordance was quantified using the Jaccard index:471

J(k) =
|Ppred

k ∩ P real
k |

|Ppred
k ∪ P real

k |+ δ
. (16)

Results (Table 5) show perfect recovery for EBV (J = 1.0), moderate recovery for CIN and GS472

(J = 0.11, J = 0.15), and weaker agreement for MSI and HM-SNV. These patterns are consistent473

with sample size effects (EBV being the most distinct, MSI/HM-SNV being smallest cohorts) and the474

biological distinctiveness of viral-driven tumors compared to genomically unstable ones.475

C.4.3 Insights from Pathway Specificity476

The PSS ranking (Figure 7) highlights several biologically coherent trends:477

• Immune-related pathways (intestinal immune network for IgA production, hematopoietic478

cell lineage, proteasome) were enriched, particularly aligning with EBV subtypes where479

viral antigens drive immune activation.480

• Metabolic pathways (tyrosine metabolism, taurine/hypotaurine metabolism, drug481

metabolism) appeared across CIN and GS, reflecting tumor metabolic rewiring.482
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Figure 7: Top 20 subtype-specific KEGG pathways ranked by Pathway Specificity Score (PSS). PSS
highlights pathways that show selective enrichment in one subtype compared to others. Immune-
related and metabolic pathways (e.g., intestinal immune network for IgA production, proteasome,
tyrosine metabolism) rank highly, reflecting biologically relevant processes underlying GIAC hetero-
geneity.

• Genome stability pathways (DNA replication, RNA polymerase, proteasome) were associ-483

ated with MSI and CIN, consistent with their mutational instability profiles.484

• Cardiac and neuronal signaling pathways (arrhythmogenic right ventricular cardiomy-485

opathy, long-term depression, oxytocin signaling) also surfaced, which may reflect tissue-of-486

origin contamination or secondary effects rather than primary oncogenic mechanisms.487

C.4.4 Limitations and Future Directions488

While the enrichment results validate that MoXGATE predictions retain biologically coherent signals,489

several caveats remain:490

1. Permutation depth: We used 100 permutations for efficiency, but more robust estimates491

would require 1,000+.492

2. Gene set choice: KEGG [10] provides well-annotated metabolic and signaling pathways, but493

alternative databases (Reactome, Hallmark MSigDB) could yield complementary insights.494

3. Sample imbalance: MSI and HM-SNV subtypes had fewer cases, which weakens pathway495

reproducibility. Future work could apply data augmentation or subtype-specific reweighting.496

4. Biological interpretation: Some pathways with high scores may represent secondary effects497

or tissue background, not direct drivers of subtype biology. Careful curation is needed.498

The pathway analysis confirms that MoXGATE does more than label assignment: it preserves499

subtype-distinguishing pathways, recapitulates known immune/viral hallmarks (EBV), and highlights500

instability-associated signatures (CIN, MSI). However, concordance is uneven across subtypes, and501

more systematic validation with larger, balanced cohorts and additional pathway collections will be502

essential for clinical translation.503
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