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ABSTRACT

Although optimal transport (OT) has achieved significant success and widespread
application in various fields, its structure remains relatively simple, relying on
bipartite graphs with only two layers of nodes for transportation. In this paper,
we propose a multi-layer optimal transport (MLOT) method that extends the
original two-layer structure to handle transportation problems across multiple
hierarchical levels, making it more adaptable to the complex structures found
in deep learning tasks. In this framework, the source distribution flows through
intermediate layers before reaching the target distribution, where estimating the
intermediate distributions becomes crucial for solving the MLOT. Under entropic
regularization, we further propose the MLOT-Sinkhorn algorithm to solve the
multi-layer OT problem, where intermediate distributions can be estimated through
the transportation calculations between adjacent layers. This algorithm can be
accelerated using GPUs and significantly outperforms general solvers such as
Gurobi. We also present theoretical results for the entropic MLOT, demonstrating
its efficiency advantages and convergence properties. Furthermore, we find that
our MLOT is well-suited for machine learning tasks based on data augmentation.
As a result, we apply the MLOT-Sinkhorn algorithm to tasks such as text-image
retrieval and visual graph matching. Experimental results show that reformulating
these problems within the MLOT framework leads to significant improvements in
performance.

1 INTRODUCTION

Optimal Transport (OT) [28] has been an increasingly important mathematical tool for solving
various machine learning problems, with success in a wide range of applications, ranging from
domain adaptation [36], learning generative models [3], network designing [43], self-supervised
contrastive learning [6], to long-tail recognition [27] etc. It allows for the comparison of probability
distributions, combining the underlying geometric structure of the sample space.

Based on entropic OT, the Sinkhorn algorithm, due to its GPU-friendly nature, allows for forward
computation and backpropagation in neural networks, and has thus been widely used in deep learning
tasks such as deep clustering, graph matching, and more. However, the vanilla OT behind the
Sinkhorn algorithm typically relies on the assumption of a simple bipartite graph structure with
fixed, known marginal distributions. This is problematic for tasks like zero-shot retrieval, where
the distribution of the retrieved items (the target) is unknown. Standard approaches force a uniform
prior on the target, which lacks physical significance and limits performance. By transitioning from
a two-layer network to a multi-layered one, as shown in Fig. 1, MLOT allows us to treat these
unknown distributions as latent intermediate layers that are adaptively computed, rather than fixed
priors. Thereby broadening the OT theory and its potential applications for deep learning.

Thus, in this paper, we first propose a new variant of optimal transport called multi-layered optimal
transport (MLOT) that extends the original two-layered transportation structure to the multi-layered
case. As shown in Fig. 1, we assume the known source and target distributions in the source and target
layers, along with the known cost matrices between layers. Our objective is to determine intermediate
distributions and the transportation plan (i.e., coupling) between layers. Similar to vanilla OT, this
problem fundamentally boils down to linear programming [9] and one can employ the (inefficient)
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Figure 1: Comparisons among Vanilla OT, MMOT, LOT and MLOT(ours). Compared to the first two, the
key focus of MLOT lies in the estimation of the unknown intermediate distributions. Relative to LOT, beyond
the difference of employing a fixed support, they have more essential distinction in physical meaning: MLOT
optimizes on real flow transition Pi, while LOT optimizes probability transition γi, which means the real flow
from i → j is respectively modeled by

∑
ℓ min (P1,iℓ,P2,ℓj) and

∑
k γ1,ik · γ2,kj/gk.

network simplex method [16] to solve it. Building on prior work [8], we endeavor to accelerate the
solution of MLOT using matrix iteration algorithms for GPU acceleration.

To achieve fast computation and obtain an approximate solution, we apply entropic regularization
to MLOT. The MLOT-Sinkhorn algorithm is proposed through alternating iterations of scaling
variables [8] and intermediate distributions. Theoretical results for our MLOT are also presented,
including the global convergence of our MLOT-Sinkhorn algorithm. We first do experiments with
a small enough coefficient for entropic regularization. The results show that our MLOT-Sinkhorn
can achieve an objective function close to the solution obtained from Gurobi, but tens to hundreds
of times faster for larger problems. Furthermore, we view zero-shot retrieval based on CLIP [30]
as a transportation problem and utilize MLOT to enhance inference through data augmentation.
Specifically, we consider the first layer as features of query images, the second layer as features of the
text to be retrieved (i.e., captions), and the third layer as features of the augmented images in the first
layer. We employ the MLOT-Sinkhorn algorithm for solving this, and experimental results confirm
that this inference method has significantly improved compared to previous softmax-based methods
without requiring additional training. Besides, based on the calculation of intermediate distributions,
we conducted image interpolation experiments. The results are shown in Appendix A, indicating that
the interpolated images generated using MLOT are relatively clear, serving as a viable alternative
method for barycentric interpolation. This paper contributes:

1) We propose MLOT, where we extend the traditional bipartite graph to a multi-layer structure, in
which source marginals transport mass to unknown immediate marginals and then further transport
the mass to the target marginal.

2) Entropic regularization is applied to MLOT, and two Sinkhorn-like algorithms for MLOT are
derived to obtain an approximate solution for MLOT. We also present theoretical results for the
entropic MLOT, which provide estimates of the intermediate distributions and demonstrate the
convergence of the entropic MLOT. Experiments demonstrate that under the multi-layer assumption,
our method offers a significant advantage in computational efficiency compared to traditional methods.

3) Compared to traditional deep learning tasks, e.g., classification, retrieval, and matching, which
mostly rely on a two-layer framework, we propose a Data Augmentation-based learning method that
extends the two-layer structure to three layers, where the third layer represents the augmented data
from the first layer. We conducted experiments on CLIP-based retrieval and visual graph matching.
The results show our new learning framework significantly outperforms the original two-layer case.

2 PRELIMINARIES AND RELATED WORK

Entropic Optimal Transport. OT dating back to [24], with the objective to seek a mapping
that minimizes the total cost of transporting mass from a source measure to a target measure.
Kantorovich [19] introduces the idea of using probabilistic transport instead of a deterministic map,
which is now commonly known as Kantorovich’s OT. Specifically, given the cost matrix C ∈ R+

m×n
and two histograms (a,b) where n and m are numbers of dimensions, Kantorovich’s OT with
the entropic regularization [42] involves solving the optimization minP∈U(a,b)⟨C,P⟩ − ϵH(P),

where U(a,b) = {P ∈ R+
mn|P1n = a,P⊤1m = b} and ϵ > 0 is the coefficient for entropic

regularization H(P) = −⟨P, logP − 1m×n⟩. The objective of entropic OT is ϵ-strongly convex,
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and thus it has a unique solution, which satisfies P∗
ϵ = diag(u)Kdiag(v), where K = e−C/ϵ is the

Gibbs kernel associated to the cost matrix C and (u,v) are two (unknown) scaling variables [8].

Low-Rank Optimal Transport. Low-rank regularization has been proposed to mitigate the high
computational cost and dimensionality issues of classical OT. Recent works [32; 31; 17] directly
address the OT problem under a non-negative rank constraint rk+(P) ⩽ r by factorizing the coupling
matrix as P = Q diag(1/g)R⊤, with Q ∈ Rn×r and R ∈ Rm×r, typically solved via Mirror Descent
and Dykstra’s algorithm. Alternatively, [13] introduces a decomposition through intermediate anchors,
where the transport rank is controlled by the number of anchors, and the solution is obtained by
alternating optimization of anchor positions and transport matrices. These works essentially focus on
constraining the coupling to a multiplicative product structure rather than capturing the semantics of
real transport flows. For example, transport from si to tj is recovered by

∑
k γ1,ik · γ2,kj/gk, which

lacks a physical interpretation of flow magnitude. In contrast, our MLOT directly models the actual
transported mass, since the global transport can be recovered by

∑
ℓ min(P1,iℓ,P2,ℓj), highlighting

the inherently additive nature of flow.

