

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MLOT: GENERALIZING THE BIPARTITE STRUCTURE TO A MULTI-LAYERED FRAMEWORK FOR OPTIMAL TRANSPORT

Anonymous authors

Paper under double-blind review

ABSTRACT

Although optimal transport (OT) has achieved significant success and widespread application in various fields, its structure remains relatively simple, relying on bipartite graphs with only two layers of nodes for transportation. In this paper, we propose a multi-layer optimal transport (MLOT) method that extends the original two-layer structure to handle transportation problems across multiple hierarchical levels, making it more adaptable to the complex structures found in deep learning tasks. In this framework, the source distribution flows through intermediate layers before reaching the target distribution, where estimating the intermediate distributions becomes crucial for solving the MLOT. Under entropic regularization, we further propose the MLOT-Sinkhorn algorithm to solve the multi-layer OT problem, where intermediate distributions can be estimated through the transportation calculations between adjacent layers. This algorithm can be accelerated using GPUs and significantly outperforms general solvers such as Gurobi. We also present theoretical results for the entropic MLOT, demonstrating its efficiency advantages and convergence properties. Furthermore, we find that our MLOT is well-suited for machine learning tasks based on data augmentation. As a result, we apply the MLOT-Sinkhorn algorithm to tasks such as text-image retrieval and visual graph matching. Experimental results show that reformulating these problems within the MLOT framework leads to significant improvements in performance.

1 INTRODUCTION

Optimal Transport (OT) [28] has been an increasingly important mathematical tool for solving various machine learning problems, with success in a wide range of applications, ranging from domain adaptation [36], learning generative models [3], network designing [43], self-supervised contrastive learning [6], to long-tail recognition [27] etc. It allows for the comparison of probability distributions, combining the underlying geometric structure of the sample space.

Based on entropic OT, the Sinkhorn algorithm, due to its GPU-friendly nature, allows for forward computation and backpropagation in neural networks, and has thus been widely used in deep learning tasks such as deep clustering, graph matching, and more. However, the vanilla OT behind the Sinkhorn algorithm typically relies on the assumption of a simple bipartite graph structure with fixed, known marginal distributions. This is problematic for tasks like zero-shot retrieval, where the distribution of the retrieved items (the target) is unknown. Standard approaches force a uniform prior on the target, which lacks physical significance and limits performance. By transitioning from a two-layer network to a multi-layered one, as shown in Fig. 1, MLOT allows us to treat these unknown distributions as latent intermediate layers that are adaptively computed, rather than fixed priors. Thereby broadening the OT theory and its potential applications for deep learning.

Thus, in this paper, we first propose a new variant of optimal transport called multi-layered optimal transport (MLOT) that extends the original two-layered transportation structure to the multi-layered case. As shown in Fig. 1, we assume the known source and target distributions in the source and target layers, along with the known cost matrices between layers. Our objective is to determine intermediate distributions and the transportation plan (i.e., coupling) between layers. Similar to vanilla OT, this problem fundamentally boils down to linear programming [9] and one can employ the (inefficient)

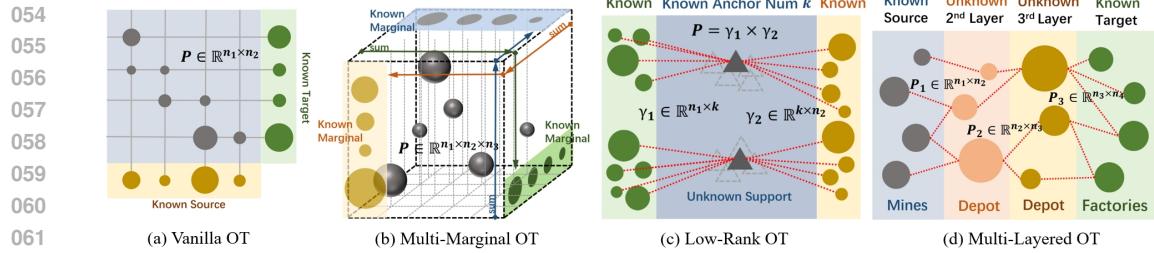


Figure 1: Comparisons among Vanilla OT, MMOT, LOT and MLOT(ours). Compared to the first two, the key focus of MLOT lies in the estimation of the unknown intermediate distributions. Relative to LOT, beyond the difference of employing a fixed support, they have more essential distinction in physical meaning: MLOT optimizes on real flow transition \mathbf{P}_i , while LOT optimizes probability transition γ_i , which means the real flow from $i \rightarrow j$ is respectively modeled by $\sum_{\ell} \min(\mathbf{P}_{1,\ell}, \mathbf{P}_{2,\ell})$ and $\sum_k \gamma_{1,ik} \cdot \gamma_{2,kj} / g_k$.

network simplex method [16] to solve it. Building on prior work [8], we endeavor to accelerate the solution of MLOT using matrix iteration algorithms for GPU acceleration.

To achieve fast computation and obtain an approximate solution, we apply entropic regularization to MLOT. The MLOT-Sinkhorn algorithm is proposed through alternating iterations of scaling variables [8] and intermediate distributions. Theoretical results for our MLOT are also presented, including the global convergence of our MLOT-Sinkhorn algorithm. We first do experiments with a small enough coefficient for entropic regularization. The results show that our MLOT-Sinkhorn can achieve an objective function close to the solution obtained from Gurobi, but tens to hundreds of times faster for larger problems. Furthermore, we view zero-shot retrieval based on CLIP [30] as a transportation problem and utilize MLOT to enhance inference through data augmentation. Specifically, we consider the first layer as features of query images, the second layer as features of the text to be retrieved (i.e., captions), and the third layer as features of the augmented images in the first layer. We employ the MLOT-Sinkhorn algorithm for solving this, and experimental results confirm that this inference method has significantly improved compared to previous softmax-based methods without requiring additional training. Besides, based on the calculation of intermediate distributions, we conducted image interpolation experiments. The results are shown in Appendix A, indicating that the interpolated images generated using MLOT are relatively clear, serving as a viable alternative method for barycentric interpolation. **This paper contributes:**

- 1) We propose MLOT, where we extend the traditional bipartite graph to a multi-layer structure, in which source marginals transport mass to unknown immediate marginals and then further transport the mass to the target marginal.
- 2) Entropic regularization is applied to MLOT, and two Sinkhorn-like algorithms for MLOT are derived to obtain an approximate solution for MLOT. We also present theoretical results for the entropic MLOT, which provide estimates of the intermediate distributions and demonstrate the convergence of the entropic MLOT. Experiments demonstrate that under the multi-layer assumption, our method offers a significant advantage in computational efficiency compared to traditional methods.
- 3) Compared to traditional deep learning tasks, e.g., classification, retrieval, and matching, which mostly rely on a two-layer framework, we propose a Data Augmentation-based learning method that extends the two-layer structure to three layers, where the third layer represents the augmented data from the first layer. We conducted experiments on CLIP-based retrieval and visual graph matching. The results show our new learning framework significantly outperforms the original two-layer case.

2 PRELIMINARIES AND RELATED WORK

Entropic Optimal Transport. OT dating back to [24], with the objective to seek a mapping that minimizes the total cost of transporting mass from a source measure to a target measure. Kantorovich [19] introduces the idea of using probabilistic transport instead of a deterministic map, which is now commonly known as Kantorovich’s OT. Specifically, given the cost matrix $\mathbf{C} \in \mathbb{R}_{m \times n}^+$ and two histograms (\mathbf{a}, \mathbf{b}) where n and m are numbers of dimensions, Kantorovich’s OT with the entropic regularization [42] involves solving the optimization $\min_{\mathbf{P} \in U(\mathbf{a}, \mathbf{b})} \langle \mathbf{C}, \mathbf{P} \rangle - \epsilon H(\mathbf{P})$, where $U(\mathbf{a}, \mathbf{b}) = \{\mathbf{P} \in \mathbb{R}_{m \times n}^+ | \mathbf{P} \mathbf{1}_n = \mathbf{a}, \mathbf{P}^\top \mathbf{1}_m = \mathbf{b}\}$ and $\epsilon > 0$ is the coefficient for entropic regularization $H(\mathbf{P}) = -\langle \mathbf{P}, \log \mathbf{P} - \mathbf{1}_{m \times n} \rangle$. The objective of entropic OT is ϵ -strongly convex,

108 and thus it has a unique solution, which satisfies $\mathbf{P}_\epsilon^* = \text{diag}(\mathbf{u}) \mathbf{K} \text{diag}(\mathbf{v})$, where $\mathbf{K} = e^{-\mathbf{C}/\epsilon}$ is the
 109 Gibbs kernel associated to the cost matrix \mathbf{C} and (\mathbf{u}, \mathbf{v}) are two (unknown) scaling variables [8].
 110

111 **Low-Rank Optimal Transport.** Low-rank regularization has been proposed to mitigate the high
 112 computational cost and dimensionality issues of classical OT. Recent works [32; 31; 17] directly
 113 address the OT problem under a non-negative rank constraint $\text{rk}_+(\mathbf{P}) \leq r$ by factorizing the coupling
 114 matrix as $P = Q \text{diag}(1/g) R^\top$, with $Q \in \mathbb{R}^{n \times r}$ and $R \in \mathbb{R}^{m \times r}$, typically solved via Mirror Descent
 115 and Dykstra's algorithm. Alternatively, [13] introduces a decomposition through intermediate anchors,
 116 where the transport rank is controlled by the number of anchors, and the solution is obtained by
 117 alternating optimization of anchor positions and transport matrices. These works essentially focus on
 118 constraining the coupling to a multiplicative product structure rather than capturing the semantics of
 119 real transport flows. For example, transport from s_i to t_j is recovered by $\sum_k \gamma_{1,ik} \cdot \gamma_{2,kj} / g_k$, which
 120 lacks a physical interpretation of flow magnitude. In contrast, our MLOT directly models the actual
 121 transported mass, since the global transport can be recovered by $\sum_\ell \min(\mathbf{P}_{1,\ell}, \mathbf{P}_{2,\ell})$, highlighting
 122 the inherently additive nature of flow.

123 **Graph Optimal Transport.** The optimal transport on graphs can be traced back to [12], which
 124 first calculates the shortest distances between source nodes and target nodes to create a cost matrix,
 125 subsequently using it to compute the 1-Wasserstein distance. This approach transforms the problem
 126 into a linear program, and more precisely, a min-cost flow problem, which has been utilized and
 127 extended to define and study traffic congestion models. Recently, [20] introduced a new variant
 128 called Sobolev transport (ST), designed for measures supported on graphs, which allows for a
 129 closed-form expression for faster computation. Additionally, [21] generalized Sobolev transport
 130 with an Orlicz structure [25]. However, the aforementioned works primarily rely on calculating the
 131 shortest distances on the graph, and this simplified graph structure is often difficult to directly apply
 132 to deep representation learning. In this paper, we assume the graph structure follows a multi-layered
 133 form, and instead of using the shortest path to simplify the graph, we directly compute the inflow
 134 and outflow of each node (i.e. intermediate distributions), which can be directly applied to data
 135 augmentation-based representation learning.

136 **Multiple-Marginal Optimal Transport.** Instead of coupling two histograms (\mathbf{a}, \mathbf{b}) in Kantorovich
 137 problem [19], the multi-marginal optimal transportation [1] couples K histograms $(\mathbf{a}_k)_{k=1}^K$ by solving
 138 the following multi-marginal transport:

$$138 \quad \min_{\mathbf{P} \in \mathbb{R}_{n_1 \times n_2 \dots n_K}^+} \langle \mathbf{C}, \mathbf{P} \rangle = \sum_k \sum_{i_k=1}^{n_k} \mathbf{C}_{i_1, i_2, \dots, i_K} \mathbf{P}_{i_1, i_2, \dots, i_K} \quad \text{s.t.} \quad \sum_{l \neq k} \sum_{i_l=1}^{n_l} \mathbf{P}_{i_1, \dots, i_K} = \mathbf{a}_{k, i_k}, \forall k, i_k \quad (1)$$

141 where $\mathbf{C}_{i_1, i_2, \dots, i_K}$ is $n_1 \times \dots \times n_K$ cost tensor. Note the Multi-Marginal Optimal Transport has
 142 various applications including image processing [29], financial mathematics for derivative pricing [15]
 143 and so on [26]. Compared with MLOT, the Multi-Marginal Optimal Transport approach differs in
 144 that all of its marginals are deterministic, and its objective is to compute a high-dimensional coupling
 145 tensor between multiple marginals, rather than the coupling series between two marginals in this
 146 paper.

147 3 MULTI-LAYERED OPTIMAL TRANSPORT

148 3.1 MULTI-LAYERED OPTIMAL TRANSPORT AND ITS ENTROPIC REGULARIZATION

149 **Formulation of MLOT.** We first give the definition of our Multi-Layered Optimal Transport (MLOT).
 150 Given the known source distribution \mathbf{a}_1 and target distribution \mathbf{a}_K , our MLOT aims to transport
 151 the source distribution through intermediate uncertain distributions $(\mathbf{a}_2, \mathbf{a}_3, \dots, \mathbf{a}_{K-1})$ to the target
 152 distribution \mathbf{a}_K , where $\mathbf{C}_k \in \mathbb{R}_{n_k \times n_{k+1}}^+$ is known as the cost matrix between \mathbf{a}_k and \mathbf{a}_{k+1} . Our goal
 153 is to solve for the optimal couplings $(\mathbf{P}_k)_{k=1}^{K-1}$ and the intermediate distributions $(\mathbf{a}_k)_{k=2}^{K-1}$ with the
 154 following optimization:

$$155 \quad \min_{(\mathbf{P}_k)_k, (\mathbf{a}_k)_k} \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k \rangle \quad \text{s.t.} \quad \mathbf{P}_k \mathbf{1}_{n_{k+1}} = \mathbf{a}_k, \quad \text{and} \quad \mathbf{P}_k^\top \mathbf{1}_{n_k} = \mathbf{a}_{k+1}, \forall k < K. \quad (2)$$

156 This formulation is exact an LP, as proved in App. L. Note that when $K = 2$, our MLOT degenerates
 157 to the original Kantorovich OT when $\epsilon = 0$. One efficient way to solve the above problem is through

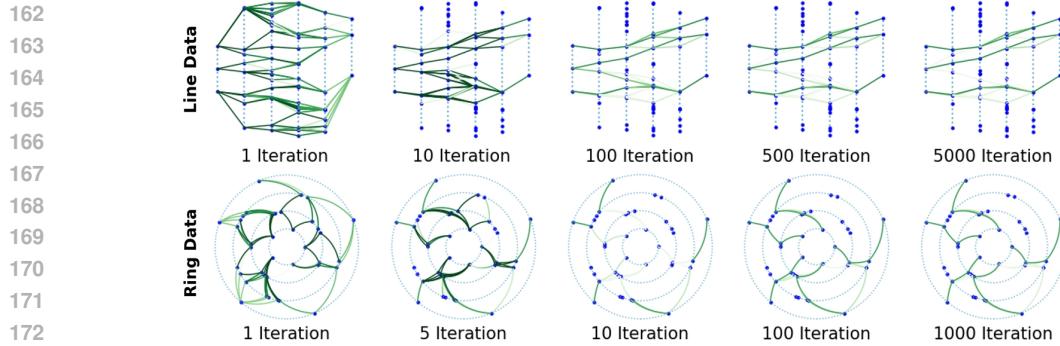


Figure 2: Transportation results of MLOT on synthetic Line and Ring data (refer to the data setup in Sec. 4) and the thickness of the green line is directly proportional to the value of transportation. By varying the iterations, couplings become sharper, and eventually converge to optimal transportation of entropic MLOT.

