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Abstract
Vision-Language Models (VLMs) such as CLIP
excel at zero-shot classification due to large-scale
pre-training but are vulnerable to adversarial ex-
amples. Adversarial fine-tuning robustifies zero-
shot models by aligning prediction scores of indi-
vidual adversaries with their clean counterparts,
which typically overlooks intermediate adversar-
ial samples along the adversarial trajectory cross-
ing the decision boundary. Such intermediate
adversaries and their vicinity produce informative
representations capturing the decision boundary
in detail. They can be improved by sampling
adversarial candidates from simplices formed by
joining two consecutive vertices on the adversarial
trajectory and their clean counterpart. However,
sampling simplices for adversaries is very costly.
To train robust VLM, we overcome these limi-
tations by Taylor expansion and formulating an
upper-bound of alignment loss that depends on
the Jacobian/Hessian obtained at clean samples.
As regions between clean and intermediate adver-
sarial samples capture a larger decision landscape,
we robustify VLM by plausible adversaries from
simplices by our closed-form formulation equiva-
lent to infinite uniform sampling of the simplex.
We obtain state-of-the-art robustness across 15
datasets and diverse vision-language tasks.

1. Introduction
Despite significant advancements driven by Deep Neural
Networks (DNNs) in various areas, Szegedy et al. (2014);
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Figure 1. Our AdvSimplex. Fig. 1a shows the zero-shot robust
performance of our method (against adversarial samples) vs. ad-
versarial fine-tuning approaches (TeCoA (Mao et al., 2023), PMG
(Wang et al., 2024), and FARE (Schlarmann et al., 2024)) across
diverse downstream tasks. Fig. 1b shows the principle of sampling
simplices formed from vertex x and consecutive intermediate ad-
versaries x+δx,i and x+δx,i+1 along the adversarial trajectory
obtained with several steps of gradient ascent. However, sampling
such simplices and aligning them individually with x is costly.
Fig. 1c shows our model which is much faster as it computes
closed-form Σx used in our alignment formula based on Jacobian
and Hessian

(
Jg(x), (Hg(x))c

)
.

Goodfellow et al. (2015); Dong et al. (2024a) have shown
their vulnerability to adversarial examples, which are low-
level perturbations added to legitimate samples to elicit
incorrect class predictions. Such adversarial vulnerabilities
also affect Vision-Language Models (VLMs) (Zhang et al.,
2022a; Zhao et al., 2023a), posing concerns about deploying
VLMs in real-life applications (Dı́az-Rodrı́guez et al., 2023).

To counteract malicious adversaries, a growing body of re-
search seeks to strengthen zero-shot adversarial robustness
of VLMs through adversarial fine-tuning (Mao et al., 2023;
Wang et al., 2024; Dong et al., 2025), with a focus on CLIP-
based architectures (Radford et al., 2021). These methods
predominantly align single adversarial predictions—derived
from feature-level image-text cosine similarity—with ei-
ther their benign counterparts or the ground-truth labels.
However, such an alignment scheme overlooks the broader
spectrum of underlying adversaries, especially intermediate
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Figure 2. The pipeline of our AdvSimplex. Class-wise prompts are
formulated and passed via frozen CLIP-T (text branch in the blue
box). Clean image x is passed via CLIP-V (vision branch in the
orange box). By the gradient ascent we obtain x+δx,1, . . . ,x+
δx,m (intermediate) adversarial samples. The alignment process
from Fig. 1c is used to form simplices between vertex x and
consecutive adversarial vertices pairs (x+δx,i,x+δx,i+1) for
i = 1, . . . ,m − 1. Next, an efficient alignment is performed
between x and all points on simplices to robustify the model.

adversarial samples encountered along the adversarial tra-
jectory obtained during iterative adversary generation (i.e.,
the path that crosses the decision boundary). Although these
intermediate adversaries and their variants encode rich infor-
mation about the class boundaries, limited efforts have been
made to incorporate them explicitly during adversarial fine-
tuning due to additional computational cost. Consequently,
such an oversight exposes VLMs to unforeseen adversaries.

In this work, we exploit the disruptive effect of augmented
or diversified adversaries (Wang et al., 2022a; Lu et al.,
2023; Li & Spratling, 2023; Dong et al., 2024c; Gao et al.,
2024). Li & Spratling (2023) explored data augmentation
to improve adversarial diversity. Lu et al. (2023) obtained
intermediate adversaries along the adversary generation tra-
jectory to achieve cross-VLM attacks. Gao et al. (2024)
extended such a mechanism to a triangular region with the
vertices of two consecutive adversarial samples and their
clean counterpart. Wang et al. (2022a) exploited such geo-
metric information search for adversaries in the black-box
setting. However, the above works focus on conducting at-
tacks with such adversarially diverse sets. Their associated
computational cost makes them inapplicable to fine-tuning.

Thus, to effectively exploit the rich structure of decision
boundaries and adversarial diversity of samples contained
by simplices between a sample vertex and consecutive pairs
of intermediate adversary samples, we depart from the tradi-
tional point-wise alignment of prediction scores.

Specifically, Gao et al. (2024) sampled adversarial candi-
dates from 2D simplices with vertices (x,x+δx,i,x+δx,i+1)
for adversarial trajectory (with indices i=1, . . . ,m−1) ob-
tained by the iterative gradient ascent, and used a small num-
ber of such samples for attacks. However, explicit sampling
of 2D simplices to robustify VLM is prohibitively costly.
Further additional cost is due to passing such samples via
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Figure 3. Evaluations on ImageNet for our AdvSimplex vs. TeCoA
(Mao et al., 2023), PMG (Wang et al., 2024), and FARE (Schlar-
mann et al., 2024). Fig. 3a shows robust accuracy against worst-
case adversaries sampled from simplices formed as in Fig. 1a but
at test time. The CE loss is used to choose the worst-case adver-
sary. Fig. 3b shows the average transfer attack success rate for
the most transferable adversaries. For each model, we choose the
most transferable attack from the simplices of remaining models.

the backbone to minimize

min
θ

∑
x∈X

ℓ
(
gθ(x), yx

)
+ 1

κ

∑
δx∈∆X

∥gθ(x+δx)−gθ(x)∥22︸ ︷︷ ︸
Ω(x)

.

(1)

Here, ℓ(·, ·) can be cross-entropy (CE) loss, κ= |∆X | is the
number of adversary candidates sampled from a simplex
associated with x. Thus, for a dataset with 1M images, and
κ = 10 and ascent steps m = 10, one obtains prohibitive
91M images. Such a naive setting is shown in Fig. 1b.

To train robust VLM, we overcome these limitations by a
Taylor expansion of gθ(x+δx) around x and formulating an
upper-bound of approximated alignment loss Ω(·) that de-
pends on the closed-form Σx instead of naive computations
of costly second-order matrix Σ̂x= 1

κ

∑
δx∈∆X

δxδ
⊤
x . We

also require easily obtainable Jacobian and Hessian-vector
product

(
Jg(x), (Hg(x))c p

)
of gθ(·) evaluated at a clean

sample x. The entire pipeline of our model, called Adver-
sarial Simplex (AdvSimplex), is shown in Figure 2. Fig. 1c
illustrates our closed-form formulation.

Fig. 1a demonstrates excellent zero-shot robustness of Ad-
vSimplex against existing state-of-the-art adversarial fine-
tuning approaches on several benchmarks. Moreover, Fig.
3a shows an experiment where a CE loss is used at the
test time to select the most disruptive adversarial candidate
sample from simplices sharing vertex x. Our approach is
the most robust model against such adversaries. As TeCoA
(Mao et al., 2023), PMG (Wang et al., 2024) and FARE
(Schlarmann et al., 2024) perform poorly, this is an indirect
proof that such “adversarial simplices” indeed contain adver-
sarial samples. While their strength may differ, they clearly
are harmful and thus can be used for robustification. Fig.
3b shows a similar experiment where the most disruptive
candidate adversaries were sampled from simplices of all
methods other than the tested method to verify cross-model
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transferability. The figure shows that the attacks sampled
from “adversarial simplices” are both strongly adversarial
and highly transferable, highlighting their universality.