Graph Optimal Transport. The optimal transport on graphs can be traced back to [12], which
first calculates the shortest distances between source nodes and target nodes to create a cost matrix,
subsequently using it to compute the 1-Wasserstein distance. This approach transforms the problem
into a linear program, and more precisely, a min-cost flow problem, which has been utilized and
extended to define and study traffic congestion models. Recently, [20] introduced a new variant
called Sobolev transport (ST), designed for measures supported on graphs, which allows for a
closed-form expression for faster computation. Additionally, [21] generalized Sobolev transport
with an Orlicz structure [25]. However, the aforementioned works primarily rely on calculating the
shortest distances on the graph, and this simplified graph structure is often difficult to directly apply
to deep representation learning. In this paper, we assume the graph structure follows a multi-layered
form, and instead of using the shortest path to simplify the graph, we directly compute the inflow
and outflow of each node (i.e. intermediate distributions), which can be directly applied to data
augmentation-based representation learning.

Multiple-Marginal Optimal Transport. Instead of coupling two histograms (a,b) in Kantorovich
problem [19], the multi-marginal optimal transportation [1] couples K histograms (ak)Kk=1 by solving
the following multi-marginal transport:

min
P∈R+

n1×n2...nK

⟨C,P⟩ =
∑
k

nk∑
ik=1

Ci1,i2,...,iKPi1,i2,...,iK s.t.
∑
l̸=k

nl∑
il=1

Pi1,...,iK = ak,ik , ∀k, ik (1)

where Ci1,i2,...,iK is n1 × · · · × nK cost tensor. Note the Multi-Marginal Optimal Transport has
various applications including image processing [29], financial mathematics for derivative pricing [15]
and so on [26]. Compared with MLOT, the Multi-Marginal Optimal Transport approach differs in
that all of its marginals are deterministic, and its objective is to compute a high-dimensional coupling
tensor between multiple marginals, rather than the coupling series between two marginals in this
paper.

3 MULTI-LAYERED OPTIMAL TRANSPORT

3.1 MULTI-LAYERED OPTIMAL TRANSPORT AND ITS ENTROPIC REGULARIZATION

Formulation of MLOT. We first give the definition of our Multi-Layered Optimal Transport (MLOT).
Given the known source distribution a1 and target distribution aK , our MLOT aims to transport
the source distribution through intermediate uncertain distributions (a2,a3, . . . ,aK−1) to the target
distribution aK , where Ck ∈ R+

nk×nk+1
is known as the cost matrix between ak and ak+1. Our goal

is to solve for the optimal couplings (Pk)
K−1
k=1 and the intermediate distributions (ak)K−1

k=2 with the
following optimization:

min
(Pk)k,(ak)k

K−1∑
k=1

⟨Ck,Pk⟩ s.t. Pk1nk+1
= ak, and P⊤

k 1nk
= ak+1, ∀k < K. (2)

This formulation is exact an LP, as proved in App. L. Note that when K = 2, our MLOT degenerates
to the original Kantorovich OT when ϵ = 0. One efficient way to solve the above problem is through
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Figure 2: Transportation results of MLOT on synthetic Line and Ring data (refer to the data setup in Sec. 4) and
the thickness of the green line is directly proportional to the value of transportation. By varying the iterations,
couplings become sharper, and eventually converge to optimal transportation of entropic MLOT.

Graph OT methods based on the shortest path algorithm, as proposed by [34], where the shortest path
distances between source and target nodes are first computed, followed by a heuristic algorithm to
determine the final solution. However, such algorithms do not directly involve the computation of
intermediate distributions (ak)K−1

k=2 , limiting their applicability in real-world scenarios. For instance,
in the cross-border e-commerce operations problem mentioned in the introduction, if we introduce
capacity constraints for goods transportation at ports, which are indeed present in real scenarios and
need to be considered, the original shortest path-based algorithms become impractical.

Enropic Regularization of MLOT. We then introduce entropy regularization to MLOT in order
to obtain a GPU-friendly Sinkhorn-like algorithm, which can iteratively compute an approximate
solution for MLOT via matrix iterations. Unlike the case of vanilla OT, MLOT not only requires
optimizing coupling Pk but also involves intermediate distribution ak. Here, we contemplate applying
entropy regularization to both, leading to the formulation of entropic MLOT:

min
(Pk)k,(ak)k

K−1∑
k=1

(
⟨Ck,Pk⟩ − ϵH(Pk)

)
− τ

K−1∑
k=2

H(ak) s.t. Pk1nk+1 = ak, P
⊤
k 1nk = ak+1,∀k. (3)

where ϵ > 0 and τ ≥ 0 are coefficients for the regularization terms H(Pk) and H(ak), respectively.
The optimization described above is essentially a convex optimization problem, ensuring the existence
of a unique optimal solution. In particular, as ϵ, τ → 0, the entropic MLOT in Eq. 3 degenerates to
the original MLOT in Eq. 2. Furthermore, we can further derive properties of the solution as follows
by using the method of Lagrange multipliers.

Proposition 1 (Convergence with ε and τ ). When regularization on intermediate is canceled (τ = 0),
the unique solution (Pε,τ

k )k of Eq. 3 converges to the optimal solution P⋆
k of Eq. 2, as ε→ 0:

(Pε,0
k )k

ε→0−→ argmin(Pk)k

K−1∑
k=1

⟨Ck,Pk⟩. (4)

When intermediate is regularized by τ , given fixed ε = ε0, the unique solution (Pε0,τ
k )k of Eq. 3

converges to (Pε0,0
k )k as τ → 0:

(Pε0,τ
k )k

τ→0−→ argmin(Pk)k

K−1∑
k=1

⟨Ck,Pk⟩ − ε0H(Pk). (5)

The proof is in Appendix H. Prop. 1 is essentially due to the fact that entropic regularization is
a continuous function. This property demonstrates good convergence of MLOT. Eq. 4 and Eq. 5
show respectively that the regularization problem converges to the non-regularization case for both
couplings and intermediate. Fig. 10 and Fig. 11 show visually the effect of these two convergences.

3.2 TWO ALGORITHMS OF ENTROPIC MLOT AND THEIR CONVERGENCE

In this subsection, we introduce two corresponding Matrix-Scaling-based algorithms: the Bregman
iterative algorithm and the Sinkhorn-Knopp algorithm for MLOT.
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3.2.1 BREGMAN ITERATIVE PROJECTIONS FOR MLOT

We first transform Eq. 3 into an equivalent form of the KL divergence.

Proposition 2. Define the general KL divergence as K̃L(P|S) =
∑

ij Pij log
Pij

Sij
−Pij + Sij , the

optimization in Eq. 3 is equivalent to the following minimization, where (Sk)ij = e−(Ck)ij/ϵ, and
∆k = 1nk

/nk represents uniform distribution:

min
(Pk)k,(ak)k

ε

K−1∑
k=1

K̃L(Pk|Sk) + τ

K−1∑
k=2

KL(ak|∆k), s.t. Pk1nk+1 = ak, P
⊤
k 1nk = ak+1,∀k. (6)

The proof is given in Appendix G. Prop. 2 shows that the optimal solutions (Pk)k and (ak)k exactly
minimize the weighted summation of two KL divergences. Then we assume τ = 0 and adopt
Bregman projections as proposed in [4] to solve the optimization.

Bregman Iterations for MLOT. Following [4], we split the constraints, defining the constraint sets
as C2k−1 =

{
Pk ∈ RNk×Nk+1 | Pk

⊤1 = ak

}
and C2k =

{
Pk ∈ RNk×Nk+1 | Pk1 = ak+1

}
, ∀k.

