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Abstract

Understanding how multiple brain regions interact to produce behavior
is a major challenge in systems neuroscience, with many regions causally
implicated in common tasks such as sensory processing and decision-making.
Moreover, neural dynamics are nonlinear and non-stationary, exhibiting
switches both within and across trials. Here we propose multi-region switch-
ing dynamical systems (MR-SDS), a switching nonlinear state space model
that decomposes multi-region neural dynamics into local and cross-region
components. MR-SDS includes directed interactions between brain regions,
allowing for estimation of state-dependent communication signals and sen-
sory inputs effects. We show that our model accurately recovers latent
trajectories, vector fields underlying switching nonlinear dynamics, and
cross-region communication profiles in three simulations. We then apply
our method to two large-scale, multi-region neural datasets involving mouse
decision-making. The first includes hundreds of neurons per region, recorded
simultaneously at single-cell-resolution across 3 distal cortical regions. The
second is a mesoscale widefield dataset of 8 adjacent cortical regions imaged
across both hemispheres. On these multi-region datasets, MR-SDS out-
performs existing models, including multi-region recurrent switching linear
models, and reveals multiple distinct dynamical states and a rich set of
cross-region communication profiles.

1 Introduction
Advances in neural recording techniques and large-scale electrophysiology (Sofroniew et al.,
2016; Song et al., 2017; Liu et al., 2021) have transformed systems neuroscience over the
past decade, providing simultaneous measurements of neural activity across regions at
high temporal and spatial resolutions. Experiments using these technologies have shown
that neural computation is highly distributed (Steinmetz et al., 2019; Cowley et al., 2020;
Musall et al., 2018; Allen et al., 2019; Makino et al., 2017; Allen et al., 2017; Gilad et al.,
2018). The need for complementary multiregion methods has led to a flurry of activity
in this area (Semedo et al., 2014; Kohn et al., 2020; Semedo et al., 2019; Glaser et al.,
2020; Perich & Rajan, 2020; Keeley et al., 2020a;b; Gokcen et al., 2024). In this work, we
build upon previous contributions in multiregion models, switching nonlinear time-series
models, and transformer-based models for neural data. We develop a probabilistic model
that accounts for multiregion activity through latent, nonlinear dynamical systems that
evolve and communicate in a directed fashion at each timestep. The approach models high
dimensional multi-region observations as emissions from coupled, low dimensional dynamical
systems with explicit local dynamics and communication. We use a Transformer encoder
with per-region embeddings for posterior inference. We additionally introduce a measure of
the volume of communications between brain regions in the model, allowing us to quantify
the directional ’messages’ communicated between regions at each timepoint. We show
information about stimuli and internal cognitive variables can be decoded from messages,
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providing a description of information flow across brain regions. Finally, we apply our model
to three simulations and two state-of-the-art multiregion neural datasets.

2 Background
2.1 Nonlinear neural dynamics
A wide variety of nonlinear dynamics models for sequential neural data have been introduced
in recent years (Linderman et al., 2017; Pandarinath et al., 2018; Duncker et al., 2019; Kim
et al., 2021). One popular approach is to model nonlinear dynamics using switching linear
dynamical systems (Linderman et al., 2017; Nassar et al., 2019; Zoltowski et al., 2020). While
switching linear models can accurately approximate nonlinear dynamics, they require multiple
discrete states to instantiate a single nonlinear vector field, which reduces interpretability.
Similarly, the expressivity of each linear regime depends on the number of latent dimensions,
which can make visualization challenging. A separate approach is LFADS, which uses a
sequential autoencoder with a generative recurrent neural network (RNN) Pandarinath et al.
(2018). While this approach is powerful, the RNN typically must be high-dimensional to learn
complex dynamics, which makes visualization of the full dynamics challenging. Additionally,
LFADS instantiates a single set of dynamics, whereas our aim is to learn multiple nonlinear
dynamical regimes. Kim et al. (2021) introduced PLNDE, a powerful approach which uses a
neural-ODE to model nonlinear, low-dimensional dynamics. Our proposed method extends
this approach in discrete time to allow for multiple regions and switching between multiple
nonlinear dynamics flow fields. Finally, Ye & Pandarinath (2021) used a Transformer to
fit a highly expressive nonlinear model of neural activity without explicit dynamics. Our
approach similarly exploits the expressivity and trainability of Transformers, but constrains
their use to an encoder, allowing us to efficiently perform inference.
2.2 Switching nonlinear dynamics
Two recent papers introduced switching nonlinear dynamics models for time-series data.
Dong et al. (2020) proposed a model with switching nonlinear dynamics that uses an RNN
inference network to infer continuous latents, with a collapsed variational inference approach
for the discrete latent variables. Ansari et al. (2021) extended this approach to explicitly
model discrete state duration through . We borrow Dong et al.’s approach to discrete state
inference in the mean-field inference method proposed for MR-SDS.
2.3 Multi-region modeling and communication
Various approaches to modeling multi-region neural data have been proposed (Semedo et al.,
2014; Kohn et al., 2020; Semedo et al., 2019; Glaser et al., 2020; Perich et al., 2020; Perich
& Rajan, 2020; Keeley et al., 2020a;b; Gokcen et al., 2024). Our model directly relates to
mp-rSLDS, the multiregion recurrent switching LDS model introduced in Glaser et al. (2020).
In this setup, the observation process is constrained such that continuous latent states map
uniquely to observations originating in a particular brain region. MR-SDS can be seen as a
generalization of mp-rSLDS with nonlinear dynamics, communication, and emissions.
2.4 Dynamics of decision-making
Many tasks studied by neuroscientists involve decision-making. A common paradigm is
sensory evidence accumulation, in which an animal accumulates competing sensory cues
towards a decision (Brunton et al., 2013; Mazurek et al., 2003). Previous work has focused on
modeling dynamics of neural activity on single decision making trials, typically in individual
brain regions (Latimer et al., 2015; Zoltowski et al., 2020; DePasquale et al., 2021; Luo
et al., 2023). Two emerging experimental results from the decision making literature add
complexity to modeling brain-wide neural dynamics. The first is that the neural basis
of decision making appears to be highly distributed. Recent work shows evidence and
decision related information is present in many brain regions (Pinto et al., 2020; 2019), and
precise inactivation studies provide evidence that multiple regions are causally involved in
accumulation and decision (Pinto et al., 2020). However, the precise role of different regions
remains an open problem, underscoring the need for novel multiregion analysis methods
that can address questions about cross-region communication. The second challenge is that
decision-making behavior appears to exhibit persistent states in which different decision
strategies are employed (Ashwood et al., 2020; Stone et al., 2020). This indicates neural
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dynamics may be non-stationary within and across trials, motivating our use of switching
nonlinear dynamics. Finally, cue-locked responses in early visual and intermediate brain
regions are modulated by recent sensory stimuli and evidence history (Koay et al., 2019).
These findings motivate our use of nonlinear interactions between brain regions, history
dependence, and stimuli effects.

