
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEEP BAYESIAN FILTER FOR BAYES-FAITHFUL DATA
ASSIMILATION

Anonymous authors
Paper under double-blind review

ABSTRACT

State estimation for nonlinear state space models (SSMs) is a challenging task.
Existing assimilation methodologies predominantly assume Gaussian posteriors
on physical space, where true posteriors become inevitably non-Gaussian. We
propose Deep Bayesian Filtering (DBF) for data assimilation on nonlinear SSMs.
DBF constructs new latent variables ht in addition to the original physical vari-
ables zt and assimilates observations ot. By (i) constraining the state transition
on the new latent space to be linear and (ii) learning a Gaussian inverse obser-
vation operator r(ht|ot), posteriors remain Gaussian. Notably, the structured de-
sign of test distributions enables an analytical formula for the recursive compu-
tation, eliminating the accumulation of Monte Carlo sampling errors across time
steps. DBF trains the Gaussian inverse observation operators r(ht|ot) and other
latent SSM parameters (e.g., dynamics matrix) by maximizing the evidence lower
bound. Experiments demonstrate that DBF outperforms model-based approaches
and latent assimilation methods in tasks where the true posterior distribution on
physical space is significantly non-Gaussian.

1 INTRODUCTION

Data assimilation (DA) is a crucial technique across various scientific domains. Its primary objective
is to estimate the trajectory and current state of a system by integrating an imperfect model with
partially informative observations. Specifically, given a series of observations T time steps o1:T ,
the goal is to infer the posterior distribution of the system’s physical variables zt: p(zt|o1:t). DA
has been widely applied in fields such as weather forecasting (Hunt et al., 2007; Lorenc, 2003;
Andrychowicz et al., 2023), ocean research analysis (Ohishi et al., 2024), sea surface temperature
prediction (Larsen et al., 2007), seismic wave analysis (Alfonzo & Oliver, 2020), multi-sensor fusion
localization (Bach & Ghil, 2023), and visual object tracking (Awal et al., 2023).

A key challenge in DA arises from the non-Gaussian nature of the posterior distributions p(zt|o1:t),
which results from the inherent nonlinearity in both the system dynamics and observation models.
Despite this, many operational DA systems, such as those used in weather forecasting, rely on meth-
ods like the ensemble Kalman Filter (EnKF) (Evensen, 1994; Bishop et al., 2001) for sequential
state filtering (i.e., p(zt|o1:t)) and the four-dimensional variational method (4D-Var) for retrospec-
tive state analysis (i.e., p(zt|o1:T), t < T). These approaches assume Gaussianity in their test
distributions q(zt|o1:t) or q(zt|o1:T), a simplification driven by computational constraints. While
exact methods such as bootstrap Particle Filters (PF) or sequential Monte Carlo (SMC) (Chopin
& Papaspiliopoulos, 2020; Daum & Huang, 2007; Hu & van Leeuwen, 2021) could compute the
true posterior, their performance degrades significantly when the number of particles is insuffi-
cient (Beskos et al., 2014). This issue is exacerbated in high-dimensional systems, making SMC
approaches impractical for many physical problems.

To address these limitations, we propose a novel variational inference approach called Deep
Bayesian Filtering (DBF) for posterior estimation. Our strategy consists of two main components:
(i) constraining the test distribution to remain Gaussian to ensure computational tractability, and,
in cases where the original dynamics are nonlinear, (ii) leveraging a nonlinear mapping to enhance
the expressive capability of the test distribution. The DBF methodology diverges into two paths
depending on the nature of the system dynamics, whether linear Gaussian or nonlinear:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Linear dynamics When the system’s dynamics p(zt+1|zt) are linear, DBF assumes Gaussianity
in the original space, similar to traditional methods. However, DBF introduces the concept of the
inverse observation operator (IOO; see also Frerix et al. 2021) to construct Gaussian test distribu-
tions q(zt|o1:t). The IOO, along with any unknown system parameters, are trained to minimize the
Kullback-Leibler divergence between the test distribution q(zt|o1:t) and the true posterior p(zt|o1:t).
The IOO and the system parameters are trained without teacher signals zt.

Nonlinear dynamics In the more common case of nonlinear dynamics, DBF operates in a latent
space, assuming Gaussianity in the latent variables ht. The original physical variables are recovered
through a nonlinear mapping function ϕ, implemented via neural networks (NNs). This nonlinear
mapping allows for a more flexible representation of the test distribution q(zt|o1:t). The IOO and
other parameters are trained in a supervised manner (i.e., zt is used during training).

For state space models (SSMs) with nonlinear dynamics, DBF functions as a variational autoen-
coder (VAE) that adheres to the Markov property. Posterior distributions of the latent variables
ht are expressed in a Bayesian framework. This approach is closely related to dynamical VAEs
(DVAEs, Girin et al. 2021 for a review), which use VAEs to model time-series data. However, DBF
distinguishes itself by its posterior design. Unlike DVAEs, where Monte Carlo sampling is required
for inference (see Sec. 2.6.1), DBF allows for the analytical computation of the prediction step,
recursively computing posteriors through closed-form expressions.

When applied to problems with nonlinear or unknown dynamics, DBF can be interpreted as learn-
ing the Koopman operator (Koopman, 1931) using NNs. The discovery of such latent spaces and
operators through machine learning has been extensively studied (Takeishi et al., 2017; Lusch et al.,
2018; Azencot et al., 2020) and will be experimentally validated through the handling of nonlinear
filtering tasks involving chaotic dynamics.

Key contributions of the proposed DBF methodology include:

• DBF is the first VAE-based model for time-series data that maintains a posterior structure
faithful to the Markov property in SSMs.

• For linear dynamics, DBF extends the Kalman Filter (KF) with a more flexible observation
update. A simple object-tracking experiment is presented in Sec. 3.1. Additional experi-
ments in Sec. B demonstrates that DBF can infer unknown system parameters via training.

• For nonlinear dynamics, DBF constructs a new latent space for data assimilation, allowing
for the analytical integration of time steps and preventing the accumulation of Monte Carlo
sampling errors. This is accomplished through the application of Koopman operator theory,
which ensures that the model’s representational power is maintained, as long as the latent
space is sufficiently high-dimensional (see Sec. 3.2 and 3.3).

• As a generative model, DBF estimates the uncertainty of the physical variables zt, in con-
trast to 3D- and 4D-Var, which yield only point estimates (see Sec. 3.2 and Fig. 3).

• The linear constraint on dynamics stabilizes the training process, which is known to be
unstable in standard recurrent NNs (see Sec. 3.3 and Fig. 6).

DBF has demonstrated superior performance over classical DA algorithms and latent assimilation
methods in scenarios with highly non-Gaussian posteriors, particularly in the presence of strongly
nonlinear observation operators or large observation noise.

2 METHOD

2.1 INFERENCE OF PHYSICAL VARIABLES IN A STATE-SPACE MODEL

A physical system is defined by variables zt, with its evolution described by the dynamics model
p(zt+1|zt) = N (zt+1; f(zt), Q), where N (x|µ,Σ) denotes a Gaussian whose mean and covari-
ance are µ and Σ. The nonlinear function f is the dynamics operator and Q is the system
covariance. The Markov property holds, as zt+1 depends only on zt. An observation model
p(ot|zt) = N (ot;h(zt), R) relates observations to physical variables via the observation opera-
tor h and covariance R. The panel (a) of Fig. 1 shows the system’s graphical model. The objective
of sequential DA is to compute the posterior of zt given o1:t.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ot 1 ot ot + 1

zt 1 zt zt + 1

(a)

ot 1 ot ot + 1

ht 1 ht ht + 1

zt 1 zt zt + 1

(b)

ot 1 ot ot + 1

ht 1 ht ht + 1

zt 1 zt zt + 1

A, Q A, Q

, R , R , R

r(h
t|o

t)

r(h
t+

1|o
t+

1)

(c)

Figure 1: Panel (a) shows the graphical model for the simplest SSM. If the dynamics of the orig-
inal SSM is linear, DBF assimilates on that space. Panel (b) shows the graphical model for the
SSM assumed for SSM with nonlinear dynamics. Panel (c) shows the inference structure of our
methodology for SSM with nonlinear dynamics.

2.2 KF FOR LINEAR DYNAMICS, LINEAR OBSERVATIONS

In the KF, the dynamics and observation models are both linear Gaussian. Given that the dynam-
ics and observation operators f, h are linear, we can represent them using matrices A and C, re-
spectively. All matrices (A,C,Q, and R) are constant. The filter distribution p(zt|o1:t) remains
Gaussian, provided that the initial distribution p(z1) is Gaussian. We can recursively compute the
posterior parameters (means µt and covariance matrices Σt) using the following equations:

µt = Σt(AΣt−1A
T +Q)−1Aµt−1 +Kt(ot −HAµt−1), (1)

Σ−1
t = (AΣt−1A

T +Q)−1 +HR−1HT , (2)

where Kt = (AΣt−1A
T +Q)HT (H(AΣt−1A

T +Q)HT +R−1)−1 is the Kalman Gain.

2.3 DBF FOR LINEAR DYNAMICS, NONLINEAR OBSERVATIONS

In this scenario, Gaussianity of the test distribution is lost during the KF update step. We introduce
an inverse observation operator (IOO) r(zt|ot) (see also Frerix et al. 2021):

p(zt|o1:t) =
p(ot|zt)p(zt|o1:t−1)

p(ot|o1:t−1)
∝ r(zt|ot)

ρ(zt)
p(zt|o1:t−1), (3)

where r(zt|ot) = p(ot|zt)ρ(zt)∫
p(ot|zt)ρ(zt)dzt and ρ(zt) is a prior virtually introduced for the IOO. By ap-

proximating both the IOO and the virtual prior as Gaussians, r(zt|ot) = N (fθ(ot), Gθ(ot)) and
ρ(zt) = N (m,V), respectively, the posterior q(zt|o1:t) can be analytically computed as a Gaussian,
where the mean µt and covariance Σt are given as:

µt = Σt(AΣt−1A
T +Q)−1Aµt−1 +Gθ(ot)

−1fθ(ot)− V −1m, (4)

Σ−1
t = (AΣt−1A

T +Q)−1 +Gθ(ot)
−1 − V −1, (5)

where fθ(ot) and Gθ(ot) are NNs with parameters θ, and m and V are constants set to m = 0
and V = 108I . These values bias the NNs’ outputs without affecting performance. The initial
distribution q(z1) is taken to be a Gaussian with µ1 = 0 and Σ1 = 100I .

The recursive formula for the exact posterior (Equation 3) requires no approximation. Thus, DBF
computes the exact posterior when the true IOO rtrue(ht|ot) is Gaussian, i.e., the SSM is a Linear-
Gaussian State Space (LGSS). In that case, the posterior update formula agrees with the KF (see
Equations 1, 2 and 4, 5). The key difference is that nonlinear functions are applied to both the mean,
fθ(ot), and the covariance, Gθ(ot). In the KF, fθ(ot) is linear, and Gθ(ot) is a constant matrix
(see Equations 1 and 2). Gθ(ot)’s dependence on observations allows flexible adjustment of the
new observation’s impact on state estimation. The importance of adjusting the internal state updates
based on observations has also been discussed in recent SSM-based approaches (Gu & Dao, 2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.4 DBF FOR NONLINEAR DYNAMICS, LINEAR/NONLINEAR OBSERVATIONS

In this scenario, the Gaussianity of the test distribution is lost during the predict step, making it
impossible to apply the original dynamics over the physical variables zt. Therefore, we introduce a
new set of latent variables ht and assume a dynamics model over ht: p(ht+1|ht) = N (ht+1|Aht, Q)
(see panel (b) in Fig. 1). The IOO maps observations into the latent variables ht: r(ht|ot). The
recursive formula follows Equations 4 and 5. To retrieve the distribution of the original physical
variables zt, we introduce an emission model p(zt|ht) = N (zt;ϕ(ht), R), where ϕ is represented
by a NN. By marginalizing over ht with this emission model, a trained DBF can generate samples
of zt that follow the test distribution q(zt|o1:t) given observations o1:t.