Therefore we can find Pk ∈ C2k−1 ∩ C2k, ∀k = 1, ..,K − 1. Based on the Bregman projection
algorithms, we can iteratively compute Pk, and our improvement lies in the calculation of ak:

ProjKL
C2k−1

(Pk) = Pk diag

(
ak

P⊤
k 1

)
, ProjKL

C2k
(Pk) = diag

(
ak+1

Pk1

)
Pk, ak =

(
(P⊤

k 1)⊙ (Pk−11)
)1/2

(7)
The proof is given in AppendixE. Building on [4], we assume that the constraints cycle periodically,
i.e., Cl = Cl+2K for a positive integer index l < 2K. The minimization in Eq. 6 can then be solved
via the iterative projection scheme as P∗

k = limn→∞ ProjKL
Cn

(P
(l−1)
k ) and calculation of ak given in

Eq. 7 for all k. Convergence is guaranteed by the results in [5]. The advantage of this algorithm lies
in its simplicity of calculation, requiring no additional variables, making it suitable for training neural
networks, and we adopt this algorithm in data augmentation-based Applications in Sec. 3.3. However,
its computational efficiency is not optimal. In the following, we propose a more efficient algorithm.
3.2.2 MLOT-SINKHORN ALGORITHM AND ITS CONVERGENCE GUARANTEE

Proposition 3. The solution to Eq. 3 is unique, and has the form Pk = diag(uk)Skdiag(vk) for k =
1, . . . ,K − 1 where Sk = eCk/ε, and {(uk,vk)}k are the set of unknown scaling variables. While
the solution of the intermediate distributions satisfying following equations for k = 2, 3, . . . ,K − 1:

ak =

{
(uk ⊙ vk−1)

−ϵ/τ τ > 0(
(S⊤

k−1uk−1)⊙ (Skvk)
)1/2

τ = 0
(8)

Algorithm 1: MLOT-Sinkhorn Algorithm
Input: Source distribution a1, target
distribution aK , distance metrics (Ck)k, ε, τ
Initialize Sk = exp(−Ck/ε), uk = 1, vk = 1
for ∀k < K and ak = 1/Nk for ∀1 < k ≤ K.
while not Converge do

for k = 1, 2, . . . ,K − 1 do
uk ← ak ⊘ Skvk

vk ← ak+1 ⊘ S⊤
k uk

if k > 1 then
Update ak via Eq. 9

end if
end for

end while
Calculate Pk ← Diag(uk)Sk Diag(vk) for
∀k < K
Output: the couplings (Pk)

K−1
k=1 and the

intermediate distributions (ak)K−1
k=2

The proof are given in Appendix F. Compared
to entropic OT, the coupling form of MLOT is
similar, both expressed as the product of the
Gibbs kernel Sk and two diagonal matrices. The
difference lies in the fact that our MLOT re-
quires further computation of intermediate dis-
tributions as shown in Eq. 8, which implies that
the matrix iteration algorithm corresponding to
it is inevitably more complex than the Sinkhorn
algorithm based on Entropic OT.

MLOT-Sinkhorn. Based on Prop. 3, we pro-
pose the Sinkhorn-Knopp algorithm for MLOT,
which is GPU-friendly and hence accelerates the
approximation of the optimal solution of MLOT.
the Sinkhorn-like iterative method calculates the
optimal solution of Eq. 3 via matrix-vector iter-
ations. To get the results, an intuitive idea is to
iteratively update the coupling Pk and interme-
diate distributions ak until convergence. Thus
for updating the coupling Pk, based on the so-
lution form Pk = diag(uk)Sdiag(vk) and the
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Figure 3: Reformulated procedures of visual graph matching (left) and Image-to-Text retrieval (right).

marginal constraints (i.e. Pk1nk+1
= ak and P⊤

k 1nk
= ak+1), we derive the following iterations for

u
(l)
k and v

(l)
k given the iteration l:

u
(l+1)
k =

a
(l)
k

Skv
(l)
k

, v
(l+1)
k =

a
(l)
k+1

S⊤
k u

(l+1)
k

, where a
(l+1)
k =

{ (
u
(l+1)
k ⊙ v

(l+1)
k−1

)−ϵ/τ
τ > 0(

(S⊤
k−1u

(l+1)
k−1 )⊙ (Skv

(l+1)
k )

)1/2
τ = 0

(9)
where initialization is set as vk = 1nk

and ak = 1/Nk. Then, we iteratively update (u
(l)
k ,v

(l)
k ) and

a
(l+1)
k for intermediate distributions for all k until convergence. This process allows us to obtain

the final solutions (Pk)k and (ak)k. Note as ϵ → 0 and τ → 0 (or τ = 0), empirical evidence
demonstrates that the iterative results of our MLOT-Sinkhorn approach closely approximate the exact
solution of MLOT obtained using Gurobi.

Global Convergence of MLOT-Sinkhorn. The global convergence of MLOT-Sinkhorn is established
and greatly simplified with the aid of the Hilbert projective metric dH(u,u′)

def.
= logmaxi,j

uiu
′
j

uju′
i
.

Several important properties of Hilbert metric are studied in Appendix D.1. For solution form
Pk = diag(uk)Sk diag(vk) of MLOT-Sinkhorn, the convergence property of uk or vk is presented
as follows.
Proposition 4 (Convergence for τ = 0). For all layers, the worst error bound of ul+1

k is:

dH
(
ul
k,u

∗
k

)
= O

[(
γ2(γ + 2)

2− 2γ2 − γ3

)l
]
, where γ = max

k
λ(Sk)

def.
= sup

{
dH(Sky,Sky

′)

dH(y,y′)
,y,y′ ∈ Rn

+

}
,

(10)
where u∗ is the unique optimal scaling variable, ul is the l-th iteration of the scaling variable, and
λ(Sk) ∈ [0, 1] stands for the contraction radio of Sk, which highlights the fact that positive matrix
Sk is a strict contraction on the cone of positive vectors.

This proposition is proved in Appendix D. The bound for dH
(
vl
k,v

∗
k

)
follows a similar form as uk.

Eq. 10 implies that given proper setting of ε, τ , the MLOT-Sinkhorn algorithm will perform linear
convergence to a δ-approximate solution in O(| log δ|) iterations. Besides, for τ > 0, we also give
the convergence results in Appendix D.3.

3.3 DATA AUGMENTATION-BASED APPLICATIONS WITH MLOT

We now discuss the application of MLOT to address tasks that involve augmented data, framing the
problem through the lens of representation learning theory. Data augmentation is widely adopted in
contrastive learning (CL) strategies which typically optimize the InfoNCE-Loss. This loss formulates
representation learning as a softmax classification problem, pulling positive pairs together while
pushing negative pairs apart. OT-CLIP [33] provides a geometric interpretation of this process,
demonstrating that CL can be formulated as a point-set matching problem, where the standard
Softmax function is proven to be the optimal solution for this specific Entropic OT problem. However,
this traditional bipartite structure limits the model’s ability to fuse information from multiple data
fields simultaneously, which can derive from augmented data or grouped-stucture in dataset.

Extending the line of [33], we propose using MLOT to generalize this relationship, effectively
functioning as a multiple-layered Softmax. While vanilla OT (and by extension, standard Softmax)
restricts optimization to a two-layer network, MLOT leverages augmented data to formulate a chain-
transport problem. By introducing a multi-layered structure, we can contrast multiple positive and
negative sample sets at the same time within a single optimization pass. This formulation allows us
to integrate multile view as an intrinsic part of the transportation flow.

6
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Figure 4: Interpolation Image Computation via Barycenter Calculation and MLOT (K=6). In this example,
traditional entropic barycenters require calculating each one individually by varying barycenter weights, and the
results are independent of each other. In contrast, our method computes all intermediate results together.

We propose a unified paradigm, illustrated in Fig 3, that jointly considers original data, target data,
and augmented data by reformulating the task as an MLOT problem. The fundamental advantage of
this formulation is that it shifts the problem definition from ”transporting from one known distribution
to one unknown target” to ”transporting between two known distributions.” In tasks like zero-shot
retrieval, the true distribution of the retrieved items (the target) is unknown. Standard bipartite
methods must assume a uniform prior on the target, which lacks physical significance and limits
performance. In contrast, our paradigm constructs a three-layer transport: UO → XT → UO′ , where
each entry of UO, UO′ represents the original sample and augmented sample. Since they need to be
matched once and only once, UO, UO′ is set to uniform distribution. The core improvement lies in
treatment towards candidates XT : since the chosen entry is unknown, we hide it into the intermediate
layer. This allows the distribution of the choice of retrieved items to be adaptively computed, serving
as latent middle distribution (ak). Specifically, we generate cost matrix for any adjacent layers: C1

between UO, XT , and C2 between XT , UO′ .

min
P1P2

∑
i=1,2

⟨Ci,Pi⟩ − ϵH(Pi) s.t. P11n2 = 1,P⊤
1 1n1

= a2,P21n3
= a2,P

⊤
2 1n2

= 1.

Here P1 and P2 are the two matching score matrices, and (P1 + P2)/2 is used for overall pre-
diction. Then we explore applications of this paradigm in two downstream tasks that involve data
augmentation: graph matching and image-text retrieval. The procedure is discussed in detail below.