3 Multiregion, switching dynamical model
3.1 Switching nonlinear dynamics and communication with multiple regions

Here we describe the MR-SDS model in detail (Figure 1). The model is designed to capture
the following key features. First, our goal is to learn low-dimensional, nonlinear dynamics and
corresponding latent trajectories underlying neural data. We expect that neural dynamics
are nonstationary, and that different nonlinear vector fields may better describe neural
dynamics at different timepoints. We therefore incorporate a discrete state that enables
switching between different sets of nonlinear dynamics. Second, we are interested in modeling
multiregion neural data, and thus our model is designed to separate the activity of each brain
region into different continuous latent dimensions, such that within-region and across-region
dynamics and communication are accessible for analysis. Finally, we include a nonlinear
emission mapping between continuous latent and observed neural data, to reflect the nonlinear
observation process of calcium imaging.

3.2 Discrete switches between different dynamical regimes
The MR-SDS model has both continuous and discrete latent variables, respectively denoted
by x and z. The generative process is

zt | xt−1, zt−1 ∼ Cat(πt), πt = softmax(fz(xt−1, zt−1)) (1)
xt | xt−1, zt, ut ∼ N (fzt

x (xt−1, ut), Qzt) (2)
yt | xt ∼ N (g(xt), R). (3)

Above, y1:T and u1:T are the observation and input sequences. The discrete state zt switches
probabilistically at each timestep as a function of the continuous latent x, as well as its own
history (similar to a Hidden Markov Model or HMM). It is also possible for the inputs ut
to effect transitions directly, as they do in our first simulation (4.1). The discrete state zt
indexes the dynamical regime active at time t, with different dynamics fzt

x governing the
continuous latent variable xt in each discrete state. Hence, changes in the discrete state
over time cause switches in the nonlinear dynamics. Notably, the model does not explicitly
specify a condition or distribution on switching locations or times induced by the discrete
transition dynamics a priori; transitions are probabilistic and not known in advance. Thus,
the model is free to learn transitions driven by a combination of continuous and discrete
states, and possibly external inputs.

3.3 Multiregion dynamics and emissions structure
Importantly, we constrain the model to have multi-region structure (Figure 1). We consider
a decomposition of the global continuous state into K variables private to each region xt =
{xkt }k=1:K , and define the overall global dynamics function fzt

x using additive components
acting on each region’s latents xkt . Thus, the dynamics function for the k’th region is

xkt = fzt

kk(xkt−1) +
∑
j ̸=k

fzt

kj(x
j
t−1) + fzt

ku(ut) + ϵkt , ϵkt ∼ N (0, Qzt

k ) (4)

We similarly decompose the observations as yt = {ykt }k=1:K . Thus, the corresponding
emissions function g for the k’th region is

ykt = gk(xkt ) + δkt , δkt ∼ N (0, Rk) (5)

Above, fz, fzt

kj , f
zt

kk, fzt

ku, and gk are nonlinear functions parameterized by neural networks.
The generative model accounts for each region’s observations yk as nonlinear ‘private’
emissions from a corresponding continuous latent variable xk. The discrete state zt remains
a global switch that selects which of M local dynamics and communication functions are
active at each timepoint. Thus, fzt

kk indicates the nonlinear local dynamics in region k active
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at time t in discrete state zt. In practice, a single conditional dynamics subnetwork can
be used for each fkk, fkj , fku across discrete states, with the state index provided to the
network at each layer. We note that emissions in the model are constrained such that latents
from one region only map to that region’s observations. MR-SDS can thus be seen as a
generalization of the LDS based multiregion model, mp-rSLDS (Glaser et al., 2020). For
spiking data, it’s also possible to use the emissions mapping ykt ∼ Pois(gk(xkt )).