Graph OT methods based on the shortest path algorithm, as proposed by [34], where the shortest path distances between source and target nodes are first computed, followed by a heuristic algorithm to determine the final solution. However, such algorithms do not directly involve the computation of intermediate distributions $(\mathbf{a}_k)_{k=2}^{K-1}$, limiting their applicability in real-world scenarios. For instance, in the cross-border e-commerce operations problem mentioned in the introduction, if we introduce capacity constraints for goods transportation at ports, which are indeed present in real scenarios and need to be considered, the original shortest path-based algorithms become impractical.

Entropic Regularization of MLOT. We then introduce entropy regularization to MLOT in order to obtain a GPU-friendly Sinkhorn-like algorithm, which can iteratively compute an approximate solution for MLOT via matrix iterations. Unlike the case of vanilla OT, MLOT not only requires optimizing coupling \mathbf{P}_k but also involves intermediate distribution \mathbf{a}_k . Here, we contemplate applying entropy regularization to both, leading to the formulation of entropic MLOT:

$$\min_{(\mathbf{P}_k)_k, (\mathbf{a}_k)_k} \sum_{k=1}^{K-1} \left(\langle \mathbf{C}_k, \mathbf{P}_k \rangle - \epsilon H(\mathbf{P}_k) \right) - \tau \sum_{k=2}^{K-1} H(\mathbf{a}_k) \text{ s.t. } \mathbf{P}_k \mathbf{1}_{n_{k+1}} = \mathbf{a}_k, \mathbf{P}_k^\top \mathbf{1}_{n_k} = \mathbf{a}_{k+1}, \forall k. \quad (3)$$

where $\epsilon > 0$ and $\tau \geq 0$ are coefficients for the regularization terms $H(\mathbf{P}_k)$ and $H(\mathbf{a}_k)$, respectively. The optimization described above is essentially a convex optimization problem, ensuring the existence of a unique optimal solution. In particular, as $\epsilon, \tau \rightarrow 0$, the entropic MLOT in Eq. 3 degenerates to the original MLOT in Eq. 2. Furthermore, we can further derive properties of the solution as follows by using the method of Lagrange multipliers.

Proposition 1 (Convergence with ϵ and τ). *When regularization on intermediate is canceled ($\tau = 0$), the unique solution $(\mathbf{P}_k^{\epsilon, \tau})_k$ of Eq. 3 converges to the optimal solution \mathbf{P}_k^* of Eq. 2, as $\epsilon \rightarrow 0$:*

$$(\mathbf{P}_k^{\epsilon, 0})_k \xrightarrow{\epsilon \rightarrow 0} \arg \min_{(\mathbf{P}_k)_k} \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k \rangle. \quad (4)$$

When intermediate is regularized by τ , given fixed $\epsilon = \epsilon_0$, the unique solution $(\mathbf{P}_k^{\epsilon_0, \tau})_k$ of Eq. 3 converges to $(\mathbf{P}_k^{\epsilon_0, 0})_k$ as $\tau \rightarrow 0$:

$$(\mathbf{P}_k^{\epsilon_0, \tau})_k \xrightarrow{\tau \rightarrow 0} \arg \min_{(\mathbf{P}_k)_k} \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k \rangle - \epsilon_0 H(\mathbf{P}_k). \quad (5)$$

The proof is in Appendix H. Prop. 1 is essentially due to the fact that entropic regularization is a continuous function. This property demonstrates good convergence of MLOT. Eq. 4 and Eq. 5 show respectively that the regularization problem converges to the non-regularization case for both couplings and intermediate. Fig. 10 and Fig. 11 show visually the effect of these two convergences.

3.2 TWO ALGORITHMS OF ENTROPIC MLOT AND THEIR CONVERGENCE

In this subsection, we introduce two corresponding Matrix-Scaling-based algorithms: the Bregman iterative algorithm and the Sinkhorn-Knopp algorithm for MLOT.

216 3.2.1 BREGMAN ITERATIVE PROJECTIONS FOR MLOT
217

218 We first transform Eq. 3 into an equivalent form of the KL divergence.

219 **Proposition 2.** Define the general KL divergence as $\widetilde{KL}(\mathbf{P}|\mathbf{S}) = \sum_{ij} \mathbf{P}_{ij} \log \frac{\mathbf{P}_{ij}}{\mathbf{S}_{ij}} - \mathbf{P}_{ij} + \mathbf{S}_{ij}$, the
220 optimization in Eq. 3 is equivalent to the following minimization, where $(\mathbf{S}_k)_{ij} = e^{-(\mathbf{C}_k)_{ij}/\epsilon}$, and
221 $\Delta_k = \mathbf{1}_{n_k}/n_k$ represents uniform distribution:

223
$$\min_{(\mathbf{P}_k)_k, (\mathbf{a}_k)_k} \varepsilon \sum_{k=1}^{K-1} \widetilde{KL}(\mathbf{P}_k|\mathbf{S}_k) + \tau \sum_{k=2}^{K-1} KL(\mathbf{a}_k|\Delta_k), \text{ s.t. } \mathbf{P}_k \mathbf{1}_{n_{k+1}} = \mathbf{a}_k, \mathbf{P}_k^\top \mathbf{1}_{n_k} = \mathbf{a}_{k+1}, \forall k. \quad (6)$$

224
225

226 The proof is given in Appendix G. Prop. 2 shows that the optimal solutions $(\mathbf{P}_k)_k$ and $(\mathbf{a}_k)_k$ exactly
227 minimize the weighted summation of two KL divergences. Then we assume $\tau = 0$ and adopt
228 Bregman projections as proposed in [4] to solve the optimization.229 **Bregman Iterations for MLOT.** Following [4], we split the constraints, defining the constraint sets
230 as $\mathcal{C}_{2k-1} = \left\{ \mathbf{P}_k \in \mathbb{R}^{N_k \times N_{k+1}} \mid \mathbf{P}_k^\top \mathbf{1} = \mathbf{a}_k \right\}$ and $\mathcal{C}_{2k} = \left\{ \mathbf{P}_k \in \mathbb{R}^{N_k \times N_{k+1}} \mid \mathbf{P}_k \mathbf{1} = \mathbf{a}_{k+1} \right\}, \forall k$.
231 Therefore we can find $\mathbf{P}_k \in \mathcal{C}_{2k-1} \cap \mathcal{C}_{2k}, \forall k = 1, \dots, K-1$. Based on the Bregman projection
232 algorithms, we can iteratively compute \mathbf{P}_k , and our improvement lies in the calculation of \mathbf{a}_k :

233
$$\text{Proj}_{\mathcal{C}_{2k-1}}^{KL}(\mathbf{P}_k) = \mathbf{P}_k \text{diag} \left(\frac{\mathbf{a}_k}{\mathbf{P}_k^\top \mathbf{1}} \right), \text{Proj}_{\mathcal{C}_{2k}}^{KL}(\mathbf{P}_k) = \text{diag} \left(\frac{\mathbf{a}_{k+1}}{\mathbf{P}_k \mathbf{1}} \right) \mathbf{P}_k, \mathbf{a}_k = \left((\mathbf{P}_k^\top \mathbf{1}) \odot (\mathbf{P}_{k-1} \mathbf{1}) \right)^{1/2} \quad (7)$$

234
235

236 The proof is given in Appendix E. Building on [4], we assume that the constraints cycle periodically,
237 i.e., $\mathcal{C}_l = \mathcal{C}_{l+2K}$ for a positive integer index $l < 2K$. The minimization in Eq. 6 can then be solved
238 via the iterative projection scheme as $\mathbf{P}_k^* = \lim_{n \rightarrow \infty} \text{Proj}_{\mathcal{C}_n}^{KL}(\mathbf{P}_k^{(l-1)})$ and calculation of \mathbf{a}_k given in
239 Eq. 7 for all k . Convergence is guaranteed by the results in [5]. The advantage of this algorithm lies
240 in its simplicity of calculation, requiring no additional variables, making it suitable for training neural
241 networks, and we adopt this algorithm in data augmentation-based Applications in Sec. 3.3. However,
242 its computational efficiency is not optimal. In the following, we propose a more efficient algorithm.

243 3.2.2 MLOT-SINKHORN ALGORITHM AND ITS CONVERGENCE GUARANTEE

244 **Proposition 3.** The solution to Eq. 3 is unique, and has the form $\mathbf{P}_k = \text{diag}(\mathbf{u}_k) \mathbf{S}_k \text{diag}(\mathbf{v}_k)$ for $k = 1, \dots, K-1$ where $\mathbf{S}_k = e^{\mathbf{C}_k/\epsilon}$, and $\{(\mathbf{u}_k, \mathbf{v}_k)\}_k$ are the set of unknown scaling variables. While
245 the solution of the intermediate distributions satisfying following equations for $k = 2, 3, \dots, K-1$:
246

247
$$\mathbf{a}_k = \begin{cases} (\mathbf{u}_k \odot \mathbf{v}_{k-1})^{-\epsilon/\tau} & \tau > 0 \\ ((\mathbf{S}_{k-1}^\top \mathbf{u}_{k-1}) \odot (\mathbf{S}_k \mathbf{v}_k))^{1/2} & \tau = 0 \end{cases} \quad (8)$$

248
249

250 The proof are given in Appendix F. Compared
251 to entropic OT, the coupling form of MLOT is
252 similar, both expressed as the product of the
253 Gibbs kernel \mathbf{S}_k and two diagonal matrices. The
254 difference lies in the fact that our MLOT re-
255 quires further computation of intermediate dis-
256 tributions as shown in Eq. 8, which implies that
257 the matrix iteration algorithm corresponding to
258 it is inevitably more complex than the Sinkhorn
259 algorithm based on Entropic OT.260 **MLOT-Sinkhorn.** Based on Prop. 3, we pro-
261 pose the Sinkhorn-Knopp algorithm for MLOT,
262 which is GPU-friendly and hence accelerates the
263 approximation of the optimal solution of MLOT.
264 the Sinkhorn-like iterative method calculates the
265 optimal solution of Eq. 3 via matrix-vector iter-
266 ations. To get the results, an intuitive idea is to
267 iteratively update the coupling \mathbf{P}_k and interme-
268 diate distributions \mathbf{a}_k until convergence. Thus
269 for updating the coupling \mathbf{P}_k , based on the so-
270 lution form $\mathbf{P}_k = \text{diag}(\mathbf{u}_k) \mathbf{S}_k \text{diag}(\mathbf{v}_k)$ and the250 **Algorithm 1:** MLOT-Sinkhorn Algorithm

Input: Source distribution \mathbf{a}_1 , target
distribution \mathbf{a}_K , distance metrics $(\mathbf{C}_k)_k, \varepsilon, \tau$
Initialize $\mathbf{S}_k = \exp(-\mathbf{C}_k/\varepsilon)$, $\mathbf{u}_k = \mathbf{1}$, $\mathbf{v}_k = \mathbf{1}$
for $\forall k < K$ and $\mathbf{a}_k = \mathbf{1}/N_k$ for $\forall 1 < k \leq K$.
while not Converge **do**
for $k = 1, 2, \dots, K-1$ **do**
 $\mathbf{u}_k \leftarrow \mathbf{a}_k \odot \mathbf{S}_k \mathbf{v}_k$
 $\mathbf{v}_k \leftarrow \mathbf{a}_{k+1} \odot \mathbf{S}_k^\top \mathbf{u}_k$
if $k > 1$ **then**

Update \mathbf{a}_k via Eq. 9

end if
end for
end while

Calculate $\mathbf{P}_k \leftarrow \text{Diag}(\mathbf{u}_k) \mathbf{S}_k \text{Diag}(\mathbf{v}_k)$ for
 $\forall k < K$
Output: the couplings $(\mathbf{P}_k)_{k=1}^{K-1}$ and the
intermediate distributions $(\mathbf{a}_k)_{k=2}^{K-1}$

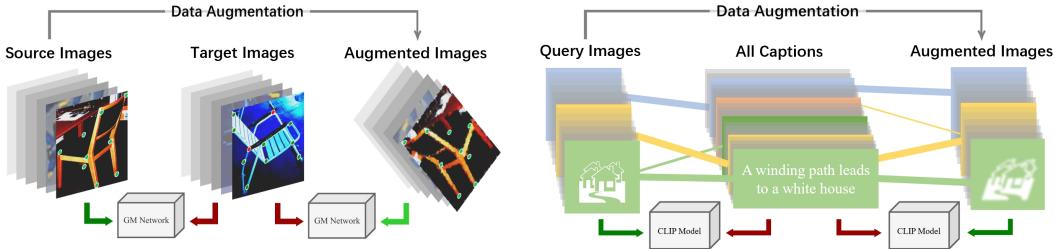


Figure 3: Reformulated procedures of visual graph matching (left) and Image-to-Text retrieval (right).

marginal constraints (i.e. $\mathbf{P}_k \mathbf{1}_{n_{k+1}} = \mathbf{a}_k$ and $\mathbf{P}_k^\top \mathbf{1}_{n_k} = \mathbf{a}_{k+1}$), we derive the following iterations for $\mathbf{u}_k^{(l)}$ and $\mathbf{v}_k^{(l)}$ given the iteration l :

$$\mathbf{u}_k^{(l+1)} = \frac{\mathbf{a}_k^{(l)}}{\mathbf{S}_k \mathbf{v}_k^{(l)}}, \quad \mathbf{v}_k^{(l+1)} = \frac{\mathbf{a}_{k+1}^{(l)}}{\mathbf{S}_k^\top \mathbf{u}_k^{(l+1)}}, \quad \text{where } \mathbf{a}_k^{(l+1)} = \begin{cases} (\mathbf{u}_k^{(l+1)} \odot \mathbf{v}_{k-1}^{(l+1)})^{-\epsilon/\tau} & \tau > 0 \\ ((\mathbf{S}_{k-1}^\top \mathbf{u}_{k-1}^{(l+1)}) \odot (\mathbf{S}_k \mathbf{v}_k^{(l+1)}))^{1/2} & \tau = 0 \end{cases} \quad (9)$$

where initialization is set as $\mathbf{v}_k = \mathbf{1}_{n_k}$ and $\mathbf{a}_k = \mathbf{1}/N_k$. Then, we iteratively update $(\mathbf{u}_k^{(l)}, \mathbf{v}_k^{(l)})$ and $\mathbf{a}_k^{(l+1)}$ for intermediate distributions for all k until convergence. This process allows us to obtain the final solutions $(\mathbf{P}_k)_k$ and $(\mathbf{a}_k)_k$. Note as $\epsilon \rightarrow 0$ and $\tau \rightarrow 0$ (or $\tau = 0$), empirical evidence demonstrates that the iterative results of our MLOT-Sinkhorn approach closely approximate the exact solution of MLOT obtained using Gurobi.