Although the dynamics operator A for the latent variables ht is linear, it can express any nonlinear
dynamics if the latent space is sufficiently high-dimensional. The Koopman operator (Koopman,
1931) provides a framework for representing nonlinear systems by mapping observables—functions
of the system’s state—into a higher-dimensional space where the dynamics are linear. For a system
zt+1 = f(zt), the Koopman operator K is a linear operator acting on a set of observables g(z), such
that Kg(zt) = g(f(zt)). This reformulates the system as ht+1 = Aht in the latent space, where A
is the dynamics matrix learned by DBF. While the physical dynamics f(z) are nonlinear, the Koop-
man operator ensures the existence of an embedding that linearizes the dynamics, enabling recursive
computation of test distributions. Discovering such embeddings in finite dimensions has been widely
studied (Takeishi et al., 2017; Lusch et al., 2018; Azencot et al., 2020). In high-dimensional simula-
tions, the true degrees of freedom are often far fewer than the simulated variables, making surrogate
modeling with the Koopman operator a promising approach to reducing computational costs.

2.5 TRAINING

When assimilating in the physical space (i.e., when the dynamics are linear), we train the IOO (i.e.,
fθ and Gθ) by optimizing the evidence lower bound (ELBO) without using the teacher signal zt:

log p(o1:T) =

T∑
t=1

log p(ot|o1:t−1) ≥ −LELBO,

LELBO = −
T∑

t=1

∫
q(ht|o1:t) log p(ot|ht)dht +KL[q(ht|o1:t)||q(ht|o1:t−1)], (6)

where KL[p||q] denotes the Kullback-Leibler divergence between distributions p and q (see Sec. A.1
in the appendix for the derivation). Here, q(h1|o1:0) = q(h1) is the initial distribution. If the SSM
contains any unknown parameters, we can train these parameters as well.

For SSMs with nonlinear or unknown dynamics, we have two approaches:

Strategy 1 Pretrain the Koopman operator, which consists of the nonlinear mapping from zt to
ht, the linear dynamics between ht and ht+1 represented by matrix A, and the reverse nonlinear
mapping from ht to zt denoted by ϕ. With these components (A and ϕ) of the Koopman operator,
the method designed for linear dynamics can be applied. For pretraining, we require samples of zt or
the SSM for the physical variables to generate these samples. Pairs of zt and ot are not necessary, as
the training for the linear dynamics (A and ϕ) and the IOO (r(ht|ot)) can be performed separately.

Strategy 2 Train all components (the matrix A, the stochastic mapping p(zt|ht) =
N (zt;ϕ(ht),diag[σ

2]), and the IOO) simultaneously. In this case, samples of (zt, ot) pairs or the
SSM for both physical and observation variables to generate these sample pairs are required during
training. Note that the physical variables zt are not required for inference, ensuring that real-time
applications are not hindered by the need for zt during training. The parameters are optimized by
maximizing a joint ELBO, LELBO,joint, via supervised training:

log p(o1:T , z1:T) =

T∑
t=1

log p(ot, zt|o1:t−1, z1:t−1) ≥ −LELBO,joint,

LELBO,joint = −
∑
t

∫
q(ht|o1:t) log p(zt|ht)dht +KL[q(ht|o1:t)||q(ht|o1:t−1)]. (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(See Sec. A.2 in the appendix for the derivation). We have replaced q(ht|o1:t, z1:t) with its special
case q(ht|o1:t) as our objective is to give the best estimate of zt given observations o1:t.

2.6 RELATED WORKS

2.6.1 DYNAMICAL VARIATIONAL AUTOENCODERS

DVAEs (see Girin et al. 2021 for a review) are a broad class of models incorporating time-series
architectures into VAEs, with DBF as a specialized subcategory. Key differences include (i) the
posterior design and realization of the dynamics step, and (ii) the loss function.

posterior design Our strategy for the test distribution is to incorporate an appropriate architecture
that reflects the Markov property in the time dimension of the test distribution. The IOO, r(ht|ot),
and the linear dynamics model serve as key instruments in constructing the test posterior distribu-
tions. A distinguishing feature of our methodology is that each component’s role is defined with
respect to the Markov property of the state-space model (SSM) and is clearly differentiated from
other components involved in posterior construction. For example, the IOO influences only the up-
date step and does not affect the prediction step. We refer to this methodology as ”Bayes-Faithful”
due to its tailored design for SSMs that exhibit the Markov property.

In contrast, the test posterior distributions in DVAEs are constructed using RNNs. The complexity
of the transition model prevents the analytical computation of latent variables across time steps. As
a result, these values can only be estimated via Monte Carlo sampling. Consequently, during infer-
ence, successive Monte Carlo sampling (“cascade trick”; Girin et al. 2021) becomes unavoidable.

loss function DBF takes the ELBO from factorized density log p(ot|o1:t−1) in log p(o1:T) =∑
t log p(ot|o1:t−1):

log p(o1:T) ≥
T∑

t=1

(Eq(ht|o1:t)[log p(ot|ht)]−KL[q(ht|o1:t)|q(ht|o1:t−1)]). (8)

On the other hand, DVAEs take the ELBO from probability density with all the observations at once.

log p(o1:T) ≥ Eq(h1:T |o1:T)[log p(h1:T , o1:T)− log q(h1:T |o1:T)]. (9)

Therefore, DBF seeks for the filtered distributions q(ht|o1:t) whereas DVAEs model the smoother
distributions q(ht|o1:T). Again, for DVAEs, to evaluate the expected values in Equation 9, we need
to undergo successive Monte-Carlo sampling over T variables (h1:T) (see also Sec. A.3).

Assuming linear Gaussian dynamics and a Gaussian IOO, DBF allows for the analytical integration
of q(ht|o1:t−1), resulting in a structured encoder. This structured posterior enables the recursive
computation of the filtered distribution q(ht|o1:t) without relying on Monte Carlo sampling, setting
it apart from other DVAEs. By constraining the dynamics to be linear, DBF ensures exact integration
without the accumulation of Monte Carlo sampling errors across time steps.

Moreover, the linear assumption helps DBF mitigate the instability issues commonly faced when
training standard RNNs. The linearity of the latent dynamics is also assumed in normalizing Kalman
Filter (de Bézenac et al., 2020) and Kalman variational auto-encoder (Fraccaro et al., 2017). SSMs
are increasingly favored for modeling long-range dependencies (Gu & Dao, 2023). S4 (Gu et al.,
2022) learns linear dynamics in the latent space, proposing an efficient computation algorithm that
outperforms transformers on datasets with long-range dependencies. LS4 (Zhou et al., 2023) extends
S4 by introducing stochasticity through a VAE-like structure. Both LS4 and DBF employ linear
SSMs and Gaussian posterior approximations, but DBF updates the mean and covariance using a
recursive formula based on Bayes’ rule, while the construction of posteriors in LS4 is not recursive.

2.6.2 KF-BASED METHODS

Various approaches have been explored to address LGSS limitations, including linearizing the model
via first-order approximations like the extended Kalman Filter (EKF), approximating populations
with a Gaussian distribution in the ensemble Kalman Filter (EnKF; Evensen 1994), and using NNs
to approximate the Kalman gain (Revach et al., 2022). EKFNet (Xu & Niu, 2024) assumes EKF for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the construction of test distribution and train the SSM parameters. Auto-EnKF (Chen et al., 2022;
2023) leverages EnKF and train the model by optimizing ELBO. The EnKF and its variants (e.g.,
ETKF; Bishop et al. 2001) are commonly used in real-time data assimilation for weather forecasting.
However, these methods rely on the KF’s posterior update equations, limiting the expressivity of
the distributions. Additionally, computations for covariance matrices become challenging in high-
dimensional spaces, requiring specialized techniques for computational efficiency.

2.6.3 SAMPLING-BASED METHODS

The Particle Filter is a popular method for assimilating any posterior. However, achieving adequate
particle density in high-dimensional state spaces poses significant challenges. Insufficient density of
particles leads to particle degeneracy, where few particles explain the observed data (Beskos et al.,
2014). In contrast, DBF directly learns to position density through the IOO, offering advantages for
high-dimensional tasks. The Particle Flow Filter (PFF; Daum & Huang 2007; Hu & van Leeuwen
2021) addresses particle degeneracy by moving particles according to gradient flow and effectively
scales to nonlinear SSMs with hidden state dimensions up to 1000 (Hu & van Leeuwen, 2021).

2.6.4 APPROXIMATE MAP ESTIMATION METHOD

MAP estimation is used to identify the high-density point of the posterior in high-dimensional space,
such as in weather forecasting (Lorenc, 2003; Frerix et al., 2021). Even if the computation of the
posterior p(ht|o1:t) is intractable, we can optimize log p(ht|o1:t) = log p(ot|ht)+log p(ht|o1:t−1) if
we can describe p(ot|ht) and p(ht|o1:t−1) =

∫
p(ht|ht−1)p(ht−1|o1:t−1)dht−1 explicitly. In prac-

tice, we cannot access p(ht−1|o1:t−1) and therefore the integral
∫
p(ht|ht−1)p(ht−1|o1:t−1)dht−1,

so we only compute the mean. The downside is that sequential computation of the covariance matrix
of p(ht|o1:t−1) is impossible.

2.6.5 NN-BASED PDE SURROGATE

Recently, there have been attempts to approximate partial differential equations (PDEs) using NNs.
In this study, we experimented with one of the latest methods, PDE-refiner (Lippe et al., 2023), but
its performance was poor and was excluded from the experiments. We suspect this is because PDE-
refiner, designed for constructing PDE surrogates, does not handle noisy observations well, making
it sensitive to noise. However, we confirmed that it performs well under noiseless conditions.

3 EXPERIMENTS

We evaluate the performance of DBF on three tasks: a linear dynamics problem (object tracking)
and two nonlinear dynamics problems (double pendulum and Lorenz96). An additional experiment
on linear dynamics (moving MNIST) is presented in Sec. B of the appendix.

Linear dynamics: object tracking Linear dynamics are applicable in real-world object tracking
tasks involving objects with continuous motion, either stationary or nearly uniform linear. An object
tracker can be easily constructed by replacing the IOO with an object detector that performs inde-
pendent detection for each frame. DBF adaptively weights the detected object positions based on
the confidence in the current detector’s estimates, significantly enhancing tracking robustness. The
results are compared against those of the KF.