In summary, our main contributions are as follows:

1. In contrast to existing adversarial fine-tuning approaches
that employ sample-wise prediction alignment of ad-
versaries to clean samples, we employ simplex regions
formed from vertex x and consecutive adversarial pairs{
(x + δx,i,x + δx,i+1) : i=1, . . . ,m−1

}
from the m-

steps gradient ascent. While similar schemes were used
to create attacks, due to their high computational cost due
to sampling, they have not been used in robustification.

2. To alleviate the computational burden of explicit sam-
pling from “adversarial simplices”, we derive an upper
bound of alignment term Ω(·) in Eq. (1) by the use
of Taylor expansion, and a scalable upper bound that
employs closed-form second-order statistic of points con-
tained within simplices, equivalent to infinitely dense
uniform sampling strategy. This alleviates the need to
pass numerous candidate adversaries through the back-
bone. Moreover, minimizing our upper bound is shown
as minimizing the upper bound of robust risk.

3. We conduct experiments across 15 datasets and diverse
scenarios (e.g., Fig. 1), showing that our method outper-
forms state-of-the-art adversarial fine-tuning approaches.

2. Background
Related works are in Section 4. CLIP (Radford et al., 2021)
enjoys great performance on zero-shot tasks. Its architecture
consists of image and text encoders, parameterized by θ and
θ′. The image encoder fθ : X →Rd projects input images
x ∈ X into a d-dimensional feature space. Similarly, the
text encoder fθ′ : T →Rd maps input textual descriptions
t ∈ T into d-dimensional embeddings. By jointly encoding
image-text pairs (x, t), CLIP aligns two modalities by the
cosine similarity. The probability of assigning an image x
to a specific category c ∈ {1, . . . , C} is given as softmax:

(
gθ(x)

)
c
=

exp
(
sim(fθ(x), fθ′(tc))

)∑C
i=1 exp

(
cos(fθ(x), fθ′(ti))

) , (2)

where exp(·) is the exponential function, and sim(·, ·)
represents the cosine similarity. Each text prompt tc =
“[Context][CLASSc]” (e.g., “This is a photo
of a [CLASSc]”) is tokenized and embedded by fθ′(·),
serving as the alignment reference. The predicted proba-
bilities of sample x for all C classes can be represented as
gθ(x) =

[(
gθ(x)

)
1
, . . . ,

(
gθ(x)

)
C

]⊤∈[
0, 1

]C
.

To enhance zero-shot robustness, adversarial fine-tuning
adaptively integrates adversarial samples into the optimiza-
tion process, aligning their predictions either with their clean

Table 1. Summary of key symbols and notations with explanations.
Symbol Explanation

x Clean example.
δx Adversarial perturbation.
gθ(·) Predictions of the CLIP model.
Jg(·) Jacobian matrix of gθ(·) (Jacobians stacked for C classes).(
Hg(·)

)
c

Hessian matrix of gθ(·) for class c.
Ω(·) The Euclidean alignment loss.
Ω̄(·) Upper bound of Ω(·) with the cross-product term.
¯̄Ω(·) Upper bound of Ω(·) without the cross-product term.

counterparts or one-hot ground-truth labels. Given a set X ,
the standard adversarial fine-tuning approach (i.e., TeCoA
(Mao et al., 2023)) is formulated as a minimax optimization:

min
θ

Ex∼X

[
max

∥δx∥∞≤ϵ
ℓ
(
gθ(x+ δx), yx

)]
, (3)

where δx is an image-level adversarial perturbation con-
strained within an ℓ∞-norm ball of radius ϵ, and yx repre-
sents the class of x. The inner maximization of the cross-
entropy loss generates adversarial examples by perturbing
the prediction, while the outer minimization reduces the
empirical risk over these adversaries. Following Mao et al.
(2023); Wang et al. (2024), adversaries are generated by the
iterative Projected Gradient Descent (PGD) (Madry et al.,
2018), which updates perturbed input x̂(i+1)=x+δx,i as:

x̂(i+1)=ΠB(x,ϵ)

[
x̂(i)+α·sign

(
∇x̂(i)ℓ

(
gθ(x̂

(i)), yx
))]

, (4)

where α denotes the step size, and sign(·) is the sign func-
tion. ΠB(x,ϵ) ensures the perturbation remains within the
ℓ∞-norm ball. Adversarial initialization begins with a ran-
dom perturbation x̂(0) ∼ x + 0.001 · N (0, I). After m
iterations, the final adversarial sample x̂ = x̂(m) is obtained.
The set of the final and intermediate adversarial samples is
denoted as Ix =

{
x̂(i)

}m

i=1
.

Problem definition. Moving beyond traditional robust-
ness evaluations on in-distribution adversarial examples
(Croce et al., 2021), we address the more complex zero-
shot robustness setting (Mao et al., 2023). In this sce-
nario, adversarial examples are generated with unlimited
access to data from previously unseen datasets during
inference. The goal for defenders, including our ap-
proach, is to maintain robustness against these novel
security threats, despite having no prior exposure to
such data. From a practical defense view, we assume
that text prompts, stored in multi-modal systems, remain
unchanged during inference, so we do not attack text.

3. Proposed Method
Below, we introduce our proposed adversarial fine-tuning
approach, enhancing zero-shot adversarial robustness. Our
method leverages “adversarial simplices” formed from ver-
tices (x,x+δx,i,x+δx,i+1) for consecutive i=1, . . . ,m−1
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given the m-steps gradient ascent. Table 1 lists common
symbols and their explanations.

3.1. Upper-bounding Ω(x)

Below we start with Taylor expansion of gθ(x+δx) around x,
i.e., g(x+δx)=g(x)+Jg(x) δx+ 1

2

[
δTx (Hg(x))c δx

]C
c=1

+

O
(
∥δx∥3

)
, where Jg(x)∈ RC×wh is the Jacobian matrix

evaluated for gθ(·) at vertex x. We also have C Hessian
matrices

(
Hg(x)

)
1
, . . . ,

(
Hg(x)

)
C

∈ Rwh×wh where wh
is width × height of an image. Notice that perturbations
∥δx∥∞≤ϵ. Thus, we assume that for a sufficiently small ϵ,
the remainder term O

(
∥δx∥3

)
of expansion around vertex x

is negligible. Moreover, observe that
∥∥g(x+δx)−g(x)

∥∥2
2
≈∥∥Jg(x) δx+1

2

[
δTx (Hg(x))c δx

]C
c=1

∥∥2
2
, so for a set ∆X with

κ adversarial perturbations we obtain:

Ω(x)≈ 1
κ

∑
δx∈∆X

∥∥Jg(x) δx+ 1
2

[
δTx (Hg(x))c δx

]C
c=1

∥∥2
2

(5)

= 1
κ

∑
δx∈∆X

∥∥Jg(x) δx∥∥22︸ ︷︷ ︸
α(x,δx)

+ 1
4

∥∥[δTx (Hg(x))c δx
]C
c=1

∥∥2
2︸ ︷︷ ︸

β(x,δx)

+
〈
Jg(x) δx,

[
δTx (Hg(x))c δx

]C
c=1

〉︸ ︷︷ ︸
γ(x,δx)

(6)

≤ 1
κ

∑
δx∈∆X

2α(x, δx) + 1
2β(x, δx). (7)

Eq. (7) is derived from inequality |x + y|p ≤ 2p−1(|a|p +
|a|p) for p≥1 due to convexity. See Appendix C.1.

The upper-bound in Eq. (7) does not solve our issue of aggre-
gating over elements of the large set ∆X . Notice α(x, δx)=
C∑

c=1

〈
δx, (Jg(x))

⊤
c,:

〉2
=

C∑
c=1

〈
δxδ

⊤
x , (Jg(x))

⊤
c,:(Jg(x))c,:

〉
.