Global Convergence of MLOT-Sinkhorn. The global convergence of MLOT-Sinkhorn is established and greatly simplified with the aid of the Hilbert projective metric $d_H(\mathbf{u}, \mathbf{u}') \stackrel{\text{def.}}{=} \log \max_{i,j} \frac{\mathbf{u}_i \mathbf{u}'_j}{\mathbf{u}'_j \mathbf{u}_i}$. Several important properties of Hilbert metric are studied in Appendix D.1. For solution form $\mathbf{P}_k = \text{diag}(\mathbf{u}_k) \mathbf{S}_k \text{diag}(\mathbf{v}_k)$ of MLOT-Sinkhorn, the convergence property of \mathbf{u}_k or \mathbf{v}_k is presented as follows.

Proposition 4 (Convergence for $\tau = 0$). *For all layers, the worst error bound of \mathbf{u}_k^{l+1} is:*

$$d_H(\mathbf{u}_k^l, \mathbf{u}_k^*) = \mathcal{O}\left[\left(\frac{\gamma^2(\gamma+2)}{2-2\gamma^2-\gamma^3}\right)^l\right], \quad \text{where } \gamma = \max_k \lambda(\mathbf{S}_k) \stackrel{\text{def.}}{=} \sup \left\{ \frac{d_H(\mathbf{S}_k \mathbf{y}, \mathbf{S}_k \mathbf{y}')}{d_H(\mathbf{y}, \mathbf{y}')}, \mathbf{y}, \mathbf{y}' \in \mathbb{R}_+^n \right\}, \quad (10)$$

where \mathbf{u}^* is the unique optimal scaling variable, \mathbf{u}^l is the l -th iteration of the scaling variable, and $\lambda(\mathbf{S}_k) \in [0, 1]$ stands for the contraction ratio of \mathbf{S}_k , which highlights the fact that positive matrix \mathbf{S}_k is a strict contraction on the cone of positive vectors.

This proposition is proved in Appendix D. The bound for $d_H(\mathbf{v}_k^l, \mathbf{v}_k^*)$ follows a similar form as \mathbf{u}_k . Eq. 10 implies that given proper setting of ϵ, τ , the MLOT-Sinkhorn algorithm will perform linear convergence to a δ -approximate solution in $\mathcal{O}(|\log \delta|)$ iterations. Besides, for $\tau > 0$, we also give the convergence results in Appendix D.3.

3.3 DATA AUGMENTATION-BASED APPLICATIONS WITH MLOT

We now discuss the application of MLOT to address tasks that involve augmented data, framing the problem through the lens of representation learning theory. Data augmentation is widely adopted in contrastive learning (CL) strategies which typically optimize the InfoNCE-Loss. This loss formulates representation learning as a softmax classification problem, pulling positive pairs together while pushing negative pairs apart. OT-CLIP [33] provides a geometric interpretation of this process, demonstrating that CL can be formulated as a point-set matching problem, where the standard Softmax function is proven to be the optimal solution for this specific Entropic OT problem. However, this traditional bipartite structure limits the model's ability to fuse information from multiple data fields simultaneously, which can derive from augmented data or grouped-structure in dataset.

Extending the line of [33], we propose using MLOT to generalize this relationship, effectively functioning as a **multiple-layered Softmax**. While vanilla OT (and by extension, standard Softmax) restricts optimization to a two-layer network, MLOT leverages augmented data to formulate a chain-transport problem. By introducing a multi-layered structure, we can contrast multiple positive and negative sample sets at the same time within a single optimization pass. This formulation allows us to integrate multilevel view as an intrinsic part of the transportation flow.

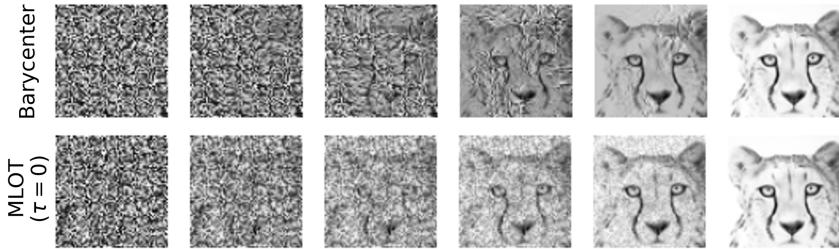


Figure 4: Interpolation Image Computation via Barycenter Calculation and MLot (K=6). In this example, traditional entropic barycenters require calculating each one individually by varying barycenter weights, and the results are independent of each other. In contrast, our method computes all intermediate results together.

We propose a unified paradigm, illustrated in Fig 3, that jointly considers original data, target data, and augmented data by reformulating the task as an MLot problem. The fundamental advantage of this formulation is that it shifts the problem definition from "transporting from one **known** distribution to one **unknown** target" to "transporting between **two known** distributions." In tasks like zero-shot retrieval, the true distribution of the retrieved items (the target) is unknown. Standard bipartite methods must assume a uniform prior on the target, which lacks physical significance and limits performance. In contrast, our paradigm constructs a three-layer transport: $U_O \rightarrow X_T \rightarrow U_{O'}$, where each entry of $U_O, U_{O'}$ represents the original sample and augmented sample. Since they need to be matched once and only once, $U_O, U_{O'}$ is set to uniform distribution. The core improvement lies in treatment towards candidates X_T : since the chosen entry is unknown, we hide it into the intermediate layer. This allows the distribution of the choice of retrieved items to be adaptively computed, serving as latent middle distribution (a_k). Specifically, we generate cost matrix for any adjacent layers: C_1 between U_O, X_T , and C_2 between $X_T, U_{O'}$.

$$\min_{\mathbf{P}_1, \mathbf{P}_2} \sum_{i=1,2} \langle \mathbf{C}_i, \mathbf{P}_i \rangle - \epsilon H(\mathbf{P}_i) \text{ s.t. } \mathbf{P}_1 \mathbf{1}_{n_2} = \mathbf{1}, \mathbf{P}_1^\top \mathbf{1}_{n_1} = \mathbf{a}_2, \mathbf{P}_2 \mathbf{1}_{n_3} = \mathbf{a}_2, \mathbf{P}_2^\top \mathbf{1}_{n_2} = \mathbf{1}.$$

Here \mathbf{P}_1 and \mathbf{P}_2 are the two matching score matrices, and $(P_1 + P_2)/2$ is used for overall prediction. Then we explore applications of this paradigm in two downstream tasks that involve data augmentation: graph matching and image-text retrieval. The procedure is discussed in detail below.

Learning-based Visual Graph Matching. Graph matching aims at discovering node matching between graphs. Learning-based GM, such as NGMv2[39] and GCAN[18], rely on deep network to construct features solve a bipartite matching problem. One challenge in visual task is **Partial Matching** in the presence of outliers. Several works were done, including traditional algorithm ZACR[37] and learning-based module AFA[40], generally operate within a fixed two-view framework and do not explicitly predict outliers. Our motivation comes from the adaptive middle layers in MLot, **this unknown distribution is well-matched with the target image that has unknown inlier distribution**. By generating augmented view of source graph, we formulate a three-layered MLot problem to solve two matching jointly, and hide outlier distribution into latent layer, as shown in the left part of Fig. 3. The two similarities respectively derived from two GM network (the two network can be either the same or different). This formulation aims to transport all inliers from source image to its augmented twins, and the pass-by middle is exactly the chosen inliers distribution.

CLIP-based Text-Image retrieval. Image-Text Retrieval is a traditional multimodal task aimed at establishing correspondence between images and their descriptive text. Zero-shot retrieval, facilitated by models like CLIP[30], aims to retrieve relevant items without any prior training on specific categories or datasets. OT-CLIP[33] proves the insight that traditional bipartite approaches Softmax is equivalent to optimize an OT problem. Note its fundamental limitation that can only leverage two view of samples at single time, we address this by integrating augmented view using MLot framework, constructing a three-layered flow: Query \rightarrow Candidates \rightarrow Aug. Query, shown in right part of Fig. 3. Besides the ability to integrate multiple view, this framework also hides unknown retrieved sample distribution into adaptive middle layer. Comparing to the wrong uniform prior assumption made in Softmax, MLot formulates the retrieval process in a more accurate way.

Image Interpolation. Computing Intermediate Images is a traditional task aimed at generating transitions between two given images, often used for smooth interpolation or data completion. Computing a single intermediate image can be reduced to calculating the (weighted)barycenter between two images. However, if we want a smooth transform path from one image to another, barycenter-based approach [47] requires varying barycenter weights to generate interpolations one

378 **Table 1: Experiment on synthetic Line and Ring datasets.** The objective and time cost (in seconds) are
 379 evaluated by comparing our proposed MLOT-sinkhorn ($\tau = 0$ and $\tau > 0$) with the other two baselines. Our
 380 proposed algorithms provide highly accurate results in a much more efficient time.

Size	Gurobi		Short Path+Sinkhorn		MLOT($\tau = 0$)		MLOT($\tau > 0$)	
	Obj.	Time(s)	Obj.	Time(s)	Obj.	Time(s)	Obj.	Time(s)
Experiment on synthetic Line data.								
100	1.0684	0.08	1.0692	0.17	1.0692	2.23	1.0702	1.41
1K	0.4082	6.64	0.4099	10.2	0.4106	2.36	0.4126	1.61
2K	0.6323	43.9	0.6336	13.3	0.6342	2.90	0.6349	1.94
5K	0.1463	330	0.1487	67.8	0.1508	11.3	0.1519	7.40
10K	Out Of Memory		0.3710	421	0.3707	41.2	0.3708	27.3
20K	Out Of Memory		0.1129	2575	0.1137	162	0.1139	110
Experiment on synthetic Ring data.								
100	2.3843	0.16	2.3848	0.34	2.3874	2.97	2.3900	2.06
1K	2.0319	20.5	2.0341	1.24	2.0396	3.34	2.0403	2.16
2K	2.0402	45.6	2.0427	2.72	2.0481	3.58	2.0484	2.27
4K	2.0222	324	2.0249	15.3	2.0301	5.42	2.0303	3.51
10K	Out Of Memory		2.1536	336	2.1588	47.4	2.1589	30.2
20K	Out Of Memory		2.1521	3125	2.1573	184	2.1573	125

396 by one in multiple steps. This task can be naturally formulated as an MLOT problem and thus gain
 397 efficiency, since intermediate distributions can be treated as interpolations directly, as shown in Fig.4.

4 EXPERIMENTS

4.1 EXPERIMENTS ON SYNTHETIC DATA

402 To validate the efficiency and convergence performance of MLOT-Sinkhorn, particularly with small
 403 ε, τ , we generated synthetic datasets by randomly distributing points in multi-layered structure to
 404 simulate MLOT scenario, and conducted extensive numerical experiments.

405 **Settings.** Scenarios of the MLOT problem
 406 were modeled with randomly distributed points.
 407 The key information of our synthetic dataset
 408 includes: Total number of points N (Problem
 409 size), Number of layers K , number of points
 410 per layer $(n_k)_k$, cost metric(measure). The
 411 synthetic dataset includes two geometric metric:
 412 **Line** problem with ℓ_2 Euclidean distance, **Ring**
 413 problem with Archimedean spiral length metric
 414 (see Appendix J). A visualization of the syn-
 415 thetic dataset is shown in Fig. 2, the couplings
 416 are initialized as uniform. The thickness of the
 417 green line is proportional to the value.

418 There are two baselines for numerical exper-
 419 iment: (a). Commercial solver Gurobi running
 420 on CPUs, (b). GraphOT based method on GPU.
 421 The latter baseline convert MLOT into classic
 422 OT by firstly computes shortest-path to convert
 423 $K - 1$ distance matrices into one direct overall
 424 cost matrix. We conduct experiments varying
 425 problem size N from 1×10^2 to 2×10^4 , for
 426 both $\tau = 0$ and $\tau > 0$ version, examining the
 427 accuracy and running time of the MLOT-Sinkhorn.

428 The results are shown in Tab. 1. For various problem sizes, MLOT-Sinkhorn has highly consistent
 429 objective values with Gurobi, with average relative errors $\sim 0.7\%$. MLOT-Sinkhorn performs
 430 several times faster than both Gurobi and GraphOT-based method. As N reaches 1×10^4 , the memory
 431 requirements for LP solver become prohibitive, while MLOT-Sinkhorn efficiently handles larger
 432 problem sizes while maintaining both high speed and accuracy. Furthermore, Fig. 5 illustrates the
 433 convergence performance of MLOT-Sinkhorn with varying iterations.

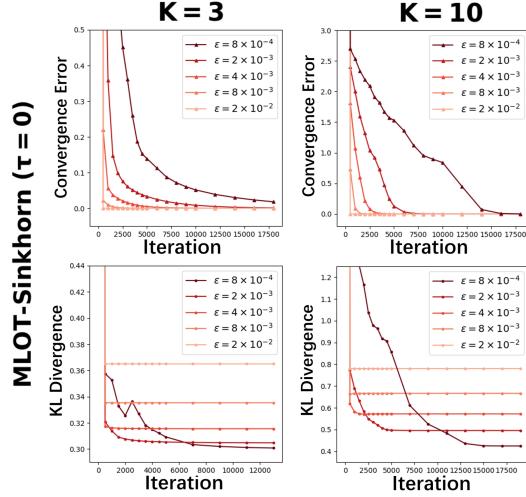


Figure 5: Global convergence and local convergence of MLOT-Sinkhorn ($\tau = 0$). Here present experiments conducted on $K = 3$ and $K = 10$ synthetic dataset. (First row) Numerical changes of $(a_k)_k$ during each iteration. (Second row) KL error between $(a_k)_k$ and ground truth distribution.