3.4 Estimating cross-region communication, or ‘messages’ and input effects
By explicitly inferring each region’s local dynamics, communication and input processing
functions, the model exposes estimates of communication streams between regions. We
define messages and regional input effects in the model as follows:

mkk
t = Eq(zt,xk

t−1|y)

[
fzt

kk(xkt−1)− xkt−1

]
(6)

mkj
t = Eq(zt,x

j
t−1|y)

[
fzt

kj(x
j
t−1)

]
(7)

mku
t = Eq(zt|y)

[
fzt

ku(ut)
]

(8)

where above the expectations are taken with respect to the approximate posterior over
the latent states, z and x. Notably, these messages combine additively to the estimated
overall ‘flow’ of the k’th region’s trajectory at each time point, thus decomposing the relative
contribution of each region and of inputs. Thus, the model allows us to produce estimates
and quantify communication and input effects for further downstream analysis. Furthermore,
we can perform decoding analyses on messages to track how information about stimuli or
internal cognitive variables flow across regions over time.
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Figure 1: Generative model, messages and inference network for MR-SDS.

3.5 Amortized VI with multiregion structured Transformer network
We propose two variational inference (VI) schemes for MR-SDS: mean-field and structured.
Both rely on a Transformer encoder with multiregion embeddings. In mean-field, the encoder
directly produces independent means and covariances of the approximate posterior on x:

Yk1:T = gkemb(yk1:T , u1:T ) (9)
µx1:T ,Σx1:T = Transformer({Yk1:T }k=1:K , u1:T ) (10)

qϕ(x1:T |y1:T , u1:T ) =
T∏
t=1
N
(
xt ; µxt ,Σxt

)
(11)

Above, gkemb is a feed-foward neural network embedding region k’s activity yk1:T along with
observed stimulus inputs u1:T . We use an encoder-only, non-causal Transformer architecture,
motivated by the need to approximate the smoothing distribution of the continuous latents.
Following (Dong et al., 2020), we treat samples x̂1:T from the approximate posterior as
pseudo-observations for the subgraph p(z1:T |x̂1:T , u1:T ), which forms an HMM with z as
discrete states and x̂ as emissions. We perform conditionally exact inference for the discrete
states z with the Forward-Backward algorithm for HMMs, which we differentiate through
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(Rabiner, 1989; Dong et al., 2020). With ϕ, θ the parameters of the inference network and
generative model, this results in a factorized variational approximation to the full posterior:

q(x1:T , z1:T |y1:T , u1:T ) = qϕ(x1:T |y1:T , u1:T )pθ(z1:T |y1:T ,x1:T , u1:T ) (12)

A disadvantage of this approach is that the encoder must implicitly learn dynamics on x
without using the generative model. In the structured approach, the Transformer encoder
instead directly outputs an approximate posterior on z, as well as smoothing potentials ψ:

pz1:T , µ
ψ
1:T ,Σ

ψ
1:T = Transformer({Yk1:T }k=1:K , u1:T ) (13)

In this case the factorized variational approximation is:

q(x1:T , z1:T |y1:T , u1:T ) =
T∏
t=1

pθ(xt|xt−1, ut, zt, ψt)qϕ(zt, ψt|y1:T , u1:T ) (14)

The forward generative dynamics are conditioned on the discrete state z and smoothing
potentials ψ to form the posterior on x, thus directly reusing the generative model, as
in structured VAEs (Archer et al., 2015; Johnson et al., 2016; Zhao & Linderman, 2023).
While both schemes lead to good inference, We find the structured approach performs better
generative prediction on high-dimensional neural datasets. In both inference approaches, the
parameters of the generative model and inference network are learned jointly by maximizing
the evidence lower bound (ELBO):

LELBO = Eqϕ(x1:T |y1:T ,u1:T )

[
log

pθ(y1:T |x1:T )pθ(x1:T |u1:T )
qϕ(x1:T |y1:T , u1:T )

]
(15)

To avoid posterior collapse (Bowman et al., 2015), in which training produces good inference
and reconstruction but poor generative dynamics, we utilize beta upweighting and ‘over-
shooting’ (Hafner et al., 2019). Briefly, in overshooting, we evaluate the likelihood of the
latents and emissions by marginalizing over a multi-step predictive distribution:

x1
1:T = Eq(x1:T ,z1:T |y1:T ,u1:T )

[
fzx(x1:T )

]
(16)

pθ(x1:T |u1:T ) = β

T∏
τ=1

wxτ pθ(fzx(xτ−1
1:T )|u1:T ) (17)

pθ(y1:T |x1:T ) =
T∏
τ=0

wyτpθ(y1:T |xτ1:T ) (18)