Nonlinear dynamics: double pendulum and Lorenz96 For nonlinear dynamics problems, such
as the double pendulum and Lorenz96, DBF constructs a new latent space in addition to the original
physical space. Here, we took Strategy 2 in Sec.2.5 for the training: we simultaneously train NNs
for the IOO, nonlinear observation operator ϕ, the dynamics matrix A, and the emission model’s
standard deviation. We compare the performance of DBF with the classical DA algorithms (EnKF,
ETKF, PF), state-of-the-art assimilation methodologies (PFF Daum & Huang 2007; Hu & van
Leeuwen 2021, KalmanNet Revach et al. 2022), and DVAE-based approaches (deep Kalman Fil-
ter; DKF, Krishnan et al. 2015; 2016, variational recurrent neural network; VRNN, Chung et al.
2015, and stochastic recurrent neural network; SRNN, Fraccaro et al. 2016). DBF and other DVAEs
are trained by optimizing the evidence lower bound (ELBO), as described in Sec. 2.5.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

For nonlinear dynamics experiments, we generate random initial conditions and evolve them using
the dynamics. Synthetic observations are produced by applying the observation operator with addi-
tive noise. Noise levels, observation operators, and further details are given in Sec. C, C.1, C.2, and
C.3. Sec. C also provides computationally efficient parametrization of the latent dynamics matrix.

3.1 LINEAR DYNAMICS: OBJECT TRACKING

In a single-object tracking problem, a detector identifies a bounding box for the object in each
frame, and these boxes are then connected across frames. When the object is not fully visible or
is obscured, the detector often fails to accurately determine its position. In such scenarios, the KF
aids by predicting and assimilating the object’s true position. However, a key limitation of the KF
is its reliance on a fixed observation model throughout the tracking process. While low-confidence
observations can provide valuable approximate position information, they may also mislead the
tracker with inaccurate data, potentially degrading overall tracking performance.

We demonstrate that DBF can enhance tracking stability without requiring additional training. Dur-
ing the computation of the posterior p(zt|o1:t) from p(zt|o1:t−1), the importance of the observation
ot is regulated via Gθ(ot). This allows the observational confidence to be effectively incorporated
into the posterior estimation. We evaluate the tracking performance using the “airplane” category
from the LaSOT dataset (Fan et al., 2019; 2021).

We use the first 1,000 frames from 20 videos for evaluation. The first 10 videos serve as a validation
set for determining filter parameters (see Sec. C.1), while the performance is assessed using videos
11–20. Each set of 1,000 frames is divided into 20 subsets of 50 frames. Filters are initialized at the
ground truth coordinates of the bounding box in the first frame, after which each filter is responsible
for tracking the bounding box throughout the subset. We employ the YOLOv8n model (Jocher
et al., 2023) as the object detector. The detector outputs the bounding box position, X , along with
a confidence score, c. A detection threshold of 0.01 is applied. When multiple bounding boxes are
detected, the one with the highest posterior probability is selected.

The bounding box coordinates are used as fθ(ot) = X . We experiment with linear confidence
Gθ(ot) ∝ c and squared confidence Gθ(ot) ∝ c2 and find that the squared confidence Gθ(ot) ∝ c2

perform better. For further settings, see Sec. C.1.

Figure 2 presents the results. The left panel provides an illustrative example comparing the two
tracking algorithms. The KF tracker is visibly influenced by false detections, being pulled toward a
coordinate value of approximately 150 during frames 15–17. In contrast, the DBF tracker maintains
stable predictions under the same conditions. The middle and the right panels offer a quantitative
comparison of KF and DBF in terms of intersection over union (IoU). Both filters perform well
in estimating bounding box positions in frames without detections. However, DBF demonstrates
a significant performance advantage in frames with low-confidence (c < 0.1) detections. This
improvement can be attributed to DBF’s flexibility, allowing it to adaptively decide whether to trust
low-confidence observations or disregard them.

0 5 10 15 20 25 30
frame

0
50

100
150
200
250
300

pi
xe

l v
al

ue

Ground Truth
KF
DBF 0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
nf

id
en

ce
 sc

or
e

High Low Missed0.0
0.2
0.4
0.6
0.8
1.0
1.2

fraction of frames with IoU>0.1
DBF
KF
default

High Low Missed0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Io
U

Mean IoU
DBF
KF
default

Figure 2: Left panel: x coordinate of bounding box center estimated with KF and DBF. Colored dots
show the coordinates of the bounding box reported by the YOLO model. The red band (frames 18
– 20) shows frames where the detection network reports no bounding boxes. Middle panel: fraction
of frames with IoU > 0.1 for each tracker. Detections with a confidence score greater than 0.1 are
categorized as “High”, those below 0.1 as “Low”, and those below 0.01 as “Missed”. Right panel:
mean IoU for the three categories. The performance gain of DBF from KF is considerable in frames
with low-confidence detections.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.2 NONLINEAR DYNAMICS 1: DOUBLE PENDULUM

O

B1

B2
P1

P2

1

2

1 = 1
2 = 2

(a)

0 10 20 30 40 50 60 70
steps

0.0

0.2

0.4

0.6

0.8

1.0

RM
SE

(b)
DBF
EnKF
ETKF
PF
VRNN
SRNN
DKF

KLsym=0.01

(c)
KLsym=0.36

(d)

σ = 0.1 KLsym

DBF 0.02
EnKF 10.2
ETKF 0.12

Figure 3: A schematic figure (panel a) and results for double pendulum experiments. Panel (b) shows
the RMSE of angle velocities (averaged over ω1 and ω2) over time steps. Panels (c) and (d) show
example histograms for normalized errors in DBF and ETKF samples compared against the unit
Gaussian N (x;µ = 0, σ2 = 1). The small table compares the Jeffreys divergence of normalized
errors and the unit Gaussian between DBF, EnKF, and ETKF predictions.

Table 1: RMSE at the final ten steps of assimilation in double pendulum experiments.
σ = 0.1 σ = 0.3 σ = 0.5

θ ω θ ω θ ω
DBF 0.03 ± 0.01 0.21 ± 0.04 0.05 ± 0.02 0.26 ± 0.05 0.06 ± 0.01 0.36 ± 0.04
EnKF 0.05± 0.00 0.33± 0.07 0.14± 0.01 0.71± 0.09 0.24± 0.01 1.17± 0.22
ETKF 0.05± 0.01 0.46± 0.08 0.22± 0.05 1.41± 0.41 0.36± 0.08 2.70± 1.25

PF 0.05± 0.00 0.63± 0.24 0.21± 0.14 1.41± 1.30 0.32± 0.08 2.36± 2.29
PFF 1.27± 0.29 1.04± 0.15 NA 5.99± 1.09 5.88± 0.67 NA
KNet NA NA NA NA NA NA

VRNN 0.04± 0.01 0.44± 0.19 0.06± 0.02 0.35± 0.14 0.08± 0.04 0.40± 0.16
SRNN 0.05± 0.02 0.52± 0.18 0.06± 0.02 0.44± 0.08 0.08± 0.03 0.52± 0.22
DKF 0.12± 0.02 2.70± 0.28 0.17± 0.03 2.61± 0.74 0.23± 0.04 2.61± 0.56

This section presents our experiments with a double pendulum system, selected for its nonlinear and
chaotic behavior. The pendulum consists of two 1 kg masses, P1 and P2, connected by two 1 meter
bars, B1 and B2. One end of the bar B1 is fixed at the origin (“O”), with the other end attached to
P1. Mass P2 is connected to P1 via bar B2. A schematic of the setup is shown in panel (a) of Fig. 3.

We use the angles θ1 and θ2, and the two angular velocities, ω1 and ω2, as target physical variables.
The latent dimension for DBF, VRNN, SRNN, and DKF is set to 50. For the choice of the latent
dimensions, refer to Sec. E.1. Observation data consists of the two-dimensional spatial positions of
masses P1 and P2, corrupted by Gaussian noise. The observation operator combines trigonometric
functions for θ1 and θ2 which are highly nonlinear. Experiments are conducted with noise levels of
σ = 0.1, 0.3, and 0.5 [m], with a time step of 0.03 [s] between observations. In the emission model
p(zt|ht), we assume von Mises distributions for θ1 and θ2, while ω1 and ω2 follow Gaussians.

Table 1 presents the RMSE between the physical variables and the mean of the filtered distribution.
For both the angles θ and angle velocities ω, we compute the averages of the two variables across
two pendulums. Training for KalmanNet was unsuccessful under all conditions. For the DVAEs,
we exclude failed initial conditions (2/15 for VRNN and DKF, and 3/15 for SRNN) when calcu-
lating the RMSE. DBF outperforms both model-based and latent assimilation methods across all
settings, showing significant improvements in estimating ω, which cannot be inferred from a single
observation. Fig. 3 (b) illustrates an example of RMSE evolution during assimilation, where DBF
consistently outperforms the other methods. The assimilation of ω occurs within the first ∼ 20 steps,
maintaining an excellent estimation accuracy throughout the experiment.

A key feature of DBF is its ability to generate samples of zt and assess the uncertainty in state
estimates. To evaluate this capability, we analyze the distributions of normalized errors defined as
ϵnorm,t,i = (zt,sample,i − zt,i)/δi, where zt,i represents the true value of dimension i at time t,
and δi is the standard deviation of zt,sample,i. We collect ϵnorm,t,i across all time steps, focusing

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

on i = ω1 and i = ω2, since θ1 and θ2 follow von Mises distributions. If the uncertainty esti-
mates are accurate, ϵnorm,t,i should approximate a Gaussian distribution with a standard deviation
of one. To quantify the accuracy, we compute the symmetric KL divergence (Jeffreys divergence)
KLsym[p, q] = (KL[p||q] +KL[q||p])/2 between the histogram of ϵnorm,t,i and a unit Gaussian.
DBF exhibits very low KLsym values, indicating accurate error estimation. Panels (c) and (d) dis-
play example histograms of ϵnorm,t,i for DBF and ETKF.

3.3 NONLINEAR DYNAMICS 2: LORENZ96

observation dim.

tim
e

Figure 4: A Hovmöller dia-
gram for one of data in the
test set. The observation op-
erator is nonlinear, ot,j =
min(z4t,j , 10) + ϵ.

In the final experiment, we focus on state estimation in the
Lorenz96 model (Lorenz, 1995), a benchmark for testing data
assimilation algorithms on noisy, nonlinear observations. The
Lorenz96 model describes the evolution of a one-dimensional ar-
ray of variables, each representing a physical quantity over a spatial
domain, like an equilatitude circle. The dynamics are governed by
the following coupled ordinary differential equations:

dzi
dt

= (zi+1 − zi−2)zi−1 − zi + F, i = 1, . . . , N, (10)

where zi is the value at grid i, N is the number of grid points, and F
is external forcing. For our experiments, we take (F,N) = (8, 40).

We consider two observation operators. The first adds Gaussian
noise to direct observations: ot,j = zt,j + ϵ, with noise lev-
els σ = 1, 3, 5. The second uses a nonlinear operator: ot,j =
min(z4t,j , 10)+ϵ, with the same noise levels. The dynamic range of
zt,j is around ±10, and observations are capped at 10 when zt,j
exceeds 1.8. This makes it highly challenging for classical DA
methods, as each observation offers limited information. The filter must integrate data over long
timesteps, where nonlinear dynamics distort the probability distribution. Fig. 4 illustrates observa-
tions and target values. All models use 80 observation steps with a 0.03 time interval. The latent
dimension for DBF, VRNN, SRNN, and DKF is set to 800 (for the choice of the latent dimension in
DBF, see Sec. E.2). For further details for the experiment, see Sec. C.3.