Learning-based Visual Graph Matching. Graph matching aims at discovering node matching
between graphs. Learning-based GM, such as NGMv2[39] and GCAN[18], rely on deep network
to construct features solve a bipartite matching problem. One challenge in visual task is Partial
Matching in the presence of outliers. Several works were done, including traditional algorithm
ZACR[37] and learning-based module AFA[40], generally operate within a fixed two-view framework
and do not explicitly predict outliers. Our motivation comes from the adaptive middle layers in
MLOT, this unknown distribution is well-mathced with the target image that has unknown
inlier distribution. By generating augmented view of source graph, we formulate a three-layered
MLOT problem to solve two matching jointly, and hide outlier distribution into latent layer, as shown
in the left part of Fig. 3. The two similarities respectively derived from two GM network (the two
network can be either the same or different). This formulation aims to transport all inliers from source
image to its augmented twins, and the pass-by middle is exactly the chosen inliers distribution.

CLIP-based Text-Image retrieval. Image-Text Retrieval is a traditional multimodal task aimed at
establishing correspondence between images and their descriptive text. Zero-shot retrieval, facilitated
by models like CLIP[30], aims to retrieve relevant items without any prior training on specific
categories or datasets. OT-CLIP[33] proves the insight that traditional bipartite approaches Softmax
is equivalent to optimize an OT problem. Note its fundamental limitation that can only leverage
two view of samples at single time, we address this by integrating augmented view using MLOT
framework, constructing a three-layered flow: Query→ Candidates→ Aug. Query, shown in right
part of Fig. 3. Besides the ability to integrate multiple view, this framework also hides unknown
retrieved sample distribution into adaptive middle layer. Comparing to the wrong unifrom prior
assumption made in Softmax, MLOT formulates the retrieval process in a more accurate way.

Image Interpolation. Computing Intermediate Images is a traditional task aimed at generating
transitions between two given images, often used for smooth interpolation or data completion.
Computing a single intermediate image can be reduced to calculating the (weighted)barycenter
between two images. However, if we want a smooth transform path from one image to another,
barycenter-based approach [47] requires varying barycenter weights to generate interpolations one
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Table 1: Experiment on synthetic Line and Ring datasets. The objective and time cost (in seconds) are
evaluated by comparing our proposed MLOT-sinkhorn (τ = 0 and τ > 0) with the other two baselines. Our
proposed algorithms provide highly accurate results in a much more efficient time.

Gurobi Short Path+Sinkhorn MLOT(τ = 0) MLOT(τ > 0)
Size Obj. Time(s) Obj. Time(s) Obj. Time(s) Obj. Time(s)

Experiment on synthetic Line data.

100 1.0684 0.08 1.0692 0.17 1.0692 2.23 1.0702 1.41
1K 0.4082 6.64 0.4099 10.2 0.4106 2.36 0.4126 1.61
2K 0.6323 43.9 0.6336 13.3 0.6342 2.90 0.6349 1.94
5K 0.1463 330 0.1487 67.8 0.1508 11.3 0.1519 7.40

10K Out Of Memory 0.3710 421 0.3707 41.2 0.3708 27.3
20K Out Of Memory 0.1129 2575 0.1137 162 0.1139 110

Experiment on synthetic Ring data.

100 2.3843 0.16 2.3848 0.34 2.3874 2.97 2.3900 2.06
1K 2.0319 20.5 2.0341 1.24 2.0396 3.34 2.0403 2.16
2K 2.0402 45.6 2.0427 2.72 2.0481 3.58 2.0484 2.27
4K 2.0222 324 2.0249 15.3 2.0301 5.42 2.0303 3.51

10K Out Of Memory 2.1536 336 2.1588 47.4 2.1589 30.2
20K Out Of Memory 2.1521 3125 2.1573 184 2.1573 125

by one in multiple steps. This task can be naturally formulated as an MLOT problem and thus gain
efficiency, since intermediate distributions can be treated as interpolations directly, as shown in Fig.4.

4 EXPERIMENTS

4.1 EXPERIMENTS ON SYNTHETIC DATA

To validate the efficiency and convergence performance of MLOT-Sinkhorn, particularly with small
ε, τ , we generated synthetic datasets by randomly distributing points in multi-layered structure to
simulate MLOT scenario, and conducted extensive numerical experiments.

Figure 5: Global convergence and local convergence
of MLOT-Sinkhorn (τ = 0). Here present experiments
conducted on K = 3 and K = 10 synthetic dataset.
(First row) Numerical changes of (ak)k during each
iteration. (Second row) KL error between (ak)k and
ground truth distribution.

Settings. Scenarios of the MLOT problem
were modeled with randomly distributed points.
The key information of our synthetic dataset
includes: Total number of points N (Problem
size), Number of layers K, number of points
per layer (nk)k, cost metric(measure). The syn-
thetic dataset includes two geometric metric:
Line problem with ℓ2 Euclidean distance, Ring
problem with Archimedean spiral length metric
(see Appendix J). A visualization of the syn-
thetic dataset is shown in Fig. 2, the couplings
are initialized as uniform. The thickness of the
green line is proportional to the value.

There are two baselines for numerical experi-
ment: (a). Commercial solver Gurobi running
on CPUs, (b). GraphOT based method on GPU.
The latter baseline convert MLOT into classic
OT by firstly computes shortest-path to convert
K − 1 distance matrices into one direct overall
cost matrix. We conduct experiments varying
problem size N from 1 × 102 to 2 × 104, for
both τ = 0 and τ > 0 version, examining the ac-
curacy and running time of the MLOT-Sinkhorn.
The results are shown in Tab. 1. For various problem sizes, MLOT-Sinkhorn has highly consistent
objective values with Gurobi, with average relative errors ∼ 0.7%. MLOT-Sinkhorn performes
several times faster than both Gurobi and GraphOT-based method. As N reaches 1×104, the memory
requirements for LP solver become prohibitive, while MLOT-Sinkhorn efficiently handles larger
problem sizes while maintaining both high speed and accuracy. Furthermore, Fig. 5 illustrates the
convergence performance of MLOT-Sinkhorn with varying iterations.
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Table 2: F1(%) on PascalVOC. PMH means Partial Matching Handling. Our method is marked as gray. The
score is improved in 14/20 classes with small epochs fine-tuning.

GM-Network PMH ae
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ZACR[37] ZACR 29.87 48.70 49.10 33.85 76.59 57.03 39.12 50.37 29.16 43.80 32.83 48.68 44.25 43.28 28.95 69.09 44.84 30.16 59.41 82.38 47.07
PCA-GM[38] None 37.45 59.13 50.97 37.46 78.82 65.41 44.03 52.28 33.01 48.77 38.33 53.28 48.54 50.31 34.30 78.62 50.58 31.18 64.49 85.00 52.10
GMN-GM[46] None 33.22 56.20 48.53 38.68 79.75 58.58 42.77 50.18 32.68 49.31 59.83 48.34 48.35 51.08 27.41 75.41 50.29 28.83 69.65 86.54 51.78
CIE[45] None 43.08 65.84 56.30 42.26 84.03 64.25 44.56 57.11 34.24 55.50 48.83 57.31 54.02 57.22 34.68 84.94 53.24 41.57 68.00 86.61 56.68

NGMv2[39]
AFA-I[40] 51.53 69.24 67.91 57.52 90.42 76.95 62.92 66.68 47.29 66.08 52.67 66.08 62.62 68.77 49.47 96.63 61.16 42.75 90.22 87.85 66.74
AFA-U[40] 50.61 68.04 66.39 53.92 89.83 76.31 61.31 66.06 45.34 65.12 60.25 64.71 61.06 68.13 48.76 95.56 61.04 44.09 90.02 88.50 66.25
MLOT(ours) 52.16 67.50 69.73 58.93 90.35 79.44 69.03 67.82 47.29 69.41 54.83 67.99 64.16 68.30 51.73 96.85 64.43 41.19 90.59 87.30 67.95

GCAN[18]
AFA-I 51.49 71.09 67.98 55.95 90.96 78.76 61.47 68.37 52.71 69.94 60.00 68.62 66.62 69.93 49.34 97.57 64.15 51.27 89.67 89.49 68.77
AFA-U 51.99 71.47 68.49 55.13 91.04 78.03 62.30 68.39 53.89 69.95 57.50 68.19 66.04 70.61 49.62 97.49 63.54 58.57 89.28 89.89 68.97
MLOT(ours) 50.90 70.00 70.40 60.01 91.61 79.06 65.57 68.43 52.78 71.47 60.83 69.19 67.35 70.53 52.04 97.19 65.27 50.42 92.20 88.56 69.69

Table 3: CLIP-based Zero shot Image-Text retrieval on COCO and Flickr, with random geometric transformation
on images and random selection on captions.

