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ABSTRACT

Wasserstein distributionally robust optimization (WDRO) provides a framework
for adversarial robustness, yet existing methods based on global Lipschitz conti-
nuity or strong duality often yield loose upper bounds or require prohibitive com-
putation. In this work, we address these limitations by introducing a primal ap-
proach and adopting a notion of exact Lipschitz certificate to tighten this upper
bound of WDRO. In addition, we propose a novel Wasserstein distributional at-
tack (WDA) that directly constructs a candidate for the worst-case distribution.
Compared to existing point-wise attack and its variants, our WDA offers greater
flexibility in the number and location of attack points. In particular, by leveraging
the piecewise-affine structure of ReLU networks on their activation cells, our ap-
proach results in an exact tractable characterization of the corresponding WDRO
problem. Extensive evaluations demonstrate that our method achieves competitive
robust accuracy against state-of-the-art baselines while offering tighter certificates
than existing methods.

1 INTRODUCTION

Modern deep networks achieve remarkable accuracy yet remain fragile to distribution shift and
adversarial perturbations (Szegedy et al., 2014; Goodfellow et al., 2014; Kurakin et al., 2018;
Hendrycks & Dietterich, 2019; Ovadia et al., 2019; Taori et al., 2020; Koh et al., 2021), raising
concerns about their reliability in deployment. A principled avenue for robustness is Wasserstein
distributionally robust optimization (WDRO, Mohajerin Esfahani & Kuhn 2018; Gao & Kleywegt
2023), which controls worst-case test risk over an ambiguity set within a Wasserstein ball around
the empirical distribution and admits tight dual characterizations from optimal transport (Villani
et al., 2008; Santambrogio, 2015). While numerous defenses have been proposed, a fundamental
gap persists between theoretical robustness certificates and practical adversarial evaluation: exist-
ing Lipschitz-based certificates often provide loose upper bounds that vastly overestimate the true
worst-case loss (Virmaux & Scaman, 2018), while standard attacks restrict perturbations to fixed-
radius balls around individual points (Katz et al., 2017; Ehlers, 2017; Weng et al., 2018; Singh et al.,
2018). This mismatch stems from two limitations: certificates typically rely on global worst-case
analysis that ignores the actual network geometry traversed by data, and attacks consider only point-
wise perturbations rather than distributional shifts permitted by Wasserstein threat models (Singh
et al., 2018; Gao & Kleywegt, 2023). The discrepancy is particularly pronounced for modern ar-
chitectures with ReLU activations, where the network behaves as a piecewise-affine function whose
local properties vary dramatically across regions (Jordan & Dimakis, 2020), and those with smooth
activations (GELU, SiLU/Swish) exhibit complex nonlinear geometry (Hendrycks & Gimpel, 2016;
Ramachandran et al., 2017; Elfwing et al., 2018). In this work, we aim to address both sides of this
gap: our contributions can be summarized as follows.

1. For a class of networks with Rectified Linear Unit (ReLU) activations (Nair & Hinton, 2010),
we analyze the upper and lower bounds of the Wasserstein Distributional Robust Optimization
(WDRO) problem by connecting with the tight Lipschitz constant studied in Jordan & Dimakis,
2020. Our analysis is based on the classical underlying piecewise-affine structure of ReLU
networks: on any strict ReLU cell, the logit map θ(·) is affine with a constant input-logit Ja-
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cobian JD. Our contribution is to leverage this structure for WDRO, which requires combin-
ing the Lipschitz constant of the logit map and the sensitivity of the softmax cross-entropy,
or the DLR loss. Our first theoretical result yields an upper bound of WDRO induced by
L ≜ 21/s maxD∈DX ∥JD∥r→s, where JD is general Jacobian of the logit map. (See 3.1 for
precise definition of JD.) In addition, we derive a lower bound of WDRO by constructing a
concrete and finite worst-case distribution. (See equation 16 for the explicit formulation.) This
worst-case distribution is constructed by perturbing the empirical sample along the direction in
which the logit map is most varied. Moreover, we provide a sufficient condition where our lower
and upper bounds match, and simulate an instance to illustrate this tightness, see Figure 2a.

2. We further analyze the upper and lower bounds of the Wasserstein Distributional Robust Opti-
mization (WDRO) problem for a class of MLP with smooth activation and cross-entropy loss.
Unlike ReLU activation or DLR loss, which might create degeneration edges, the chain rule is
readily applied in this case, and the Lipschitz constant of the loss is naturally computed by esti-
mating its gradients. Similar to the analysis of the ReLU networks, we obtain the upper bound
of the WDRO as L ≜ 21/s maxx∈X ∥∇θ(x)∥r→s while the worst-case distribution and lower
bound are constructed similar to the ReLU networks.

3. Finally, we bridge the gap between WDRO theory and adversarial evaluation by introducing
the Wasserstein Distributional Attack (WDA), which directly constructs adversarial distributions
within the Wasserstein ball rather than restricting to point-wise perturbations. Unlike existing
attacks that place all adversarial examples on the ϵ-ball boundary, WDA flexibly interpolates
between point-wise (κ = 1) and truly distributional attacks (κ > 1) by supporting adversarial
distributions on 2N points. This offers a complementary perspective to strong baselines such
as AutoAttack and the RobustBench leaderboard (Croce & Hein, 2020; Croce et al., 2021).
Empirically, WDA with κ = 2 consistently finds stronger adversarial examples than state-of-
the-art methods across diverse settings: achieving lower robust accuracy than APGD-DLR on
CIFAR-10/100 with WideResNet backbone (Zagoruyko & Komodakis, 2016) on both ℓ∞ and ℓ2
perturbations. When integrated into the Adaptive Auto Attack framework, our method matches
or exceeds the ensemble performance of A3. These results demonstrate that the distributional
perspective not only provides tighter theoretical certificates but also yields more effective at-
tacks, validating our claim that existing robustness evaluations underestimate vulnerability by
restricting to Ω∞ rather than the larger Ω1 ambiguity set assumed by certificates.