Table 2: RMSE at the final ten steps of assimilation in Lorenz96 experiments.
direct observation nonlinear observation

σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5
DBF 0.53± 0.04 0.82 ± 0.03 1.16 ± 0.07 1.08± 0.15 1.29 ± 0.18 1.65 ± 0.17
EnKF 0.31± 0.01 0.83± 0.10 1.73± 0.12 4.69± 0.14 3.93± 0.08 3.81± 0.07
ETKF 0.30 ± 0.01 1.06± 0.15 2.42± 0.11 4.57± 0.25 4.28± 0.04 4.23± 0.07

PF 2.80± 0.04 3.12± 0.06 3.62± 0.13 6.05± 0.16 4.95± 0.12 4.58± 0.14
PFF 0.60± 0.02 1.00± 0.05 2.20± 0.09 3.75± 0.09 3.85± 0.04 3.83± 0.11
KNet 0.60± 0.02 1.81± 0.05 3.02± 0.09 2.97± 0.21 3.47± 0.17 3.99± 0.25

VRNN 3.67± 0.06 3.67± 0.06 3.67± 0.06 3.69± 0.04 2.51± 0.79 3.67± 0.06
SRNN 3.08± 0.56 3.63± 0.05 3.40± 0.29 3.30± 0.81 3.62± 0.41 2.96± 0.32
DKF 3.70 NA NA NA NA NA

Table 2 presents the assimilation performance across different noise levels and observation settings.
DBF outperforms existing methods in direct observations with σ = 3, 5, and across all noise levels
for nonlinear observation cases. In the σ = 1 setting with direct observation, traditional algorithms
like EnKF and ETKF outperform DBF.

The superior performance of EnKF and ETKF with direct observations at the lowest noise level
can be attributed to the minimal non-Gaussianity in the posteriors within physical space. Non-
Gaussianity can originate from both the dynamics model (predict step) and the observation model
(update step). In this setting, the linearity of the observation operator prevents non-Gaussianity from
being introduced during the update step, provided that the prior q(zt|o1:t−1) is Gaussian. Addition-
ally, state estimation from each observation is highly accurate due to small noise. As a result, the
prior q(zt|o1:t−1) remains close to a Gaussian distribution, as the locally linear approximation of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60 70
steps

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

RM
SE

(a)
DBF
DKF
VRNN
SRNN
KNet
PF
EnKF
ETKF
PFF

0 10 20 30 40 50 60 70
steps

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

RM
SE

(b)
DBF
DKF
VRNN
SRNN
KNet
PF
EnKF
ETKF
PFF

0 10 20 30 40 50 60 70
steps

0
1
2
3
4
5
6
7

RM
SE

(c)
DBF
DKF
VRNN
SRNN
KNet
PF
EnKF
ETKF
PFF

Figure 5: RMSE results for Lorenz96 experiments. Panels (a), (b) show results for direct observation
with σ = 1 and σ = 5. Panel (c) shows results for nonlinear observation with σ = 1.

the dynamics adequately captures the time evolution of probability distributions. The poorer perfor-
mance of EnKF and ETKF in the σ = 5 experiment is attributed to the increased non-Gaussianity
introduced during each predict step. Similarly, when the observation operator is nonlinear, each up-
date step introduces substantial non-Gaussianity. This results in a significant drop in performance for
traditional filtering methods across all noise levels. In these scenarios, DBF consistently maintains
an advantage over classical DA algorithms.

0.8 0.9 1.0 1.1
abs(eigenvalue)

setting max[abs(eig)]
D, σ = 1 1.016± 0.002
D, σ = 3 1.014± 0.002
D, σ = 5 1.011± 0.001
N, σ = 1 1.012± 0.003
N, σ = 3 1.008± 0.004
N, σ = 5 1.004± 0.001

Figure 6: Histogram of 800 eigenvalues of
the dynamics matrix in Lorenz96. D for di-
rect and N for nonlinear observations.

We observe that training DVAE-based methods is
highly unstable, while that for DBF exhibits stability.
Dynamics in DVAEs are modeled by RNNs, which
often suffer from unstable training due to exploding
or vanishing gradients. In contrast, DBF employs
matrix multiplication for dynamics. If the eigenval-
ues of the matrix exceed one by a large margin, the
model predictions, and consequently the loss func-
tion, would explode irrespective of inputs. Fig. 6
shows the histogram of the absolute values of eigen-
values at the end of training, which are distributed
around or below one, indicating stable training.

4 LIMITATION

DBF’s learning of IOO requires a training phase, unlike classical model-based data assimilation
methods. Specifically, when dealing with nonlinear dynamics, DBF requires either: (i) a pair of
(zt, ot) generated from the original SSM, (ii) a pair of (zt, ot) obtained via, e.g., retrospective re-
analysis (ERA5; Hersbach et al. 2020 in weather forecasting), or (iii) a pretrained Koopman operator
and observed data ot.

In the Lorenz96 experiment, DBF’s performance with direct observation with σ = 1 falls short
compared to EnKF and ETKF. In this setting, the non-Gaussianity of posteriors is weak, resulting in
minor approximation errors due to Gaussian assumptions. Consequently, a model-based approach
may be more advantageous in such situations, as it leverages complete SSM knowledge without
introducing training biases.

5 CONCLUSION

We propose DBF, a novel DA method. DBF is a NN-based extension of the KF designed to handle
nonlinear observations. While constraining the test distributions to remain Gaussian, DBF enhances
their representational capacity by leveraging nonlinear transform expressed by a NN. DBF is the first
“Bayes-Faithful” amortized variational inference methodology, constructing test distributions that
mirror the inference structure of a SSM with the Markov property. This structured inference enables
analytical computation of test distributions, preventing the accumulation of Monte Carlo sampling
errors over time steps. DBF exhibits superior performance over existing methods in scenarios where
posterior distributions become highly non-Gaussian, such as in the presence of nonlinear observation
operators or significant observation noise.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility Statement We have provided the source code to reproduce the experiments for
double pendulum (Sec. 3.2) and the Lorenz96 (Sec. 3.3) in the supplementary material. The hy-
perparameters for the training are provided in Table 3 in the appendix. Generation method of the
training and test dataset, the dynamics model, the observation model, and the architectures are de-
tailed in the appendix: Sec. C.1, C.2, and C.3.

REFERENCES

Miguel Alfonzo and Dean S. Oliver. Seismic data assimilation with an imperfect model. Computa-
tional Geosciences, 24(2):889–905, 2020. Marine Environmental Monitoring and Prediction.

Marcin Andrychowicz, Lasse Espeholt, Di Li, Samier Merchant, Alexander Merose, Fred Zyda,
Shreya Agrawal, and Nal Kalchbrenner. Deep learning for day forecasts from sparse obser-
vations. ArXiv, abs/2306.06079, 2023. URL https://api.semanticscholar.org/
CorpusID:259129311.

Md Abdul Awal, Md Abu Rumman Refat, Feroza Naznin, and Md Zahidul Islam. A particle
filter based visual object tracking: A systematic review of current trends and research chal-
lenges. International Journal of Advanced Computer Science and Applications, 14(11), 2023.
doi: 10.14569/IJACSA.2023.01411131. URL http://dx.doi.org/10.14569/IJACSA.
2023.01411131.

Omri Azencot, N. Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Forecasting sequen-
tial data using consistent koopman autoencoders. In Hal Daumé III and Aarti Singh (eds.),
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 475–485. PMLR, 13–18 Jul 2020. URL https:
//proceedings.mlr.press/v119/azencot20a.html.

Eviatar Bach and Michael Ghil. A multi-model ensemble kalman filter for data assimilation and
forecasting. Journal of Advances in Modeling Earth Systems, 15(1):e2022MS003123, 2023.
doi: https://doi.org/10.1029/2022MS003123. URL https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1029/2022MS003123. e2022MS003123 2022MS003123.

Alexandros Beskos, Dan Crisan, and Ajay Jasra. On the stability of sequential Monte Carlo methods
in high dimensions. The Annals of Applied Probability, 24(4):1396 – 1445, 2014. doi: 10.1214/
13-AAP951. URL https://doi.org/10.1214/13-AAP951.

Craig H. Bishop, Brian J. Etherton, and Sharanya J. Majumdar. Adaptive Sampling with the Ensem-
ble Transform Kalman Filter. Part I: Theoretical Aspects. Mon. Wea. Rev., 129(3):420–436, March
2001. ISSN 0027-0644, 1520-0493. doi: 10.1175/1520-0493(2001)129⟨0420:ASWTET⟩2.0.
CO;2. URL http://journals.ametsoc.org/doi/10.1175/1520-0493(2001)
129<0420:ASWTET>2.0.CO;2.

Yuming Chen, Daniel Sanz-Alonso, and Rebecca Willett. Autodifferentiable ensemble kalman
filters. SIAM Journal on Mathematics of Data Science, 4(2):801–833, 2022. doi: 10.1137/
21M1434477. URL https://doi.org/10.1137/21M1434477.

Yuming Chen, Daniel Sanz-Alonso, and Rebecca Willett. Reduced-order autodifferentiable ensem-
ble kalman filters. Inverse Problems, 39(12), 10 2023. doi: 10.1088/1361-6420/acff14.

Nicolas Chopin and Omiros Papaspiliopoulos. An introduction to Sequential Monte Carlo. Springer
series in statistics. Springer, 2020. URL https://ci.nii.ac.jp/ncid/BC03234800.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and
Yoshua Bengio. A Recurrent Latent Variable Model for Sequential Data. In Ad-
vances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
hash/b618c3210e934362ac261db280128c22-Abstract.html.

Fred Daum and Jim Huang. Nonlinear filters with log-homotopy. In Oliver E. Drummond and
Richard D. Teichgraeber (eds.), Signal and Data Processing of Small Targets 2007, volume 6699,
pp. 669918. International Society for Optics and Photonics, SPIE, 2007. doi: 10.1117/12.725684.
URL https://doi.org/10.1117/12.725684.

11

https://api.semanticscholar.org/CorpusID:259129311
https://api.semanticscholar.org/CorpusID:259129311
http://dx.doi.org/10.14569/IJACSA.2023.01411131
http://dx.doi.org/10.14569/IJACSA.2023.01411131
https://proceedings.mlr.press/v119/azencot20a.html
https://proceedings.mlr.press/v119/azencot20a.html
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003123
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003123
https://doi.org/10.1214/13-AAP951
http://journals.ametsoc.org/doi/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
https://doi.org/10.1137/21M1434477
https://ci.nii.ac.jp/ncid/BC03234800
https://proceedings.neurips.cc/paper_files/paper/2015/hash/b618c3210e934362ac261db280128c22-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2015/hash/b618c3210e934362ac261db280128c22-Abstract.html
https://doi.org/10.1117/12.725684

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Emmanuel de Bézenac, Syama Sundar Rangapuram, Konstantinos Benidis, Michael Bohlke-
Schneider, Richard Kurle, Lorenzo Stella, Hilaf Hasson, Patrick Gallinari, and Tim
Januschowski. Normalizing kalman filters for multivariate time series analysis. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 2995–3007. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1f47cef5e38c952f94c5d61726027439-Paper.pdf.

Geir Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model us-
ing Monte Carlo methods to forecast error statistics. Journal of Geophysical Research:
Oceans, 99(C5):10143–10162, 1994. ISSN 2156-2202. doi: 10.1029/94JC00572. URL
https://onlinelibrary.wiley.com/doi/abs/10.1029/94JC00572. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/94JC00572.

Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin Bai, Yong Xu, Chunyuan
Liao, and Haibin Ling. Lasot: A high-quality benchmark for large-scale single object tracking,
2019.