As the inner product is linear in its argument, we have:

1
κ

∑
δx∈∆X

2α(x, δx)=2

C∑
c=1

〈
1
κ

∑
δx∈∆X

δxδ
⊤
x︸ ︷︷ ︸

Σ̂x

, (Jg(x))
⊤
c,:(Jg(x))c,:︸ ︷︷ ︸

Jg(x,c)

〉
(8)

We have now arrived at Eq. (8) which depends on Σ̂x

(later to be replaced with closed-form Σx) and Jg(x). The
case of expanding β(x, δx) is more complex and thus
we will upper-bound this term. Notice that β(x, δx) =
C∑

c=1

(
δTx (Hg(x))c δx

)2
=

C∑
c=1

〈
δxδ

⊤
x , (Hg(x))c

〉2︸ ︷︷ ︸
βc(x)

.

However, ⟨·, ·⟩2 is not linear in its arguments, yet we can
replace squaring by the Kronecker product ⊗ as follows:

βc(x, δx)=
〈
vec(δxδ

⊤
x )⊗vec(δxδ

⊤
x ),

vec((Hg(x))c)⊗vec((Hg(x))c)︸ ︷︷ ︸
(Hg(x))c

〉
. (9)

Here, vec(·) simply vectorizes the matrix-shaped input. As
each argument of the above inner product contains (wh)4

elements, this is prohibitive. Thus, we use upper-bound:

1
κ

∑
δx∈∆X

1
2β(x, δx)

= 1
2

C∑
c=1

〈
1
κ

∑
δx∈∆X

vec(δxδ
⊤
x )⊗vec(δxδ

⊤
x ),Hg(x, c)

〉

≤ 1
2

C∑
c=1

κ
〈

1
κ

∑
δx∈∆X

vec(δxδ
⊤
x )⊗ 1

κ

∑
δx∈∆X

vec(δxδ
⊤
x ),Hg(x, c)

〉

= 1
2κ

C∑
c=1

〈
1
κ

∑
δx∈∆X

δxδ
⊤
x︸ ︷︷ ︸

Σ̂x

, (Hg(x))c

〉2

. (10)

Putting together Eq. (8) & (10), under negligible O
(
∥δx∥3

)
,

we readily obtain Ω(x)≤ Ω̄(x)≤ ¯̄Ω(x):

Ω̄(x; Σ̂x)=

C∑
c=1

〈
Σ̂x,Jg(x, c)

〉
+1

4κ
〈
Σ̂x, (Hg(x)c

〉2(
+γ terms

)
,

¯̄Ω(x; Σ̂x)=

C∑
c=1

2
〈
Σ̂x,Jg(x, c)

〉
+ 1

2κ
〈
Σ̂x, (Hg(x)c

〉2
. (11)

Having developed two upper bounds of Ω(x), we now define
a closed-form expression for Σx.

3.2. The ∞-dense sampling of simplex (closed-form Σx)

To avoid aggregating empirical Σ̂x over κ elements of set
∆X , we propose the following theorem.

Theorem 3.1. The closed-form expression for Σx =
E
[
ppT

]
over all p in simplex with vertices (x,y, z) is

Σx=
1
12

(
x+y+z

) (
x+y+z

)T
+ 1

12

(
xxT+yyT+zzT

)
.

(12)
Moreover, let Q be the number of vertices (z1, . . . , zQ) of a
simplex. The closed-form expression for Σx=E

[
ppT

]
for

higher-order simplices, e.g., tetrahedron (Q = 4 vertices)
or pentachoron (Q = 5 vertices) is given as:

Σx=
1

Q(Q+1)

[∑Q

i=1
ziz

⊤
i +

(∑Q

i=1
zi

)(∑Q

i=1
zi

)⊤
]
.

(13)
Proof. Parameterize a point p∈Rwh over vertices (x,y, z)
as p= αx+βy+γz, α, β, γ ≥ 0, α+β+γ = 1. Expand
ppT=(αx+βy+γz)(αx+βy+γz)T and note that E

[
ppT

]
=

E
[
α2

]
xxT+E

[
β2

]
yyT+E

[
γ2

]
zzT+E

[
αβ

]
(xyT+yxT )+

E
[
αγ

]
(xzT+zxT )+E

[
βγ

]
(yzT+zyT ). For a uniform

distribution on the simplex {α, β, γ ≥ 0, α+β+γ ≤ 1},
we have E[α] =E[β] =E[γ] = 1

3 ,E[α
2] =E[β2] =E[γ2] =

1
6 ,E[αβ] = E[αγ] = E[βγ] = 1

12 . Substitute expectations
into the expansion to conclude the proof for Q = 3.
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For higher-order simplices (i.e., Q> 3), one can parame-
terize p =

∑Q
i=1 αizi, αi ≥ 0,

∑Q
i=1 αi = 1, and obtain:

E
[
αi

]
= 1

Q , E
[
α2
i

]
= 2

Q(Q+1) , and E
[
αiαj

]
= 1

Q(Q+1) , i ̸=
j for the underlying Dirichlet distribution. Then one ex-
pands E

[
ppT

]
for ppT =

∑Q
i,j=1 αiαjziz

⊤
j .

Eq. (12) requires mere aggregation over four outer products
of vectors. As long as κ>4, using the closed form is more
efficient and equivalent to evaluating for κ=∞ set ∆X .

For efficiency, we use the Hessian-vector product (HVP) in
Ω̄ and ¯̄Ω, i.e., (Hg · p) as follows:〈
E
[
ppT

]
,Hg

〉
=E

[
p⊤(Hg ·p)

]
(14)

= 1
Q(Q+1)

[ Q∑
i=1

z⊤i
(
Hg · zi

)
+
( Q∑

i=1

zi

)⊤(
Hg ·

Q∑
i=1

zi

)]
.

Thus, we set
〈
Σ̂x, (Hg(x))c

〉2
=
(
E
[
p⊤((Hg(x))c ·p

)])2
.

For a simplex with Q = 3 vertices (one vertex equals 0),
this requires only three Hessian-vector products. One HPV
evaluation costs the same as 2–4 Jacobian evaluations.

3.3. Our loss function

Following Fig. 1c, we have to align a set of m−1 simplices
with the Jacobian and Hessian statistics. Thus, our loss takes
the form below:

min
θ

∑
x∈X

ℓ
(
gθ(x), yx

)
+ λ

∑m−1

i=1
ωi(x)

¯̄Ω(x;Σx,i),

(15)
and Σx,i is evaluated on vertices (0, δx,i, δx,i+1) by Eq.
(12), λ ≥ 0 controls the impact of minimizing the upper
bound. Additionally, we can reweight the impact of each
simplex by a simple perturbance impact measure of inter-
mediate adversarial vertex x̂(i)=x+δx,i:

ωi(x)=
1
τ

∣∣(gθ(x))yx
−
(
gθ
(
x̂(i)

))
yx

∣∣, (16)

where τ =max
j∈B

∣∣(gθ(xj)
)
yxj

−
(
gθ
(
x̂
(i)
j

))
yxj

∣∣ simply mea-

sures the biggest perturbance for a batch B of samples x.

3.4. Bounding the robust risk

Generally, there exists an inevitable trade-off between nat-
ural performance and adversarial robustness (Wang et al.,
2024). Below, we study the implications of our design for
robust risk (Zhang et al., 2019). Generally, the following
three risks are known in adversarial learning:

Rnat(g) :=Ex∼X
[
ℓ
(
g(x), yx

)]
, (17)

Rrob(g) :=Ex∼X

[
max

∥δx∥≤ϵ
ℓ
(
g(x+δx), y

)]
, (18)

Rboundary(g; ϵ) :=Px∼X

[
∃ δx : ∥δx∥≤ϵ, g(x) ̸=g(x+δx)

]
,

(19)

where for say the 0-1 loss ℓ(·, ·), Rnat(g) (the natural
risk) is the probability of misclassification on clean data,
Rrob(g) (the robust risk) is the probability that the strongest
perturbation in ∥δx∥ ≤ ϵ will cause misclassification.
Rboundary(g; ϵ) quantifies the fraction of points “within
ϵ” of the classifier’s decision boundary, i.e., the set of
points that can be flipped by a perturbation of size ϵ. The
prior knowledge also states that the following bound holds
Rrob(g)≤Rnat(g)+Rboundary(g; ϵ).