Figure 1: Left: Wasserstein ambiguity ball Ωp =
{
P : Wd,p(P,PN ) ≤ ϵ

}
inclusion and its admissible attacks. Our

proposed Wasserstein Distributional Attack (WDA) with κ ≥ 1 includes its special case κ = 1 as a point-wise attack, and
produces a distributional attack when κ > 1. Note that most of the existing tight certificates estimated an upper bound of
WDRO w.r.t. Ωp=1, not Ωp=∞. Right: Visualization of point-wise attack (N adversarial samples) versus our WDA (2N
adversarial samples). Our WDA allows not only a larger number of supports but also a wider range of perturbations.

2 PRELIMINARIES

Notations We denote basis vector as ek; indicator function as 1{·}; Dirac measure as δz; input
dimension n, and output dimension as K. An empirical dataset is denoted {Z(1), . . . , Z(N)} with
Z = (x, y) ∈ Z = X × Y where X ⊂ Rn and Y ⊂ RK ; empirical distribution PN =

∑
i µiδZ(i)

with Z(i) = (x(i), y(i) = eki
). Norms ∥ · ∥r and ∥ · ∥s are dual with 1/r + 1/s = 1. For

a matrix A, ∥A∥r→s = sup∥u∥r=1 ∥Au∥s. Rectifier [·]+ = max {0, ·}. Recession cone rec(·).
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Interior set int(·). Ground cost d((x′, y′), (x, y)) = ∥x′ − x∥r +∞ · 1{y′ ̸=y}. Cross-entropy loss
ℓ(x, y; θ) = −

∑K
k=1 yk log softmax(θ(x))k. Analogous DLR loss as defined in Croce & Hein

(2020). We define the dual-norm maximizer Mr by

Mr : g 7→ argmax
h

{⟨g, h⟩ | ∥h∥r = 1} =

{
sign(g) if r = ∞,
g/∥g∥2 if r = 2,
sign(gk′)ek′ with k′ ∈ argmaxk |gk| if r = 1,

(1)
and projection Πr,x,κϵ by

Πr,x,R : x 7→ argmin
ξ

{
∥ξ − x∥22 | ∥ξ∥r ≤ R

}
. (2)

Wasserstein Distributionally Robust Optimization (WDRO) Robustness guarantees and cer-
tificates aim to make model predictions trustworthy under adversarial manipulation (Wong &
Kolter, 2018; Cohen et al., 2019; Salman et al., 2019). The empirical risk minimization model
infθ EPN

[ℓ(Z; θ)] optimizes average performance on the observed data but offers no protection
against worst-case shifts nearby. Distributionally robust optimization (DRO) addresses this by
choosing parameters that perform well against all distributions within a prescribed neighborhood:
infθ supP∈P EP[ℓ(Z; θ)]. Here, the worst-case loss is taken over all admissible distributions P ∈ P .
The ambiguity (or uncertainty) set P is often constructed by collecting all distributions P that are
similar to the empirical distribution PN .

In this work, we focus on the Wasserstein ambiguity set, which is a ball centered at PN un-
der the Wasserstein distance. Given a ground cost d on the space of data Z , the Wasser-
stein distance (Villani et al., 2008) between two distributions P and Q it is defined as

Wd,p(P,Q) ≜
(
infπ∈Π(P,Q)

∫
Z×Z dp(z′, z) dπ(z′, z)

)1/p
for p ∈ [1,∞);, and Wd,p(P,Q) ≜

infπ∈Π(P,Q) ess. supπ(d) for p = ∞. Intuitively, the Wasserstein distance between two distribu-
tions P and Q is defined as the minimum cost to transport the mass of P to Q. The WDRO problem
with a given budget of perturbation ϵ > 0 can be written as

inf
θ

sup
P∈Ωp

EP[ℓ(Z; θ)] where Ωp = {P | Wd,p(P,PN ) ≤ ϵ} . (3)

It is worth noting that Wd,p ≤Wd,p′ if p≤ p′, thus Ω1 ⊇ Ωp ⊇ Ωp′ ⊇ Ω∞ (see Figure 1). For more
details of Wasserstein distributionally robust optimization, we refer reader to Kuhn et al. (2019) and
our Appendix A.

Lipschitz Certificate For p = 1, the worst-case risk over a Wasserstein ball admits the standard
Lipschitz upper bound

sup
P∈Ω1

EP[ℓ(Z; θ)] ≤ EPN
[ℓ(Z; θ)] + Lϵ. (4)

where L is any Lipschitz constant of z 7→ ℓ(z; θ) with respect to the ground cost. This inequality
follows from weak duality and is widely used to make the WDRO objective tractable: one replaces
the inner maximization by the surrogate Lϵ and then controls L (Mohajerin Esfahani & Kuhn, 2018;
Blanchet et al., 2019; Gao & Kleywegt, 2023; Gao et al., 2024). In practice, estimating L reduces to
bounding the network’s (global or local) Lipschitz modulus, e.g., fast global products of per-layer
operator norms (Virmaux & Scaman, 2018) or tighter activation-aware/local certificates (Jordan &
Dimakis, 2020; Shi et al., 2022).

Adversarial Attack. Adversarial attack methods often construct a perturbed distribution by shift-
ing each sample X(i) along a specific adversarial direction u(i) to get X(i)

adv (Goodfellow et al., 2014;
Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017). These methods are essentially point-
wise attacks, which draws a distribution Padv =

∑N
i=1

1
N δ

X
(i)
adv

in the Wasserstein ambiguity set
Ωp = {P : Wd,p ≤ ϵ} when p = ∞ (see Figure 1). Whereas, in the p = 1 case, the ambiguity
set only constrains the average transportation cost under an optimal coupling. Hence, the adversary
may move some points farther and others less as long as the mean cost stays within budget. This
creates a significant gap between the robustness measured against Ωp=∞ attacks and the theoretical
robustness or Lipschitz certificates 4 which are developed for Ωp=1 (Mohajerin Esfahani & Kuhn,
2018; Carlini et al., 2019; Rice et al., 2021).
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3 TRACTABLE INTERPRETATION OF WDRO FOR NEURAL NETWORKS

For certain shallow and convex models (e.g., linear regression, support vector machines, etc.), the
tractable representation of the WDRO problem 3 is well-established in the literature (Mohajerin Es-
fahani & Kuhn, 2018; Blanchet et al., 2019; Gao & Kleywegt, 2023; Gao et al., 2024). This tractable
form enables a computational advantage and provides a clear interpretation of the robustness of reg-
ularization mechanisms. In that line of work, the Lipschitz constant often provides a practical and
tight upper bound of the corresponding upper bounds. However, when the loss is non-convex, the
Lipschitz certificate is not always tight, as outlined in the following remark.
Remark. Consider a single-point empirical PN = δ{X(1)=2} and a loss given by

ℓ(x) =

{
|x| if |x| ≤ 1,
1
2 |x|+

1
2 otherwise.