COCO Flickr30k
Image⇒Text Text⇒Image Image⇒Text Text⇒Image

Inference R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ViT-B/32 structure

Softmax 49.8 74.6 83.1 29.0 52.8 64.3 34.3 54.4 62.0 24.4 43.0 51.0
Independent Sinkhorn 46.4 71.5 79.8 32.1 58.0 68.5 36.4 60.0 69.6 24.8 45.1 54.9

MLOT(Rand. Augmentation) 50.7 75.1 83.3 35.1 61.2 72.2 41.0 65.3 74.3 27.4 50.0 59.8
RN50x64 structure

Softmax 57.4 80.6 88.0 35.6 60.2 70.1 45.1 65.3 71.7 33.1 52.6 60.0
Independent Sinkhorn 56.3 78.9 86.4 39.1 64.7 74.4 51.0 74.9 82.6 35.1 57.5 66.6

MLOT(Rand. Augmentation) 58.0 81.1 88.1 43.1 70.3 79.6 54.0 77.4 84.6 41.6 65.5 74.7

4.2 EXPERIMENTS ON DATA AUGMENTATION-BASED LEARNING

Experiments on CLIP-based Text-Image retrieval. For downstream task image-text retrieval,
we use COCO2017 [22] 5k validation set and Flickr [44] 30k dateset. Two different structures of
the CLIP model (ViT-B/32, RN50x64) are used to compute the feature embedding of images and
texts. The widely-used R@m(m = 1, 5, 10) in cross-modal retrieval is reported for performance
evaluation. The baseline uses Softmax or vanilla OT-Sinkhorn to predict retrieval image (or text)
solely based on information from bipartite structure. By integrating augmented data information
via MLOT framework shown in Fig. 3, we obtain significant improvement in recall of zero-shot
retrieval on both datasets and tasks. As shown in Tab. 3, the recall rate is improved by 4.2% for both
Transformer and ResNet architecture on average compared to vanilla OT.

Experiments on Visual Graph Matching. Following [41], we conduct the partial visual graph
matching experiment on PascalVOC [11] with outlier setting: Given image S without outliers, and
image T with outliers, the task is to detect all outliers as well as predict precise matching. The baseline
includes severeal GM methods mentioned in Sec. 3.3. The Partial Matching Handling (PMG) refers
to post-method to realize partial match. Following the procedure proposed in Fig. 3, we integrate
information from Saugment via MLOT framework. Thus reformulate the problem into transporting
distribution of S (uniform) to distribution of Saugment (uniform) and viaway intermediate T (inliers
distribution to be predicted). Based on this MLOT framework, we fine-tune 5 epochs on NGMv2 and
GCAN networks. The average F1-score on entire classes is reported in Tab. 2. MLOT framework
presents improvement in 14/20 classes with fine-tuning by leveraging augmented information.

More Experiments on Computing Image Interpolation. Note that our MLOT can be used to
efficiently compute any number of interpolation images between two given images. Fig. 4 shows the
results between two 64× 64 grayscale image. In contrast to traditional barycenter-based methods
[47], require calculating each one individually by varying barycenter weights, the intermediate layers
in MLOT automatically represent interpolation. More details are given in Appendix A. We also
compute such morphing process on CelebA [23], a high-resolution 218× 178 human-face coloured
image datasets. The results are shown in Fig. 7.

5 CONCLUSION AND LIMITIONS

In this paper, we have proposed Multi-layered Optimal Transport (MLOT), a novel approach extending
traditional optimal transport to handle complex, multi-stage transportation scenarios. We then
introduce the MLOT-Sinkhorn algorithms, leveraging entropic regularization for efficient computation
on GPUs. However, our algorithm relies on the prior hierarchical structure, thus cannot deal with
more general graphs, which are the areas that require further investigation.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study uses only publicly available datasets,
without involving sensitive information. We do not anticipate major ethical risks, though we encourage
responsible use of the proposed methods.

7 REPRODUCIBILITY STATEMENT

We provide implementation details, hyperparameters, and dataset descriptions in the main text and
appendix. The dataset is either publicly accessible or can be fabricated through the code we provide,
and we include sufficient information to reproduce the reported results. Source code and scripts will
be released to ensure full reproducibility.
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A VISUAL EXPERIMENTS ON INTERMEDIATE DISTRIBUTIONS

Figure 6: Intermediate images between given picture (64 × 64, grayscale), generated by MLOT
(ε = 1 × 10−5, τ = 0). Each row represents reformulating as MLOT with different layer amount
(K = 3 to K = 9). The layers (ak)k in MLOT are regarded as grayscale distribution of intermediate
images. Results demonstrate the effectiveness and smooth transformation of images under MLOT
framework. Layers in different location are equivalent to different setting of λ in barycenter method.

Relation to Wasserstein Barycenter. We found that our MLOT can be linked to the Wasserstein
barycenter. For the distributions (bs)

S
s=1, the Wasserstein barycenter among them aims to learn the

distribution a:

min
(Ps)s,s

S∑
s=1

λs < Ds,Ps > s.t. Ps1 = bs, Ps1 = a ∀s = 1, 2, . . . , S (11)

where Ds is the distance matrix between a and bs. As mentioned in MLOT formulation, our MLOT
assumes that the source and target distributions are known, and the objective is to compute the
intermediate distributions. In contrast, the Wasserstein barycenter assumes that one or several target
distributions of the transportation are known, and the goal is to compute the source distribution.
Specifically, when S = 2 in Eq.11 and K = 3 in Eq.2, the optimization of our MLOT is equivalent to
solving the Wasserstein barycenter by setting C1 = D⊤

1 and C2 = D2. In this paper, following [8],
we consider MLOT under entropic regularization in the next subsection, where we directly compute

13
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Figure 7: Computing interpolation image on CelebA high-resolution dataset (218× 178, coloured). K = 6, 8
layers.

the coupling between each pair of layers and intermediate distributions instead of relying on indirect
calculations through shortest paths.

As mentioned above, this task is mostly addressed by calculating the barycenter of two given images,
where different weights are set to generate a coherent series of intermediate images.

Sepcifically, given two 64x64 grayscale image fS , fT , a typical solution is to compute their barycenter.
The cost metric Ds, Dt is determined by the distances between pixel locations, i.e. pixel-wise
Euclidean distance D between two 64x64 grid. Thus the intermediate image f can be computed
under Ds = λD and Dt = (1− λ)D. By adjusting the metric weight λ, the resulting intermediate
image can be biased to varying degrees.

However, if several intermediate images are required, this barycenter-based method requires recal-
culating for each barycenter weight. In contrast, if we view all intermediate images with different
bias as part of a complete transmission process, we can obtain them within single computation by
reformulating the problem as MLOT.

For example, if an intermediate image with rational weight Ds = λD, λ = p
q , gcd(p, q) = 1 is

required, we can formulate a MLOT with K = q + 1, and all cost metric is set to D. Then the q-th
layer can be regarded as the required image distribution.

Generally, if λ1, λ2, . . . , λk weights images are required, barycenter-based method has to compute k
times. In contrast, we can formulate it as a MLOT problem. Suppose λi =

pi

qi
and gcd(pi, qi) = 1.

Then we can set K = lcm(q1, q2, . . . , qk) + 1, and all cost metric are set to D.

We conducted tests on grayscale images (a random Gaussian noise and a leopard), each sized 64x64.
As shown in Fig. 6. MLOT was applied varying K = 3 to K = 9 layers respectively. The results
indicate our proposed method is effective, that the intermediate layers can be smoothly interpreted
as intermediate images. What is more, MLOT generates several intermediate images at a single
calculation, which outperforms the barycenter-based method with respect to efficiency.