For a single adversarial simplex, our boundary risk becomes:

Rboundary(g; ∆X ) :=Px∼X

[
∃ δx∈ ∆X , g(x) ̸=g(x+δx)

]
,

(20)

We can upper-bound this risk by our defined boundary
counter risk, which not only captures decision flips on x but
also counts in how many different ways x can be perturbed
to cause a decision flip:

Rcounter(g; ∆X ) :=Ex∼X

[∑
δx∈∆X

g(x) ̸=g(x+δx)
]
.

(21)

It is clear that Rcounter(g; Ix) ≤ Rcounter(g; ∆X ) where
Ix = {x̂(i)}mi=1 is the set of the final and intermediate
adversarial samples of x. As the following holds

Rrob(g) ≤Rnat(g)+Rboundary(g; ∆X ) (22)
≤Rnat(g)+Rcounter(g; Ix) (23)
≤Rnat(g)+Rcounter(g; ∆X ), (24)

we are optimizing the upper bound of the robust risk, taking
into account counts of successful perturbations per x.

4. Related Works
Prediction alignment. As a means of enforcing consis-
tency between model outputs, prediction alignment is widely
adopted in machine learning. Originally explored in knowl-
edge distillation (Hinton et al., 2015), where the student
network is trained to align its soft predictions with those of
a teacher, this concept has since been extended to various
domains, including semi-supervised learning (Sohn et al.,
2020), unsupervised learning (He et al., 2020), and domain
adaptation (Tzeng et al., 2017). Noteworthy are also fea-
ture alignment-based domain adaptation (Tas & Koniusz,
2018), few-shot detection and segmentation (Zhang et al.,
2022b; Kang et al., 2023; Lu et al., 2024), contrastive learn-
ing (Zhang et al., 2025), and misalignment-based anomaly
detection (Ding et al., 2025).

In the context of VLMs, prediction alignment plays a criti-
cal role in promoting modality consistency and label-space
agreement, where recent works leverage alignment losses to
improve cross-modal generalization (Jia et al., 2021; Yang
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Table 2. Zero-shot clean accuracy (%). Adversarial fine-tuning is conducted on ImageNet with evaluations across 15 datasets.
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Average
Standard CLIP 59.13 97.17 88.55 62.29 57.68 52.07 83.84 87.35 65.60 40.05 38.31 20.13 52.26 87.08 82.01 64.90

TeCoA 54.43 91.10 72.77 41.31 44.71 22.06 39.27 75.06 38.36 29.46 22.91 10.55 42.37 77.11 70.91 48.83
PMG-FT 51.33 90.70 73.05 42.04 44.40 27.72 42.61 75.39 39.37 29.02 20.32 11.45 47.22 80.08 71.01 49.71

FARE 50.94 93.90 81.98 56.25 49.94 42.73 63.30 81.59 53.29 34.27 21.53 14.66 45.04 85.72 75.03 56.68
AdvSimplex 61.28 96.30 87.14 59.05 53.61 43.86 69.83 84.71 56.28 37.08 23.27 16.52 48.57 87.33 78.65 60.23

Table 3. Zero-shot robust accuracy (%). Adversarial samples are created using the PGD-20 attack method with the image-level
perturbation radius ϵ = 2/255. Adversarial fine-tuning is conducted on ImageNet with evaluations across 15 datasets.
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Average
Standard CLIP 0.54 21.38 2.21 0.73 0.35 0.20 6.11 2.99 0.54 0.22 0.03 0.00 0.00 13.60 8.81 3.85

TeCoA 27.03 71.60 44.34 23.13 18.67 5.13 13.29 42.33 16.29 17.52 12.28 2.52 13.47 56.82 45.52 27.33
PMG-FT 26.20 71.91 45.72 23.41 18.87 6.89 14.62 43.14 16.72 18.02 12.59 2.73 21.39 58.25 46.21 28.44

FARE 24.57 77.28 52.91 30.37 17.85 9.66 18.20 46.26 18.46 19.53 10.24 2.82 23.36 62.95 49.59 30.94
AdvSimplex 36.48 79.67 57.24 32.60 20.33 11.46 20.67 56.11 19.75 20.76 13.19 4.94 42.93 66.23 52.88 35.68

et al., 2022; Dong et al., 2025). Departing from conventional
point-wise alignment, our method introduces robust align-
ment over adversarial path simplices (sets of adversarial
points), promoting stronger robust generalization.

Uni-modal adversarial robustness. The growing use of
DNNs in both vision and language tasks (Khan et al., 2022;
Wang et al., 2022b; Hu et al., 2024; Zhao & Zhang, 2024)
has heightened awareness of their vulnerability to adver-
sarial inputs, stimulating research on defense mechanisms
(Bai et al., 2021; Aldahdooh et al., 2022; Xie & Yuille,
2020), among which adversarial training is a very effec-
tive paradigm. By iteratively optimizing models against
worst-case perturbations, it enhances robustness under at-
tacks (Madry et al., 2018; Zhang et al., 2019; Dong et al.,
2024d;b). In this paper, we extend adversarial robustness in
the context of multi-modal zero-shot generalization.

Multi-modal adversarial robustness. The computational
cost impedes scaling to large VLMs such as CLIP (Rad-
ford et al., 2021). To address this limitation, adversarial
fine-tuning (Mao et al., 2023), often leveraging Parameter-
Efficient Fine-tuning (PEFT) (Jia et al., 2022; Zhou et al.,
2022; Ni et al., 2024; Zhu et al., 2025), has attracted in-
creasing attention. Mao et al. (2023) introduced adversarial
fine-tuning through text-guided contrastive learning, align-
ing image-text embeddings for adversarial robustness. To
mitigate the potential over-fitting to fine-tuning datasets,
Wang et al. (2024) designed a prediction-level regulariza-
tion guided by natural CLIP, while Schlarmann et al. (2024)
proposed an unsupervised adversarial framework. Despite
their efficacy, existing approaches adopt a point-wise align-

ment that integrates a single adversarial counterpart per
clean sample, overlooking the broader spectrum of plausible
adversaries in the vicinity of the decision boundary, thus
compromising zero-shot robustness against unforeseen ad-
versaries. In contrast, we “incorporate” entire “adversarial
simplices” into the robustification process.

5. Experiments
Below, we provide our experimental configurations and
present our comparisons between our AdvSimplex and other
adversarial fine-tuning models across 15 datasets.

Datasets. We adopt the setup from Mao et al. (2023); Wang
et al. (2024); Schlarmann et al. (2024), where CLIP is adver-
sarially fine-tuned on the ImageNet training set (Deng et al.,
2009). Then we assess the zero-shot results of the fine-tuned
CLIP on the ImageNet val set and 14 novel datasets. We
also investigate our method in medical image analysis and
vision-text understanding. See settings in Appendix B.1.

Implementation details. Unless specified otherwise, we
use CLIP (Radford et al., 2021) based on ViT-Base/32
(Dosovitskiy et al., 2021), as per studies (Mao et al., 2023;
Wang et al., 2024; Schlarmann et al., 2024). For adver-
sary generation during fine-tuning, we employ PGD (Madry
et al., 2018) with m = 10 iterations under the ℓ∞-norm
threat model, the perturbation radius ϵ=2/255 and the step
size α = 1/255. The weighting factor is set to λ = 0.6.
During evaluations, we assess the natural and robust per-
formance under three strong white-box adversarial attacks:
PGD (Madry et al., 2018) with 20 iterations, CW (Carlini
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Table 4. Comparison of our method with other approaches, report-
ing average accuracy (%) across diverse CLIP architectures.