Then ℓ is Lipschitz with modulus 1, however supΩ1
EP[ℓ(X)] = EPN

[ℓ(X)] + ϵ
2 for any ϵ > 0.

As presented in the following sections, our main theoretical results (Theorem 3.1 and 3.3) show
that Lipschitz modulus provides a tight upper bound for the WDRO problem 3 for a class of ReLU
neural networks and smooth activated neural networks.

3.1 EXACT AND TRACTABLE INTERPRETATION OF WDRO FOR RELU NEURAL NETWORKS

For a broad class of ReLU networks, the tight (local) Lipschitz constant can be found exactly via
activation patterns. For example, for any H-layer ReLU network θ(x) = WH+1(ReLU(· · · (W1x+
b1) · · · ) + bH), let

Lθ = sup
x∈X

sup
J∈∂θ(x)

∥J∥r→r̃, (5)

where J ∈ ∂θ(x) is a general Jacobian of θ at x, then Jordan & Dimakis (2020, Theorem 1) has
shown that ∥θ(x′)−θ(x)∥r̃ ≤ Lθ×∥x′−x∥r for any x′, x ∈ X . Moreover, if θ is in general position
(Jordan & Dimakis, 2020, Definition 4), then the chain rule applies and any general Jacobian J must
has a form as WH+1DHWH · · ·D1W1 for some [0, 1]-diagonal matrix Dh, h = 1, . . . ,H . It is
worth noting that the set of ReLU networks not in general position is negligible (Jordan & Dimakis,
2020, Theorem 3). Now in equation 5, the maximizer of a convex function (norm operator) must
happen at vertices, thus we only need to consider 0/1-diagonal matrix Dh.

We formally introduce the concept of mask as follows.

Definition 3.1 (Mask and Cell). Let θ(x) = WH+1(ReLU(· · · (W1x + b1) · · · ) + bH) be a ReLU
network which is in general position. For any tuple D = (D1, . . . , DH), we define

JD = WH+1DHWH · · ·D1W1.

For any x ∈ X , we define the set of all 0/1-diagonal masks at x as

Dx = {D = (D1, . . . , DH) | JD ∈ ∂θ(x), Dh is 0/1-diagonal, h = 1, . . . ,H}

We denote DX = ∪x∈XDx as the (finite) set of all possible masks.

For any mask D = (D1, . . . , DH) ∈ Dx, let CD be the cell, which is an open linear region, defined
by

CD = {x | preh(x)j > 0 if Dh(j, j) = 1 and preh(x)j < 0 if Dh(j, j) = 0, h = 1, . . . ,H} ,

where the pre-activation functions are defined as

preh : x 7→ Wh(ReLU(· · · (W1x+ b1) · · · ) + bh).

Given this definition of mask and note that DX is finite, one can rewrite equation 5 as Lθ =
maxD∈DX ∥JD∥r→r̃. We adopt this notion and show that it induces an upper bound for the Wasser-
stein distributional robust optimization (WDRO) problem 3 with cross-entropy loss. Moreover, this
upper bound is tight for a class of monotonic ReLU networks.

4
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Theorem 3.1 (WDRO for ReLU). Given a ReLU network θ(x) = WH+1(ReLU(· · · (W1x +
b1) · · · ) + bH) being in general position, 1/r + 1/s = 1 and ℓ being the cross-entropy or DLR
loss, define

L ≜ 21/s max
D∈DX

∥JD∥r→s , (6)

and
l ≜ max

x∈X ,
D∈Dx

max
k′ ̸=k

sup
∥u∥r=1

{
(ek′ − ek)

⊤JDu | u ∈ rec(CD)
}
. (7)

where JD, CD, DX are defined in Definition 3.1 and rec(CD) is the recession cone of CD. Then for
any ϵ > 0, we have

EPN
[ℓ(Z; θ)] + lϵ ≤ sup

P : Wd,1(P,PN )≤ϵ

EP[ℓ(Z; θ)] ≤ EPN
[ℓ(Z; θ)] +Lϵ. (8)

Moreover, if the dual-norm maximizer Mr(J
⊤
D⋆(ek′⋆ −ek⋆)) ∈ rec(CD⋆) where D⋆ is a maximizer

of 6 and (k′⋆, k⋆) is a maximizer of 7, and (ek′⋆ − ek⋆) is the largest increment direction of JD⋆ ,
then l = L.

Proof. To prove inequality 8, we show that ℓ(·, θ) is L-Lipschitz, and a direction u found in equa-
tion 7 induces an admissible attack Padv satisfying that EPadv

[ℓ(Z; θ)] ≈ EPN
[ℓ(Z; θ)] + lϵ and

Wd,1(Padv,PN ) ≤ ϵ. To verify the sufficient condition of l = L, we show that the constructed Padv

provides l = L. We provide detailed proof in Appendix B.1.

In Figure 2a, we illustrate an instance in which our lower and upper bounds match. While equation 7
provides a tight lower bound of the WDRO, it is impractical to scan through all x ∈ X and its mask
Dx. We then introduce a practical lower bound, of which we consider the mask associated with the
sample points only.
Corollary 3.2 (Practical lower bound). Given assumptions and notations used in Theorem 3.1, let
ZN = {(X(1), Y (1)), . . . , (X(N), Y (N))} and

lN ≜ max
(X(i),Y (i))∈ZN ,

D∈Dx

max
k

sup
∥u∥r=1

{
(ek − Y (i))⊤JDu | u ∈ int(rec(CD))

}
. (9)

Then lN ≤ l.