432 Table 2: F1(%) on PascalVOC. PMH means Partial Matching Handling. Our method is marked as gray. The
 433 score is improved in 14/20 classes with small epochs fine-tuning.

GM-Network	PMH	airfo	bill	bird	boat	bottle	bns	car	car	chair	cow	table	dig	horse	mbike	person	plant	sheep	sofa	train	tv	mean
ZACR[37]	ZACR	29.87	48.70	49.10	33.85	76.59	57.03	39.12	50.37	29.16	43.80	32.83	48.68	44.25	43.28	28.95	69.09	44.84	30.16	59.41	82.38	47.07
PCA-GM[38]	None	37.45	59.13	50.97	37.46	78.82	65.41	44.03	52.28	33.01	48.77	38.33	53.28	48.54	50.31	34.30	78.62	50.58	31.18	64.49	85.00	52.10
GMN-GM[46]	None	33.22	56.20	48.53	38.68	79.75	58.58	42.77	50.18	32.68	49.31	59.83	48.34	48.35	50.08	27.41	75.41	50.29	28.83	69.65	86.54	51.78
CIE[45]	None	43.08	65.84	56.30	42.26	84.03	64.25	44.56	57.11	34.24	55.50	48.83	57.31	54.02	57.22	34.68	84.94	53.24	41.57	68.00	86.61	56.68
AFA-I[40]		51.53	69.24	67.91	57.52	90.42	76.95	62.92	66.68	47.29	66.08	52.67	66.08	62.62	68.77	49.47	96.63	61.16	42.75	90.22	87.85	66.74
NGMv2[39]	AFA-U[40]	50.61	68.04	66.39	53.92	89.83	76.31	61.31	66.06	45.34	65.12	60.25	64.71	61.06	68.13	48.76	95.56	61.04	44.09	90.02	88.50	66.25
MLOT(ours)		52.16	67.50	69.73	88.93	90.35	79.44	69.03	67.82	47.29	69.41	54.83	67.99	64.16	68.30	51.73	96.85	64.43	41.19	90.59	87.30	67.95
AFA-I		51.49	71.09	67.98	55.95	90.96	78.76	61.47	68.37	52.71	69.94	60.00	68.62	66.62	69.93	49.34	97.57	64.15	51.27	89.67	89.49	68.77
AFA-U		51.99	71.47	68.49	55.13	91.04	78.03	62.30	68.39	53.89	69.95	57.50	68.19	66.04	70.61	49.62	97.49	63.54	58.57	89.28	89.89	68.97
MLOT(ours)		50.90	70.00	70.40	60.01	91.61	79.06	65.57	68.43	52.78	71.47	60.83	69.19	67.35	70.53	52.04	97.19	65.27	50.42	92.20	88.56	69.69

441 Table 3: CLIP-based Zero shot Image-Text retrieval on COCO and Flickr, with random geometric transformation
 442 on images and random selection on captions.

Inference	COCO								Flickr30k								
	Image \Rightarrow Text				Text \Rightarrow Image				Image \Rightarrow Text				Text \Rightarrow Image				
	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@10	
ViT-B/32 structure																	
Softmax	49.8	74.6	83.1	29.0	52.8	64.3	34.3	54.4	62.0	24.4	43.0	51.0					
Independent Sinkhorn	46.4	71.5	79.8	32.1	58.0	68.5	36.4	60.0	69.6	24.8	45.1	54.9					
MLOT(Rand. Augmentation)	50.7	75.1	83.3	35.1	61.2	72.2	41.0	65.3	74.3	27.4	50.0	59.8					
RN50x64 structure																	
Softmax	57.4	80.6	88.0	35.6	60.2	70.1	45.1	65.3	71.7	33.1	52.6	60.0					
Independent Sinkhorn	56.3	78.9	86.4	39.1	64.7	74.4	51.0	74.9	82.6	35.1	57.5	66.6					
MLOT(Rand. Augmentation)	58.0	81.1	88.1	43.1	70.3	79.6	54.0	77.4	84.6	41.6	65.5	74.7					

451 4.2 EXPERIMENTS ON DATA AUGMENTATION-BASED LEARNING

452 **Experiments on CLIP-based Text-Image retrieval.** For downstream task image-text retrieval,
 453 we use COCO2017 [22] 5k validation set and Flickr [44] 30k dateset. Two different structures of
 454 the CLIP model (ViT-B/32, RN50x64) are used to compute the feature embedding of images and
 455 texts. The widely-used R@m(m = 1, 5, 10) in cross-modal retrieval is reported for performance
 456 evaluation. The baseline uses Softmax or vanilla OT-Sinkhorn to predict retrieval image (or text)
 457 solely based on information from bipartite structure. By integrating augmented data information
 458 via MLOT framework shown in Fig. 3, we obtain significant improvement in recall of zero-shot
 459 retrieval on both datasets and tasks. As shown in Tab. 3, the recall rate is improved by 4.2% for both
 460 Transformer and ResNet architecture on average compared to vanilla OT.

461 **Experiments on Visual Graph Matching.** Following [41], we conduct the partial visual graph
 462 matching experiment on PascalVOC [11] with outlier setting: Given image \mathcal{S} without outliers, and
 463 image \mathcal{T} with outliers, the task is to detect all outliers as well as predict precise matching. The baseline
 464 includes severel GM methods mentioned in Sec. 3.3. The Partial Matching Handling (PMG) refers
 465 to post-method to realize partial match. Following the procedure proposed in Fig. 3, we integrate
 466 information from $\mathcal{S}_{augment}$ via MLOT framework. Thus reformulate the problem into transporting
 467 distribution of \mathcal{S} (uniform) to distribution of $\mathcal{S}_{augment}$ (uniform) and viaway intermediate \mathcal{T} (inliers
 468 distribution to be predicted). Based on this MLOT framework, we fine-tune 5 epochs on NGMv2 and
 469 GCAN networks. The average F1-score on entire classes is reported in Tab. 2. MLOT framework
 470 presents improvement in 14/20 classes with fine-tuning by leveraging augmented information.

471 **More Experiments on Computing Image Interpolation.** Note that our MLOT can be used to
 472 efficiently compute any number of interpolation images between two given images. Fig. 4 shows the
 473 results between two 64×64 grayscale image. In contrast to traditional barycenter-based methods
 474 [47], require calculating each one individually by varying barycenter weights, the intermediate layers
 475 in MLOT automatically represent interpolation. More details are given in Appendix A. We also
 476 compute such morphing process on CelebA [23], a high-resolution 218×178 human-face coloured
 477 image datasets. The results are shown in Fig. 7.

478 5 CONCLUSION AND LIMITIIONS

479 In this paper, we have proposed Multi-layered Optimal Transport (MLOT), a novel approach extending
 480 traditional optimal transport to handle complex, multi-stage transportation scenarios. We then
 481 introduce the MLOT-Sinkhorn algorithms, leveraging entropic regularization for efficient computation
 482 on GPUs. However, our algorithm relies on the prior hierarchical structure, thus cannot deal with
 483 more general graphs, which are the areas that require further investigation.

486 6 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. Our study uses only publicly available datasets,
489 without involving sensitive information. We do not anticipate major ethical risks, though we encourage
490 responsible use of the proposed methods.
491492 7 REPRODUCIBILITY STATEMENT
493494 We provide implementation details, hyperparameters, and dataset descriptions in the main text and
495 appendix. The dataset is either publicly accessible or can be fabricated through the code we provide,
496 and we include sufficient information to reproduce the reported results. Source code and scripts will
497 be released to ensure full reproducibility.
498499 500 REFERENCES
501

- [1] I. Abraham, R. Abraham, M. Bergounioux, et al. Tomographic reconstruction from a few views: A multi-marginal optimal transport approach. *Applied Mathematics and Optimization*, 75:55–73, 2017.
- [2] Jason Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time approximation algorithms for optimal transport via sinkhorn iteration, 2018. URL <https://arxiv.org/abs/1705.09634>.
- [3] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. *ICML*, 2017.
- [4] Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré. Iterative bregman projections for regularized transportation problems. *SIAM Journal on Scientific Computing*, 37(2):A1111–A1138, 2015.
- [5] Lev M Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. *USSR computational mathematics and mathematical physics*, 7(3):200–217, 1967.
- [6] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised learning of visual features by contrasting cluster assignments. *Advances in neural information processing systems*, 33:9912–9924, 2020.
- [7] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised learning of visual features by contrasting cluster assignments, 2021. URL <https://arxiv.org/abs/2006.09882>.
- [8] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transportation distances. *arXiv preprint arXiv:1306.0895*, 2013.
- [9] George B Dantzig. Linear programming. *Operations research*, 50(1):42–47, 2002.
- [10] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger bridge with applications to score-based generative modeling. *Advances in Neural Information Processing Systems*, 34:17695–17709, 2021.
- [11] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. *International Journal of Computer Vision*, 88:303–338, 2010.
- [12] Mikhail Feldman and Robert J. McCann. Uniqueness and transport density in monge’s mass transportation problem. *Calculus of Variations and Partial Differential Equations*, 15:81–113, 2002. URL <https://api.semanticscholar.org/CorpusID:6328939>.
- [13] Aden Forrow, Jan-Christian Hüttner, Mor Nitzan, Philippe Rigollet, Geoffrey Schiebinger, and Jonathan Weed. Statistical optimal transport via factored couplings, 2018. URL <https://arxiv.org/abs/1806.07348>.

- 540 [14] Joel Franklin and Jens Lorenz. On the scaling of multidimensional matrices. *Linear Algebra*
 541 and its Applications
- 542 114-115:717–735, 1989. ISSN 0024-3795. doi: [https://doi.org/10.1016/0024-3795\(89\)90490-4](https://doi.org/10.1016/0024-3795(89)90490-4). URL <https://www.sciencedirect.com/science/article/pii/0024379589904904>. Special Issue Dedicated to Alan J. Hoffman.
- 543
- 544 [15] A. Galichon, P. Henry-Labordere, and N. Touzi. A stochastic control approach to non-arbitrage
 545 bounds given marginals, with an application to lookback options. *The Annals of Applied*
 546 *Probability*, 24:312–336, 2014.
- 547
- 548 [16] Michael D Grigoriadis. An efficient implementation of the network simplex method. *Netflow at*
 549 *Pisa*, pp. 83–111, 1986.
- 550
- 551 [17] Peter Halmos, Xinhao Liu, Julian Gold, and Benjamin J Raphael. Low-rank optimal transport
 552 through factor relaxation with latent coupling, 2024. URL <https://arxiv.org/abs/2411.10555>.
- 553
- 554 [18] Zheheng Jiang, Hossein Rahmani, Plamen Angelov, Sue Black, and Bryan M. Williams. Graph-
 555 context attention networks for size-varied deep graph matching. In *2022 IEEE/CVF Conference*
 556 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 2333–2342, 2022. doi: 10.1109/
 557 CVPR52688.2022.00238.
- 558
- 559 [19] L Kantorovich. On the transfer of masses (in russian). 37(2):227–229, 1942.
- 560
- 561 [20] Tam Le, Truyen Nguyen, Dinh Phung, and Viet Anh Nguyen. Sobolev transport: A scalable
 562 metric for probability measures with graph metrics. In *International Conference on Artificial*
 563 *Intelligence and Statistics*, pp. 9844–9868. PMLR, 2022.
- 564
- 565 [21] Tam Le, Truyen Nguyen, and Kenji Fukumizu. Generalized sobolev transport for probability
 566 measures on a graph. *arXiv preprint arXiv:2402.04516*, 2024.
- 567
- 568 [22] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,
 569 Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common
 570 objects in context, 2015. URL <https://arxiv.org/abs/1405.0312>.
- 571
- 572 [23] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaou Tang. Deep learning face attributes in the
 573 wild. In *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.
- 574
- 575 [24] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. *Mem. Math. Phys. Acad.*
 576 *Royale Sci.*, pp. 666–704, 1781.
- 577
- 578 [25] W. Orlicz. Ueber eine gewisse klasse von räumen vom typus. *Bulletin International de*
 579 *l'Académie Polonaise des Sciences et des Lettres*, pp. 8–9, 1932.
- 580
- 581 [26] Brendan Pass. Multi-marginal optimal transport: Theory and applications. *ESAIM: Mathematical*
 582 *Modelling and Numerical Analysis*, 49(6):1771–1790, 2015.
- 583
- 584 [27] Hanyu Peng, Mingming Sun, and Ping Li. Optimal transport for long-tailed recognition with
 585 learnable cost matrix. *International Conference on Learning Representations*, 2021.
- 586
- 587 [28] Gabriel Peyre and Marco Cuturi. Computational optimal transport. *Foundations and Trends in*
 588 *Machine Learning*, 11(5-6):355–607, 2019.
- 589
- 590 [29] J. Rabin, G. Peyré, J. Delon, and M. Bernot. Wasserstein barycenter and its application to texture
 591 mixing. In A.M. Bruckstein, B.M. ter Haar Romeny, A.M. Bronstein, and M.M. Bronstein
 592 (eds.), *Scale Space and Variational Methods in Computer Vision*, volume 6667 of *Lecture Notes*
 593 *in Computer Science*. Springer, Berlin, Heidelberg, 2012.
- 594
- 595 [30] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
 596 P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
 597 In *International Conference on Machine Learning*, 2021.