Architecture Method Clean PGD CW AA

ViT-B
TeCoA 48.83 27.33 26.80 25.75

PMG-FT 49.71 28.44 27.63 26.98
FARE 56.68 30.94 30.26 29.30

AdvSimplex 60.23 35.68 34.93 34.06

ViT-L
TeCoA 70.95 54.19 50.84 47.96

PMG-FT 68.67 55.75 52.29 49.38
FARE 71.30 57.12 54.16 50.54

AdvSimplex 73.39 59.52 57.64 52.80

ResNet-50
TeCoA 43.25 23.20 22.53 21.74

PMG-FT 45.11 24.68 23.72 23.05
FARE 45.43 24.27 23.19 22.24

AdvSimplex 48.85 26.23 25.38 24.70

Table 5. Comparison of our method with other adv. fine-tuning
approaches. Average accuracy (%) under diverse ϵ are reported.

Perturbation Radius Method PGD CW AA

ϵI = 1/255

TeCoA 38.10 36.62 35.83
PMG-FT 38.92 37.45 36.98

FARE 45.40 44.81 43.27
AdvSimplex 48.12 46.94 45.61

ϵI = 2/255

TeCoA 27.33 26.80 25.75
PMG-FT 28.44 27.63 26.98

FARE 30.94 30.26 29.30
AdvSimplex 35.68 34.93 34.06

ϵI = 3/255

TeCoA 17.90 17.51 17.08
PMG-FT 19.14 18.69 18.22

FARE 19.31 18.84 18.47
AdvSimplex 25.68 24.80 24.34

ϵI = 4/255

TeCoA 11.23 10.70 10.35
PMG-FT 12.05 11.56 11.17

FARE 12.42 11.93 11.52
AdvSimplex 18.63 18.10 17.58

& Wagner, 2017), and Auto-Attack (AA) (Croce & Hein,
2020). All evaluations use adaptive attack schemes for fair
comparison. See implementation details in Appendix B.2.

5.1. Main Results

Evaluations across 15 datasets. We compare our AdvSim-
plex with TeCoA (Mao et al., 2023), PMG-FT (Wang et al.,
2024), and FARE (Schlarmann et al., 2024) in Tables 2 &
3, where we also provide zero-shot inference on additional
14 datasets, reporting natural performance and robustness
against 20-step PGD attacks. AdvSimplex consistently out-
performs other models in clean accuracy, with an average im-
provement of 3.5%, thus approaching standard CLIP (Table
2). While the standard CLIP has nearly zero adv. robustness
(Table 3), our AdvSimplex enjoys an average improvement
of 4.7% across all datasets in comparison to FARE.

Adversarial fine-tuning of diverse architectures. Table
4 reports zero-shot results on various clip architectures for
clean samples and adversarial counterparts across three at-
tack types (ϵ=2/255): PGD (Madry et al., 2018) (20 steps),
CW (Carlini & Wagner, 2017), and Auto-Attack (Croce &
Hein, 2020). Our AdvSimplex outperforms other adversarial
fine-tuning models under all architectures.

Table 6. Comparison of our method with other approaches, report-
ing average accuracy (%) on text-level and bi-level adversaries.

Method Text-Level Attacks Bi-Level Attacks
BERT-Attack GBDA Co-Attack SGA

TeCoA 37.14 35.30 26.73 25.94
PMG-FT 37.61 36.46 28.11 27.85

FARE 35.45 34.97 25.38 25.06
AdvSimplex 40.21 39.88 32.95 32.53

Table 7. Average accuracy (%) using adversaries of varying ϵ for
both fine-tuning and evaluations (ViT-B) with the VPT strategy.

Perturbation Radius Method Clean PGD CW AA

ϵI = 1/255

TeCoA 51.00 32.27 31.11 30.26
PMG-FT 52.64 33.09 32.10 30.83

FARE 52.75 32.69 31.58 30.64
AdvSimplex 55.08 34.96 33.75 33.16

ϵI = 2/255

TeCoA 42.61 18.12 16.88 15.39
PMG-FT 42.11 19.26 17.68 16.47

FARE 42.81 18.98 17.46 16.35
AdvSimplex 44.70 22.57 21.13 20.28

ϵI = 3/255

TeCoA 33.86 12.32 10.78 8.89
PMG-FT 32.52 12.87 11.36 9.38

FARE 33.70 12.47 10.92 9.04
AdvSimplex 35.11 15.38 14.42 11.96

ϵI = 4/255

TeCoA 26.78 11.04 9.87 7.19
PMG-FT 23.57 11.73 10.01 7.26

FARE 26.17 11.49 10.32 7.53
AdvSimplex 29.23 14.25 12.63 10.22

Adversarial fine-tuning w.r.t. diverse perturbation radii.
Table 5 shows the average clean and robust accuracy across
15 datasets w.r.t. various perturbation radii. Our AdvSimplex
consistently surpasses other adversarial fine-tuning methods
when facing stronger adversaries in zero-shot settings.

Robustness on text-level and bi-level attacks. In addition
to image-level attacks, we assess text-level and bi-level
attacks. Table 6 reports robust accuracy under these settings.
Text-level attacks are evaluated using BERT-Attack (Li et al.,
2020) and Gradient-Based Distributional Attack (GBDA)
(Guo et al., 2021), while bi-level adversaries are tested using
Collaborative Multi-modal Adversarial Attack (Co-Attack)
(Zhang et al., 2022a) and Set-level Guidance Attack (SGA)
(Lu et al., 2023). Our AdvSimplex outperforms existing
adversarial fine-tuning methods on all attack types.

Efficient fine-tuning with VPT. Fine-tuning the full param-
eter space is computationally expensive for VLMs. Thus,
we investigate adversarial fine-tuning with Visual Prompt
Tuning (VPT) (Jia et al., 2022), a parameter-efficient strat-
egy with learnable parameters in the token embedding layer.
Table 7 shows the zero-shot performance of AdvSimplex
under various adversarial configurations, comparing it with
other techniques that also use VPT. Our AdvSimplex, even
when using VPT for efficiency, outperforms previous works.

5.2. Extensions to Other Architectures and Tasks

BLIP: Vision-text Understanding. Beyond standard CLIP
(Radford et al., 2021), we further explore zero-shot robust-
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Table 8. BLIP Extension for Vision-Text Understanding. Eval-
uations on clean and PGD-20 adversarial samples. TR and IR
represent the recall@1 for text and image retrieval, respectively.
CIDEr measures the similarity of a generated sentence against a
set of ground truth sentences for image captioning evaluations.

Method
Image-Text Retrieval Image Captioning

Clean
TR

Robust
TR

Clean
IR

Robust
IR

Clean
CIDEr

Robust
CIDEr

TeCoA 87.5 54.4 77.0 47.5 96.9 57.8
PMG-FT 87.8 55.6 77.9 48.2 97.5 58.2

FARE 88.2 55.9 78.4 49.0 98.1 58.7
AdvSimplex 91.7 58.7 80.9 51.6 99.5 63.4

Table 9. Medical CLIP Extension for Diagnosis. AUC score evalu-
ations on both clean and PGD-20 adversarial samples.

Method ChestXray14 CheXpert PadChest

Clean PGD Clean PGD Clean PGD

TeCoA 0.674 0.526 0.857 0.685 0.602 0.483
PMG-FT 0.692 0.538 0.850 0.688 0.619 0.495

FARE 0.687 0.533 0.845 0.679 0.615 0.490
AdvSimplex 0.742 0.579 0.880 0.735 0.632 0.563

ness under alternative VLM architectures and downstream
tasks using BLIP (Li et al., 2022), which combines multi-
ple vision-language understanding tasks. We consider two
cross-modal tasks: (i) image-text retrieval using Flickr30k
(Plummer et al., 2015), and (ii) image captioning using No-
caps (Agrawal et al., 2019). For adversarial fine-tuning,
we adversarially optimize the Image-Text Contrastive (ITC)
learning, Image-Text Matching (ITM), and Language Mod-
eling (LM) modules (Li et al., 2021), instead of performing
alignment as in Eq. (3). Table 8 shows zero-shot results on
clean samples and PGD-based adversarial attacks (20 steps)
with ϵ=1/255, where AdvSimplex enjoys great adaptability.