Based on the proof of our lower bound (equation 16), we construct a worst-case distribution by
moving mass from a sample along a direction u that maximizes the margin term in equation 7. In
Section 4, based on formulation 9, we create this construction empirically via the attack distribu-
tion equation 10 by choosing adversarial direction u(i) for each sample i so that it maximizes the
first-order increase of the corresponding logit margin.

3.2 EXACT AND TRACTABLE INTERPRETATION OF WDRO FOR SMOOTH ACTIVATION
NEURAL NETWORKS

For networks with smooth activations, e.g, GELU (Hendrycks & Gimpel, 2016), SiLU/Swish (Ra-
machandran et al., 2017; Elfwing et al., 2018), WDRO duality connects worst-case (adversarial)
risk to first-order geometry via the Jacobian of the logit map, yielding global Lipschitz-type upper
penalties of the form supx∈X ∥J(x)∥r→s. Compared to piecewise-linear ReLU certificates, smooth
nets trade exact cell-wise constancy for differentiability along rays and curves, suggesting bounds
driven by asymptotic Jacobian behavior rather than activation masks.

Let t be a positive scalar, θ : X ⊆ Rn → RK be a classifier with smooth activations and cross-
entropy loss; let J(x) ∈ RK×n be its Jacobian. We then have the following result.

5
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(a) (b)

Figure 2: (a) WDRO bounds and PGD attack loss for a fixed n = K = 2 ReLU classifier with one hidden layer of
dimension 8. Lower-bound curves are the cumulative l as more reachable activation masks are considered. (b) Wasserstein
Distributional Attack (WDA, Alg. 1) for r = 2. At each iteration xt, WDA forms K−1 candidates φj and updates using
the one with the largest logit θj(φj). For reference, PGD follows the dual-norm gradient direction; DeepFool linearizes the
decision boundary.

Theorem 3.3 (WDRO for Smooth Networks). Let θ : Rn → Rk be a differentiable network,
1/r + 1/s = 1 and ℓ being the cross-entropy or DLR loss, define

L ≜ 21/s sup
x∈X

∥∇xθ(x)∥r→s ,

and
l ≜ sup

x∈X
max
k′ ̸=k

sup
∥u∥r=1

{
(ek′ − ek)

⊤∇xθ(x)u
}
.

Then for any ϵ > 0,

EPN
[ℓ(Z; θ)] + lϵ ≤ sup

P : Wd,1(P,PN )≤ϵ

EP[ℓ(Z; θ)] ≤ EPN
[ℓ(Z; θ)] +Lϵ.

In this setting, first-order WDRO penalties are controlled by how J(x) amplifies unit directions and
how that amplification projects onto the most competitive non-true logit. The upper slope L is the
global worst-case amplification, while the lower, margin–directional slope l follows rays x(i) + tu
and harvests only the component along (ek′ − eki). When a ray both attains the global operator
norm and aligns with a margin difference, the bound is tight to first order (l = L). This motivates
the adversarial procedure used in our adversarial attack algorithm WDA (Algorithm 1), where we
search for a direction u and a rival class k′ that maximize the first-order increase (ek′−eki

)⊤J(x)u.

4 WASSERSTEIN DISTRIBUTIONAL ATTACK

Existing point-wise attacks such as FGSM (Goodfellow et al., 2014), DeepFool (Moosavi-Dezfooli
et al., 2016), AA (Croce & Hein, 2020), AAA (Liu et al., 2022), keep the adversarial distribution
supported on exactly N points, where each point X(i)

adv is perturbed to be precisely on the boundary
of the ϵ-ball centered at X(i). To address this issue, we propose a novel method called Wasserstein
Distributional Attack (WDA). At a high level, WDA constructs an adversarial distribution, Padv,
supported on a set of 2N points. This set consists of N original empirical samples X(i) and N

corresponding adversarial points X
(i)
adv, each perturbed to an r-norm distance κϵ from X(i) using

the first-order, margin-aligned directions predicted by Theorems 3.1–3.3, for some κ ≥ 1. In other
words,

Padv =
1

N

N∑
i=1

((
1− 1

κ

)
δ(X(i),Y (i)) +

1

κ
δ
(X

(i)
adv,Y

(i))

)
. (10)

6
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In the special case where κ = 1, our proposed attack reduces to existing point-wise methods. When
κ = 2, WDA simplifies to a uniform distribution over all 2N points, with each point receiving a
weight of 1

2N . This 2N -support mixture belongs to the Ω1 ambiguity set and serves as a constructive,
distributional adversary; it is not necessarily the inner maximizer of WDRO. We now make the first-
order ascent directions explicit; this is the step used by WDA to realize the margin-aligned rays from
Theorems 3.1–3.3.

Define (sub)gradient gj(x) ∈ ∂x
(
θj − θk

)
(x). Then Mr(gj) give the per–iteration, first–order

version of the ray ascent used in Theorems 3.1–3.3: within a ReLU cell (affine logits) or for smooth
activations (continuous J), moving along uj = Mr(gj) increases the gap at rate ∥gj(x)∥s. During
an initial probing phase, we evaluate all rivals j ̸= k using these first-order steps. At the end of that
phase, we fix a single rival j∗ based on the logits magnitude and continue the remaining iterations.
If we allow j∗ to change at every step, the update can oscillate across classes and chase locally steep
but globally suboptimal directions for misclassifications. Finally, we project each step to the ball
of radius κε around the anchor X(i) to the WDRO budget. The procedure for implementing the
Wasserstein Distributional Attack is presented in Algorithm 1. A visualization of our algorithm is
shown in Figure 2b.