14
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B CLUSTERING-BASED CONTRASTIVE LEARNING VIA MLOT-SINKHORN.

Contrastive learning is an efficient self-supervised learning method that aims to learn features by
contrasting positive and negative pairs. [7] employs an online clustering approach for contrastive
learning. More precisely, we compute a code from an augmented version of the image and predict
this code from other augmented versions of the same image. Given two image features zt and zs
from two different augmentations of the same image, we compute their codes qt and qs by matching
these features to a set of K prototypes {c1, . . . , cK}. We then set up a “swapped” prediction problem
with the following loss:

L(zt, zs) = ℓ(zt, qs) + ℓ(zs, qt), (12)
which consists of two terms that define the “swapped” prediction problem: predicting the code qt
from the feature zs, and qs from zt. Each term denotes the cross-entropy loss between the code and
probability obtained by applying the Softmax to the dot products of zt and all prototypes:

ℓ(zt, qs) = −
∑
k

q(k)s log p
(k)
t s.t. p(k)t =

exp
(

z⊤
t ck
τ

)
∑

k′ exp
(

z⊤
t ck′
τ

) .
For the calculation of qs and qt, SwAV [7] uses the Sinkhorn algorithm to obtain two matching
probability matrices. However, it assumes that all prototypes share a uniform distribution, which is
somewhat unreasonable, as the number of samples in each cluster may differ. Instead, we relax the
uniform assumption and use MLOT-Sinkhorn to compute the matching for the three-layer features-
prototype-features matching result.

C HANDLE CONSTRAINTS ON INTERMEDIATE DISTRIBUTION

Suppose there exists a set of additional constraints on intermediate distribution, i.e. (ck)k, and
∀k = 2, ...,K − 1, the constraint forces ak ⩽ ck.

Such situation is especially common in real-world scenario, where warehouse or factories may have
storage capacity. Therefore it’s crucial to take distribution constraints into consideration.

Our MLOT-Sinkhorn can naturally adapt to these situations, by simply adding clip-function after
each update of ak.

a
(l+1)
k =

 min
[(
u
(l+1)
k ⊙ v

(l+1)
k−1

)−ϵ/τ
, ck

]
τ > 0

min
[(
(S⊤

k−1u
(l+1)
k−1 )⊙ (Skv

(l+1)
k )

)1/2
, ck

]
τ = 0

(13)

We generate different level of constraints in K = 3 MLOT-Sinkhorn experiment, and compare the
objective and intermediate distribution with Gurobi ground truth, as shown in Fig. 8

Figure 8: Setting different constraints on layers.

D GLOBAL CONVERGENCE OF MLOT-SINKHORN

D.1 PROPERTY OF HILBERT METRIC

To measure the gap between iterative result and optimal coupling, Hilbert metric is introduced.
dH(u,u′) := logmax

i,j

uiu
′
j

uju′
i
. Firstly, several mathematical properties of Hilbert Metric are studied as

follow.
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1. dH
(
a
b ,

c
d

)
= dH(ad,bc) ⩽ dH(a, c) + dH(b,d)

Proof: By definition:

LHS = logmax
aicj · bjdi

bidj · ajci
= dH(ad, cb)

Separating the product, we have:

LHS ⩽ logmax
aicj

ajci
+ logmax

bjdi

bidj
= dH(a, c) + dH(b,d)

2. dH(aε,bε) = |ε|dH(a,b)

Proof: By definition: LHS = logmax
aεib

ε
j

aεjb
ε
i

. Since the operation is to maximize for all

i, j, whether ε > 0 or ε < 0 will obtain the maximum or minimum at same row/column
combination. Therefore the exponent can be separated out as absolute value.

3. dH(ta, tb) = dH(ta, tb)

Proof: If t ∈ Rn
+ and a, b ∈ Rn×m

+ . Then expand the by definition will prove this property
straight forward. If t ∈ Rw×n

+ , the situation becomes more complicated, which we will
discuss immediately below.

D.2 INTRODUCTION OF CONTRACTION RADIO

In the solution form diag(uk)Sk diag(vk), the constant argument Sk is critical in the convergence
process. [28] points out how matrix production influences Hilbert metric. [14] generalizes this as
a nature of a matrix, which can be regraded as contraction radio during iteration. As the following
proposition shows.

dH(Sv,Sv′) ≤ λ(S)dH(v,v′)

, where λ(S) =

√
η(S)−1√
η(S)+1

and η(S) := max
ijkl

SikSjl

SjkSil

The λ(S) here is defined as

sup

{
dH(Sy,Sy′)

dH(y,y′)
, y,y′ ∈ Rn

+

}
, aiming to extract constant from Hilbert metric. Notice that λ(S) is larger than 0 and less than 1, we
call it contraction radio, denoted as γ.

D.3 PROOF OF CONVERGENCE

The case τ > 0

Iteration steps (considering l-th iteration):

ul+1
k = alk ⊘ Skv

l
k (14)

vl+1
k = alk ⊘ S⊤

k u
l
k (15)

al+1
k =

(
ul+1
k ⊙ vl+1

k−1

)−ϵ/τ
(16)
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Denote the optimal value as u∗
k,v

∗
k,a

∗
k. Now consider the Hilbert distance between l + 1-th iteration

to the optimal value:

dH(ul+1,u∗) = dH

(
al

Svl
,
a∗

Sv∗

)
(17)

⩽ λ(S)
[
dH
(
al,a∗

)
+ dH

(
vl,v∗)] (18)

dH
(
vl+1,v∗) = dH

(
al

S⊤ul
,

a∗

S⊤u∗

)
(19)

⩽ λ(S)
[
dH
(
al,a∗

)
+ dH

(
ulu∗)] (20)

dH
(
al,a∗

)
= dH

((
ul ⊙ vl

)− ε
τ , (u∗ ⊙ v∗)

− ε
τ

)
(21)

⩽
ε

τ

[
dH
(
ul,u∗)+ dH

(
vl,v∗)] (22)

The layer number k is not important here, since we can simply replace all alk,u
l
k,v

l
k, γk by the

biggest one in this iteration, which guarantee a worst bound.

Substitute Eq. 20 into Eq. 22, we have:

dH
(
al,a∗

)
⩽

ε

τ

1 + γ

1− (ε/τ)γ
· dH

(
ul,u∗)

Substitute this into Eq. 18, finally we have:

dH
(
ul+1,u∗) ⩽ γ

1− (ε/τ)γ

(
γ +

2ε

τ
γ +

ε

τ

)
· dH

(
ul,u∗)

Which indicates the Hilbert difference between ul and optimal u∗ converges in a exponential speed.

dH
(
ul+1,u∗) = O [( γ

1− (ε/τ)γ

(
γ +

2ε

τ
γ +

ε

τ

))l
]

Since the contraction radio γ is less than 1 (What’s more, in experiment we find that γ is always
around 0.50̃.7), and ε/τ is always set less than 0.5, then dH

(
ul+1,u∗)→ 0.

Figure 9: Convergence of MLOT-Sinkhorn (τ > 0), conducted on K = 3, 10 synthetic dataset. (First row)
Numerical changes of (ak)k during each iteration. (Second row) KL error between (ak)k and ground truth
distribution.