Medical CLIP: Medical Diagnosis. Below, we investigate
AdvSimplex in the medical imaging domain, where adver-
sarial threats may affect computer-aided diagnostics (Zhao
et al., 2023b). We employ a radiology-oriented CLIP vari-
ant under the CheXzero paradigm (Tiu et al., 2022) with
a ViT-B backbone, again applying adversarial fine-tuning.
We measure zero-shot performance on three multi-label ra-
diology benchmarks: ChestX-ray14 (Wang et al., 2017),
CheXpert (Irvin et al., 2019), and PadChest (Bustos et al.,
2020). We report the Area Under the Curve (AUC) on clean
and adversarial samples, where adversaries are generated
via 20-step PGD under ϵ=1/255. Table 9 shows that our
method consistently obtains higher AUC scores than prior
approaches in clean and adversarial samples. Our method
enjoys superior robustness on PadChest, which includes 192
disease categories and numerous uncommon pathologies.

5.3. Further Analyses

Below, we analyze the effectiveness and generalizability of
our AdvSimplex across diverse settings.

Table 10. Average clean and robust accuracy (%) of our AdvSim-
plex method vs. AdvTetrahedron across 15 datasets.

Configuration Clean PGD AA

AdvSimplex 60.23 35.68 34.06
AdvTetrahedron 60.80 36.49 35.17

Table 11. Average Performance (%) of our AdvSimplex method
using different configurations of the derived upper bound Ω.

Configuration Clean PGD AA

w/o cross-product term ( ¯̄Ω) 59.97 34.92 33.19
w/ cross-product term (Ω̄) 60.23 35.68 34.06

Table 12. Ablation study of three components in our method for
average clean and robust accuracy (%) on 15 datasets.

¯̄Ω Re-weighting (Eq. (16)) Clean PGD CW AA

1 55.79 30.24 29.50 28.86
2 ✓ 59.45 34.38 33.64 32.96
3 ✓ 56.92 33.17 32.49 31.72

4 ✓ ✓ 60.23 35.68 34.93 34.06

Higher-order simplices. According to Theorem 3.1 for
simplices with Q> 3 vertices, i.e., a tetrahedron (Q = 4
vertices), Table 10 shows gains for (x,x+δx,i,x+δx,i+1,x+
δx,i+2) for consecutive i = 1, . . . ,m − 2 simplices from
gradient ascent steps over AdvSimplex (Q = 3 vertices).

Cross-product term in the upper bound Ω̄(x). Recall
that we have a cross-product term γ (last term in approx.
Ω(x) in Eq. (6)) for a better estimation of the upper bound
of the prediction gap. Table 11 analyzes its impact on ad-
versarial fine-tuning. A more precise estimation with the
cross-product term improves the zero-shot adversarial ro-
bustness. The cross-term product is derived using Kronecker
operations, resulting in third-order statistics. Such statistics
also have a closed-form solution, and the dimensionality of
tensors is tensor-sketched to keep calculations fast (Wein-
berger et al., 2009). See Appendix C.3 for derivations.

Impact of each module. Below we ablate two key com-
ponents of AdvSimplex: (i) ¯̄Ω, and (ii) weighting in Eq.
(16). Table 12 shows that our baseline (first row) follows
the surrogate optimization of robust risk (i.e., TRADES
(Zhang et al., 2019)) by extending the point-wise clean-
adversarial prediction alignment with intermediate adver-
saries. Despite its simplification, our baseline approach al-
ready achieves competitive performance compared to prior
adversarial fine-tuning methods. Incorporating “adversar-
ial simplices” yields further gains in both clean and robust
accuracy. Our adaptive re-weighting emphasizes that not
every simplex is equally adversarial.

Accuracy-robustness trade-off. Striking a balance be-
tween natural performance and adversarial robustness is
known from uni-modal adversarial learning (Zhang et al.,
2019; Dong et al., 2023a). Below, we explore it in the multi-
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Figure 4. Evaluations of the average performance (%) across 15
datasets. (a) Trade-off between zero-shot clean and robust accuracy
by tuning λ. (b) Comparison of our closed-form upper bound with
adversarial sampling at varying sample sizes (the circle radius
indicates the number of samples; for “closed-form” radius is ∞).

Table 13. Average Performance (%) of our proposed method with
diverse re-weighting strategies for adversarial triangular regions.

Re-Weighting Strategy Clean PGD AA

Uniform Weighting (No Weights) 59.45 34.38 32.96
Linear Weighting (i/m) 58.74 35.12 33.48

Adaptive Weighting (Ours) 60.23 35.68 34.06

modal CLIP and zero-shot scenario. We analyze the effect of
hyper-parameter λ, which controls the relative weighting of
clean sample classification vs. adversarial-clean prediction
alignment. Figure 4a shows that increasing λ enhances ad-
versarial robustness yet reduces clean accuracy. Conversely,
lowering λ improves zero-shot performance on benign in-
puts at the cost of reduced robustness. Such a trade-off
stems from the optimization of natural and boundary risks.

Performance of sampling vs. closed-form solution. Recall
that we introduce an efficient upper bound derived with a
closed-form solution replacing sampling “adversarial sim-
plices”. Below, we compare our “upper-bound closed-form
model” against explicit sampling of “adversarial simplices”
for the standard alignment loss. Figure 4b shows that al-
though increasing the sampling amount leads to a gradual
improvement in adversarial robustness, it stabilizes around
70 samples and saturates around 100 samples, posing sub-
stantial computational training time of 13.6 hours per epoch.
In contrast, our AdvSimplex requires merely 4.1 hours per
epoch while attaining comparable robustness.

Re-weighting mechanisms for “adv. simplices”. Below
we compare the use of weights from Eq. (16) with (i) uni-
form weighting vs. (2) linear weighting (i/m) that place
greater emphasis on adversaries from later iteration steps.
Table 13 shows that our Eq. (16) outperforms other variants.

Closed-form vs. sampled “adversarial simplex”. Below,
we analyze the average robust accuracy of the closed-form
“adversarial simplices” vs. sampled “adversarial simplices”
(70 samples per simplex). We attack both methods with an
index i adversary from PGD-20. Table 14 shows that the
closed-form solution enjoys greater zero-shot robustness

Table 14. Average robust accuracy (%) for closed-form “adver-
sarial simplices” vs. sampling from “adversarial simplices” (70
samples per simplex) evaluated on attack samples with index num-
ber i=6, 8, 10, 12, 14 generated via PGD-20.

Optimization Strategy Intermediate Adv. Sample Index (Attack)

6-th 8-th 10-th 12-th 14-th

Sampled simplex 35.66 35.18 34.84 34.47 34.19
Closed-form simplex 38.61 37.89 37.22 36.50 36.13

Table 15. Average robust accuracy (%) on worst-case and most
transferable adversaries sampled from “adversarial simplices”.

Optimization Strategy ϵ = 2/255 ϵ = 4/255

PGD Worst-Case Transfer PGD Worst-Case Transfer

Sampled simplex 35.19 36.86 40.90 16.92 21.15 33.28
Closed-form simplex 35.68 39.51 43.38 18.63 23.72 35.92

against adversarial attacks of various step numbers.

Performance w.r.t. sampled “adversarial simplices”. In
addition to attacks along the generation path, we also eval-
uate the adversarial robustness against both the worst-case
and the most transferable adversaries sampled from “ad-
versarial simplices”. Following the setup from Figure 3,
worst-case adversaries are obtained from the target CLIP
model, and the most transferable adversaries from three
other CLIP models. Table 15 shows that our derived closed-
form upper-bound model enjoys greater robustness against
adversaries from “adversarial simplices”.