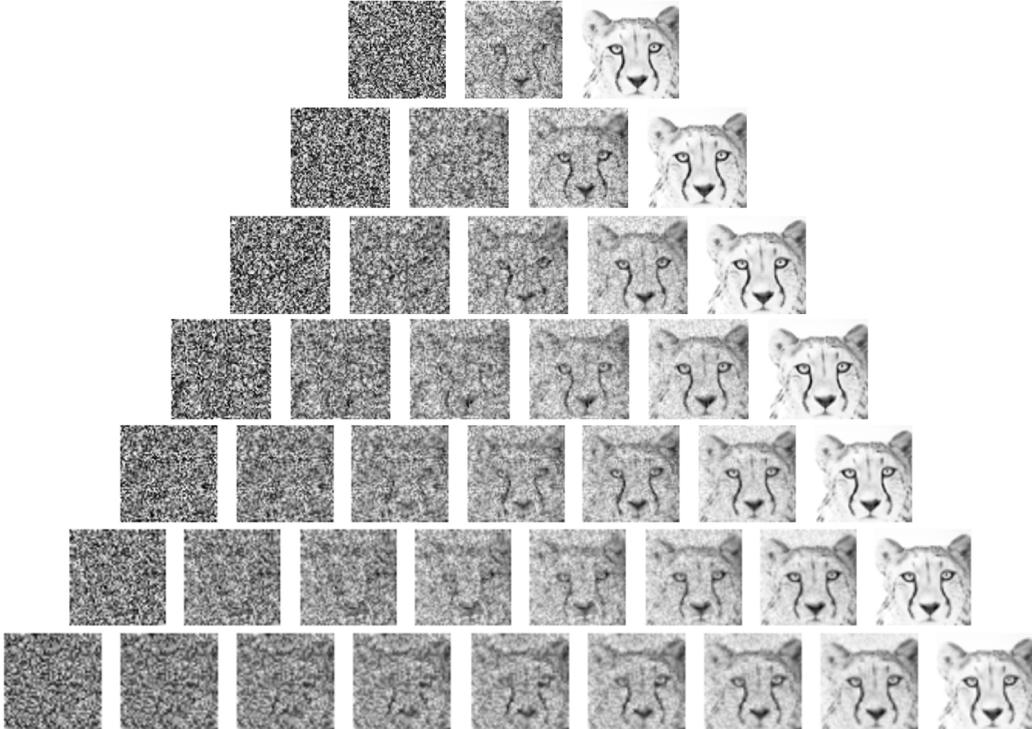
- 594 [31] Meyer Scetbon and Marco Cuturi. Low-rank optimal transport: Approxima-
 595 tion, statistics and debiasing. In S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
 596 grave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Process-
 597 ing Systems*, volume 35, pp. 6802–6814. Curran Associates, Inc., 2022. URL
 598 https://proceedings.neurips.cc/paper_files/paper/2022/file/2d69e771d9f274f7c624198ea74f5b98-Paper-Conference.pdf.
- 600 [32] Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. Low-rank sinkhorn factorization, 2021. URL
 601 <https://arxiv.org/abs/2103.04737>.
- 602 [33] Liangliang Shi, Jack Fan, and Junchi Yan. Ot-clip: Understanding and generalizing clip via
 603 optimal transport. In *Forty-first International Conference on Machine Learning*, 2024.
- 604 [34] Vayer Titouan, Nicolas Courty, Romain Tavenard, Chapel Laetitia, and Rémi Flamary. Optimal
 605 transport for structured data with application on graphs. In Kamalika Chaudhuri and Ruslan
 606 Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*,
 607 volume 97 of *Proceedings of Machine Learning Research*, pp. 6275–6284. PMLR, 09–15 Jun
 608 2019.
- 609 [35] Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajecto-
 610 ryenet: A dynamic optimal transport network for modeling cellular dynamics. In *International
 611 conference on machine learning*, pp. 9526–9536. PMLR, 2020.
- 612 [36] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
 613 adaptation. *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 614 pp. 7167–7176, 2017.
- 615 [37] Fudong Wang, Nan Xue, Jin-Gang Yu, and Gui-Song Xia. Zero-assignment constraint for
 616 graph matching with outliers. In *2020 IEEE/CVF Conference on Computer Vision and Pattern
 617 Recognition (CVPR)*, pp. 3030–3039, 2020. doi: 10.1109/CVPR42600.2020.00310.
- 618 [38] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial embedding networks
 619 for deep graph matching. In *2019 IEEE/CVF International Conference on Computer Vision
 620 (ICCV)*, pp. 3056–3065, 2019. doi: 10.1109/ICCV.2019.00315.
- 621 [39] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural graph matching network: Learning
 622 lawler’s quadratic assignment problem with extension to hypergraph and multiple-graph match-
 623 ing. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(9):5261–5279, 2022.
 624 doi: 10.1109/TPAMI.2021.3078053.
- 625 [40] Runzhong Wang, Ziao Guo, Shaofei Jiang, Xiaokang Yang, and Junchi Yan. Deep learning of
 626 partial graph matching via differentiable top-k. In *2023 IEEE/CVF Conference on Computer
 627 Vision and Pattern Recognition (CVPR)*, pp. 6272–6281, 2023. doi: 10.1109/CVPR52729.2023.
 628 00607.
- 629 [41] Runzhong Wang, Ziao Guo, Wenzheng Pan, Jiale Ma, Yikai Zhang, Nan Yang, Qi Liu, Longxuan
 630 Wei, Hanxue Zhang, Chang Liu, Zetian Jiang, Xiaokang Yang, and Junchi Yan. Pygtools: A
 631 python graph matching toolkit. *Journal of Machine Learning Research*, 25(33):1–7, 2024. URL
 632 <https://jmlr.org/papers/v25/23-0572.html>.
- 633 [42] Alan Geoffrey Wilson. The use of entropy maximising models, in the theory of trip distribution,
 634 mode split and route split. *Journal of transport economics and policy*, pp. 108–126, 1969.
- 635 [43] Hongteng Xu and Minjie Cheng. Regularized optimal transport layers for generalized global
 636 pooling operations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2023.
- 637 [44] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual denota-
 638 tions: New similarity metrics for semantic inference over event descriptions. *Transactions of
 639 the Association for Computational Linguistics*, 2:67–78, 2014.
- 640 [45] Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Learning deep graph matching via
 641 channel-independent embedding and hungarian attention. 2020. Publisher Copyright: © 2020
 642 8th International Conference on Learning Representations, ICLR 2020. All rights reserved.;
 643 8th International Conference on Learning Representations, ICLR 2020 ; Conference date:
 644 30-04-2020.

- 648 [46] Andrei Zanfir and Cristian Sminchisescu. Deep learning of graph matching. In *2018 IEEE/CVF*
 649 *Conference on Computer Vision and Pattern Recognition*, pp. 2684–2693, 2018. doi: 10.1109/
 650 CVPR.2018.00284.
- 651 [47] Jianchao Zhu, Liangliang Shi, Junchi Yan, and Hongyuan Zha. Automix: Mixup networks for
 652 sample interpolation via cooperative barycenter learning. In Andrea Vedaldi, Horst Bischof,
 653 Thomas Brox, and Jan-Michael Frahm (eds.), *Computer Vision – ECCV 2020*, pp. 633–649,
 654 Cham, 2020. Springer International Publishing. ISBN 978-3-030-58607-2.
- 655

656

657 **A VISUAL EXPERIMENTS ON INTERMEDIATE DISTRIBUTIONS**

658



659

660 Figure 6: Intermediate images between given picture (64×64 , grayscale), generated by MLOT
 661 ($\varepsilon = 1 \times 10^{-5}$, $\tau = 0$). Each row represents reformulating as MLOT with different layer amount
 662 ($K = 3$ to $K = 9$). The layers $(\mathbf{a}_k)_k$ in MLOT are regarded as grayscale distribution of intermediate
 663 images. Results demonstrate the effectiveness and smooth transformation of images under MLOT
 664 framework. Layers in different location are equivalent to different setting of λ in barycenter method.

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690 **Relation to Wasserstein Barycenter.** We found that our MLOT can be linked to the Wasserstein
 691 barycenter. For the distributions $(\mathbf{b}_s)_{s=1}^S$, the Wasserstein barycenter among them aims to learn the
 692 distribution \mathbf{a} :

693

694
$$\min_{(\mathbf{P}_s)_s, \mathbf{s}} \sum_{s=1}^S \lambda_s \langle \mathbf{D}_s, \mathbf{P}_s \rangle \quad \text{s.t.} \quad \mathbf{P}_s \mathbf{1} = \mathbf{b}_s, \quad \mathbf{P}_s \mathbf{1} = \mathbf{a} \quad \forall s = 1, 2, \dots, S \quad (11)$$

695

696 where \mathbf{D}_s is the distance matrix between \mathbf{a} and \mathbf{b}_s . As mentioned in MLOT formulation, our MLOT
 697 assumes that the source and target distributions are known, and the objective is to compute the
 698 intermediate distributions. In contrast, the Wasserstein barycenter assumes that one or several target
 699 distributions of the transportation are known, and the goal is to compute the source distribution.
 700 Specifically, when $S = 2$ in Eq.11 and $K = 3$ in Eq.2, the optimization of our MLOT is equivalent to
 701 solving the Wasserstein barycenter by setting $\mathbf{C}_1 = \mathbf{D}_1^\top$ and $\mathbf{C}_2 = \mathbf{D}_2$. In this paper, following [8],
 we consider MLOT under entropic regularization in the next subsection, where we directly compute

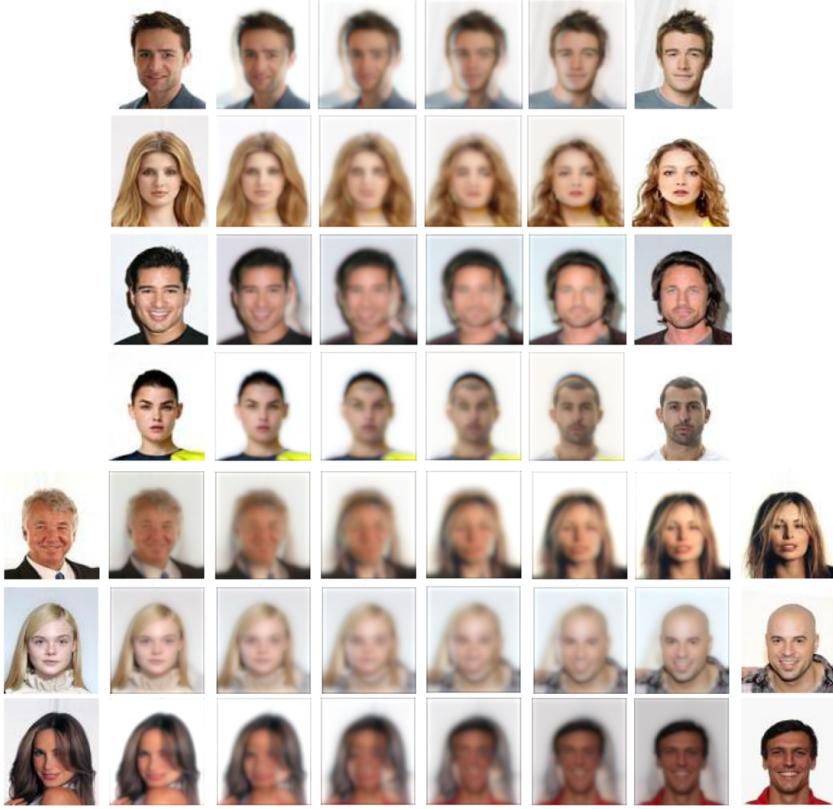


Figure 7: Computing interpolation image on CelebA high-resolution dataset (218×178 , coloured). $K = 6, 8$ layers.

the coupling between each pair of layers and intermediate distributions instead of relying on indirect calculations through shortest paths.

As mentioned above, this task is mostly addressed by calculating the barycenter of two given images, where different weights are set to generate a coherent series of intermediate images.

Specifically, given two 64×64 grayscale image $\mathbf{f}_S, \mathbf{f}_T$, a typical solution is to compute their barycenter. The cost metric D_s, D_t is determined by the distances between pixel locations, i.e. pixel-wise Euclidean distance D between two 64×64 grid. Thus the intermediate image \mathbf{f} can be computed under $D_s = \lambda D$ and $D_t = (1 - \lambda)D$. By adjusting the metric weight λ , the resulting intermediate image can be biased to varying degrees.

However, if several intermediate images are required, this barycenter-based method requires recalculating for each barycenter weight. In contrast, if we view all intermediate images with different bias as part of a complete transmission process, we can obtain them within single computation by reformulating the problem as MLOT.

For example, if an intermediate image with rational weight $D_s = \lambda D$, $\lambda = \frac{p}{q}$, $\text{gcd}(p, q) = 1$ is required, we can formulate a MLOT with $K = q + 1$, and all cost metric is set to D . Then the q -th layer can be regarded as the required image distribution.

Generally, if $\lambda_1, \lambda_2, \dots, \lambda_k$ weights images are required, barycenter-based method has to compute k times. In contrast, we can formulate it as a MLOT problem. Suppose $\lambda_i = \frac{p_i}{q_i}$ and $\text{gcd}(p_i, q_i) = 1$. Then we can set $K = \text{lcm}(q_1, q_2, \dots, q_k) + 1$, and all cost metric are set to D .

We conducted tests on grayscale images (a random Gaussian noise and a leopard), each sized 64×64 . As shown in Fig. 6. MLOT was applied varying $K = 3$ to $K = 9$ layers respectively. The results indicate our proposed method is effective, that the **intermediate layers can be smoothly interpreted as intermediate images**. What is more, MLOT generates several intermediate images at a single calculation, which outperforms the barycenter-based method with respect to efficiency.

756 **B CLUSTERING-BASED CONTRASTIVE LEARNING VIA MLOT-SINKHORN.**
757

758 Contrastive learning is an efficient self-supervised learning method that aims to learn features by
759 contrasting positive and negative pairs. [7] employs an online clustering approach for contrastive
760 learning. More precisely, we compute a code from an augmented version of the image and predict
761 this code from other augmented versions of the same image. Given two image features z_t and z_s
762 from two different augmentations of the same image, we compute their codes q_t and q_s by matching
763 these features to a set of K prototypes $\{c_1, \dots, c_K\}$. We then set up a “swapped” prediction problem
764 with the following loss:

$$765 \quad L(z_t, z_s) = \ell(z_t, q_s) + \ell(z_s, q_t), \quad (12)$$

766 which consists of two terms that define the “swapped” prediction problem: predicting the code q_t
767 from the feature z_s , and q_s from z_t . Each term denotes the cross-entropy loss between the code and
768 probability obtained by applying the Softmax to the dot products of z_t and all prototypes:

$$769 \quad \ell(z_t, q_s) = - \sum_k q_s^{(k)} \log p_t^{(k)} \text{ s.t. } p_t^{(k)} = \frac{\exp\left(\frac{z_t^\top c_k}{\tau}\right)}{\sum_{k'} \exp\left(\frac{z_t^\top c_{k'}}{\tau}\right)}.$$

773 For the calculation of q_s and q_t , SwAV [7] uses the Sinkhorn algorithm to obtain two matching
774 probability matrices. However, it assumes that all prototypes share a uniform distribution, which is
775 somewhat unreasonable, as the number of samples in each cluster may differ. Instead, we relax the
776 uniform assumption and use MLOT-Sinkhorn to compute the matching for the three-layer features-
777 prototype-features matching result.