Heng Fan, Hexin Bai, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Harshit, Mingzhen
Huang, Juehuan Liu, Yong Xu, Chunyuan Liao, Lin Yuan, and Haibin Ling. Lasot: A high-
quality large-scale single object tracking benchmark. Int. J. Comput. Vision, 129(2):439–461, feb
2021. ISSN 0920-5691. doi: 10.1007/s11263-020-01387-y. URL https://doi.org/10.
1007/s11263-020-01387-y.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential neural models
with stochastic layers. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, pp. 2207–2215, Red Hook, NY, USA, 2016. Curran Associates Inc.
ISBN 978-1-5108-3881-9.

Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A disentangled recog-
nition and nonlinear dynamics model for unsupervised learning. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/7b7a53e239400a13bd6be6c91c4f6c4e-Paper.pdf.

Thomas Frerix, Dmitrii Kochkov, Jamie Smith, Daniel Cremers, Michael Brenner, and Stephan
Hoyer. Variational Data Assimilation with a Learned Inverse Observation Operator. In Proceed-
ings of the 38th International Conference on Machine Learning, pp. 3449–3458. PMLR, July
2021. URL https://proceedings.mlr.press/v139/frerix21a.html. ISSN:
2640-3498.

Laurent Girin, Simon Leglaive, Xiaoyu Bie, Julien Diard, Thomas Hueber, and Xavier Alameda-
Pineda. Dynamical variational autoencoders: A comprehensive review. Foundations and Trends®
in Machine Learning, 15(1-2):1–175, 2021. ISSN 1935-8237. doi: 10.1561/2200000089. URL
http://dx.doi.org/10.1561/2200000089.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFoz1vlAC.

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquı́n Muñoz-
Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, Adrian Simmons, Cor-
nel Soci, Saleh Abdalla, Xavier Abellan, Gianpaolo Balsamo, Peter Bechtold, Gionata Biavati,
Jean Bidlot, Massimo Bonavita, Giovanna De Chiara, Per Dahlgren, Dick Dee, Michail Dia-
mantakis, Rossana Dragani, Johannes Flemming, Richard Forbes, Manuel Fuentes, Alan Geer,
Leo Haimberger, Sean Healy, Robin J. Hogan, Elı́as Hólm, Marta Janisková, Sarah Keeley,
Patrick Laloyaux, Philippe Lopez, Cristina Lupu, Gabor Radnoti, Patricia de Rosnay, Iryna

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/1f47cef5e38c952f94c5d61726027439-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f47cef5e38c952f94c5d61726027439-Paper.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029/94JC00572
https://doi.org/10.1007/s11263-020-01387-y
https://doi.org/10.1007/s11263-020-01387-y
https://proceedings.neurips.cc/paper_files/paper/2017/file/7b7a53e239400a13bd6be6c91c4f6c4e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/7b7a53e239400a13bd6be6c91c4f6c4e-Paper.pdf
https://proceedings.mlr.press/v139/frerix21a.html
http://dx.doi.org/10.1561/2200000089
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rozum, Freja Vamborg, Sebastien Villaume, and Jean-Noël Thépaut. The era5 global reanal-
ysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049, 2020. doi:
https://doi.org/10.1002/qj.3803. URL https://rmets.onlinelibrary.wiley.com/
doi/abs/10.1002/qj.3803.

Chih-Chi Hu and Peter Jan van Leeuwen. A particle flow filter for high-dimensional system appli-
cations. Quarterly Journal of the Royal Meteorological Society, 147(737):2352–2374, 2021. doi:
https://doi.org/10.1002/qj.4028. URL https://rmets.onlinelibrary.wiley.com/
doi/abs/10.1002/qj.4028.

Brian R. Hunt, Eric J. Kostelich, and Istvan Szunyogh. Efficient data assimilation for spatiotemporal
chaos: A local ensemble transform kalman filter. Physica D: Nonlinear Phenomena, 230(1):112–
126, 2007. ISSN 0167-2789. doi: https://doi.org/10.1016/j.physd.2006.11.008. URL https://
www.sciencedirect.com/science/article/pii/S0167278906004647. Data
Assimilation.

Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics YOLO, January 2023. URL https:
//github.com/ultralytics/ultralytics.

B. O. Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the
National Academy of Sciences, 17(5):315–318, 1931. doi: 10.1073/pnas.17.5.315. URL https:
//www.pnas.org/doi/abs/10.1073/pnas.17.5.315.

Rahul G. Krishnan, Uri Shalit, and David Sontag. Deep kalman filters, 2015. URL https://
arxiv.org/abs/1511.05121.

Rahul G. Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear state
space models, 2016. URL https://arxiv.org/abs/1609.09869.

J. Larsen, J.L. Høyer, and J. She. Validation of a hybrid optimal interpolation and kalman filter
scheme for sea surface temperature assimilation. Journal of Marine Systems, 65(1):122–133,
2007. ISSN 0924-7963. doi: https://doi.org/10.1016/j.jmarsys.2005.09.013. URL https:
//www.sciencedirect.com/science/article/pii/S0924796306002880. Ma-
rine Environmental Monitoring and Prediction.

Phillip Lippe, Bastiaan S. Veeling, Paris Perdikaris, Richard E Turner, and Johannes Brandstet-
ter. PDE-Refiner: Achieving Accurate Long Rollouts with Temporal Neural PDE Solvers. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=Qv6468llWS.

Andrew C. Lorenc. Modelling of error covariances by 4d-var data assimilation. Quarterly Journal of
the Royal Meteorological Society, 129(595):3167–3182, 2003. doi: https://doi.org/10.1256/qj.02.
131. URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.
02.131.

E.N. Lorenz. Predictability: a problem partly solved. PhD thesis, Shinfield Park, Reading, 1995
1995.

Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for universal linear em-
beddings of nonlinear dynamics. Nature Communications, 9:4950, November 2018. doi:
10.1038/s41467-018-07210-0.

Matthias Müller, Adel Bibi, Silvio Giancola, Salman Alsubaihi, and Bernard Ghanem. Track-
ingnet: A large-scale dataset and benchmark for object tracking in the wild. In Computer
Vision – ECCV 2018: 15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part I, pp. 310–327, Berlin, Heidelberg, 2018. Springer-Verlag. ISBN 978-3-
030-01245-8. doi: 10.1007/978-3-030-01246-5 19. URL https://doi.org/10.1007/
978-3-030-01246-5_19.

Shun Ohishi, Takemasa Miyoshi, Takafusa Ando, Tomohiko Higashiuwatoko, Eri Yoshizawa, Hi-
roshi Murakami, and Misako Kachi. Letkf-based ocean research analysis (lora) version 1.0.
Geoscience Data Journal, n/a(n/a), 2024. doi: https://doi.org/10.1002/gdj3.271. URL https:
//rmets.onlinelibrary.wiley.com/doi/abs/10.1002/gdj3.271.

13

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4028
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4028
https://www.sciencedirect.com/science/article/pii/S0167278906004647
https://www.sciencedirect.com/science/article/pii/S0167278906004647
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://www.pnas.org/doi/abs/10.1073/pnas.17.5.315
https://www.pnas.org/doi/abs/10.1073/pnas.17.5.315
https://arxiv.org/abs/1511.05121
https://arxiv.org/abs/1511.05121
https://arxiv.org/abs/1609.09869
https://www.sciencedirect.com/science/article/pii/S0924796306002880
https://www.sciencedirect.com/science/article/pii/S0924796306002880
https://openreview.net/forum?id=Qv6468llWS
https://openreview.net/forum?id=Qv6468llWS
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.02.131
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.02.131
https://doi.org/10.1007/978-3-030-01246-5_19
https://doi.org/10.1007/978-3-030-01246-5_19
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/gdj3.271
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/gdj3.271

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Guy Revach, Nir Shlezinger, Xiaoyong Ni, Adrià López Escoriza, Ruud J. G. van Sloun, and Yon-
ina C. Eldar. Kalmannet: Neural network aided kalman filtering for partially known dynamics.
IEEE Transactions on Signal Processing, 70:1532–1547, 2022. doi: 10.1109/TSP.2022.3158588.

Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koopman invari-
ant subspaces for dynamic mode decomposition. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3a835d3215755c435ef4fe9965a3f2a0-Paper.pdf.

Liang Xu and Ruixin Niu. Ekfnet: Learning system noise covariance parameters for nonlinear
tracking. IEEE Transactions on Signal Processing, 72:3139–3152, 2024. doi: 10.1109/TSP.2024.
3417350.

Linqi Zhou, Michael Poli, Winnie Xu, Stefano Massaroli, and Stefano Ermon. Deep latent state
space models for time-series generation. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Confer-
ence on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 42625–42643. PMLR, 2023. URL
https://proceedings.mlr.press/v202/zhou23i.html.

A DERIVATION OF THE EVIDENCE LOWER-BOUND AND THE ASSOCIATED
MONTE-CARLO SAMPLING

A.1 LINEAR DYNAMICS CASE

Following the definition of the probability density,

p(ot, ht|o1:t−1) = p(ot|o1:t−1)p(ht|o1:t) (11)

14

https://proceedings.neurips.cc/paper_files/paper/2017/file/3a835d3215755c435ef4fe9965a3f2a0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3a835d3215755c435ef4fe9965a3f2a0-Paper.pdf
https://proceedings.mlr.press/v202/zhou23i.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Using Eq. 11 at the third equality,

log p(o1:T) =

T∑
t=1

log p(ot|o1:t−1)

=

T∑
t=1

∫
q(ht|o1:t) log p(ot|o1:t−1)dht

=

T∑
t=1

∫
q(ht|o1:t) log

p(ot, ht|o1:t−1)

p(ht|o1:t)
dht

=

T∑
t=1

∫
q(ht|o1:t) log

[
p(ot, ht|o1:t−1)

q(ht|o1:t)
q(ht|o1:t)
p(ht|o1:t)

]
dht

=

T∑
t=1

∫
q(ht|o1:t) log

[
p(ot, ht|o1:t−1)

q(ht|o1:t)

]
dht +KL[q(ht|o1:t)||p(ht|o1:t)]

=

T∑
t=1

LELBO,t +KL[q(ht|o1:t)||p(ht|o1:t)]

≥
T∑

t=1

LELBO,t (12)

LELBO,t =

∫
q(ht|o1:t) log

[
p(ot, ht|o1:t−1)

q(ht|o1:t)

]
dht

=

∫
q(ht|o1:t) log

[
p(ht|o1:t−1)p(ot|ht)

q(ht|o1:t)

]
dht

=

∫
q(ht|o1:t) log p(ot|ht)dht +

∫
q(ht|o1:t)

p(ht|o1:t−1)

q(ht|o1:t)
dht

=

∫
q(ht|o1:t) log p(ot|ht)dht −KL[q(ht|o1:t)|p(ht|o1:t−1)] (13)

The true prior at step t (p(ht|o1:t−1)) on the right hand side of Eq. 13 could be replaced with the
prior computed from the test distribution q(ht|o1:t−1) when training.