Above, xτ1:T is the trajectory produced by applying dynamics fx to the inferred latents τ
times. This modified objective, similar to (Lusch et al., 2018), forces the emission distribution
to pass through multiple timesteps of the dynamics, thus coupling the generative dynamics
and emissions networks during training. It also encourages alignment of inferred latents
and generative dynamics over multiple timesteps. The resulting multi-step predictive or
‘overshooting’ ELBO can be seen as a lower bound on the standard ELBO, which is recovered
by setting T = 0 (Hafner et al., 2019). wxτ , wyτ are weights that trade off inference (τ = 0)
and short vs. long term generative predictive accuracy. Finally, β is a weighting factor,
analagous to the β-VAE (Higgins et al., 2017), annealed over training. Setting β > 1 pushes
the model to prioritize accurate dynamics over reconstruction.
4 Experiments
4.1 Multi-region switching Lotka-Volterra simulation
We first demonstrate the MR-SDS modeling approach in a multi-region simulation that
switches between two sets of latent nonlinear Lotka-Volterra (LV) dynamics. Conceptually,
our intention is to emphasize how learning switching nonlinear dynamics vector fields can
uncover interpretable changes in dynamics over time. LV dynamics are a 2d model of
interacting predator-prey populations (Lotka, 1925); LV models with regime switching have
been used to model nonstationary environments and studied in the control theory literature
(Li et al., 2009; Liu et al., 2013). These dynamics provide an example of non-stationary
oscillatory coupling, a potentially important mode of neural communication (Kohn et al.,
2020; Kastner et al., 2020; Modi et al., 2023; Khodagholy et al., 2017; Tal et al., 2020). We
model each latent dimension as a separate region, with half of observations a function of x1
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and half a function of x2. The simulation switches between two sets of LV dynamics, with
the discrete switch driven by an external input ut, representing a stimulus or upstream brain
region: p(zt+h|zt, ut+h) ∼ Cat(softmax(Rzt

ut+h)). The dynamics are:

ẋ
(1)
t = αztx

(1)
t − βztx

(1)
t x

(2)
t (19)

ẋ
(2)
t = δzt

x
(1)
t x

(2)
t − γzt

x
(2)
t (20)

Above, each parameter {α, β, δ, γ} depends on the current discrete state zt; each state corre-
sponds to a different set of dynamics. We used the values {0.67, 1.33, 1, 1}, {0.9, 1.1, 1.2, 0.8}.
Figure 2a shows dynamics for two states on both dimensions of the joint state space. ut is
an external input and has value 1 when a switch is signaled and 0 otherwise, with switch
probabilities controlled by the matrix R. (Figure 2). The model was simulated in discrete
time using the Euler approximation. To ensure stability, we simulated 75,000 steps with a
step size of 0.001 and then downsampled trials to 150 time steps. For each trial, between
1-3 discrete state switching times were sampled uniformly between 10 and 140. The model
had linear observations, a multi-region embedding network, and was fit with M = 2 discrete
states, with a global set of nonlinear dynamics in each state xt = fzt(xt−1) + ϵt, with
xt = [x(1)

t , x
(2)
t ] and ϵt ∼ N (0, Qzt). Learned dynamics under the model matched the true

dynamics, as shown by similarity in the dynamics vector fields (Figure 2B). Additionally,
generated latent states on simulated test trials closely matched the known ground truth
(Figure 2A,D). Next, we computed communication profiles. We computed the within region
dynamics as f(x(1)

t , 0.0) and across region dynamics as f(x(1)
t , x

(2)
t )−f(x(1)

t , 0.0). The profiles
are marginalized over the discrete state posteriors. The generated communication profiles
matched the true profiles (Figure 2C).
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Figure 2: Multi-region Lotka-Volterra. (A) Example trial with comparison of true latents
and latents generated by MR-SDS, mr-rSLDS, mr-LDS. Continuous latents were mapped
via a linear transformation to account for non-identifiability. (B) True dynamics fields across
two discrete states vs. dynamics fields learned by MR-SDS, mr-rSLDS. (C). Overlaid true
and generated messages between regions (corr. coef. 0.99). (D) Distribution of generated
continuous latent r2 values per trial for MR-SDS, mr-rSLDS, mr-LDS.

4.2 Multiregion evidence accumulation and reset with double-well dynamics
To further motivate the use of our model for neural data, we simulated a multiregion
system performing a decision-making task with switching nonlinear dynamics (Figure 3).
Animals performing evidence accumulation in sequential trials appear to display robust and
structured sequences of behavior, including long periods of lapses, bias and strategy switches
(Ashwood et al., 2020; Stone et al., 2020; Koay et al., 2019). Thus, our aim was to show how
intrinsic dynamics of a hierachical, multiregion, switching nonlinear model can account for
accumulation dynamics across consecutive trials in a way that produces history effects and
bias; and to show how these dynamics could be recovered and analyzed with our approach.
The simulated system was composed of two regions, an ‘accumulator’ and a ‘controller’, each
with two distinct dynamical phases: accumulation and return. The accumulation dynamics
of the accumulator were inspired by a classic model of perceptual decision making with
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bi-stable attractor dynamics (Wong & Wang, 2006). During accumulation, the accumulator
is presented with competing left and right evidence stimuli, and follows nonlinear dynamics
leading to one of two attractor wells. The controller receives input from a single dimension
of the accumulator, providing information about the progression of the accumulation process,
but not the winning side. This drives the controller to its own attractor well; when it reaches
this attractor, the return phase on both regions is triggered. During the return phase, the
controller provides feedback to the accumulator, which follows a different set of nonlinear
dynamics, returning it (roughly) to its initial condition. This final location serves as the
initial condition for the next trial. The variability in resulting initial conditions leads to
biased trial sequences, similar to those seen in animals (Ashwood et al., 2020; Stone et al.,
2020). We provide further details in the appendix. MR-SDS recovered the correct discrete
and continuous states, as well as the dynamics gradient fields for both regions and states.
As an additional check on the quality of learned dynamics, we used the dynamics model to
simulate new trajectories from the true initial condition and inputs, and found these were
similar to true and inferred trajectories.
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.
4.3 Interacting high-dimensional RNNs driven by multiple inputs
A potential concern with state-space models amongst neuroscientists is that there is no
physically instantiated low dimensional latent state in the brain — neural data comes from
a high dimensional dynamical system with low-dimensional intrinsic dynamics. Thus, our
intention in this simulation is to show that MR-SDS is able to recover important qualitative
aspects of a multiregion system with high dimensional, nonlinear dynamics, despite model
mismatch. Furthermore, we wish to show that our approach provides better interpretability
than simply using PCA to visualize the true high-dimensional dynamics of the model.
Following (Perich et al., 2020; Perich & Rajan, 2020), we simulated a multiregion system
with 3 interacting, high-D (N=1000) RNNs, with sparse connectivity structure (Figure
4). Two RNNs were driven by separate inputs: a discrete step and a smooth sequence;
the third RNN was driven solely by the other RNNs and exhibited chaotic dynamics. We
emphasize that in this simulation, there is a mismatch between the true generative model
and MR-SDS. We thus compared dynamics and latents recovered by MR-SDS to the true
dynamics and trajectories projected onto their first 2 PCs. We found MR-SDS embeds a
richer representation of the high dimensional dynamics into 2d than PCA, as well recovers
important features of the system dynamics and communication.