778 **C HANDLE CONSTRAINTS ON INTERMEDIATE DISTRIBUTION**
779

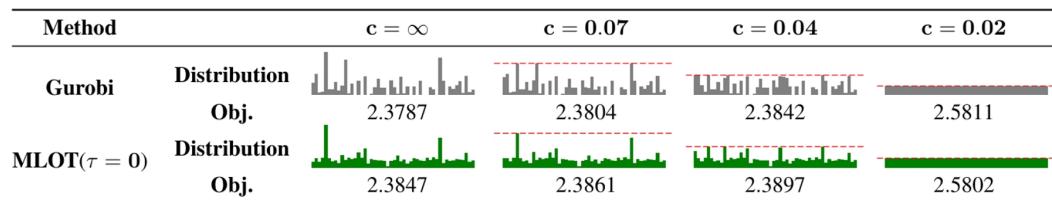
781 Suppose there exists a set of additional constraints on intermediate distribution, i.e. $(\mathbf{c}_k)_k$, and
782 $\forall k = 2, \dots, K - 1$, the constraint forces $\mathbf{a}_k \leq \mathbf{c}_k$.

783 Such situation is especially common in real-world scenario, where warehouse or factories may have
784 storage capacity. Therefore it’s crucial to take distribution constraints into consideration.

785 Our MLOT-Sinkhorn can naturally adapt to these situations, by simply adding clip-function after
786 each update of \mathbf{a}_k .

$$788 \quad \mathbf{a}_k^{(l+1)} = \begin{cases} \min \left[(\mathbf{u}_k^{(l+1)} \odot \mathbf{v}_{k-1}^{(l+1)})^{-\epsilon/\tau}, \mathbf{c}_k \right] & \tau > 0 \\ \min \left[((\mathbf{S}_{k-1}^\top \mathbf{u}_{k-1}^{(l+1)}) \odot (\mathbf{S}_k \mathbf{v}_k^{(l+1)}))^{1/2}, \mathbf{c}_k \right] & \tau = 0 \end{cases} \quad (13)$$

792 We generate different level of constraints in $K = 3$ MLOT-Sinkhorn experiment, and compare the
793 objective and intermediate distribution with Gurobi ground truth, as shown in Fig. 8

801 **Figure 8: Setting different constraints on layers.**802 **D GLOBAL CONVERGENCE OF MLOT-SINKHORN**803 **D.1 PROPERTY OF HILBERT METRIC**

804 To measure the gap between iterative result and optimal coupling, Hilbert metric is introduced.
805 $d_H(\mathbf{u}, \mathbf{u}') := \log \max_{i,j} \frac{\mathbf{u}_i \mathbf{u}'_j}{\mathbf{u}_j \mathbf{u}'_i}$. Firstly, several mathematical properties of Hilbert Metric are studied as
806 follow.

810 1. $d_{\mathcal{H}}\left(\frac{\mathbf{a}}{\mathbf{b}}, \frac{\mathbf{c}}{\mathbf{d}}\right) = d_{\mathcal{H}}(\mathbf{ad}, \mathbf{bc}) \leq d_{\mathcal{H}}(\mathbf{a}, \mathbf{c}) + d_{\mathcal{H}}(\mathbf{b}, \mathbf{d})$

811 **Proof:** By definition:

813

814 $LHS = \log \max \frac{\mathbf{a}_i \mathbf{c}_j \cdot \mathbf{b}_j \mathbf{d}_i}{\mathbf{b}_i \mathbf{d}_j \cdot \mathbf{a}_j \mathbf{c}_i} = d_{\mathcal{H}}(\mathbf{ad}, \mathbf{cb})$

815

816

817 Separating the product, we have:

818

819 $LHS \leq \log \max \frac{\mathbf{a}_i \mathbf{c}_j}{\mathbf{a}_j \mathbf{c}_i} + \log \max \frac{\mathbf{b}_j \mathbf{d}_i}{\mathbf{b}_i \mathbf{d}_j} = d_{\mathcal{H}}(\mathbf{a}, \mathbf{c}) + d_{\mathcal{H}}(\mathbf{b}, \mathbf{d})$

820

821

822 2. $d_{\mathcal{H}}(\mathbf{a}^{\varepsilon}, \mathbf{b}^{\varepsilon}) = |\varepsilon| d_{\mathcal{H}}(\mathbf{a}, \mathbf{b})$

823 **Proof:** By definition: $LHS = \log \max \frac{\mathbf{a}_i^{\varepsilon} \mathbf{b}_j^{\varepsilon}}{\mathbf{a}_j^{\varepsilon} \mathbf{b}_i^{\varepsilon}}$. Since the operation is to maximize for all i, j , whether $\varepsilon > 0$ or $\varepsilon < 0$ will obtain the maximum or minimum at same row/column combination. Therefore the exponent can be separated out as absolute value.

824

825 3. $d_{\mathcal{H}}(t\mathbf{a}, t\mathbf{b}) = d_{\mathcal{H}}(\mathbf{a}, \mathbf{b})$

826

827 **Proof:** If $t \in \mathbb{R}_+^n$ and $a, b \in \mathbb{R}_+^{n \times m}$. Then expand the by definition will prove this property straight forward. If $t \in \mathbb{R}_+^{w \times n}$, the situation becomes more complicated, which we will discuss immediately below.

828

829

D.2 INTRODUCTION OF CONTRACTION RADIO

830

831 In the solution form $\text{diag}(\mathbf{u}_k) \mathbf{S}_k \text{diag}(\mathbf{v}_k)$, the constant argument \mathbf{S}_k is critical in the convergence process. [28] points out how matrix production influences Hilbert metric. [14] generalizes this as a nature of a matrix, which can be regraded as contraction radio during iteration. As the following proposition shows.

832

833

$$d_{\mathcal{H}}(\mathbf{Sv}, \mathbf{Sv}') \leq \lambda(\mathbf{S}) d_{\mathcal{H}}(\mathbf{v}, \mathbf{v}')$$

834

835

836 , where $\lambda(\mathbf{S}) = \frac{\sqrt{\eta(\mathbf{S})} - 1}{\sqrt{\eta(\mathbf{S})} + 1}$ and $\eta(\mathbf{S}) := \max_{ijkl} \frac{\mathbf{S}_{ik} \mathbf{S}_{jl}}{\mathbf{S}_{jk} \mathbf{S}_{il}}$

837

838 The $\lambda(\mathbf{S})$ here is defined as

839

840

841
$$\sup \left\{ \frac{d_{\mathcal{H}}(\mathbf{Sy}, \mathbf{Sy}')}{d_{\mathcal{H}}(\mathbf{y}, \mathbf{y}')} , \mathbf{y}, \mathbf{y}' \in \mathbb{R}_+^n \right\}$$

842

843

844 , aiming to extract constant from Hilbert metric. Notice that $\lambda(\mathbf{S})$ is larger than 0 and less than 1, we call it contraction radio, denoted as γ .

845

846

D.3 PROOF OF CONVERGENCE

847

The case $\tau > 0$

848

849

850 Iteration steps (considering l -th iteration):

851

852

853

854 $\mathbf{u}_k^{l+1} = \mathbf{a}_k^l \oslash \mathbf{S}_k \mathbf{v}_k^l \quad (14)$

855

856

857 $\mathbf{v}_k^{l+1} = \mathbf{a}_k^l \oslash \mathbf{S}_k^\top \mathbf{u}_k^l \quad (15)$

858

859

860 $\mathbf{a}_k^{l+1} = (\mathbf{u}_k^{l+1} \odot \mathbf{v}_{k-1}^{l+1})^{-\epsilon/\tau} \quad (16)$

Denote the optimal value as $\mathbf{u}_k^*, \mathbf{v}_k^*, \mathbf{a}_k^*$. Now consider the Hilbert distance between $l + 1$ -th iteration to the optimal value:

$$d_{\mathcal{H}}(\mathbf{u}^{l+1}, \mathbf{u}^*) = d_{\mathcal{H}}\left(\frac{\mathbf{a}^l}{\mathbf{S}\mathbf{v}^l}, \frac{\mathbf{a}^*}{\mathbf{S}\mathbf{v}^*}\right) \quad (17)$$

$$\leq \lambda(\mathbf{S}) [d_{\mathcal{H}}(\mathbf{a}^l, \mathbf{a}^*) + d_{\mathcal{H}}(\mathbf{v}^l, \mathbf{v}^*)] \quad (18)$$

$$d_{\mathcal{H}}(\mathbf{v}^{l+1}, \mathbf{v}^*) = d_{\mathcal{H}}\left(\frac{\mathbf{a}^l}{\mathbf{S}^\top \mathbf{u}^l}, \frac{\mathbf{a}^*}{\mathbf{S}^\top \mathbf{u}^*}\right) \quad (19)$$

$$\leq \lambda(\mathbf{S}) [d_{\mathcal{H}}(\mathbf{a}^l, \mathbf{a}^*) + d_{\mathcal{H}}(\mathbf{u}^l, \mathbf{u}^*)] \quad (20)$$

$$d_{\mathcal{H}}(\mathbf{a}^l, \mathbf{a}^*) = d_{\mathcal{H}}\left((\mathbf{u}^l \odot \mathbf{v}^l)^{-\frac{\varepsilon}{\tau}}, (\mathbf{u}^* \odot \mathbf{v}^*)^{-\frac{\varepsilon}{\tau}}\right) \quad (21)$$

$$\leq \frac{\varepsilon}{\tau} [d_{\mathcal{H}}(\mathbf{u}^l, \mathbf{u}^*) + d_{\mathcal{H}}(\mathbf{v}^l, \mathbf{v}^*)] \quad (22)$$

The layer number k is not important here, since we can simply replace all $\mathbf{a}_k^l, \mathbf{u}_k^l, \mathbf{v}_k^l, \gamma_k$ by the biggest one in this iteration, which guarantee a worst bound.

Substitute Eq. 20 into Eq. 22, we have:

$$d_{\mathcal{H}}(\mathbf{a}^l, \mathbf{a}^*) \leq \frac{\varepsilon}{\tau} \frac{1 + \gamma}{1 - (\varepsilon/\tau)\gamma} \cdot d_{\mathcal{H}}(\mathbf{u}^l, \mathbf{u}^*)$$

Substitute this into Eq. 18, finally we have:

$$d_{\mathcal{H}}(\mathbf{u}^{l+1}, \mathbf{u}^*) \leq \frac{\gamma}{1 - (\varepsilon/\tau)\gamma} \left(\gamma + \frac{2\varepsilon}{\tau} \gamma + \frac{\varepsilon}{\tau} \right) \cdot d_{\mathcal{H}}(\mathbf{u}^l, \mathbf{u}^*)$$

Which indicates the Hilbert difference between \mathbf{u}^l and optimal \mathbf{u}^* converges in a exponential speed.

$$d_{\mathcal{H}}(\mathbf{u}^{l+1}, \mathbf{u}^*) = \mathcal{O}\left[\left(\frac{\gamma}{1 - (\varepsilon/\tau)\gamma} \left(\gamma + \frac{2\varepsilon}{\tau} \gamma + \frac{\varepsilon}{\tau} \right)\right)^l\right]$$

Since the contraction radio γ is less than 1 (What's more, in experiment we find that γ is always around 0.50.7), and ε/τ is always set less than 0.5, then $d_{\mathcal{H}}(\mathbf{u}^{l+1}, \mathbf{u}^*) \rightarrow 0$.

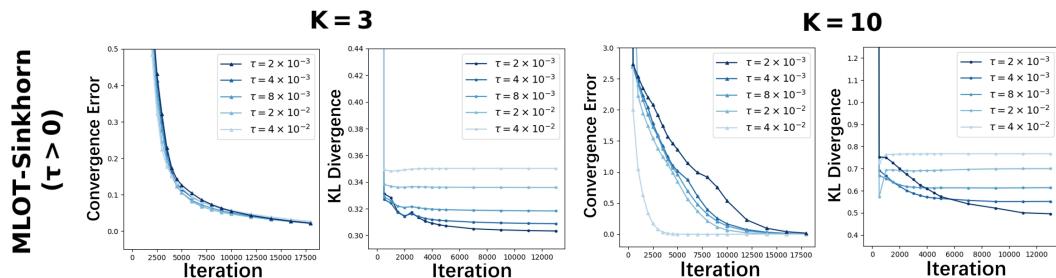


Figure 9: Convergence of MLOT-Sinkhorn ($\tau > 0$), conducted on $K = 3, 10$ synthetic dataset. (First row) Numerical changes of $(a_k)_k$ during each iteration. (Second row) KL error between $(a_k)_k$ and ground truth distribution.

The case $\tau = 0$

Iteration steps (considering l -th iteration):

$$\begin{aligned} \mathbf{u}_k^{l+1} &= \mathbf{a}_k^l \oslash \mathbf{S}_k \mathbf{v}_k^l \\ \mathbf{v}_k^{l+1} &= \mathbf{a}_k^l \oslash \mathbf{S}_k^\top \mathbf{u}_k^l \\ \mathbf{a}_k^{l+1} &= ((\mathbf{S}_{k-1}^\top \mathbf{u}_{k-1}^{l+1}) \odot (\mathbf{S}_k \mathbf{v}_k^{l+1}))^{1/2} \end{aligned} \quad (23)$$

The remain proof is similar as the case $\tau > 0$.

$$\begin{aligned} d_{\mathcal{H}}(\mathbf{a}^l, \mathbf{a}^*) &\leq \frac{1}{2} \gamma_{k-1} d_{\mathcal{H}}(\mathbf{u}_{k-1}^{l+1}, \mathbf{u}_{k-1}^*) + \frac{1}{2} \gamma_k d_{\mathcal{H}}(\mathbf{v}_k^{l+1}, \mathbf{v}_k^*) \\ &\leq \frac{1}{2} \gamma d_{\mathcal{H}}(\mathbf{u}^{l+1}) + \frac{1}{2} \gamma d_{\mathcal{H}}(\mathbf{v}^{l+1}) \end{aligned} \quad (24)$$

, in which we denote $\max_k \gamma_k$ as γ , and represent all layer's Hilbert distance by the biggest one in this iteration $d_{\mathcal{H}}(\mathbf{a}^l, \mathbf{a}^*)$, etc. We have:

$$(2 - 2\gamma^2 - \gamma^3)d_{\mathcal{H}}(\mathbf{a}^l, \mathbf{a}^*) \leq \gamma^2(1 + \gamma)d_{\mathcal{H}}(\mathbf{u}^l, \mathbf{u}^*) \quad (25)$$

Combine Eq. 18, Eq. 20 and Eq. 25, finally we have:

$$d_{\mathcal{H}}(\mathbf{u}^{l+1}, \mathbf{u}^*) \leq \frac{\gamma^2(\gamma + 2)}{2 - 2\gamma^2 - \gamma^3} \cdot d_{\mathcal{H}}(\mathbf{u}^l, \mathbf{u}^*)$$