A.2 NONLINEAR DYNAMICS CASE

p(ot, zt, ht|o1:t−1, z1:t−1) = p(ot, zt|o1:t−1, z1:t−1)p(ht|o1:t, z1:t) (14)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The derivation proceeds parallel to the linear case. Using Eq. 14 at the third equality,

log p(o1:T , z1:T) =

T∑
t=1

log p(ot, zt|o1:t−1, z1:t−1)

=

T∑
t=1

∫
q(ht|o1:t) log p(ot, zt|o1:t−1, z1:t−1)dht

=

T∑
t=1

∫
q(ht|o1:t) log

p(ot, zt, ht|o1:t−1, z1:t−1)

p(ht|o1:t, z1:t)
dht

=

T∑
t=1

∫
q(ht|o1:t) log

[
p(ot, zt, ht|o1:t−1, z1:t−1)

q(ht|o1:t)
q(ht|o1:t)

p(ht|o1:t, z1:t)

]
dht

=

T∑
t=1

∫
q(ht|o1:t) log

[
p(ot, zt, ht|o1:t−1, z1:t−1)

q(ht|o1:t)

]
dht +KL[q(ht|o1:t)||p(ht|o1:t, z1:t)]

=

T∑
t=1

LELBO,joint,t +KL[q(ht|o1:t)||p(ht|o1:t, z1:t)]

≥
T∑

t=1

LELBO,joint,t (15)

LELBO,joint,t =

∫
q(ht|o1:t) log

[
p(ot, zt, ht|o1:t−1, z1:t−1)

q(ht|o1:t)

]
dht

=

∫
q(ht|o1:t) log

[
p(ht|o1:t−1, z1:t−1)p(ot, zt|ht)

q(ht|o1:t)

]
dht

=

∫
q(ht|o1:t)[log p(zt|ht) + log p(ot|zt)]dht +

∫
q(ht|o1:t)

p(ht|o1:t−1, z1:t−1)

q(ht|o1:t)
dht

=

∫
q(ht|o1:t) log p(zt|ht)dht −KL[q(ht|o1:t)|p(ht|o1:t−1, z1:t−1)] + log p(ot|zt) (16)

The true prior at step t (p(ht|o1:t−1, z1:t−1)) on the right hand side of Eq. 16 could be replaced
with the prior computed from the test distribution q(ht|o1:t−1) when training. The last term of the
equation (log p(ot|zt)) can be neglected as it does not affect the new latent variables ht.

A.3 COMPARISON TO OTHER DVAES IN TERMS OF MONTE-CARLO SAMPLING

The crucial difference from other DVAEs is that the Monte-Carlo samplings in DBF
are not nested with each other. In DVAE, we need to evaluate an integral term∫
q(h1:T |o1:T) log p(o1:T , h1:T)dh1:T , where q(h1:T |o1:T) =

∏
t q(ht|ht−1, ot). Although the log-

term could be factorized as
∑

t log p(ot|ht) + log p(ht|ht−1) thanks to the Markov property, we
need MC (nested) sequential sampling over h1:T if we want to evaluate the term at t = T . On the
other hand, ELBO in DBF is

∑
t

∫
q(ht|o1:t) log p(zt|ht)dht+KL[q(ht|o1:t)|q(ht|o1:t−1)] because

DBF takes the lower limit of
∑

t log p(ot|o1:t−1). Thanks to the analytic expressions of q(ht|o1:t)
and q(ht|o1:t−1), the KL term can be computed analytically. A MC sampling is needed to compute∫
q(ht|o1:t) log p(zt|ht)dht but this is independent from other timesteps.

B ADDITIONAL LINEAR DYNAMICS EXPERIMENT: TWO-BODY MOVING
MNIST

This experiment demonstrates DBF’s ability to handle linear dynamics where key parameters of the
observation operator are unknown. The dataset consists of 2D figures containing two embedded
images, each moving at a constant speed and bouncing off frame edges. The system’s physical state

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

is described by eight variables: the positions (x, y) and velocities (vx, vy) of the two embedded
images. The dynamics matrix is block-diagonal, composed of four (two-body times two dimensions)

translation matrices, Atr: Atr =

(
1 1
0 1

)
, zt =

(
xt

vxt

)
. Observations are corrupted by additive

Gaussian noise with a standard deviation of σ = 50 per pixel, where the original pixel values range
from 0 to 255 (see panel (a) of Fig. 7 for an example of the data provided).

The aim is to show that DBF can track the linear dynamics while estimating unknown system pa-
rameters. DBF learns the pixel values of the embedded images from noisy observations, while
maintaining consistency with physical motion. The observation model contains 1,568 unknown pa-
rameters, corresponding to the number of pixels in the images. In classical DA algorithms, it is not
possible to train unknown system parameters. However, it may be possible to infer these parameters
by incorporating them as new physical dimensions. We have adopted this strategy for classical DA
algorithms (EnKF, ETKF, and PF). For these, we tested at three different model noise levels (σsys

of 1, 0.1, and 0.01) and chosen the best parameter. While DVAE generates latent variables, they are
different from the state variables of the original SSM: therefore, they cannot infer the position or
velocity from those images. We were unable to compare with KalmanNet as the high observation
dimensions of x2

dim = (44× 44)2 inhibits the training even with the batch size of one.

Fig. 7 summarizes the experiment. Panel (a) shows an example from the test set, illustrating the
challenges posed by strong noise and overlapping images. Panel (b) presents the DBF learning pro-
cess. In the rightmost table, we compare the success rates of DBF against model-based approaches
(EnKF, ETKF, PF). We define success as achieving a root-mean-square error (RMSE) of less than
1.0 for both position (x1, y1, x2, y2) and velocity (vx1

, vy1
, vx2

, vy2
) of the two digits over the fi-

nal ten steps. DBF successfully performs assimilation without explicit knowledge of the images,
while all the other model-based approaches fail. The KF-inspired approaches (EnKF, ETKF) failed
because of very strong non-Gaussianity in the observation process and the high system dimension.
Similarly, PF underperformed because the number of particles (10,000) was insufficient for the prob-
lem dimension (zdim = 8 and two digits images 2 × 28 × 28 = 1,568). Figures for visualizing the
assimilation results for all the algorithms are given in the appendix (Fig. 13).

Panel (b) of Fig. 7 illustrates the evolution of the estimated figures. Initially, DBF assumes two
random shapes. “Iterations” in panel (b) means the number of parameter update steps the DBF
has undergone. As training progresses, it first identifies one of the numbers (“9”) and subsequently
detects the second shape (“5”). By the end of the training process, DBF nearly perfectly estimates
the parameters of the observation model, including the positions of the figures, which is crucial for
adjusting their reflective behavior.

t=0 t=4 t=8

t=12 t=16 t=19

(a)
iter 0 iter 300 iter 1000 final

(b)
Method Success rate

DBF 100% (50/50)
EnKF 0% (0/50)
ETKF 0% (0/50)

PF 0% (0/50)

Figure 7: Figures from the two-body Moving MNIST experiments. Panel (a) displays examples of
the observation data. Panel (b) illustrates the evolution of the observation model parameters (the
embedded images) during training. The table compares the success rates of four methodologies.

C SETTINGS AND ADDITIONAL RESULTS FOR EXPERIMENTS

parametrization of the dynamics matrix We have parametrized the dynamics matrix A follow-
ing Lusch et al. (2018): we consider that hdim/2 complex eigenvalues λi(0 ≤ i < hdim/2) char-
acterize A. Namely, A is a block-diagonal matrix of hdim/2 blocks. Each block consists of 2 × 2
matrix, whose components are:

Ablock = exp(ρi)

(
cos(ωi) − sin(ωi)
sin(ωi) cos(ωi)

)
, (17)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where ρi = Re[λi] and ωi = Im[λi]. In contrast to Lusch et al. (2018), we apply the same dynam-
ics matrix at any positions on the latent space. We consider that this representation is sufficiently
expressive, as it can express any matrix on a complex number field that is diagonalizable.

One key advantage of DBF is that augmenting the latent dimension only results in a linear increase in
computational demand. This scaling is due to the efficient parametrization of the dynamics matrix,
where the block-diagonal structure allows operations to scale linearly with the latent dimension.
In contrast, methods such as Sequential Monte Carlo (SMC) suffer from exponential increases in
computational demand as the latent space grows, assuming that the same density of particles must
be maintained to capture posterior distributions. This makes DBF particularly well-suited for high-
dimensional systems where traditional methods struggle with computational complexity.

Computational resources We conduct experiments on a cluster of V100 GPUs. Each GPU has
memory of 32GB.

hyperparameters for training For all experiments, we have used Adam optimizer with default
parameters. Table 3 shows hyperparameters employed in our experiments. Trainings for moving
MNIST and double pendulum are conducted with one GPU, while that for Lorenz96 is with eight
GPUs.

Table 3: Hyperparameters for training

lr batch size hdim Ndata,train Epochs train time per model
object tracking - - 8 - - -

double pendulum 10−3 256 50 1.0× 107 1 6hr× 1GPU
Lorenz96 3× 10−3 64 800 2.6× 107 1 15hr× 8GPUs

moving MNIST 10−3 64 8 480,000 2 3hr× 1GPU

C.1 OBJECT TRACKING

Dataset: “Airplane” movies in the LaSOT dataset (Fan et al., 2019; 2021). It contains 20 movies.
Each movie has at least 1,000 frames. We chop the first 1,000 frames into 20 sets of 50 frames.
Airplanes numbered one to ten are considered a validation set used to determine the model hyper-
parameters. We use the remaining data (airplane-11 to airplane-20) as a test set to evaluate the
performance of the filters.

Dynamics model: Constant velocity model. The (x, y) coordinates and (vx, vy) velocities of the
top left and bottom right edges are the latent (physical) variables.

ht+1 = Fht (18)

F =

1 0 0 0 dt 0 0 0
0 1 0 0 0 dt 0 0
0 0 1 0 0 0 dt 0
0 0 0 1 0 0 0 dt
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

, ht =

x1,t

y1,t
x2,t

y2,t
vx1,t

vy1,t

vx2,t

vy2,t

. (19)

Here, x1,t and y1,t stand for the coordinates of the left top edge of the bounding box, and x2,t and
y2,t are the right bottom edge of the box. vx1,t

, vy1,t
, vx2,t

, vy2,t
are velocities of box edges. dt is

the time difference between frames, which we take as 1 (arbitrary).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Network architecture: We use a pre-trained detector YOLOv8n model (Jocher et al., 2023). The
detector yields the bounding box’s position, X , and the box’s confidence score, c. We set the de-
tection threshold at 0.01. In cases where the detector reports multiple bounding boxes, we choose
the one with the highest posterior probability. We use the bounding box coordinates as fθ(ot) = X .
Several choices for the relation between confidence score and Gθ(ot) are possible.

We experiment with linear confidence Gθ(ot) ∝ c and squared confidence Gθ(ot) ∝ c2. We
determine the system noise factor for either dependence with the validation set. We use normalized
precision as the evaluation metric (Müller et al., 2018). Figure 8 shows the normalized precision
score for the validation set for the system noise factor. The system noise factor of 10−1 is chosen
for KF. For DBF, squared confidence with the system noise factor of 10−2 is employed.

10 4 10 3 10 2 10 1 100 101

system noise factor

0.78

0.79

0.80

0.81

0.82

0.83

0.84

Pr
ec

isi
on

validation set

default
KF
DBF
DBF, squared

Figure 8: Normalized precision scores for validation samples.

C.2 DOUBLE PENDULUM

Dataset: The dataset consists of 2D coordinates representing the positions of two weights. The
training set includes 10, 240, 000 initial conditions, while the test set contains 10 initial conditions.
The number of training samples is sufficiently large to ensure that the training converges. During
DVAE training, we observed that some initial conditions resulted in training failure due to instability;
however, we maintained the total number of training samples since the training was successful for at
least one initial condition. Both datasets comprise 80 time steps. Numerical integration is performed
using the solve ivp function in SciPy, with relative tolerance (rtol) set to 10−2 and absolute
tolerance (atol) set to 10−2.