4.4 Application: 3 region, single-cell resolution mesoscope data
We applied our method to calcium imaging data recorded in mice performing a sensory
evidence accumulation task (Figure 4). In the task, a headfixed mouse runs on a linear track
in virtual reality while columns (‘towers’) are presented on both sides of the track (Pinto
et al., 2019). The mouse must decide on which side more towers were presented and turn
correctly to get a reward following a short memory delay section in the track. We analyzed a
single day of mesoscope calcium imaging data of 3 distal brain regions in a single hemisphere,
consisting of 178 correct trials. The regions were: AM (a visual area), retrosplenial cortex
(RSC), and M2 (a higher level motor / planning area). Preliminary results showed distinct
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trial averaged communication profiles for left and right trials, as well as strong stimuli effect
for visual area AM.

model K L D regions mesoscope widefield
mr-PCA 1 1 2/2 3/8 0.0045469 9.083e-05
mr-LDS 1 1 2/2 3/8 0.0043695 0.000133
mr-ar-LDS 1 2 3/2 3/8 0.0043951 0.0001337
mr-SLDS 2 1 2/2 3/8 0.0043723 0.0001506
mr-rSLDS 2 1 2/2 3/8 0.0043632 0.000157
mr-ar-rSLDS 2 2 3/2 3/8 0.0043988 0.0002
mr-rSLDS 2 1 5/- 3/- 0.0042142 -
mr-rSLDS 2 1 10/- 3/- 0.0040676 -
MR-SDS (biRNN) 2 - 2/2 3/8 0.0040761 7.444e-05
MR-SDS 2 - 2/2 3/8 0.0037734 7.491e-05
lds 1 1 9/24 1/1 0.0040886 0.0001144
rslds 2 1 9/24 1/1 0.0040877 0.00011744
LFADS 1 - 200/200 1/1 0.00434653 9.240e-05

Table 1: Held-out trial and neuron co-smoothing test MSE, across models on mesoscope and
widefield datasets. Top: multiregion. Bottom: single region models. K: discrete states. L:
time-lags. D: latent dimensions per region.
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receiving (rows). Decoding evidence. Left: from latents. Right: relative information about
evidence present in incoming messages compared to local dynamics. Incoming stimuli effect
in red. Note big incoming spike in M2, explaining higher decodability from latents on left
plot.

4.5 Application: 8 region, mesoscale widefield data across hemispheres
We also applied our method to wide-field calcium imaging data from the same experimental
task. 16 regions (8 bilaterally) were imaged across the cortical surface (Figure 5). We
analyzed a single day of recordings consisting of 63 correct trials. To analyze communication
between regions, we examined estimated messages under the inferred model parameters and
approximate posterior over continuous latents. To quantify the messages, we computed their
Frobenius norm at each timepoint. Figure 5d shows a ‘macro’ picture of communication
streams between all regions. Highlighted are streams with notable feedforward, feedback
and stimuli components. We draw attention to a few important features. First, profiles
showed strong feedforward drive from V1 to mV2 and PPC. Second, PPC showed strong
feedback drive back to V1 and mV2, as well as feedforward drive to upstream regions RSC
and SS. These results are potentially consistent with a hypothesized central role of PPC in
evidence accumulation, suggesting PPC may act as a hub between early visual areas and
upstream regions (Pinto et al., 2019). Notably, PPC also showed messages incoming with
high information about evidence compared to local dynamics (Figure 5c). Further analysis
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may seek to probe the timing of single trial communications, as well as their relationship to
evidence levels in the trial.
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Figure 5: Mesoscale widefield imaging data. (A) Inferred mean latent trajectories and
gradient fields for each region and 2 states; mean occupied state in blue. (B) Top: Imaging
performed over 8 regions across both hemispheres. Bottom: decoding evidence from MR-SDS
inferred latents. (C). Relative information about evidence present in incoming messages vs.
local dynamics. (D) Macro view of communication streams. Inferred message norms from
sending (columns) to receiving (rows). We highlight upstream communication from mV2
and PPC to higher order areas, and M1 receiving broad inputs from all regions.