Which indicates the Hilbert distance between \mathbf{u}^l and optimal \mathbf{u}^* converges in a exponential speed.

$$d_{\mathcal{H}}(\mathbf{u}^{l+1}, \mathbf{u}^*) = \mathcal{O}\left[\left(\frac{\gamma^2(\gamma + 2)}{2 - 2\gamma^2 - \gamma^3}\right)^l\right]$$

E PROOF OF BREGMAN ITERATIONS ALGORITHM FOR MLOT

Algorithm 2: MLOT-Sinkhorn Algorithm

Input: Source distribution \mathbf{a}_1 , target distribution \mathbf{a}_K , distance metrics $(\mathbf{C}_k)_k, \varepsilon, \tau$
 Initialize $\mathbf{P}_k = \exp(-\mathbf{C}_k/\varepsilon)$ for $\forall k < K$ and $\mathbf{a}_k = \mathbf{1}/N_k$ for $\forall 1 < k < K$.
while not Converge **do**
for $k = 1, 2, \dots, K-1$ **do**
 $\mathbf{P}_k \leftarrow \mathbf{P}_k \text{diag}\left(\frac{\mathbf{a}_k}{\mathbf{P}_k^\top \mathbf{1}}\right)$
 $\mathbf{P}_{k+1} \leftarrow \text{diag}\left(\frac{\mathbf{a}_{k+1}}{\mathbf{P}_k^\top \mathbf{1}}\right) \mathbf{P}_k$
if $k > 1$ **then**
 Update $\mathbf{a}_k \leftarrow ((\mathbf{P}_k^\top \mathbf{1}) \odot (\mathbf{P}_{k-1}^\top \mathbf{1}))^{1/2}$
end if
end for
end while
Output: the couplings $(\mathbf{P}_k)_{k=1}^{K-1}$ and the intermediate distributions $(\mathbf{a}_k)_{k=2}^{K-1}$

Based on KL form of MLOT in Prop. 2, we prove the Bregman iteration algorithm proposed in Eq. 7,

We decompose the constraint set as $\forall k = 1, \dots, K-1$, $\mathbf{P}_k \in \mathcal{C}_{2k-1} \cap \mathcal{C}_{2k}$, where $\mathcal{C}_{2k-1} = \left\{ \mathbf{P}_k \in \mathbb{R}^{N_k \times N_{k+1}} \mid \mathbf{P}_k^\top \mathbf{1} = \mathbf{a}_{k+1} \right\}$ and $\mathcal{C}_{2k} = \left\{ \mathbf{P}_k \in \mathbb{R}^{N_k \times N_{k+1}} \mid \mathbf{P}_k \mathbf{1} = \mathbf{a}_k \right\}$.

Firstly we derive the Bregman projection on \mathcal{C}_{2k-1} .

Denote \mathbf{P}_k as the projection on \mathcal{C}_{2k-1} of $\hat{\mathbf{P}}_k$. The first-order conditions of $\text{Proj}_{\mathcal{C}_{2k-1}}^{KL}(\hat{\mathbf{P}}_k)$ states the existence of Lagrange multipliers \mathbf{g}_k such that:

$$\varepsilon \log \frac{\mathbf{P}_k}{\hat{\mathbf{P}}_k} + \mathbf{1}^\top \mathbf{g}_k = 0$$

Denote $\mathbf{v}_k = e^{-\mathbf{g}_k/\varepsilon}$. Condition $\mathbf{P}_k^\top \mathbf{1} = \mathbf{a}_{k+1}$ thus implies that

$$\mathbf{v}_k = \frac{\mathbf{a}_{k+1}}{\hat{\mathbf{P}}_k^\top \mathbf{1}} \quad \text{and} \quad \mathbf{P}_k = \hat{\mathbf{P}}_k \text{diag}\left(\frac{\mathbf{a}_{k+1}}{\hat{\mathbf{P}}_k^\top \mathbf{1}}\right)$$

Similarly, denote \mathbf{P}_k as the projection on \mathcal{C}_{2k} of $\bar{\mathbf{P}}_k$. The first-order conditions of $\text{Proj}_{\mathcal{C}_{2k}}^{KL}(\bar{\mathbf{P}}_k)$ states the existence of Lagrange multipliers \mathbf{f}_k such that:

$$\varepsilon \log \frac{\mathbf{P}_k}{\bar{\mathbf{P}}_k} + \mathbf{f}_k^\top \mathbf{1} = 0$$

Denote $\mathbf{u}_k = e^{-\mathbf{f}_k/\varepsilon}$. Condition $\mathbf{P}_k \mathbf{1} = \mathbf{a}_k$ thus implies that

$$\mathbf{u}_k = \frac{\mathbf{a}_k}{\bar{\mathbf{P}}_k^\top \mathbf{1}} \quad \text{and} \quad \mathbf{P}_k = \text{diag}\left(\frac{\mathbf{a}_k}{\bar{\mathbf{P}}_k^\top \mathbf{1}}\right) \bar{\mathbf{P}}_k$$

972 Finally, by leveraging Lagrange multiplier function on \mathbf{a}_k , we get $\forall k = 1, \dots, K - 1$:

$$973 \quad f_k + g_{k-1} = 0$$

974 which implies $u_k \odot v_{k-1} = \mathbf{1}$, and thus we get the desired equation for \mathbf{a}_k :

$$975 \quad \left(\frac{\mathbf{a}_k}{\mathbf{P}_k \mathbf{1}} \right) \odot \left(\frac{\mathbf{a}_k}{\mathbf{P}_{k-1}^\top \mathbf{1}} \right) = \mathbf{1} \quad \Rightarrow \quad \mathbf{a}_k = (\mathbf{P}_k \mathbf{1})^{1/2} \odot (\mathbf{P}_{k-1}^\top \mathbf{1})^{1/2}$$

980 F PROOF OF REGULARIZED MLOT-SINKHORN SOLUTION AND ITERATION 981 FORM

982 The case $\tau = 0$.

983 The entropic regularized MLOT can be formulated as

$$984 \quad \min_{\{\mathbf{P}_k\}, \{\mathbf{a}_k\}} \sum_{k=1}^{K-1} \left(\langle \mathbf{C}_k, \mathbf{P}_k \rangle - \epsilon H(\mathbf{P}_k) \right) - \tau \sum_{k=2}^{K-1} H(\mathbf{a}_k) \quad (26)$$

985 subject to

$$986 \quad \mathbf{P}_k \mathbf{1} = \mathbf{a}_k \quad \text{and} \quad \mathbf{P}_k^\top \mathbf{1} = \mathbf{a}_{k+1} \quad \forall k = 1, \dots, K - 1. \quad (27)$$

987 The Lagrange multiplier function is

$$988 \quad L = \sum_{k=1}^{K-1} \left(\langle \mathbf{C}_k, \mathbf{P}_k \rangle - \epsilon H(\mathbf{P}_k) \right) - \tau \sum_{k=2}^{K-1} H(\mathbf{a}_k) \\ 989 \quad - \sum_{k=1}^{K-1} \langle \mathbf{f}_k, \mathbf{P}_k \mathbf{1} - \mathbf{a}_k \rangle - \langle \mathbf{g}_k, \mathbf{P}_k^\top \mathbf{1} - \mathbf{a}_{k+1} \rangle \quad (28)$$

990 Firstly,

$$991 \quad \frac{\partial L}{\partial \mathbf{P}_k} = \mathbf{C}_k + \epsilon \log \mathbf{P}_k - \mathbf{f}_k \mathbf{1}^\top - \mathbf{1}^\top \mathbf{g}_k = 0 \\ 992 \quad \Rightarrow \mathbf{P}_k = \text{diag} \left(e^{\mathbf{f}_k / \epsilon} \right) \cdot e^{-\mathbf{C}_k / \epsilon} \cdot \text{diag} \left(e^{\mathbf{g}_k / \epsilon} \right) \quad (29)$$

993 Set that: $\mathbf{u}_k = e^{\mathbf{f}_k / \epsilon}$, $\mathbf{v}_k = e^{\mathbf{g}_k / \epsilon}$, $\mathbf{S}_k = e^{-\mathbf{C}_k / \epsilon}$, we have:

$$994 \quad \mathbf{P}_k = \text{diag}(\mathbf{u}_k) \mathbf{S}_k \text{diag}(\mathbf{v}_k) \quad (30)$$

995 Due to $\mathbf{P}_k \mathbf{1} = \mathbf{a}_k$ and $\mathbf{P}_k^\top \mathbf{1} = \mathbf{a}_{k+1}$ We have:

$$996 \quad \mathbf{u}_k = \frac{\mathbf{a}_k}{\mathbf{S}_k \mathbf{v}_k}, \quad \mathbf{v}_k = \frac{\mathbf{a}_{k+1}}{\mathbf{S}_k^\top \mathbf{u}_k} \quad (31)$$

997 What's more, when $\tau = 0$:

$$998 \quad \frac{\partial L}{\partial \mathbf{a}_k} = \mathbf{f}_k + \mathbf{g}_{k-1} = 0 \quad (32)$$

999 Thus, $\mathbf{u}_k \odot \mathbf{v}_{k-1} = \mathbf{1}$ Then we have:

$$1000 \quad \frac{\mathbf{a}_k}{\mathbf{S}_k \mathbf{v}_k} \odot \frac{\mathbf{a}_k}{\mathbf{S}_{k-1}^\top \mathbf{u}_{k-1}} = 1 \\ 1001 \quad \mathbf{a}_k = \left[(\mathbf{S}_k \mathbf{v}_k) \odot (\mathbf{S}_{k-1}^\top \mathbf{u}_{k-1}) \right]^{\frac{1}{2}}, \quad \text{for } k = 2, \dots, K - 1 \quad (33)$$

1002 The case $\tau > 0$.

1003 The Lagrange multiplier function is

$$1004 \quad L = \sum_{k=1}^{K-1} \left(\langle \mathbf{C}_k, \mathbf{P}_k \rangle - \epsilon H(\mathbf{P}_k) \right) - \tau \sum_{k=2}^{K-1} H(\mathbf{a}_k) \\ 1005 \quad - \sum_{k=1}^{K-1} \langle \mathbf{f}_k, \mathbf{P}_k \mathbf{1} - \mathbf{a}_k \rangle - \langle \mathbf{g}_k, \mathbf{P}_k^\top \mathbf{1} - \mathbf{a}_{k+1} \rangle \quad (34)$$

1026 Firstly,

$$\begin{aligned} \frac{\partial L}{\partial \mathbf{P}_k} &= \mathbf{C}_k + \varepsilon \log \mathbf{P}_k - \mathbf{f}_k \mathbf{1}^\top - \mathbf{1}^\top \mathbf{g}_k = 0 \\ &\Rightarrow \mathbf{P}_k = \text{diag} \left(e^{\mathbf{f}_k/\varepsilon} \right) \cdot e^{-\mathbf{C}_k/\varepsilon} \cdot \text{diag} \left(e^{\mathbf{g}_k/\varepsilon} \right) \end{aligned} \quad (35)$$

1031 Set that: $\mathbf{u}_k = e^{\mathbf{f}_k/\varepsilon}$, $\mathbf{v}_k = e^{\mathbf{g}_k/\varepsilon}$, $\mathbf{S}_k = e^{-\mathbf{C}_k/\varepsilon}$, we have:

$$\mathbf{P}_k = \text{diag}(\mathbf{u}_k) \mathbf{S}_k \text{diag}(\mathbf{v}_k) \quad (36)$$

1034 Due to $\mathbf{P}_k \mathbf{1} = \mathbf{a}_k$ and $\mathbf{P}_k^\top \mathbf{1} = \mathbf{a}_{k+1}$ We have:

$$\mathbf{u}_k = \frac{\mathbf{a}_k}{\mathbf{S}_k \mathbf{v}_k}, \quad \mathbf{u}_k = \frac{\mathbf{a}_{k+1}}{\mathbf{S}_k^\top \mathbf{u}_k} \quad (37)$$

1037 What's more, when $\tau > 0$

$$\begin{aligned} \frac{\partial L}{\partial \mathbf{a}_k} &= \tau \log \mathbf{a}_k + \mathbf{f}_k + \mathbf{g}_{k-1} = 0 \\ \mathbf{a}_k &= (\mathbf{u}_k \odot \mathbf{v}_{k-1})^{-\varepsilon/\tau} \end{aligned} \quad (38)$$

1042 G PROOF OF EQUIVALENCE BETWEEN MLOT AND ITS KL-DIVERGENCE 1043 FORM

1045 From the definition of \widetilde{KL} and $(\mathbf{S}_k)_{ij} = e^{-(\mathbf{C}_k)_{ij}/\varepsilon}$, we have

$$\begin{aligned} \sum_{k=1}^{K-1} \widetilde{KL}(\mathbf{P}_k | \mathbf{S}_k) &= \sum_{k=1}^{K-1} \sum_{ij} \left((\mathbf{P}_k)_{ij} \log(\mathbf{P}_k)_{ij} - (\mathbf{P}_k)_{ij} + (\mathbf{P}_k)_{ij} \frac{(\mathbf{C}_k)_{ij}}{\varepsilon} + (\mathbf{S}_k)_{ij} \right) \\ &= \sum_{k=1}^{K-1} \sum_{ij} \left((\mathbf{P}_k)_{ij} (\log(\mathbf{P}_k)_{ij} - 1) + \frac{1}{\varepsilon} (\mathbf{P}_k)_{ij} (\mathbf{C}_k)_{ij} + (\mathbf{S}_k)_{ij} \right) \\ &= \frac{1}{\varepsilon} \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k \rangle - \varepsilon H(\mathbf{P}_k) + \text{Const.} \end{aligned} \quad (39)$$

1056 and

$$\begin{aligned} \sum_{k=2}^{K-1} \widetilde{KL}(\mathbf{a}_k | \Delta_k) &= \sum_{k=2}^{K-1} \sum_i (\mathbf{a}_k)_i (\log(\mathbf{a}_k)_i + \log n_k - 1) \\ &= \sum_{k=2}^{K-1} \sum_i (\mathbf{a}_k)_i (\log(\mathbf{a}_k)_i - 1) + \log n_k \sum_i (a_k)_i \\ &= \frac{1}{\tau} \sum_{k=2}^{K-1} H(\mathbf{a}_k) + \text{Const.} \end{aligned} \quad (40)$$

1065 Notice that the Const in expression is irrelevant when it comes to solving optimization problems.

1066 Therefore $\min_{(\mathbf{P}_k)_k, (\mathbf{a}_k)_k} \varepsilon \sum_{k=1}^{K-1} \widetilde{KL}(\mathbf{P}_k | \mathbf{S}_k) + \tau \sum_{k=2}^{K-1} \widetilde{KL}(\mathbf{a}_k | \Delta_k)$ is exactly equivalent to Eq. 3.