Algorithm 1 Wasserstein Distributional Attack (WDA)

1: Inputs: neural network θ : Rn → RK , empirical distribution PN =
∑N

i=1 δ(X(i),Y (i)), budget ϵ > 0, cost-norm
r ∈ {1, 2,∞}, WDA parameter κ ≥ 1, step size α > 0, and 0 < prob ≤ maxiter

2: Outputs: Wasserstein distributional attack Padv such thatWd,1(Padv,PN ) ≤ ϵ where d((x′, y′), (x, y)) = ∥x′ −
x∥r +∞ · 1{y′ ̸=y}

3: Initialize: dual-norm maximizerM (1), projection Π (2)
4: for i = 1 to N do
5: x0 ← X(i), ek ← Y (i) for some k = 1, . . . ,K
6: for iter = 0 to maxiter do
7: if iter < prob then J = {1, . . . ,K} \ {k} else J = {j∗}
8: gj ← ∇xθ (xiter)

⊤ (ej − ek) for j ∈ J
9: uj ←Mr(gj) for j ∈ J

10: φj ← Πr,X(i),κϵ (xiter + αuj) for j ∈ J
11: j∗ = argmaxj∈J θj (φj)
12: xiter+1 ← φj∗

13: end for
14: X

(i)
adv ← xmaxiter

15: end for
16: Padv ← 1

N

∑N
i=1

(
1− 1

κ

)
δ(X(i),Y (i)) +

1
κ
δ
(X

(i)
adv

,Y (i))

17: return Padv

5 RELATED WORK

Robustness Certificates Early scalable global certificates control the Lipschitz constant by mul-
tiplying per-layer operator norms, which is fast to compute yet data-agnostic and typically loose
on deep nets (Virmaux & Scaman, 2018). For ReLU networks, local (activation-aware) methods
exploit piecewise linearity to produce much tighter, input-conditioned certificates on individual ac-
tivation regions (Katz et al., 2017; Ehlers, 2017; Weng et al., 2018; Singh et al., 2018; Shi et al.,
2022). Most relevant to exact local Lipschitzness, Jordan & Dimakis (2020) showed that for a broad
class of ReLU networks in general position, the local Lipschitz constant can be computed exactly
by optimizing over activation patterns.

Adversarial Attacks Adversarial Attack methods seek for perturbation x′ formed by adding a
small, human-imperceptible perturbation to a clean input x that causes misclassification (Szegedy
et al., 2014). The threat model specifies the attacker’s knowledge (white-box vs. black-box), the
admissible perturbation set (e.g., r2 balls with budget ϵ), and the objective (e.g., worst-case loss
within the ball). Canonical white-box methods include FGSM (Goodfellow et al., 2014), multistep
PGD (Madry et al., 2018), CW (Carlini & Wagner, 2017), and gradient-based margin attacks such
as DeepFool (Moosavi-Dezfooli et al., 2016). Decision-based and score-free attacks (black-box)
include Boundary Attack (Brendel et al., 2021) and Square Attack (Andriushchenko et al., 2020).
Robust evaluation is subtle: gradient masking can inflate apparent robustness if attacks are not
adapted (Athalye et al., 2018).
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To standardize evaluation, AutoAttack (AA) (Croce & Hein, 2020) composes strong, parameter-free
attacks (APGD-CE, APGD-DLR, FAB, Square) and is widely adopted for reporting robust accuracy.
RobustBench (Croce et al., 2021) curates model zoos and standardized test protocols across datasets
and rp threat models, enabling comparable and reproducible robustness claims. Liu et al. (2022)
proposed Adaptive Auto Attack (A3), which incorporates Adaptive Direction Initialization (ADI)
and Online Statistics-based Discarding (ODS) (Tashiro et al., 2020) to enhance attack efficiency. In
our experiments, we report robustness under AA and A3 following RobustBench conventions and
use them as baselines for comparison.

Several works have focused on adversarial attacks tailored to ReLU networks. Croce & Hein (2018)
introduced rLR-QP, a gradient-free method that navigates the piecewise-linear regions of ReLU
models by solving convex subproblems and enhancing exploration with randomization and local
search. More recently, Zhang et al. (2022) developed BaB-Attack, a branch-and-bound framework
that operates in activation space, leveraging bound propagation, beam search, and large neighbor-
hood search to uncover stronger adversarial examples than conventional gradient-based approaches,
particularly on hard-to-attack inputs. As pointed out in Zhang et al. (2022); Croce et al. (2020),
rLR-QP and BaB-Attack are not as efficient as gradient based attack, therefore, we only use APGD
as single-method baseline in our experiment.

Table 1: Comparison of robust accuracy of WDA and baseline methods against various defenses on CIFAR-10, CIFAR-100
and ImageNet. The best (lowest) attack accuracy of single methods and ensemble methods are highlighted in underline and
bold, respectively.

PAPER MODEL CLEAN
SINGLE METHOD ENSEMBLE METHOD

APGD
-CE

APGD
-DLR

WDA
(κ = 1)

WDA
(κ = 2) AA A3 A3++

CIFAR-10 – r∞ , ϵ = 8/255

BARTOLDSON ET AL. (2024) WRN-94-16 93.68 76.15 74.31 74.05 65.25 73.71 73.55 73.54
BARTOLDSON ET AL. (2024) WRN-82-8 93.11 74.17 72.54 71.85 62.06 71.59 71.46 71.46
CUI ET AL. (2024) WRN-28-10 92.16 70.60 68.62 68.07 60.01 67.73 67.58 67.57
WANG ET AL. (2023) WRN-70-16 93.25 73.46 71.68 71.02 63.08 70.69 70.53 70.52
WANG ET AL. (2023) WRN-28-10 92.44 70.24 68.24 67.60 60.96 67.31 67.17 67.17
XU ET AL. (2023) WRN-28-10 93.69 67.08 69.00 66.39 63.25 63.89 63.93 63.84
SEHWAG ET AL. (2022) RN-18 84.59 58.40 57.66 56.30 54.65 55.54 55.50 55.50

CIFAR-10 – r2 , ϵ = 0.5

WANG ET AL. (2023) WRN-70-16 95.54 85.66 85.30 85.00 77.63 84.97 84.96 84.97
WANG ET AL. (2023) WRN-28-10 95.16 84.52 83.89 83.71 76.31 83.68 83.68 83.68
SEHWAG ET AL. (2022) WRN-34-10 90.93 78.23 78.16 77.51 72.01 77.24 77.22 77.25
SEHWAG ET AL. (2022) RN-18 89.76 75.24 75.32 74.69 69.75 74.41 74.41 74.40
DING ET AL. (2020) WRN-28-4 88.02 66.62 66.62 66.22 63.04 66.09 66.05 66.06
CUI ET AL. (2024) WRN-28-10 89.05 66.58 67.08 66.59 64.19 66.44 66.41 66.42