5 Discussion

We propose a switching, nonlinear dynamics approach for modeling multi-region neural
data, comparing it with piece-wise linear models, and show that our model compares
favorably with these in simulations. We emphasize that our simulations were designed to
capture important aspects of multiregion communication, rather than performance gains
and expressivity provided by nonlinear dynamics and emissions. We therefore also included
comparisons on calcium imaging neural data, showing MR-SDS more accurately predicts held
out neurons’ activity, reflecting higher expressivity and performance benefits. A key benefit
of the model’s nonlinear dynamics and emissions is the ability to represent rich nonlinear
dynamics and account for a nonlinear emissions process. Piece-wise linear multiregion models,
by contrast, require higher latent dimensions and additional discrete switches to reach similar
expressivity; we argue this is a disadvantage because it requires use of dimensionality
reduction methods to visualize the resulting dynamics. Similarly, while RNN based models
such as LFADS are extremely powerful, they generate dynamics in a very high dimensional
space, making dynamics challenging to visualize. While our approach uses a Transformer,
which is challenging to interpret, we constrain its use to our inference network, which does
not need to be interpreted for scientific analysis, and use simple feed-forward networks to
parameterize generative dynamics in our model. An interpretational limitation of MR-SDS,
as in any switching or clustering model, is the relative advantage of lumping vs splitting, given
that switching nonlinear dynamics can also be described by a single set of nonlinear dynamics
in a transformed space. There remain important aspects of future work. In particular,
our method does not account for unobserved regions or neurons, and learned interactions
in MR-SDS are not causal. It may also be desirable to learn the number of regions, or
find clusters of neurons across regions with coherent functional dynamics. Additionally,
future work should explore alternative types of multiregion communication, and demonstrate
whether our approach succeeds or fails in each case.
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A Appendix
A.1 Interacting high-dimensional RNNs driven by multiple inputs —

additional detail

Additional: The first RNN was externally driven by a sequence input representing a sequen-
tially active neural population, and the second RNN was externally driven by a discrete step
signal, representing a population generating fixed points. The third region was driven by
both the first and second RNNs, and exhibited chaotic dynamics. The simulation in (Perich
et al., 2020) was modified to make the determinics RNN dynamics stochastic and additive
across nonlinear components.
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Figure 6: Interacting high-D RNNs driven by inputs. Placeholder fig

A.2 Hyperparameter sweeps.

model K L D regions mesoscope widefield
MR-SDS 1 - 2/2 3/8 0.00405374 8.335e-05
MR-SDS 2 - 2/2 3/8 0.00392798 8.267e-05
MR-SDS 3 - 2/2 3/8 0.00387180 -
MR-SDS 2 - 3/3 3/8 0.00390648 7.743e-05
MR-SDS 2 - 4/4 3/8 0.00387056 7.739e-05
MR-SDS 2 - 5/5 3/8 0.00389255 7.982e-05
MR-SDS 2 - -/2 -/16 - 8.304e-05

Table 2: Held-out trial and neuron 1-step generative co-smoothing test mean square error,
across hyperparameter sweeps of number of states and number of dimensions per region.
Final row includes a 16 region result for the widefield dataset. K: number of discrete states.
D: dimensions of latent dynamics used per region.

A

timestep

M2 RSC AM

M2

RSC
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k1-d2
k2-d2
k2-d3

k2-d5
k2-d4

Figure 7: We compare the mean message norms across trials for each of the model hyper
parameters on the mesoscope dataset.

All experiments and analysis were run on a 28 CPU, 8 GPU (GeForce RTX 2080 Ti) server.
A.3 Multiregion RNN simulation, additional detail.

A.4 Evaluating performance on simulation.

We note that inferred messages in MR-SDS are produced by combining inferred latents
at each timestep with a single generated step through the dynamics model. Thus, when
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Figure 8: We compare the mean square error on the co-smoothing target for LDS based
models (green) and MR-SDS (red). We compute p-values based on Gaussian fits to the other
scores, which are highly significant for both datasets

A B

Figure 9: (A) Top: network activity projected onto first two PCs. Bottom: inferred latents
using MR-SDS. (B) r2 across trials per region, on reconstruction of observations from first 2
PCs vs under model.

validating MR-SDS on simulations, we took special care to evaluate the accuracy of single-
step latent generation under the generative model, rather than inference alone. In single-step
latent generation, we first infer the latents {x̂t}1:T−1 under the inference model, and then
evaluate {f(x̂t)}1:T−1 where f is the generative dynamics.

A.5 Evaluating performance on neural datasets
To evaluate the performance of on neural data, we compared held out model predictions
for a family of related multi-region latent variable models (Table 2). These include PCA,
LDS, SLDS, and rSLDS. Importantly, these models can be seen as special cases of MR-SDS,
instantiated with less expressive components: PCA has no dynamics and linear emissions;
rSLDS has linear transitions, dynamics and emissions. We used the ‘co-smoothing’ metric
(Macke et al., 2011; Pei et al., 2021), which evaluates reconstruction loss on 25% held-out
neurons in held-out trials. Cosmoothing requires infering latents at test time based on a
subset of neurons, and predicting activity of a held out set from those latents. The latent
representation thus has to be robust to input removal, a more challenging test than simple
reconstruction. MR-SDS model better performance than comparable models on both datasets.
We additionally compared to rSDLS models with higher latent dimensionality, observing
that mr-rSLDS models required 10 latent dimensions per region (vs 3) to achieve comparable
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performance on the mesoscope dataset. Finally, we found MR-SDS was comparable with
rSLDS models fit to the entire dataset as a single region - providing a baseline for performance
without multiregion description.