The case τ = 0

Iteration steps (considering l-th iteration):

ul+1
k = alk ⊘ Skv

l
k

vl+1
k = alk ⊘ S⊤

k u
l
k

al+1
k =

(
(S⊤

k−1u
l+1
k−1)⊙ (Skv

l+1
k )

)1/2 (23)

The remain proof is similar as the case τ > 0.

dH
(
al,a∗

)
⩽

1

2
γk−1dH

(
ul+1
k−1,u

∗
k−1

)
+

1

2
γkdH

(
vl+1
k ,v∗

k

)
⩽

1

2
γdH

(
ul+1

)
+

1

2
γdH

(
vl+1

) (24)
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, in which we denote max
k

γk as γ, and represent all layer’s Hilbert distance by the biggest one in this

iteration dH
(
al,a∗

)
, etc. We have:

(2− 2γ2 − γ3)dH
(
al,a∗

)
⩽ γ2(1 + γ)dH

(
ul,u∗) (25)

Combine Eq. 18, Eq. 20 and Eq. 25, finally we have:

dH
(
ul+1,u∗) ⩽ γ2(γ + 2)

2− 2γ2 − γ3
· dH

(
ul,u∗)

Which indicates the Hilbert distance between ul and optimal u∗ converges in a exponential speed.

dH
(
ul+1,u∗) = O [( γ2(γ + 2)

2− 2γ2 − γ3

)l
]

E PROOF OF BREGMAN ITERATIONS ALGORITHM FOR MLOT

Algorithm 2: MLOT-Sinkhorn Algorithm
Input: Source distribution a1, target distribution aK , distance metrics (Ck)k, ε, τ
Initialize Pk = exp(−Ck/ε) for ∀k < K and ak = 1/Nk for ∀1 < k < K.
while not Converge do

for k = 1, 2, . . . ,K − 1 do
Pk ← Pk diag

(
ak

P⊤
k 1

)
Pk+1 ← diag

(
ak+1

Pk1

)
Pk

if k > 1 then
Update ak ←

(
(P⊤

k 1)⊙ (Pk−11)
)1/2

end if
end for

end while
Output: the couplings (Pk)

K−1
k=1 and the intermediate distributions (ak)K−1

k=2

Based on KL form of MLOT in Prop. 2, we prove the Bregman iteration algorithm proposed in Eq. 7,

We decompose the constraint set as ∀k = 1, ..,K − 1,Pk ∈ C2k−1 ∩ C2k, where C2k−1 ={
Pk ∈ RNk×Nk+1 | Pk

⊤1 = ak+1

}
and C2k =

{
Pk ∈ RNk×Nk+1 | Pk1 = ak

}
.

Firstly we derive the Bregman projection on C2k−1.

Denote Pk as the projection on C2k−1 of P̂k. The first-order conditions of ProjKL
C2k−1

(P̂k) states the
existence of Lagrange multipliers gk such that:

ε log
Pk

P̂k

+ 1⊤gk = 0

Denote vk = e−gk/ε. Condition Pk
⊤1 = ak+1 thus implies that

vk =
ak+1

P̂⊤
k 1

and Pk = P̂k diag(
ak+1

P̂⊤
k 1

)

Similarly, denote Pk as the projection on C2k of Pk. The first-order conditions of ProjKL
C2k

(Pk) states
the existence of Lagrange multipliers fk such that:

ε log
Pk

Pk

+ fk1 = 0

Denote uk = e−fk/ε. Condition Pk1 = ak thus implies that

uk =
ak

Pk1
and Pk = diag(

ak

Pk1
)Pk

18
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Finally, by leveraging Lagrange multiplier function on ak, we get ∀k = 1, ...,K − 1:

fk + gk−1 = 0

which implies uk ⊙ vk−1 = 1, and thus we get the desired equation for ak:(
ak
Pk1

)
⊙

(
ak

P⊤
k−11

)
= 1 ⇒ ak = (Pk1)

1/2 ⊙
(
P⊤

k−11
)1/2

F PROOF OF REGULARIZED MLOT-SINKHORN SOLUTION AND ITERATION
FORM

The case τ = 0.

The entropic regularized MLOT can be formulated as

min
{Pk},{ak}

K−1∑
k=1

(
⟨Ck,Pk⟩ − ϵH(Pk)

)
− τ

K−1∑
k=2

H(ak) (26)

subject to
Pk1 = ak and P⊤

k 1 = ak+1 ∀k = 1, . . . ,K − 1. (27)
The Lagrange multiplier function is

L =

K−1∑
k=1

(
⟨Ck,Pk⟩ − ϵH(Pk)

)
− τ

K−1∑
k=2

H(ak)

−
K−1∑
k=1

⟨fk,Pk1− ak⟩ − ⟨gk,P
⊤
k 1− ak+1⟩

(28)

Firstly,
∂L

∂Pk
= Ck + ε logPk − fk1

⊤ − 1⊤gk = 0

⇒ Pk = diag
(
efk/ε

)
· e−Ck/ε · diag

(
egk/ε

) (29)

Set that: uk = efk/ε,vk = egk/ε,Sk = e−Ck/ε, we have:

Pk = diag(uk)Sk diag(vk) (30)

Due to Pk1 = ak and P⊤
k 1 = ak+1 We have:

uk =
ak

Skvk
, vk =

ak+1

S⊤
k uk

(31)

What’s more, when τ = 0:
∂L

∂ak
= fk + gk−1 = 0 (32)

Thus, uk ⊙ vk−1 = 1 Then we have:
ak

Skvk
⊙ ak

S⊤
k−1uk−1

= 1

ak =
[
(Skvk)⊙ (S⊤

k−1uk−1)
] 1

2 , for k = 2, ...,K − 1

(33)

The case τ > 0.

The Lagrange multiplier function is

L =

K−1∑
k=1

(
< Ck,Pk > −ϵH(Pk)

)
− τ

K−1∑
k=2

H(ak)

−
K−1∑
k=1

< fk,Pk1− ak > − < gk,P
⊤
k 1− ak+1 >

(34)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Firstly,
∂L

∂Pk
= Ck + ε logPk − fk1

⊤ − 1⊤gk = 0

⇒ Pk = diag
(
efk/ε

)
· e−Ck/ε · diag

(
egk/ε

) (35)

Set that: uk = efk/ε,vk = egk/ε,Sk = e−Ck/ε, we have:
Pk = diag(uk)Sk diag(vk) (36)

Due to Pk1 = ak and P⊤
k 1 = ak+1 We have:

uk =
ak

Skvk
, uk =

ak+1

S⊤
k uk

(37)

What’s more, when τ > 0
∂L

∂ak
= τ log ak + fk + gk−1 = 0

ak = (uk ⊙ vk−1)
−ϵ/τ

(38)

G PROOF OF EQUIVALENCE BETWEEN MLOT AND ITS KL-DIVERGENCE
FORM

From the definition of K̃L and (Sk)ij = e−(Ck)ij/ϵ, we have
K−1∑
k=1

K̃L(Pk|Sk) =

K−1∑
k=1

∑
ij

(
(Pk)ij log(Pk)ij − (Pk)ij + (Pk)ij

(Ck)ij
ε

+ (Sk)ij

)

=

K−1∑
k=1

∑
ij

(
(Pk)ij (log(Pk)ij − 1) +

1

ϵ
(Pk)ij(Ck)ij + (Sk)ij

)

=
1

ϵ

K−1∑
k=1

⟨Ck,Pk⟩ − εH(Pk) + Const .

(39)

and
K−1∑
k=2

K̃L(ak|∆k) =

K−1∑
k=2

∑
i

(ak)i (log (ak)i + log nk − 1)

=

K−1∑
k=2

∑
i

(ak)i (log (ak)i − 1) + lognk

∑
i

(ak)i

=
1

τ

K−1∑
k=2

H(ak) + Const .

(40)

Notice that the Const in expression is irrelevant when it comes to solving optimization problems.
Therefore min

(Pk)k,(ak)k
ε
∑K−1

k=1 K̃L(Pk|Sk) + τ
∑K−1

k=2 K̃L(ak|∆k) is exactly equivalent to Eq. 3.

H PROOF OF MLOT CONVERGENCE WITH ε AND τ

Convergence with ε In this part, we prove that the entropic regularization on couplings will
converge to original MLOT. We consider a sequence (εl)l > 0 such that εl → 0. We denote (Pεl

k )k
as the optimal solution of Eq. 3 with ε = εl, τ = 0, and denote (P⋆

k)k as the optimal solution of
Eq. 2. By optimality of (Pεl

k )k and (P⋆
k)k for their respective optimization problems, we have:

K−1∑
k=1

⟨Ck,P
εl
k ⟩ − εlH(Pεl

k ) ⩽
K−1∑
k=1

⟨Ck,P
⋆
k⟩ − εlH(Pk⋆)

K−1∑
k=1

⟨Ck,P
⋆
k⟩ ⩽

K−1∑
k=1

⟨Ck,P
εl
k ⟩

(41)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Therefore:

0 ⩽
K−1∑
k=1

⟨Ck,P
εl
k −P⋆

k⟩ ⩽
K−1∑
k=1

εl [H(Pεl
k )−H(P⋆

k)] (42)

Since entropic function H(P) is continuous and inner product here is always positive, the limitation
εl → 0 shows that Pεl

k = P⋆
k, ∀k = 1, 2, ...,K − 1, which proves Eq. 4.