CIFAR-100 – r∞ , ϵ = 8/255

WANG ET AL. (2023) WRN-28-10 72.58 44.09 39.66 39.12 43.61 38.77 38.70 38.71
ADDEPALLI ET AL. (2022) RN-18 65.45 33.47 28.82 28.26 37.64 27.67 27.65 27.63
CUI ET AL. (2024) WRN-28-10 73.85 43.82 40.37 39.57 43.68 39.18 39.17 39.14

IMAGENET – r∞ , ϵ = 4/255

LIU ET AL. (2025) CONVNEXT-B 76.02 55.90 56.78 54.38 52.95 55.82 53.19 53.18
SINGH ET AL. (2023) CVNEXT-S-CVST 74.10 52.82 53.20 51.04 50.31 52.42 49.92 49.90

6 EXPERIMENTS

Experimental settings To evaluate the effectiveness of WDA, we test the adversarial robustness
of several state-of-the-art defense models on CIFAR-10, CIFAR-100 and ImageNet. We report r∞
and r2 robustness under perturbation budgets ϵ ∈ {4/255, 8/255, 0.5}. In addition to point-wise
attack, we conduct a separate Wasserstein distributional attack experiment to further validate our
method. Specifically, we set κ = 2 in Algorithm 1 to find the adversarial (distributional) attack Padv

(equation 10) and reporting classification accuracy on the distribution by (1 − 1/κ) × accclean +
(1/κ) × accadv. Our attack is benchmarked against AA, APGD-DLR, APGD-CE (Croce & Hein,
2020), and A3 (Liu et al., 2022). The defense models, along with their official implementations
and pretrained weights, are obtained from RobustBench Croce et al. (2021). All experiments are
conducted on 2x NVIDIA GeForce RTX 4090 GPU and 1x NVIDIA H200.
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6.1 COMPARISON WITH EXISTING BASELINES

Setup For the baselines AA, APGD-DLR, APGD-CE, and A3, we adopt the configurations re-
ported in their respective research papers. Meanwhile, in WDA, we set the number of probe steps
to αprobe = 10, and use αatk = 20 attack iterations. We further propose A3++, an extension of A3

that incorporates our attack into its framework.

Robustness on r∞ and r2 Perturbations for CIFAR-10 Table 1 presents the robust accuracy of
several attack methods under r∞ perturbations with ϵ = 8/255 and r2 perturbations with ϵ = 0.5.
Across both single and ensemble based threat models, WDA consistently outperforms other single-
method attacks (APGD-CE and APGD-DLR), highlighting its effectiveness as a stronger standalone
adversarial evaluation. Moreover, WDA achieves results that are often comparable to ensemble-
based methods, indicating its ability to match the strength of more computationally demanding
attack aggregations. Within the ensemble family, A3++ demonstrates clear improvements over AA
and provides competitive performance with A3, surpassing it on several defense models (3 out of
7 under r∞ and 1 out of 6 under r2). Notably, under r∞ and r2, WDA (κ = 2) produces lower
robust accuracy values than other attacking methods across all defense models. This highlights the
potential of Wasserstein distributionally attack.

6.2 ABLATION STUDY
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Figure 3: Analysis of κ and step size effect. (a) Robust accuracy with varying κ on different defense method. (b) Convergence
of Wang et al. (2023) under r2 perturbations (ϵ = 0.5). (c) Run time comparision between WDA and A3.

Figure 3a illustrates how the robust accuracy of WDA varies as the parameter κ increases. Across
all models, raising κ beyond 1 generally leads to a noticeable drop in robust accuracy. Specifically,
for the models from Wang et al. (2023), Sehwag et al. (2022), and Sehwag et al. (2022) (RN-18), the
best performance is observed at κ = 3, whereas for Ding et al. (2020), the lowest robust accuracy
occurs at κ = 2. These results indicate that increasing κ consistently weakens model robustness,
with the precise κ that produces the largest drop depending on the architecture. Figure 3b presents
robust accuracy for the Wang et al. (2023) model with r2 perturbations and with different step sizes
for attack. The x-axis represents iterations, and the y-axis shows robust accuracy. In Figure 3b,
smaller step sizes (0.01 and 0.005) lead to higher robust accuracy (97%–99%), reflecting weaker
attacks. The most effective attack occurs at step size 0.2, where the accuracy drops to around 88%.
At larger step sizes (0.5 and 1.0), robust accuracy stabilizes at lower values despite initial drops,
suggesting reduced attack effectiveness. Figure 3c reports the runtimes (in seconds) of our WDA
and A3 on ImageNet dataset with number of sample ranging from 1000 to 5000. We can observe
that WDA has lower computational time and grows slower than A3, verifying the scalability of our
method.

7 CONCLUSIONS

We presented tight robustness certificates and stronger adversarial attacks for deep neural networks
by exploiting their local geometric structure. For ReLU networks, we derived exact WDRO bounds
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using their piecewise-affine property, computing data-dependent Lipschitz constants from activa-
tion patterns that significantly tighten existing global bounds. For networks with smooth activa-
tions (GELU, SiLU), we characterized the worst-case loss through asymptotic Jacobian behavior
along adversarial rays, providing the first tractable WDRO analysis for these modern architectures.
Our Wasserstein Distributional Attack (WDA) algorithm constructs adversarial distributions on 2N
points rather than restricting to N perturbed points, achieving lower robust accuracy than state-of-
the-art methods across CIFAR-10/100 benchmarks. While WDA incurs additional computational
overhead compared to single-point attacks due to evaluating multiple candidate perturbations per it-
eration, it demonstrates that existing robustness evaluations significantly underestimate vulnerability
by considering only point-wise perturbations. Together, these contributions narrow the gap between
theoretical certificates and practical evaluation, revealing that both tighter bounds and stronger at-
tacks emerge from properly leveraging network geometry and distributional perspectives.
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A PRELIMINARIES ON WASSERSTEIN DISTANCE AND WDRO

Recall that given two probability measures P and Q on Z , the Wasserstein distance is defined as

Wd,p(P,Q) ≜

(
inf

π∈Π(P,Q)

∫
Z×Z

dp(z′, z) dπ(z′, z)