A.6 Cosmoothing test time evaluation

A key question in evaluating unsupervised models of neural data is regarding the appropriate
metric to use to assess model fits. A limitation of looking only at reconstruction error on held
out data is that the model may simply learn to compress and decompress the observations,
effectively learning an identity mapping. This can be seen in the relative strength of
the PCA benchmark (more on this in MR-PCA section below) on test reconstruction
alone. An alternative suggested by (Macke et al., 2011) and adopted in the recent Neural
Latents Benchmark (Pei et al., 2021), is "co-smoothing", in which a model is evaluated on
reconstruction loss of held-out neurons on held-out trials (see Figure A1). This tests the
ability of the model to learn a latent representation of the data that is robust to removal
of inputs, and is thus a more challenging test of a model’s performance. A key result in
the benchmarks is that models that perform reasonably well on test reconstruction may
perform poorly on cosmoothing. The Neural Latents Benchmark uses a 25% neuron drop
out rate, and we apply this rate, with one modification - we evaluate all models against a
25% drop out rate per region. This ensures that results are not dominated by regions with
more neurons.

A.7 Cosmoothing multiregion dropout training

To improve model generalization and to allow it to accurately infer latent variables given
only a subset of neural responses, we trained the model on real neural data by dropping
out a subset of inputs to the inference network in each batch. In particular, we dropped
out inputs from individual neurons over time. Notably, it was important that we drop out
equivalent fractions of neurons from each brain region.
To make MR-SDS and the latent represention it learns robust to missing inputs inherent in
the co-smoothing test, we modify the training procedure as presented in algorithm 1.
There, the monte carlo samples used to evaluate the expectation are taken with respect to
the approximate posterior evaluated on the dropped inputs. We dropped out 25% of neurons
per region. We found that dropout of 50-80% of trials works well, depending on the dataset.
Empirically, datasets with higher correlation between observations, such as the widefield
dataset used in the experiments, require a lower trial dropout rate. We note that this is
similar to the ‘coordinated dropout’, or ‘speckled’ holdout strategy used by (Keshtkaran
& Pandarinath, 2019), but extended here to multiregion data, and we drop out all of the
timepoints for random neurons on each trial.
We used a dropout rate p1 = {0., 0.5} for the mesoscope and widefield datasets respectively
in the experiments presented in the paper.
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Algorithm Cosmoothing multiregion drop out training
Inputs: batch size m , region sizes {r1, ..., rR}
trial dropout rate p1, neuron dropout rate p2

for batch b = {Y l1:k}l=1:m ∈ Dtrain do
Create batch mask b̃← 1
Sample |m| = p1m trials from b̃
for region r ∈ 1 : R do

Sample |nr| = p2nr neurons for each trial l ∈ m
Set mask b̃mnr

← 0
end for
Ỹ = Y ⊙ b̃ (ie input ’dropout’)
Evaluate the elbo as: Eq(Z,X|Ỹ )[log p(Z,X, Y )] +H[Z,X]
Take training step

end for

input

co-smoothing
        test

eval input

  co-smoothing
dropout training

eval

Figure 10: Multiregion cosmoothing and multiregion cosmoothing dropout training.
Left: When cosmoothing, we drop a percent of neurons from each region on each test trial
and present this as inputs to the model; we then evaluate the reconstruction error on those
neurons alone. Right: In multiregion cosmoothing dropout training, we drop a percent of
neurons from each region on some percent of training trials, and evaluate reconstruction

error on all neurons.

dataset p1 test cosmooth
mesoscope 0.8 0.0040009 0.0040761
mesoscope 0 0.0040569 0.0045115

Table 3: Held-out test error with and without multiregion dropout training.

A.8 Training details

A.9 Double well simulation details

The simulation switches between two sets of dynamics, accumulation dynamics, and return
dynamics. The system switches from accumulating to return at fixed time following the
stimulus presentation and memory periods, mimicking the visual cue marking the end of the
maze and the beginning of the maze choice arms for the animal in the real experiment.

17



Published as a conference paper at ICLR 2024

ẋ
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The following values are used for the variables:

a(1)
accum = a

(1)
ret = 0.1 (25)

b(1) = [0, 0.5] (26)
c(1) = [0.005, 0.03] (27)

Σ(1)
accum = 0.0005I (28)

Σ(1)
ret =

[
0.035 0

0 0

]
(29)

A(2)
accum = 0.5I (30)

A
(2)
ret = 0.1I (31)

Σ(2)
accum = Σ(2)

ret = 0.055I (32)
(33)

A.10 Benchmarks

We provide details on the models used in the benchmarks presented across experiments.

A.10.1 MR-PCA

PCA is a surprisingly powerful baseline on many unsupervised machine learning tasks, e.g.
(Bojanowski et al., 2017). We include in the benchmarks a comparison to multi-region PCA
(MR-PCA), by which we mean fitting PCA to each region’s training data separately. Test
data for each region is then reconstructed by first projecting it onto the top d principal
components for that region. We note that while MR-PCA is a strong baseline for test,
it can only compress data linearly, and this performs poorly on co-smoothing on both
datasets, emphasizing the importance of this metric. Additionally, we note that MR-PCA is
a much stronger baseline on the widefield dataset, which is consistent with the low intrinsic
dimensionality of the data (see Figure A3 of cumulative variance explained for both datasets).
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Figure 11: Variance explained by PC dimension per region, for both real datasets. Intrinsic
(linear) dimensionality of the mesoscope data is higher than widefield.