1069 H PROOF OF MLOT CONVERGENCE WITH ε AND τ

1071 **Convergence with ε** In this part, we prove that the entropic regularization on couplings will
1072 converge to original MLOT. We consider a sequence $(\varepsilon_l) > 0$ such that $\varepsilon_l \rightarrow 0$. We denote $(\mathbf{P}_k^{\varepsilon_l})_k$
1073 as the optimal solution of Eq. 3 with $\varepsilon = \varepsilon_l, \tau = 0$, and denote $(\mathbf{P}_k^*)_k$ as the optimal solution of
1074 Eq. 2. By optimality of $(\mathbf{P}_k^{\varepsilon_l})_k$ and $(\mathbf{P}_k^*)_k$ for their respective optimization problems, we have:

$$\begin{aligned} \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k^{\varepsilon_l} \rangle - \varepsilon_l H(\mathbf{P}_k^{\varepsilon_l}) &\leq \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k^* \rangle - \varepsilon_l H(\mathbf{P}_k^*) \\ \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k^* \rangle &\leq \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k^{\varepsilon_l} \rangle \end{aligned} \quad (41)$$

1080 Therefore:

$$1081 \quad 0 \leq \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k^{\varepsilon_l} - \mathbf{P}_k^* \rangle \leq \sum_{k=1}^{K-1} \varepsilon_l [H(\mathbf{P}_k^{\varepsilon_l}) - H(\mathbf{P}_k^*)] \quad (42)$$

1085 Since entropic function $H(\mathbf{P})$ is continuous and inner product here is always positive, the limitation
1086 $\varepsilon_l \rightarrow 0$ shows that $\mathbf{P}_k^{\varepsilon_l} = \mathbf{P}_k^*$, $\forall k = 1, 2, \dots, K-1$, which proves Eq. 4.

1087 **Convergence with τ** In this part, we prove that the entropic regularization on both couplings and
1088 intermediates will converge to the problem that only regularize couplings, given the fixed ε_0 . We
1089 consider a sequence $(\tau_l)_l > 0$ such that $\tau_l \rightarrow 0$. We denote $(\mathbf{P}_k^{\tau_l})_k$ as the optimal solution of Eq. 3
1090 with $\varepsilon = \varepsilon_0, \tau = \tau_l$, and denote $(\mathbf{P}_k^{\varepsilon_0})_k$ as the optimal solution of Eq. 3 without regularization on
1091 intermediates. By optimality of $(\mathbf{P}_k^{\tau_l})_k$ and $(\mathbf{P}_k^{\varepsilon_0})_k$ for their respective optimization problems, we
1092 have:

$$1093 \quad \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k^{\tau_l} \rangle - \varepsilon_0 H(\mathbf{P}_k^{\tau_l}) - \tau_l \sum_{k=2}^{K-1} H(\mathbf{a}_k^{\tau_l}) \leq \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k^{\varepsilon_0} \rangle - \varepsilon_0 H(\mathbf{P}_k^{\varepsilon_0}) - \tau_l \sum_{k=2}^{K-1} H(\mathbf{a}_k^{\varepsilon_0})$$

$$1094 \quad \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k^{\varepsilon_0} \rangle - \varepsilon_0 H(\mathbf{P}_k^{\varepsilon_0}) \leq \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k^{\tau_l} \rangle - \varepsilon_0 H(\mathbf{P}_k^{\tau_l}) \quad (43)$$

1100 Therefore:

$$1102 \quad 0 \leq \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k^{\tau_l} - \mathbf{P}_k^{\varepsilon_0} \rangle - \varepsilon_0 [H(\mathbf{P}_k^{\tau_l}) - H(\mathbf{P}_k^{\varepsilon_0})] \leq \sum_{k=2}^{K-1} \tau_l [H(\mathbf{a}_k^{\tau_l}) - H(\mathbf{a}_k^{\varepsilon_0})] \quad (44)$$

1105 Similarly, since entropic function $H(\mathbf{a})$ is continuous, the limitation $\tau_l \rightarrow 0$ shows that regularization
1106 on intermediate can converge to non-regularization on intermediate:

$$1108 \quad \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k^{\tau_l} \rangle - \varepsilon_0 H(\mathbf{a}_k^{\tau_l}) = \sum_{k=1}^{K-1} \langle \mathbf{C}_k, \mathbf{P}_k^{\varepsilon_0} \rangle - H(\mathbf{a}_k^{\varepsilon_0}).$$

1111 I CONVERGENCE OF MLOT RESPECTED TO τ

1113 As mentioned in Section 4, Fig 10 and Fig 11 visualize the convergence of MLOT-Sinkhorn with
1114 respect to ε and τ .

1116 The shade of color in the heatmaps indicates the magnitude of the transport values at each location,
1117 while the central bar graphs represent the intermediate distributions computed by the algorithm. This
1118 experiment aims to showcase the convergence properties regarding ε and τ as proven in Prop. 1.

1119 The experiment is conducted on Line dataset, with $N = 100, K = 3, (n_k)_k = \{25, 50, 25\}, D = 5$,
1120 where points in each layer are uniformly distributed along a line of length 20. Both the source and
1121 target distributions were randomly generated and normalized.

1122 In Fig. 10, τ is set to 0, and a series of decreasing ε values are employed, comparing to the ground
1123 truth solution of Eq. 2 ($\varepsilon = 0$), showing the convergence of MLOT-Sinkhorn with respect to ε .

1125 In Fig. 11, ε is fixed as 1×10^{-3} , and a series of decreasing τ values are employed, showing the
1126 convergence of MLOT-Sinkhorn with respect to τ .

1128 J ARCHIMEDEAN DISTANCE BETWEEN TWO POINTS

1130 Archimedes' spiral is curve expressed as $r(\theta) = b(\theta - \theta_0)$. Suppose two a spiral passes through two
1131 points $(r_1, \theta_1), (r_2, \theta_2)$. The curve's parameters can be determined as:

$$1133 \quad b = \frac{r_2 - r_1}{\theta_2 - \theta_1}, \quad \theta_0 = \frac{\theta_1 r_2 - \theta_2 r_1}{r_2 - r_1} \quad (45)$$

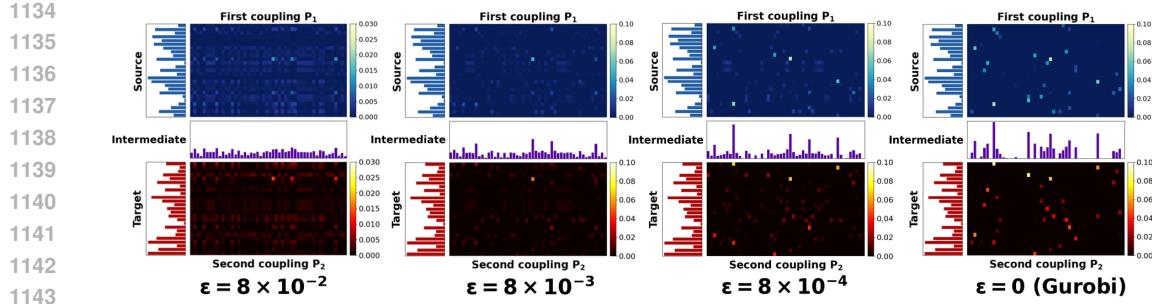


Figure 10: Impact of ϵ on the MLOT-Sinkhorn algorithm solutions, generated by varying $\epsilon = 8 \times 10^{-2}, 8 \times 10^{-3}, 8 \times 10^{-4}$, and 0 (Gurobi) with $\tau = 0$, on Line data. As ϵ decreases, the solution of our algorithm converges towards the exact solution of Eq. 2.

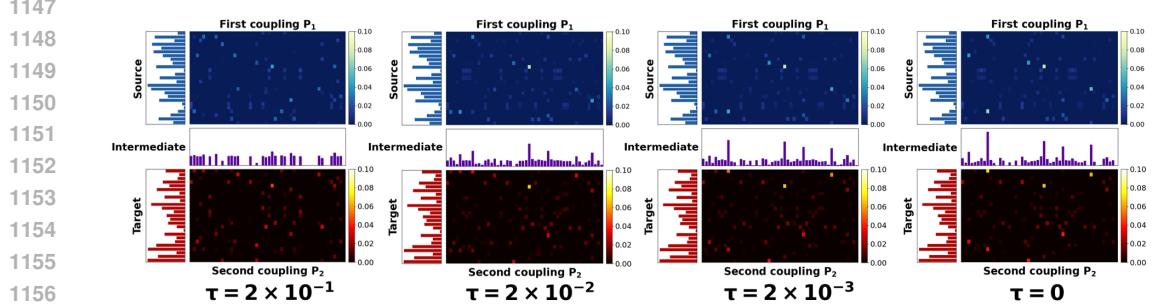


Figure 11: Impact visualization of τ on the MLOT-Sinkhorn. The experiment is conducted on Line data, by fixed $\epsilon = 1 \times 10^{-3}$ and varying $\tau = 2 \times 10^{-1}, 2 \times 10^{-2}, 2 \times 10^{-3}$, and 0 (without regularization on intermediate). As τ decreases, the solution progressively converges towards the solution without regularization on intermediate.

The length of the curve is:

$$\begin{aligned}
 dl &= \sqrt{dr^2 + (r d\theta)^2} \\
 \Rightarrow L &= \int_{r_1}^{r_2} \sqrt{1 + \frac{r^2}{b^2}} dr \\
 &= \frac{r}{2b} \sqrt{b^2 + r^2} + \frac{b}{2} \ln \left(r + \sqrt{b^2 + r^2} \right) \Big|_{r_1}^{r_2}
 \end{aligned} \tag{46}$$

Under the circumstances in Ring Data, where the radii of neighbouring rings differ by 1, thus $b = 1/(\theta_2 - \theta_1)$. Further denote $\theta_2 - \theta_1$ as a . Let:

$$F(r) = \frac{r}{2} \sqrt{1 + a^2 r^2} + \frac{1}{2a} \ln \left(ar + \sqrt{1 + a^2 r^2} \right) \tag{47}$$

Then the Archimedean distance between two points can be written as $F(r_2) - F(r_1)$.

K RELATION TO THE DYNAMIC OT AND SCHRÖDINGER BRIDGE

Fundamentally, our MLOT is akin to Dynamic Optimal Transport [35] in that both can be seen as calculating the intermediate steps of the entire transport process. The difference lies in the fact that we fix the positions of each layer or the cost matrices between two layers in our MLOT, while in Dynamic OT, the locations are continuous throughout the entire space. The relationship between the Schrödinger bridge [10] and our entropic MLOT is similar to the relationship between the aforementioned two OT variants; both can be regarded as special cases in a discrete state. Therefore, our MLOT can offer new perspectives and approximate computations for Dynamic OT and the Schrödinger bridge.

	SBP	LOT	MLOT
Premise	Continuous flow in space	Factorized by low-rank middle anchors	Sequential flow through fixed multi-stage layers
Intermediate State	Probability distributions	Supports' coordinate	Mass distribution
Optimization Variable	Probability distributions $p_t(x)$ over $t \in (0, 1)$	Anchors' position z_j and transportation	Transportation series $\{P_k\}$
Cost	Entropic regularized OT cost	k-Wasserstein barycenter	(sum of) Primal OT cost
Algorithm	Iterative Proportional Fitting	Lloyd-type	Mirror Descent

Table 4: Comparison of SBP, LOT, and MLOT.

L CONVEXITY OF MLOT

We show that MLOT formulation Eq. 2 is a convex optimization problem (also linear programming). Firstly, the inner-product and summation in objective function is linear. Secondly, we show that constraints part is linear. Let:

$$\mathbf{A}_k = \begin{bmatrix} \mathbf{1}_{n_k}^\top \otimes \mathbf{I}_{n_{k+1}} \\ \mathbf{I}_{n_k} \otimes \mathbf{1}_{n_{k+1}}^\top \end{bmatrix} \in \mathbb{R}^{(n_k+n_{k+1}) \times n_k n_{k+1}}$$

where \otimes is Kronecker's product, \mathbf{I}_n is identity matrix by n size. Intuitively, this is for computing the row-sum and col-sum of a vectorized matrix.

Then the constraints can be re-formulate to linear form:

$$\mathbf{A}_k \cdot \text{vec}(\mathbf{P}_k) = \begin{bmatrix} \mathbf{a}_{k-1} \\ \mathbf{a}_k \end{bmatrix}, \forall k = 1, \dots, K-1$$

where denote $\mathbf{a}_0 = s$, $\mathbf{a}_{K-1} = t$ be the known fixed distribution, and other $\mathbf{a}_k \in \Delta_{n_k}$ is restrained in n_k -dim simplex, which is also a linear constraint.

Therefore MLOT problem (Eq. 2) is LP, thus also convex problem.

M OVERALL TIME COMPLEXITY

To prove the overall complexity of MLOT-Sinkhorn Alg. 1, we refer to the technique used in [2] to adapt to our algorithm.

The time spent can be decomposed into two part: "Complexity per Iteration" \times "Iteration number before convergence/stop".

The first part is easy to analysis, since each Sinkhorn-based algorithm is simply matrix-scale type method. Each iteration cost $O((K-1)n^2)$.

Since MLOT-Sinkhorn do the update for each layer respectively, we make an important assumption that, we regard its stop criteria's property follows summation of a series classic Sinkhorn.

Following [2], let $s_k = \sum_{ij} \exp(-\eta C_{kj})$, $l_k = \min_{ij} \exp(-\eta C_{kj})$. Thus, to get a ϵ' -error result, MLOT-Sinkhorn needs $\mathcal{O}(\epsilon'^{-2} \cdot \sum \log(s_k/l_k))$ iterations.

To make the result adaptive with more convenient parameters, we use the following scaling inequality to substitute s_k, l_k :

$$\log(s_k/l_k) = \log(s) + \log(1/l) \leq \mathcal{O}(\log n + \eta \|C_k\|_\infty)$$

1242 Let $\eta = \frac{4(K-1)\log(n)}{\epsilon}$, $\epsilon' = \frac{\epsilon}{8(K-1)L}$, where $L = \max_k \|C_k\|_\infty = \max_k \max_{ij} (C_k)_{ij}$, we
 1243 get the Iteration needs before getting a ϵ -error solution is: $\mathcal{O}((K-1)^4 L^3 \epsilon^{-3} \log(n))$. Thus overall
 1244 complexity is:
 1245

$$\mathcal{O}((K-1)^5 L^3 \epsilon^{-3} n^2 \log(n))$$

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295