)1/p

for p ∈ [1,∞), and Wd,p(P,Q) ≜ infπ∈Π(P,Q) ess. supπ(d) for p = ∞, where the feasible set is
given by

Π(P,Q) ≜
{
π on Z × Z : π(A×Z) = P(A), π(Z ×B) = Q(B) ∀A,B ⊆ Z

}
the set of couplings (transport plans) between P and Q. Intuitively, a transportation plan π is feasible
if it is a joint distribution whose first marginal is P and second marginal Q. In the ambiguity set Ωp =
{P | Wd,p(P,PN ) ≤ ϵ} (equation 3), a (distributional) attack P is admissible if the minimal effort for
moving mass from P to the empirical distribution PN is not exceeding budget ϵ. Unlike traditional
approaches which only allows point-wise perturbations, WDRO min-max model (equation 3) allows
both discrete and continuous distribution P, which is extremely practical in certain scenarios where
the ground-truth distribution Ptrue is unknown and possibly continuous.

B PROOFS

B.1 PROOF OF THEOREM 3.1

Proof of Upper Bound It is a standard result that for any y = ek, if ℓ is the cross-entropy loss
then

|ℓ(x′, y; θ)− ℓ(x, y; θ)| = |log [softmax θ(x′)]k − log [softmax θ(x)]k|
≤ 21/s∥θ(x′)− θ(x)∥s,

(11)

or if ℓ is the DLR loss then

|ℓ(x′, y; θ)− ℓ(x, y; θ)| = |(maxk1 ̸=k θ(x
′)k1

− θ(x′)k)− (maxk2 ̸=k θ(x)k2
− θ(x)k)|

≤ 21/s∥θ(x′)− θ(x)∥s.
(12)

In addition, by Jordan & Dimakis (2020), we have that for any x′, x ∈ X ,

∥θ(x′)− θ(x)∥s ≤ max
D∈DX

∥JD∥r→s × ∥x′ − x∥r. (13)

Thus,
|ℓ(x′, y; θ)− ℓ(x, y; θ)| ≤ 21/s maxD∈DX ∥JD∥r→s × ∥x′ − x∥r

= L× d((x′, y), (x, y)).
(14)

for any x′, x ∈ X and therefore by using Lipschitz certificate (Mohajerin Esfahani & Kuhn, 2018;
Blanchet et al., 2019; Gao & Kleywegt, 2023; Gao et al., 2024; Chu et al., 2024), we have

sup
P : Wd,1(P,PN )≤ϵ

EP[ℓ(Z; θ)] ≤ EPN
[ℓ(Z; θ)] +Lϵ, (15)

for any ϵ > 0.

Proof of Lower Bound To show that the lower bound of the worst-case loss is EPN
[ℓ(Z; θ)] + lϵ,

it is enough to construct a perturbation Z̃, a weight η ∈ (0, 1], and a distribution

Padv =

N∑
i=1,i̸=ι

1

N
δZ(i) +

1− η

N
δZ(ι) +

η

N
δZ̃ , (16)

so that Wd,1(Padv,PN ) ≤ ϵ and EPadv
[ℓ(Z; θ)] ≈ EPN

[ℓ(Z; θ)] + lϵ.

Since DX is finite, let x⋆,D⋆, k′⋆, k⋆ and sequence {u⋆
t } be the maximizer in 7, i.e., D⋆ ∈

Dx⋆ , k′⋆ ̸= k⋆, {u⋆
t } ⊂ int(rec(CD⋆)) and

(ek′⋆ − ek⋆)⊤JD⋆u⋆
t → l when t → ∞.
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In particular, θ is affine and differentiable on rec(CD⋆). Since u⋆
t belongs to the open cone rec(CD⋆),

one has that for any α > 0,
x̃ = x⋆ + αu⋆

t ∈ rec(CD⋆), (17)

and thus
∇xθ(x̃) = JD⋆ , θ(x̃)− θ(x⋆) = αJD⋆u⋆

t . (18)

Choose root ι so that (X(ι), Y (ι) = ek⋆). Then when ℓ is the cross-entropy loss or DLR loss, by a
technical Lemma B.1 one has

lim
α→∞

∆ℓ(α)

α
= lim

α→∞

ℓ(x̃, Y (ι); θ)− ℓ(x⋆, Y (ι); θ)

α
≥ vk′⋆ − vk⋆ . (19)

where v = JD⋆u⋆
t . Now choose α large enough so that ∆ℓ(α) ≈ α(vk′⋆ − vk⋆), ∆ℓ(α) ≫

ℓ(x⋆, Y (ι); θ)− ℓ(X(ι), Y (ι); θ), and Nϵ < ∥x̃−X(i)∥r ≈ α. Set Z̃ = (x̃, Y (ι)), then

ℓ(Z̃; θ)− ℓ(Z(ι); θ) = ∆ℓ(α) + ℓ(x⋆, Y (ι); θ)− ℓ(X(ι), Y (ι); θ)
≈ ∥x̃−X(i)∥r(vk′⋆ − vk⋆)

= d(Z̃, Z(ι))× (ek′⋆ − ek⋆)⊤JD⋆u⋆
t

t→∞−−−→ l× d(Z̃, Z(ι)).

(20)

Now set η = Nϵ
d(Z̃,Z(ι))

∈ (0, 1], then

Wd,1(Padv,PN ) ≤ η

N
d(Z̃, Z(ι)) = ϵ. (21)

Moreover,
EPadv

[ℓ(Z; θ)] = EPN
[ℓ(Z; θ)] + η

N

(
ℓ(Z̃; θ)− ℓ(Z(ι); θ)

)
≈ EPN

[ℓ(Z; θ)] + ϵ
d(Z̃,Z(ι))

ld(Z̃, Z(ι))

= EPN
[ℓ(Z; θ)] + lϵ.

(22)

Therefore, the lower bound of the worst-case loss is EPN
[ℓ(Z; θ)] + lϵ.