Convergence with τ In this part, we prove that the entropic regularization on both couplings and
intermediates will converge to the problem that only regularize couplings, given the fixed ε0. We
consider a sequence (τl)l > 0 such that τl → 0. We denote (Pτl

k )k as the optimal solution of Eq. 3
with ε = ε0, τ = τl, and denote (Pε0

k )k as the optimal solution of Eq. 3 without regularization on
intermediates. By optimality of (Pτl

k )k and (Pε0
k )k for their respective optimization problems, we

have:

K−1∑
k=1

⟨Ck,P
τl
k ⟩ − ε0H(Pτl

k )− τl

K−1∑
k=2

H(aτlk ) ⩽
K−1∑
k=1

⟨Ck,P
ε0
k ⟩ − ε0H(Pε0

k )− τl

K−1∑
k=2

H(aε0k )

K−1∑
k=1

⟨Ck,P
ε0
k ⟩ − ε0H(Pε0

k ) ⩽
K−1∑
k=1

⟨Ck,P
τl
k ⟩ − ε0H(Pτl

k )

(43)

Therefore:

0 ⩽
K−1∑
k=1

⟨Ck,P
τl
k −Pε0

k ⟩ − ε0 [H(Pτl
k )−H(Pε0

k )] ⩽
K−1∑
k=2

τl [H(aτlk )−H(aε0k )] (44)

Similarly, since entropic function H(a) is continuous, the limitation τl → 0 shows that regularization
on intermediate can converge to non-regularization on intermediate:

K−1∑
k=1

⟨Ck,P
τl
k ⟩ − ε0H(aτlk ) =

K−1∑
k=1

⟨Ck,P
ε0
k ⟩ −H(aε0k ).

I CONVERGENCE OF MLOT RESPECTED TO τ

As mentioned in Section 4, Fig 10 and Fig 11 visualize the convergence of MLOT-Sinkhorn with
respect to ε and τ .

The shade of color in the heatmaps indicates the magnitude of the transport values at each location,
while the central bar graphs represent the intermediate distributions computed by the algorithm. This
experiment aims to showcase the convergence properties regarding ε and τ as proven in Prop. 1.

The experiment is conducted on Line dateset, with N = 100, K = 3, (nk)k = {25, 50, 25}, D = 5,
where points in each layer are uniformly distributed along a line of length 20. Both the source and
target distributions were randomly generated and normalized.

In Fig. 10, τ is set to 0, and a series of decreasing ε values are employed, comparing to the ground
truth solution of Eq. 2 (ε = 0), showing the convergence of MLOT-Sinkhorn with respect to ε.

In Fig. 11, ε is fixed as 1 × 10−3, and a series of decreasing τ values are employed, showing the
convergence of MLOT-Sinkhorn with respect to τ .

J ARCHIMEDEAN DISTANCE BETWEEN TWO POINTS

Archimedes’ spiral is curve expressed as r(θ) = b(θ − θ0). Suppose two a spiral passes through two
points (r1, θ1), (r2, θ2). The curve’s parameters can be determined as:

b =
r2 − r1
θ2 − θ1

, θ0 =
θ1r2 − θ2r1
r2 − r1

(45)
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Figure 10: Impact of ε on the MLOT-Sinkhorn algorithm solutions, generated by varying ε = 8× 10−2, 8×
10−3, 8 × 10−4, and 0 (Gurobi) with τ = 0, on Line data. As ε decreases, the solution of our algorithm
converges towards the exact solution of Eq. 2.

Figure 11: Impact visualization of τ on the MLOT-Sinkhorn. The experiment is conducted on Line data,
by fixed ε = 1 × 10−3 and varying τ = 2 × 10−1, 2 × 10−2, 2 × 10−3, and 0 (without regularization on
intermediate). As τ decreases, the solution progressively converges towards the solution without regularization
on intermediate.

The length of the curve is:

dl =
√

dr2 + (rdθ)2

⇒ L =

∫ r2

r1

√
1 +

r2

b2
dr

=
r

2b

√
b2 + r2 +

b

2
ln
(
r +

√
b2 + r2

) ∣∣∣∣∣
r2

r1

(46)

Under the circumstances in Ring Data, where the radii of neighbouring rings differ by 1, thus
b = 1/ (θ2 − θ1). Further denote θ2 − θ1 as a. Let:

F (r) =
r

2

√
1 + a2r2 +

1

2a
ln
(
ar +

√
1 + a2r2

)
(47)

Then the Archimedean distance between two points can be written as F (r2)− F (r1).

K RELATION TO THE DYNAMIC OT AND SCHRÖDINGER BRIDGE

Fundamentally, our MLOT is akin to Dynamic Optimal Transport [35] in that both can be seen as
calculating the intermediate steps of the entire transport process. The difference lies in the fact that
we fix the positions of each layer or the cost matrices between two layers in our MLOT, while in
Dynamic OT, the locations are continuous throughout the entire space. The relationship between
the Schrödinger bridge [10] and our entropic MLOT is similar to the relationship between the
aforementioned two OT variants; both can be regarded as special cases in a discrete state. Therefore,
our MLOT can offer new perspectives and approximate computations for Dynamic OT and the
Schrödinger bridge.
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SBP LOT MLOT
Premise Continuous flow in

space
Factorized by low-
rank middle anchors

Sequential flow
through fixed multi-
stage layers

Intermediate State Probability distribu-
tions

Supports’ coordinate Mass distribution

Optimization Variable Probability distribu-
tions pt(x) over t ∈
(0, 1)

Anchors’ position zj
and transportation

Transportation series
{Pk}

Cost Entropic regularized
OT cost

k-Wasserstein
barycenter

(sum of) Primal OT
cost

Algorithm Iterative Proportional
Fitting

Lloyd-type Mirror Descent

Table 4: Comparison of SBP, LOT, and MLOT.

L CONVEXITY OF MLOT

We show that MLOT formulation Eq. 2 is a convex optimization problem (also linear programming).

Firstly, the inner-product and summation in objective function is linear.

Secondly, we show that constraints part is linear. Let:

Ak =

[
1⊤
nk
⊗ Ink+1

Ink
⊗ 1⊤

nk+1

]
∈ R(nk+nk+1)×nknk+1

where ⊗ is Kronecker’s product, In is identity matrix by n size. Intuitively, this is for computing the
row-sum and col-sum of a vectorized matrix.

Then the constraints can be re-formulate to linear form:

Ak · vec(Pk) =

[
ak−1

ak

]
, ∀k = 1, ..,K − 1

where denote a0 = s, aK−1 = t be the known fixed distribution, and other ak ∈ ∆nk
is restrained

in nk-dim simplex, which is also a linear constraint.

Therefore MLOT problem (Eq. 2) is LP, thus also convex problem.

M OVERALL TIME COMPLEXITY

To prove the overall complexity of MLOT-Sinkhorn Alg. 1, we refer to the technique used in [2] to
adapt to our algorithm.

The time spent can be decomposed into two part: ”Complexity per Iteration” × ”Iteration number
before convergence/stop”.

The first part is easy to analysis, since each Sinkhorn-based algorithm is simply matrix-scale type
method. Each iteration cost O((K − 1)n2).

Since MLOT-Sinkhorn do the update for each layer respectively, we make an important assumption
that, we regard its stop criteria’s property follows summation of a series classic Sinkhorn.

Following [2], let sk =
∑

ij exp (−ηCk), lk = minij exp (−ηCk). Thus, to get a ϵ′-error result,
MLOT-Sinkhorn needs O(ϵ′−2 ·

∑
log(sk/lk)) iterations.

To make the result adaptive with more convenient parameters, we use the following scaling inequality
to substitute sk, lk:

log (sk/lk) = log(s) + log(1/l) ≤ O(logn+ η||Ck||∞)
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Let η =
4(K − 1) log(n)

ϵ
, ϵ′ =

ϵ

8(K − 1)L
, where L = maxk ||Ck||∞ = maxk maxij(Ck)ij , we

get the Iteration needs before getting a ϵ-error solution is: O((K − 1)4L3ϵ−3 log(n)). Thus overall
complexity is:

O
(
(K − 1)5L3ϵ−3n2 log(n)

)
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