A schematic figure explaining the problem setting is presented in panel (a) of Fig. 3 in the main text.

Dynamics model is described in https://matplotlib.org/stable/gallery/animation/double pendulum.html.
The length of the bars is 1 [m], and the positions of the two pendulum weights are observable with
Gaussian noise of σ = 0.1, 0.3, or 0.5 [m]. The observation interval is 0.03 [s]. The task is to
predict the positions of the two weights in the successive ten frames.

Network architecture: fθ: A sequence of ten “linear blocks” composed of fully connected layers,
layer normalizations, and skip connections. Namely, each linear block has three components:

• fc: (input dimension)× (output dimension) linear layer,
• norm: layer normalization,
• skip: skip connection.

Taking four observation variables as input, the first linear block expands the dimensionality to 100.
The intermediate linear blocks maintain these 100-dimensional variables. The final linear block re-
duces the 100-dimensional input to a 50-dimensional output, representing 50 latent space variables.
The ReLU activation function is applied throughout the network. The structure of Gθ mirrors that

19

https://matplotlib.org/stable/gallery/animation/double_pendulum.html

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: List of hyperparameters for double pendulum experiment.

parameter value
Rinit diag[1]
Q diag[e−6]

initial concentration parameter e5

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6 PF

target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6 PF

target

0 10 20 30 40 50 60 70 80
step

4
2
0
2
4
6
8 PF

target

0 10 20 30 40 50 60 70 80
step

10
8
6
4
2
0
2
4

PF
target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6 PF

target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6

PF
target

0 10 20 30 40 50 60 70 80
step

7.5
5.0
2.5
0.0
2.5
5.0
7.5 PF

target

0 10 20 30 40 50 60 70 80
step

10

5

0

5 PF
target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6 PF

target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6

PF
target

0 10 20 30 40 50 60 70 80
step

4
3
2
1
0
1
2
3 PF

target

0 10 20 30 40 50 60 70 80
step

4

2

0

2

4 PF
target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6

PF
target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6

PF
target

0 10 20 30 40 50 60 70 80
step

3
2
1
0
1
2
3
4
5

PF
target

0 10 20 30 40 50 60 70 80
step

6
4
2
0
2
4 PF

target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6 PF

target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6 PF

target

0 10 20 30 40 50 60 70 80
step

8

6

4

2

0

PF
target

0 10 20 30 40 50 60 70 80
step

8

6

4

2

0

2
PF
target

Figure 9: PF results with 100,000 paticles for five example data in test set. Two left columns show
evolution of θ1 and θ2 (rad) (, therefore, the values are cyclic with the period of 2π ≃ 6.3, and we
corrected for those periodic shifts) and the two right columns show ω1 and ω2 (rad/s).

of fθ, while ϕθ serves as the inverse of fθ. The initial eigenvalues are randomly sampled from the
range between e0 and e0.01.

Training: All training variables (network weights for the IOO (fθ, Gθ), the emission model op-
erator ϕ, eigenvalues λ for the dynamics matrix A, Gaussian noise parameter σ for angular velocity
ω, and the concentration parameter for Von Mises distribution used for angular coordinate θ) are
trained together.

Examples: Here, we show examples for assimilated θ and ω in Fig. 10. Also, we give an additional
figure for the RMSE of θ for various methods.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6 DBF

target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6 DBF

target

0 10 20 30 40 50 60 70 80
step

4
2
0
2
4
6
8 DBF

target

0 10 20 30 40 50 60 70 80
step

10
8
6
4
2
0
2
4

DBF
target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6 DBF

target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6

DBF
target

0 10 20 30 40 50 60 70 80
step

7.5
5.0
2.5
0.0
2.5
5.0
7.5 DBF

target

0 10 20 30 40 50 60 70 80
step

10

5

0

5 DBF
target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6 DBF

target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6

DBF
target

0 10 20 30 40 50 60 70 80
step

3
2
1
0
1
2
3 DBF

target

0 10 20 30 40 50 60 70 80
step

4

2

0

2

4 DBF
target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6

DBF
target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6

DBF
target

0 10 20 30 40 50 60 70 80
step

2
1
0
1
2
3
4 DBF

target

0 10 20 30 40 50 60 70 80
step

6
4
2
0
2
4 DBF

target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6 DBF

target

0 10 20 30 40 50 60 70 80
step

0
1
2
3
4
5
6 DBF

target

0 10 20 30 40 50 60 70 80
step

8

6

4

2

0

DBF
target

0 10 20 30 40 50 60 70 80
step

8

6

4

2

0
DBF
target

Figure 10: Same as Fig. 9 but for DBF with the latent dimension of 20.

0 10 20 30 40 50 60 70
steps

0.0

0.1

0.2

0.3

RM
SE

DBF
EnKF
ETKF
PF
VRNN
SRNN
DKF

Figure 11: Assimilation results for the angle variable θ. All models successfully determine the angle
coordinate in spite of the strong nonlinearity in the observation (trigonometric function). Among
these, performance of DBF is the best.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 5: List of hyperparameters for Lorenz96 experiment.

parameter value
Rinit diag[1]
Q diag[e−8]

C.3 LORENZ96

Dataset: The dataset consists of physical and observed variables sampled at 40 grid points. The
training set includes 25,600,000 initial conditions, while the test set contains 10 initial conditions.
The number of training samples is sufficiently large to ensure that the training converges in most
cases. The original datasets comprise 80 time steps. Numerical integration is performed using the
solve ivp function in SciPy, with a relative tolerance rtol = 10−2 and an absolute tolerance of
atol = 10−2. Gaussian noise with standard deviations of σ = 1, 3, or 5 is added to all measure-
ments.

For KalmanNet, we attempted to train with 25,600,000 and 400,000 initial conditions; however, the
process was terminated due to memory limitations. Consequently, we report results using a dataset
size of 120,000. For DKF, VRNN, and SRNN, we also tried training with 25,600,000 conditions,
but all models encountered a RuntimeError due to instability during the backward computation. To
obtain results, we reduced the number of training samples to 512,000. With this adjustment, both
SRNN and VRNN successfully completed the training procedure for some initial conditions.

A physical quantity zj is defined at each grid point j(1 ≤ j ≤ 40). The time evolution of this
quantity is described by the following set of differential equations:

dz(t)j
dt

= (zj+1 − zj−2)zj−1 − zj + F, (1 ≤ j ≤ 40) (20)

In this equation, the driving term F is set to 8. The first term models the advection of the physical
quantity, while the second term represents its diffusion along a fixed latitude. With these parameters,
the evolution of the physical quantity exhibits chaotic behavior.

Network architecture: The NN fθ consists of ten convolutional blocks followed by a fully con-
nected layer. Each convolutional block comprises a 1D convolution, layer normalization, and a skip
connection:

• conv1d: nn.Conv1d(cin, cout, kernel size=5, padding=2, padding mode=“circular”,)
• norm: layer normalization,
• skip: skip connection.

The first convolutional block has cin = 1 and cout = 20, expanding the input by a factor of 20 in
the channel dimension. The subsequent eight layers maintain 20 channels. Finally, the 20 channels
and 40 physical dimensions are flattened into 800-dimensional variables, which are then fed into a
fully connected layer of size 800 × 800. For all layers, the activation function used is ReLU. The
function Gθ is structured identically to fθ, while ϕθ represents the inverse of fθ.

Training: All training variables, including the network weights for the inverse observation opera-
tor fθ and Gθ, the emission model operator ϕ, the eigenvalues λ for the dynamics matrix A, and the
Gaussian noise parameter σ, are trained concurrently.

Examples: We show an example figure for assimilation experiment with DBF in Fig. 12.

C.4 MOVING MNIST (ADDITIONAL LINEAR EXPERIMENT)

Dataset: The dataset consists of a series of 2D images, where each pixel has a dynamic range from
0 to 255. The training set contains 480,000 initial conditions, while the test set consists of ten initial

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

observation dim.

tim
e

estimate

Figure 12: An example of assimilation output in the experiment with nonlinear observation operator.
The observation is not very informative due to low threshold for saturation in the observation oper-
ator (ot,j = min(z4t,j , 10) + ϵ,, all cells with zt,j > 1.8 are just observed as 10 + ϵ). In the first 20
steps, the model output resembles little with the target. However, as the step proceeds, the estimated
state begins to capture features of the true state. Even with such a poor observation operator, DBF
finds a latent space representation that captures the evolution of the true state.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

conditions, with both datasets comprising 20 time steps each. The number of training samples and
epochs is sufficiently large to ensure that the training converges effectively. A Gaussian noise with a
standard deviation of σ = 50 is added to all pixels. The MNIST images of the digits “9” (data point
5740) and “5” (data point 5742) move at constant speeds until they reach the edges, where reflection
occurs.

Training: The network weights for Gθ are fixed during the first epoch to facilitate the learning of
fθ and the image tensor for the observation model. Subsequently, Gθ is trained during the second
epoch. In total, DBF undergoes training for two epochs.

Dynamics model: Constant velocity model. The exact dynamics matrix we have used is:

zt+1 = Fzt (21)

F =

1 0 0 0 dt 0 0 0
0 1 0 0 0 dt 0 0
0 0 1 0 0 0 dt 0
0 0 0 1 0 0 0 dt
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

, zt =

x1,t

y1,t
x2,t

y2,t
vx1,t

vy1,t

vx2,t

vy2,t

, (22)

and true observation model:

x̃t =

{
(xt mod 16) if x//16 is even
9− (xt mod 16) if x//16 is odd

, same for y (23)

ot = h(zt),dim(ot) = 44× 44 , a 28× 28 image is embedded at(x̃t, ỹt). (24)

The formulation above addresses image reflection through the observation operator, resulting in lin-
ear dynamics while permitting multiple solutions for each observed figure. This approach presents
significant challenges for the EnKF, which assumes a single-peak Gaussian distribution in the as-
similating space. To ensure a fair comparison, we revise the dynamics and observation models to
allow for a single solution for each figure. This adjustment notably enhances the performance of the
EnKF if the image is provided. However, even with this modification, the EnKF fails to accurately
estimate the position, velocity, and the embedded image.

Network architecture: fθ: Two-dimension convolutional NNs. Below is the list of layers.

• conv1: nn.Conv2d(1, 2, kernel size=3, stride=2, padding=1)

• conv2: nn.Conv2d(2, 4, kernel size=3, stride=2, padding=1)

• conv3: nn.Conv2d(4, 4, kernel size=3, stride=1, padding=1)

• conv4: nn.Conv2d(4, 4, kernel size=3, stride=1, padding=1)

• fc: nn.Linear(11× 11× 4, 8)

The input image, sized 44 × 44, is sequentially processed by convolutional layers (conv1, conv2,
conv3, and conv4). The output is then flattened to serve as the input for the fully connected layer
(fc). Ultimately, this process yields eight variables for fθ(ot). The network Gθ follows the same
architecture as fθ, but it produces only the diagonal components of Gθ(ot) through the NN.