Sufficient condition of l = L Suppose that the dual-norm maximizer ξ = Mr(J
⊤
D⋆(ek′⋆ −

ek⋆)) ∈ rec(CD⋆) where D⋆ is a maximizer of 6 and (k′⋆, k⋆) is a maximizer of 7, then we have

l = (ek′⋆ − ek⋆)⊤JD⋆u⋆
t

≥ (ek′⋆ − ek⋆)⊤JD⋆ξ (since u⋆
t is the maximizer)

= ∥(ek′⋆ − ek⋆)⊤JD⋆∥s (by definition of dual-norm maximizer)
= ∥(ek′⋆ − ek⋆)∥r∥JD⋆∥r→s

= 21/s∥JD⋆∥r→s = L,

(23)

where the second last equality holds true because (ek′⋆ − ek⋆) is the largest increment direction of
JD⋆ .

Figure 4: Illustration of Proof of Lower Bound
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B.2 PROOF OF THEOREM 3.3

Proof. The proof for the upper and lower bounds is similar to the methodology we discussed in our
previous exchange.

Proof of Upper Bound The WDRO upper bound is a direct consequence of the Lipschitz con-
tinuity of the loss function. The Lipschitz constant of the combined loss function, Lℓ =
supZ∈Z ∥∇xℓ(Z; θ)∥r, is bounded by the product of the Lipschitz constant of the loss with respect
to the output and the Lipschitz constant of the network. That is,

L ≤ ∥J(x)∥r→s · ∥∇θℓ∥s = ∥J(x)∥r→s · 21/s

Proof of Lower Bound The proof of the lower bound is identical with the ReLU network case,
where it relies on constructing a specific adversarial distribution. This finds a point x⋆ and a direc-
tion u⋆ that maximize the rate of change of the loss. The constant l is defined as this maximum
rate of change. By constructing a perturbed point x̃ = x⋆ + αu⋆ and a corresponding adversarial
distribution, it is shown that the worst-case loss is at least EPN

[ℓ(Z; θ)] + lϵ.

B.3 TECHNICAL PROOFS

Lemma B.1 (Technical lemma). In equation 19, if ℓ = ℓCE is the cross-entropy loss, then

lim
α→∞

∆ℓCE

α
= max

i
(JD⋆u⋆

t )i − (JD⋆u⋆
t )k⋆ .

Else if ℓ = ℓDLR is the DLR loss, then

lim
α→∞

∆ℓDLR

α
= max

i ̸=k⋆
(JD⋆u⋆

t )i − (JD⋆u⋆
t )k⋆ .

Proof. Let θ⋆ = θ(x⋆) and the change in network output be ∆θ = θ(x̃) − θ(x⋆) = αJD⋆u⋆
t . We

will analyze the limit for each loss function separately.

Cross-Entropy Loss: The difference in loss is ∆ℓCE = ℓCE(θ(x̃), ek⋆)− ℓCE(θ(x
⋆), ek⋆). Using

the property ℓCE(z, ek⋆) = −(zk⋆ − log
∑

k e
zk), the loss difference is:

∆ℓCE = −∆θk⋆ + log

(∑
k

e∆θk · softmax(θ⋆)k

)
To find the limit of the average rate of change, ∆ℓCE

α , we substitute ∆θ = αv, where vk =
(JD⋆u⋆

t )k.

lim
α→∞

∆ℓCE

α
= lim

α→∞

[
1

α
log

(∑
k

softmax(θ⋆)ke
αvk

)
− vk⋆

]
Let vmax = maxk vk. Factoring out the dominant term eαvmax from the sum, the expression be-
comes:

= lim
α→∞

[
1

α

(
log(eαvmax) + log

(∑
k

softmax(θ⋆)ke
α(vk−vmax)

))
− vk⋆

]

= lim
α→∞

[
vmax +

1

α
log

(∑
k

softmax(θ⋆)ke
α(vk−vmax)

)
− vk⋆

]
The sum inside the logarithm converges to a constant value, as all terms with vk < vmax go to 0.
The logarithmic term is therefore bounded. The term 1

α causes the entire second term to go to 0.
The limit is thus:

= vmax − vk⋆ = max
k

(JD⋆u⋆
t )k − (JD⋆u⋆

t )k⋆

DLR Loss: The difference in DLR loss is ∆ℓDLR = ℓDLR(θ(x̃), k
⋆)− ℓDLR(θ(x

⋆), k⋆).

∆ℓDLR =

(
max
k ̸=k⋆

θ(x̃)k − θ(x̃)k⋆

)
−
(
max
k ̸=k⋆

θ(x⋆)k − θ(x⋆)k⋆

)
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Substituting θ(x̃) = θ⋆ +∆θ:

∆ℓDLR =

(
max
k ̸=k⋆

(θ⋆k +∆θk)−max
k ̸=k⋆

θ⋆k

)
−∆θk⋆

To find the limit of the average rate of change, ∆ℓDLR

α , we substitute ∆θ = αv and analyze as
α → ∞.

lim
α→∞

∆ℓDLR

α
= lim

α→∞

1

α

(
max
k ̸=k⋆

(θ⋆k + αvk)−max
k ̸=k⋆

θ⋆k

)
− vk⋆

As α → ∞, the term αvk dominates inside the maximum function. The limit of the maximum term
is therefore maxk ̸=k⋆ vk.

lim
α→∞

∆ℓDLR

α
=

(
max
k ̸=k⋆

vk

)
− vk⋆ = max

k ̸=k⋆
(JD⋆u⋆

t )k − (JD⋆u⋆
t )k⋆

C ADDITIONAL RESULT
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Figure 5: Comparison of step size effect on model Cui et al. (2024) under r∞ perturbation (ϵ = 8/255).

Figure 5 illustrates the convergence behavior of Cui et al. (2024) in terms of robust accuracy. Larger
step sizes (0.1, 0.5) lead to higher final accuracy, whereas a smaller step size of 0.02 results in the
lowest robust accuracy, indicating the most effective attack.

Figure 6 presents the robust accuracy across different values of κ. Among the tested settings, κ = 2
consistently produces the lowest robust accuracy for all models (Cui et al. (2024), Wang et al. (2023),
and Sehwag et al. (2022)).
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Figure 6: Comparison of robust accuracy with varying κ

D USAGE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT solely for revising the writing of the paper. Note that revision here strictly means
enhancing the clarity and readability of the text (e.g., fixing typos or constructing latex tables), and
not for any other purposes.
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