A.10.2 Multiregion LDS, SLDS, and rSLDS models

Briefly, (Glaser et al., 2020) introduced a multiregion rSLDS model of the following form:

zt ∼ Cat(πt) , πt = softmax
(∑

k

Rkzt−1
xkt−1 + rkzt−1

)
(34)

xkt+1 = Azt

kkx
k
t +

∑
j ̸=k

Azt

kjx
j
t +Bzt

k ut + ϵkt , ϵkt ∼ N (0, Qzt

k ) (35)

ykt = f(Ckxkt + d) (36)

Where above A,B,R,Q,C are matrices and r, d are bias vectors. We refer to the model
above as an MR-RSLDS. Similarly, we refer to versions of this model with 1 discrete state as
an MR-LDS, and versions with no recurrence in the switching dynamics as MR-SLDS.
All LDS variant models were run in parallel on 28 CPUs using a modified version of the SSM
package [Linderman et al https://github.com/ slinderman/ssm], using variational Laplace
EM (vLEM) (Zoltowski et al., 2020) .

A.10.3 Higher-order auto-regressive, or AR(p) MR-RSLDS models

We include in the benchmarks comparison LDS and rSLDS models with higher order auto-
regressive continuous latent dynamics. These models (AR(p) MR-RSLDS) have the following
modified latent dynamics:

xkt+1 =
τ∑
i=0

[
Azt,i
kk x

k
t−i +

∑
j ̸=k

Azt,i
kj x

j
t−i +Bzt,i

k ut−i

]
+ ϵkt , ϵkt ∼ N (0, Qzt

k ) (37)

Above, τ is the order of the AR process, or the total number of lags, with i indexing the
τ lagged dynamics, communication, and inputs matrices, Azt,i

kk , Azt,i
kj , and Bzt,i

k . Similarly,
xt−i and ut−i represent the i’th lagged state and input at time t. The emissions and discrete
latent transition dynamics remain as in the single lag models.
Adding higher order autoregressive dynamics adds to the expressivity of this class of models.
While dynamics remain piecewise linear, they are no longer linear with respect to the previous
timepoint alone. We note that these models performed better than single lag models (see
results in Tables 1,A1).
In order to fit these models, we extended vLEM (Zoltowski et al., 2020) to higher order lags.
Briefly, this involved modifying the Hessian to account for higher order terms.
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A.10.4 Single region models

In the benchmarks, we include a comparison with single region LDS and rSLDS models
that have a latent dimension equal to the sum of the latent dimensions used across regions
in the multiregion models. Fitting a single region model to multiregion data results in a
meaningful loss of interpretability, because there are no per-region latents, and no estimates
of communication. However, these models in general can achieve lower test and cosmooth
errors, since they are free to use latent dimensions to explain any part of the data across
regions. As such, they give a baseline for performance on these datasets. Table 1 shows
that MR-SDS achieves lower cosmoothing test error than both single region LDS and rSLDS
models on both datasets, thus providing an increase in both performance and interpretability.
Table 2 shows that a better calibrated model improves in test error as well relative to single
region LDS and rSLDS models on mesoscope data, but not widefield data. We think this is
likely due to the higher intrinsic dimensionality of the mesoscope data (see earlier comments
on dimensionality in the MR-PCA section). x

A.11 Architecture and training details

We provide additional details on the network architecture and hyperparameters used to fit
the model for each experiment:

K R d fkk,kj fku gk gemb gbirnn grnn gµ,Σx p1 lr steps
LV 2 2 1 32x2 - L - 3;3 6 64,32 0 1e-3 2.5e3
DW 2 2 3 32x2 L L 16 3;3 6 32x2 0 1e-3 5e3
RNN 2 2 3 32x2 L L 16 3;3 6 32x2 0 1e-3 5e3
Meso 2 3 3 32x2 4x2 128x2 32x2 32;32 64 256 0.8 1e-3 15e3
Wide 2 8 2 32x2 4,2 32x3 32,16x2 32;32 64 128 0.5 2e-4 15e3

Table 4: Parameters used for each of the experiments presented in the paper. LV: Switching
Lotka-Voltera. DW: Double well. Meso: mesoscope. Wide: widefield. lr: learning rate. p2:
trial dropout rate used for cosmoothing training. I: Identity mapping. L: linear layer. d:
dimensionality of latents for each region. For Bi-RNN, semicolon (;) indicates a single layer
with two concatenated RNNs of that size, one forward and one backward.

A.12 Explicit duration

In the explicit duration case, the full generative model is:

ρm(c) = Cat(dmin, ..., dmax) (38)

υm = 1− ρm(c)∑dmax

d=c ρm(d)
(39)

ct | zt, ct−1 ∼
{
υzt−1(ct−1) if ct = ct−1 + 1
1− υzt−1(ct−1) if ct = 1 (40)

zt | xt−1, zt−1, ct ∼
{

Cat(πt) if ct = 1
δzt=zt−1 if ct > 1 (41)

In words, each state m has a learned categorical distribution ρm(c) over durations. Counts
at time t are then sampled from a normalized version of this distribution, according to the
discrete state m active at time t and denoted by zt. Conditioning on the counts allows the
discrete state to persist without sampling a new state through the transition distribution
π. The choice of hyper parameters dmin, dmax confers an inductive bias on the augmented
model, that impacts the persistence of inferred discrete states.
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Figure 12: Explicit duration results in longer state persistence.
Above Inferred discrete state for single mesoscope trial with no learned explicit duration

variabl. Bottom: Same, with explicit duration. Note the inferred discrete state persists for
longer.
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