Example figures: In Fig. 14, we show example images for observations and all the algorithms in
image-informed setting.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

ob
s

t=0

En
KF

ET
KF

PF
DB

F

t=2 t=4 t=6 t=8 t=10 t=12 t=14 t=16 t=18
data 0

ob
s

t=0

En
KF

ET
KF

PF
DB

F

t=2 t=4 t=6 t=8 t=10 t=12 t=14 t=16 t=18
data 20

ob
s

t=0

En
KF

ET
KF

PF
DB

F

t=2 t=4 t=6 t=8 t=10 t=12 t=14 t=16 t=18
data 27

Figure 13: Example figures for two-body moving MNIST experiment. This is the setting explained
in the main text. For all algorithms, the two embedded images are not explicitly informed: algo-
rithms need to deal with many unknown parameters in the observation model.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

ob
s

t=0

En
KF

ET
KF

PF
DB

F

t=2 t=4 t=6 t=8 t=10 t=12 t=14 t=16 t=18
data 0

ob
s

t=0

En
KF

ET
KF

PF
DB

F

t=2 t=4 t=6 t=8 t=10 t=12 t=14 t=16 t=18
data 20

ob
s

t=0

En
KF

ET
KF

PF
DB

F

t=2 t=4 t=6 t=8 t=10 t=12 t=14 t=16 t=18
data 27

Figure 14: Example figures for two-body moving MNIST experiment. For model-based approaches
(EnKF, ETKF, PF), contrary to the experiment reported in the main text, the true images are in-
formed. In data 0, both DBF and EnKF successfully determine and follow the position of the two
images. On the other hand, in data 20 and 27, EnKF estimate becomes unstable soon after the two
letters overlap. Even in that situation, DBF stably follows the positions of the embedded images.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 6: List of hyperparameters for moving MNIST experiment.

parameter value
R diag[e6]
Q diag[e−4]

Table 7: The success rates of different methodologies in the two-body moving MNIST problem. For
the model-based approaches, we used the same dynamics and observation models that generated the
data. For DBF, the model was initialized with random image tensors and trained solely on the data.

Method Success rate
DBF 100% (50/50)
EnKF 58% (29/50)
ETKF 0% (0/50)

PF 0% (0/50)

D TRAINING STABILITY

We observe that the training of our proposed method is stable compared to RNN-based models.
Fig. 15 shows the evolution of the real parts of eigenvalues. Although we do not impose constraints
on the real parts of eigenvalues, the values only marginally exceed one. Therefore, long-time dy-
namics is stable during training.

0.8 0.9 1.0 1.1
abs(eigenvalue)

0.8 0.9 1.0 1.1
abs(eigenvalue)

0.8 0.9 1.0 1.1
abs(eigenvalue)

0.8 0.9 1.0 1.1
abs(eigenvalue)

0.8 0.9 1.0 1.1
abs(eigenvalue)

0.8 0.9 1.0 1.1
abs(eigenvalue)

Figure 15: Evolution of histograms for the real parts of 800 complex eigenvalues in Lorenz96 exper-
iment. Initially, eigenvalues are taken as one. As the model learns the dynamics, eigenvalues lower
than 1.0 appear. However, the largest eigenvalue λmax mostly remains less than 1.02.

E HYPERPARAMETER STUDY ON THE LATENT DIMENSIONS

The dimension of the latent variables is a hyperparameter. We have tested the performance and
computation (both training and inference) time for nonlinear problems.

E.1 DOUBLE PENDULUM

E.1.1 ACCURACY-COMPUTE TRADE-OFF IN DBF

For double pendulum problem, we test with the standard observation operator with the observation
noise of σ = 0.1. Figs. 16, 17 show the relation between the RMSE and the latent dimensions of the
system. Here, we show results with 1.0× 107 training data. For the double pendulum problem, we
have tested with 4, 20, 80, and 200 latent dimensions. All the latent dimensions tested were too small
to observe the impact of the compute-latent dimension relationship. To observe the slowdown, we
need to test with higher dimensions. Please also refer to the results for Lorenz96. The performance
(RMSE at the final 10 steps) for the angles θ and angle velocities ω are poor if the latent dimension

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

100 101 102

latent dimension

0.0

0.1

0.2

0.3

0.4

0.5

RM
SE

double pendulum, DBF, RMSE-latent dim ()

100 101 102

latent dimension

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE

double pendulum, DBF, RMSE-latent dim ()

100 101 102

latent dimension

0.10

0.12

0.14

0.16

0.18

0.20

in
fe

re
nc

e
tim

e
[s

]

double pendulum, DBF, test time

Figure 16: Left panel: RMSE as a function of the latent dimensionality of DBF. Right panel: the
inference time as a function of the latent dimensionality of DBF.

100 101 102

latent dimension

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

tra
in

 ti
m

e
[×

10
4 s

]

double pendulum, DBF, train time

100 101 102

latent dimension

0.10

0.12

0.14

0.16

0.18

0.20

in
fe

re
nc

e
tim

e
[s

]

double pendulum, DBF, test time

Figure 17: Left panel: the training time for 1.0 × 107 initial conditions as a function of the latent
dimension. Right panel: RMSE as a function of the training time for five different numbers of latent
dimensions.

is four. By leveraging 20 latent dimensions, DBF achieves a very good assimilation performance.
Further enhancing the latent dimensions to 80 and 200 did not improve performance. The training
gradually gets slower when we use latent dimensions higher than 80. As can be seen from Fig. 16,
The performance is rather insensitive to the latent dimensions in the range of [20, 200]: the RMSE
for θ is 0.036 at dim(ht) = 20, 0.053 at dim(ht) = 80, and 0.044 at dim(ht) = 200 and for ω is
0.265 at dim(ht) = 20, 0.375 at dim(ht) = 80, and 0.302 at dim(ht) = 200.

E.1.2 COMPARISON TO THE PF

The performance of PF depends on the number of particles used. We have tested with 20, 200,
2,000, 20,000, and 100,000 particles. The performance for θ improves significantly if we use more
than 200 particles. The RMSE for the angle velocities ω almost saturates at RMSE ≃ 0.31 when we
use particles more than 20,000. To achieve that accuracy, the inference time required for PF is more
than 200 seconds per initial condition. On the other hand, DBF achieves slightly better performance
(RMSE ≃ 0.265) with the latent dimensions of 20. The inference time for DBF is 0.1 seconds per
batch.

E.2 LORENZ96

E.2.1 ACCURACY-COMPUTE TRADE-OFF IN DBF

For Lorenz96 problem, we test with the nonlinear observation operator with the observation noise
of σ = 1. Figs. 19, 20 show the relation between the RMSE and the latent dimensions of the
system. Here, we show results with 1.0 × 107 training data. The dimensionality of the latent
variables can be either larger or smaller than that of the physical variables, but there is a trade-
off: up to a certain latent dimensionality, increasing the dimension improves performance at the

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

101 102 103 104 105

particles

0.0

0.1

0.2

0.3

0.4

0.5

RM
SE

double pendulum, PF, RMSE-particles ()

101 102 103 104 105

particles

0

1

2

3

4

5

RM
SE

double pendulum, PF, RMSE-particles ()

10 1 100 101 102 103

inference time [s]

10 2

10 1

RM
SE

double pendulum, RMSE-test time ()
PF
DBF

10 1 100 101 102 103

inference time [s]

10 2

10 1

100

RM
SE

double pendulum, RMSE-test time ()
PF
DBF

Figure 18: Left panel: the performance of PF as a function of the particles used. Right panel: RMSE
as a function of the inference time for the DBF and the PF. For the DBF, the latent dimensions are
20, 80, 200, 800, and 2,000. For the PF, the number of particles are 20, 200, 2,000, 20,000, 100,000.

101 102 103

latent dimension

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE

Lorenz96, DBF, RMSE-latent dim

101 102 103

latent dimension

0.10

0.12

0.14

0.16

0.18

0.20

in
fe

re
nc

e
tim

e
[s

]

Lorenz96, DBF, test time

Figure 19: Left panel: RMSE as a function of the latent dimensionality of DBF. Right panel: the
inference time as a function of the latent dimensionality of DBF.

cost of longer computation time. Beyond that point, increasing the latent dimensionality no longer
improves performance but only increases training time (although inference time remains relatively
short compared to model-based approaches). Therefore, the optimal balance depends on the specific
problem. For the Lorenz96 system, a dimensionality of 800 was a reasonable trade-off among 20,
80, 200, 800, and 2,000 dimensions. As shown in the figure, the RMSE changes by only 7 percent
(1.31 vs 1.23) in the range from 200 to 2,000 dimensions, indicating that the impact is not critical in
this range.

E.2.2 COMPARISON TO THE PF

The PF also has the trade-off. Although RMSE improves slowly as we increase the number of
particles, the RMSE was poor (2.27) compared to the DBF results (RMSE ≃ 1.3) even with mas-

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

101 102 103

latent dimension

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

tra
in

 ti
m

e
[×

10
4 s

]

Lorenz96, DBF, train time

104 2 × 104 3 × 104 4 × 104

training time [s]

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE

Lorenz96, DBF, RMSE-train time

Figure 20: Left panel: the training time for 1.0 × 107 initial conditions as a function of the latent
dimension. Right panel: RMSE as a function of the training time for five different numbers of latent
dimensions.

102 103 104 105

particles

0

1

2

3

4

5

6

7

RM
SE

Lorenz96, PF, RMSE-particles
PF

10 1 100 101 102 103

inference time [s]

0

1

2

3

4

5

6

7

RM
SE

Lorenz96, RMSE-test time
PF
DBF

Figure 21: Left panel: the performance of PF as a function of the particles used. Right panel: RMSE
as a function of the inference time for the DBF and the PF. For the DBF, the latent dimensions are
20, 80, 200, 800, and 2,000. For the PF, the number of particles are 20, 200, 2,000, 20,000, 100,000.

sively large number of particles (100,000) with very long inference time (2,000 seconds per initial
condition)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0 20

0

10

20

30

40

50

60

70

obs

0 20

0

10

20

30

40

50

60

70

true

0 20

0

10

20

30

40

50

60

70

model(hdim=20)

0 20

0

10

20

30

40

50

60

70

model(hdim=800)

Figure 22: the performance of DBF for a low latent dimension case (dim(ht) = 20) and a high
latent dimension case (dim(ht) = 800). Even with the latent dimensions (20) smaller than that of
the original state space (40), DBF shows the skillful assimilation. With higher latent dimensions
(800), the performance further improves.

31

	Introduction
	Method
	Inference of physical variables in a state-space model
	KF for linear dynamics, linear observations
	DBF for linear dynamics, nonlinear observations
	DBF for nonlinear dynamics, linear/nonlinear observations
	Training
	Related works
	Dynamical variational autoencoders
	KF-based methods
	Sampling-based methods
	Approximate MAP estimation method
	NN-based PDE surrogate

	Experiments
	Linear dynamics: object tracking
	Nonlinear dynamics 1: double pendulum
	Nonlinear dynamics 2: Lorenz96

	Limitation
	Conclusion
	Derivation of the evidence lower-bound and the associated Monte-Carlo sampling
	Linear dynamics case
	Nonlinear dynamics case
	Comparison to other DVAEs in terms of Monte-Carlo sampling

	Additional linear dynamics experiment: two-body moving MNIST
	Settings and additional results for experiments
	Object tracking
	Double pendulum
	Lorenz96
	Moving MNIST (additional linear experiment)

	training stability
	Hyperparameter study on the latent dimensions
	double pendulum
	Accuracy-compute trade-off in DBF
	Comparison to the PF

	Lorenz96
	Accuracy-compute trade-off in DBF
	Comparison to the PF