6. Conclusion
Motivated by our analysis of the robustness degradation
against underlying adversaries from “adversarial simplices”,
we have uncovered that the point-wise prediction alignment
in robust VLMs leads to weak robustness generalization.
Thus, we have explored recent attack strategies to formulate
simplices between clean vertex x and consecutive adversar-
ial samples on the gradient ascent path. While sampling
such simplices is prohibitive, and aligning such adversarial
candidate points is also prohibitive, one may reformulate
the problem by minimizing an upper bound of the align-
ment loss. Our upper bound employs closed-form statistics
obtained from the vertices of simplices, the Jacobian and
Hessian matrices. We only pass clean samples via the en-
coder, reducing time complexity, and we achieve “infinite
sampling” effect with our formulation during fine-tuning.
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Impact Statement
The advancement of Vision-Language Models (VLMs) has
revolutionized zero-shot classification and a series of vision-
language understanding tasks. However, the deployment of
these models in real-world applications necessitates robust
defenses against (unforeseen) adversarial attacks, which
can significantly undermine their performance and trust-
worthiness. Our proposed adversarial fine-tuning method
addresses this critical security vulnerability by enhancing
the robustness of VLMs against adversarial samples, ensur-
ing more reliable performance in diverse scenarios. The
improvement in zero-shot adversarial robustness can further
lead to several positive outcomes as follows:

1. Research Advancement: Our findings on the corre-
lation between adversaries on simplex and adversarial
robustness provide insights for the broader research
community related to robust cross-modal learning.

2. Enhanced AI Safety: By improving the robustness
of foundational VLMs against unforeseen adversarial
attacks, our method contributes to the development of
more secure AI systems that can be safely deployed
in sensitive applications, such as autonomous driving,
healthcare diagnostics, and security surveillance.

3. Social Trust: As AI systems become increasingly in-
tegrated into daily life, ensuring their reliability and
robustness is important. Our improvement of adver-
sarial robustness on foundational models further helps
build societal trust in AI technologies.
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Appendices.
A. Limitations.
Although our method yields substantial gains in zero-shot adversarial robustness, supported by both empirical results and
theoretical analysis, we acknowledge two primary limitations that suggest avenues for future improvements:

1. Computational Overhead: While our adversary-generation strategy and subsequent optimization via the closed-form
upper save time during fine-tuning over naive sampling of simplex, this cost would still benefit from further reduction.
It is worth noting that the inference stage does not incur extra overhead relative to previous methods.

2. Implicit Trade-off Using PEFT: In this work, we primarily concentrate on adversarial full fine-tuning of vision-
language models. According to Tables 5 and 7, it is evident that although Parameter-Efficient Fine-Tuning (PEFT)
provides improved training efficiency, it can also degrade zero-shot performance on both clean and adversarial data
compared to full fine-tuning. This performance-efficiency trade-off affects all adversarial fine-tuning methods, and we
anticipate that future advancements in PEFT will help minimize the robustness gap compared to full fine-tuning.

3. Positive Applications of Adversarial Examples: While our work primarily focuses on defending against adversarial
examples and mitigating their associated threats, adversarial examples can also serve constructive purposes. For
instance, they are widely used as robustness benchmarks to evaluate model reliability under distribution shifts (Carlini
et al., 2019; Croce et al., 2021), and as tools for privacy protection (Dong & Xie, 2021; Dong et al., 2023b; Chen
et al., 2025). A more comprehensive treatment of these positive applications is beyond the scope of this work, but we
consider it an important direction for future research.

B. Experimental Configurations.
In this section, we provide a comprehensive overview of the experimental configuration used throughout our work, including
both dataset specifications for adversarial fine-tuning/evaluations and the implementation details of our proposed method.

B.1. Dataset descriptions

We follow prior works (Mao et al., 2023; Wang et al., 2024) to adversarially fine-tune the CLIP model on the ImageNet
training split (Deng et al., 2009) and evaluate its performance on the ImageNet validation set, as the ground-truth labels for
the test set are not publicly available. Additionally, we assess the CLIP model on 14 diverse zero-shot datasets, covering a
broad spectrum of image recognition tasks. Collectively, these 15 datasets encompass:

• General Image Classification: ImageNet (Deng et al., 2009), STL-10 (Coates et al., 2011), CIFAR-10/100 (Krizhevsky
et al., 2009), Caltech-101 (Fei-Fei et al., 2004), and Caltech-256 (Griffin et al., 2007).

• Fine-Grained Classification: FGVC Aircraft (Maji et al., 2013), Flower102 (Nilsback & Zisserman, 2008), Food101
(Bossard et al., 2014), Oxford-IIIT Pets (Parkhi et al., 2012), and Stanford Cars (Krause et al., 2013).

• Domain-Specific Classification: Describable Textures Dataset (DTD) (Cimpoi et al., 2014), EuroSAT (Helber et al.,
2019), and PatchCamelyon (PCAM) (Veeling et al., 2018).

• Scene Recognition: SUN397 (Xiao et al., 2010).

We use standard data pre-processing (image resizing to the resolution of 224× 224 and center-cropping) during adversarial
fine-tuning to ensure the consistency with prior works (Mao et al., 2023; Wang et al., 2024; Schlarmann et al., 2024). In
addition to the datasets used for zero-shot classification, we further incorporate vision-language understanding and medical
imaging datasets, with additional details provided in the following section.

B.2. Implementation details

Standard Setup. Following established adversarial fine-tuning works (Mao et al., 2023; Wang et al., 2024), we adopt the
CLIP model (Radford et al., 2021) with the ViT-Base/32 backbone (Dosovitskiy et al., 2021). We use the SGD optimizer
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with a momentum factor of 0.9, a batch size of 512, and an initial learning rate of 1× 10−5 (scheduled via cosine decay) to
optimize the image encoder of the CLIP model. For Parameter-Efficient Fine-Tuning (PEFT) with Visual Prompt Tuning
(VPT) (Jia et al., 2022), we insert learnable tokens of size 100 into the vision branch of CLIP and use a learning rate of 40.
For adversary generation during the fine-tuning stage, we employ PGD (Madry et al., 2018) with m = 10 iterations under
the ℓ∞-norm threat model, setting the perturbation radius ϵ = 2/255 and the step size α = 1/255, unless stated otherwise.
The weighting factor is set to λ = 3.0. All robustness evaluations are performed using adaptive attack schemes to ensure a
fair comparison. All the experiments were run on eight NVIDIA H100 GPUs.

Evaluation Protocol. In line with prior studies on adversarially robust CLIP (Mao et al., 2023; Wang et al., 2024;
Schlarmann et al., 2024), we evaluate our method with both clean samples and three strong white-box adversaries: 20-step
PGD (Madry et al., 2018), the CW attack (Carlini & Wagner, 2017), and Auto-Attack (AA) (Croce & Hein, 2020), focusing
mainly on adversarial images to align with real-world defense applications. We additionally assess robustness against
text-level adversaries (BERT-Attack (Li et al., 2020) and GBDA (Guo et al., 2021)) and bi-level adversaries from both image
and text branches (Co-Attack (Zhang et al., 2022a) and SGA (Lu et al., 2023)), as described in the main text.

BLIP Extensions. To examine zero-shot robustness on downstream vision-language understanding tasks, we incorporate
the BLIP framework (Li et al., 2022), which unifies vision-language tasks via bootstrapped pre-training. Specifically, we
consider two cross-modal tasks: (i) image-text retrieval using the Flickr30k dataset (Plummer et al., 2015), and (ii) image
captioning using the Nocaps dataset (Agrawal et al., 2019). We conduct adversarial min-max optimization of the Image-Text
Contrastive (ITC), Image-Text Matching (ITM), and Language Modeling (LM) objectives following (Li et al., 2021) with
our approach as an addition optimization term to obtain a robust version of BLIP. We then evaluate its robustness using
iterative PGD for both image-text retrieval (maximizing the ITM loss) and image captioning (maximizing the LM loss). We
generate and evaluate adversarial samples using the perturbation configuration of ϵ = 1/255.

Medical CLIP Extensions. Beyond evaluations on natural images, we further investigate robustness in medical imaging
using a specialized CLIP model (ViT-B/16) trained via CheXzero (Tiu et al., 2022) on chest radiographs and medical reports
from the MIMIC database (Johnson et al., 2019). The text encoder of the CLIP model is based on BioBERT (Lee et al.,
2020), tailored for biomedical language. We evaluate zero-shot AUC on ChestX-ray14 (Wang et al., 2017), CheXpert (Irvin
et al., 2019), and PadChest (Bustos et al., 2020) under 20-step PGD attacks with the perturbation radius of ϵ = 1/255.

C. Further Analyses
C.1. Derivation of bound in Eq. (7)

In Eq. (5) & (6), elements after the sum can be written as (
√
α + 1

2

√
β)2 = α + 1

4β + 2 · 1
2 · γ, where γ =

√
αβ and

α, β ≥ 0. Using the known inequality (a + b)p ≤ 2p−1(ap + bp) and setting p = 2, a =
√
α, b = 1

2

√
β, we obtain

(
√
α+ 1

2

√
β)2 ≤ 2α+ 1

2β. This upper bound eliminates the γ term, which is why it does not appear in Eq. (7). This result
corresponds to ¯̄Ω in Eq. (11). For completeness, we evaluate the term with γ in Appendix C.3, but it is computationally
expensive due to operating in R(wh)2 instead of Rwh.

C.2. Hyper-parameter analyses
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Figure 5. Hyper-parameter (Count sketching size d′ and refreshment frequency of count sketching matrices) sensitivity of our adversarial
fine-tuning method on average clean and (Auto-Attack) robust accuracy (%) across 15 datasets in the zero-shot setting.
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Beyond our analysis of the loss weighting factor λ described in Figure 4a in the main text, we further analyze how other
hyper-parameters influence our adversarial fine-tuning method, especially using diverse configurations of the count sketching
for accelerating the inner product computation.

As shown in Figure 5, we present both clean accuracy and (Auto-Attack) robust accuracy under various hyper-parameter
configurations. Note that the setting of all the hyper-parameters is obtained through the Hyperopt package (Bergstra et al.,
2013) for a 25-iteration hyper-parameter search on a 1% subset of the ImageNet training set to ensure consistency and was
subsequently applied across diverse adversarial fine-tuning scenarios. Notably, appropriate choices of the count sketching
hyper-parameters enable a balanced trade-off between natural performance and adversarial robustness in the zero-shot
setting.

C.3. The cross-product term of the upper bound Ω̄(x).

The aggregation over the cross-terms γ(x, δx) can be expanded as follows:

1
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where P∈Rw′h′×wh is the projection matrix used by the count sketching, and w′h′≪wh.

C.4. Set-level augmentation variant of AdvSimplex

Recall that SGA (Lu et al., 2023) introduces adversarial perturbations in every adversary generation step (gradient ascent
step) around the intermediate adversary v′, which continues the ascent step from their mean (µ ̸= v′). Similar strategies
have also been demonstrated to be effective in enhancing adversarial robustness (Addepalli et al., 2022; Dong et al., 2023c;
2024e). Thus, for the same x, it is possible to generate three different adversarial trajectories. Let us consider an SGA variant
of our AdvSimplex by using the simplex formed from the final 3 adversaries of 3 adversarial paths per sample x, dubbed
as AdvSimplex-SGA. Furthermore, we consider using the final adversarial example generated via SGA and generating 3
adversarial paths as in AdvSimplex-SGA and use the final 3 adversaries directly for robustification. The average results
across 15 datasets are shown in Table 16.

Table 16. Average Performance (%) of our AdvSimplex method with the set-level augmentation.

Configuration Clean AA

AT-SGA (standard: one adversary per x) 56.84 30.08
AT-SGA (3 adversaries per x) 57.31 30.93

AdvSimplex-SGA (simplex on 3 Adversaries per x) 58.75 32.40
AdvSimplex 60.23 34.06

C.5. KL-divergence alternative to the Euclidean distance-based alignment

Prediction alignment via the KL-divergence has been widely used in the context of adversarially robust learning in previous
studies (Zhang et al., 2019; Dong et al., 2022). Thus, in this section, we also consider a KL-divergence alternative to
our AdvSimplex which does not use the Euclidean distance. Specifically, we replace Ω(x) by using a different Taylor
expansion log g(x+ δx)− log g(x) ≈ Jlog(g+ρ)(x)δx + 1

2 [δ
⊤
x (Hlog(g+ρ)(x))cδx]

C
c=1, where ρ = 1× 10−5 is added for

the numerical stability of log. Hence, we can obtain ΩKL(x) = 1
κ

∑
δx∈∆X

KL(g(x)∥g(x + δx)) ≈ −
∑C

c=1(g(x))c ·[
⟨µx, Jlog(g+ρ)(x, c)⟩+ 1

2 ⟨Σx, (Hlog(g+ρ)(x))c⟩
]
, where µx is the analytical mean of simplex, and Σx is from Theorem
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3.1. The average results across 15 datasets are shown in Table 17.

Table 17. Average Performance (%) of our AdvSimplex built with the KL-divergence.

Configuration Clean AA

KL-divergence in Eq. (1) 59.28 32.96
AdvSimplex-KL (using ΩKL(x) instead of Ω(x)) 59.13 33.20

AdvSimplex 60.23 34.06

C.6. Comparison with TGA-ZSR

TGA-ZSR (Yu et al., 2024) designs text-guided attention to enhance zero-shot robustness of VLMs. Below we evaluate and
compare our AdvSimplex with TGA-ZSR on image-level, text-level, and bi-level adversarial attacks. The average results
across 15 datasets are shown in Table 18.

Table 18. Average Performance (%) of our AdvSimplex method vs. TGA-ZSR.

Method Image-level Attacks Text-level Attacks Bi-level Attacks

Clean PGD AA BERT-Attack GBDA Co-Attack SGA

TGA-ZSR 57.54 31.15 30.41 38.07 37.32 29.30 28.58
AdvSimplex 60.23 35.68 34.06 40.21 39.88 32.95 32.53

C.7. Analysis of intermediate adversaries along the adversary generation trajectory

As the gradient ascent optimization during adversary generation uses a fixed gradient step size and the decision boundary
of VLMs is non-linear, the adversarial path is thus not a perfect ascent. Specifically, intermediate adversarial samples
along the trajectory may sometimes be stronger than final adversarial samples. In addition, these intermediate adversaries
enjoy diversity in adversarial directions. To validate the dynamic weighting behavior described in Eq. (16), we empirically
investigate whether the final-step adversary at iteration m consistently receives a higher weight (ωm) than its intermediate
counterparts. We note that the inequalities ωm ≥ ωm−1, ωm−1 ≥ ωm−2, and ωm−2 ≥ ωm−3 hold only 83%, 79%, and
73% times on average, respectively. This observation supports our claim that the final-step adversary is not necessarily more
adversarial than adversaries from earlier iterations, justifying the need for adaptive weighting across intermediate steps.

Inspired by the insights of Friendly Adversarial Training (Zhang et al., 2020), which emphasizes the role of weak adversaries
in shaping robust decision boundaries, we analyze the impact of using simplices constructed from adversarial examples at
different steps.

Table 19. Average Performance (%) of our AdvSimplex using simplices formed by subsets of intermediate adversary indices.

Indices of Used Adversarial Simplices Clean AA

1-3 (early steps) 59.79 32.00
1-5 (early steps) 60.37 32.49
6-10 (late steps) 59.14 33.38
8-10 (late steps) 58.65 33.06

1-10 (all) 60.23 34.06

Table 19 reveals that early adversarial steps (e.g., steps 1–3) improve clean accuracy, likely due to their strong correlation
with the original input and their augmentation effect. In contrast, late steps (e.g., steps 8–10) contribute more to adversarial
robustness. Notably, combining intermediate steps across the entire adversarial trajectory (1–10) achieves the best trade-off,
yielding the highest clean and robust accuracy, suggesting that mid-level adversaries offer complementary benefits in
balancing robustness and generalization.
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