

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TIGHT ROBUSTNESS CERTIFICATES AND WASSERSTEIN DISTRIBUTIONAL ATTACKS FOR DEEP NEURAL NETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Wasserstein distributionally robust optimization (WDRO) provides a framework for adversarial robustness, yet existing methods based on global Lipschitz continuity or strong duality often yield loose upper bounds or require prohibitive computation. In this work, we address these limitations by introducing a primal approach and adopting a notion of *exact* Lipschitz certificate to tighten this upper bound of WDRO. In addition, we propose a novel Wasserstein distributional attack (WDA) that directly constructs a candidate for the worst-case distribution. Compared to existing point-wise attack and its variants, our WDA offers greater flexibility in the number and location of attack points. In particular, by leveraging the piecewise-affine structure of ReLU networks on their activation cells, our approach results in an *exact* tractable characterization of the corresponding WDRO problem. Extensive evaluations demonstrate that our method achieves competitive robust accuracy against state-of-the-art baselines while offering tighter certificates than existing methods.

1 INTRODUCTION

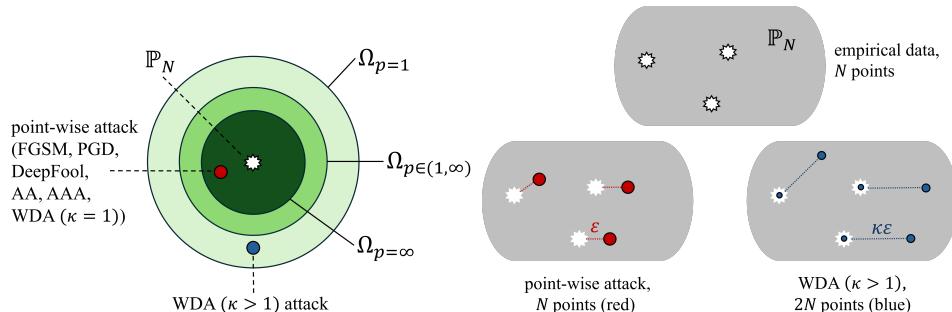
Modern deep networks achieve remarkable accuracy yet remain fragile to distribution shift and adversarial perturbations (Szegedy et al., 2014; Goodfellow et al., 2014; Kurakin et al., 2018; Hendrycks & Dietterich, 2019; Ovadia et al., 2019; Taori et al., 2020; Koh et al., 2021), raising concerns about their reliability in deployment. A principled avenue for robustness is Wasserstein distributionally robust optimization (WDRO, Mohajerin Esfahani & Kuhn 2018; Gao & Kleywegt 2023), which controls worst-case test risk over an ambiguity set within a Wasserstein ball around the empirical distribution and admits tight dual characterizations from optimal transport (Villani et al., 2008; Santambrogio, 2015). While numerous defenses have been proposed, a fundamental gap persists between theoretical robustness certificates and practical adversarial evaluation: existing Lipschitz-based certificates often provide loose upper bounds that vastly overestimate the true worst-case loss (Virmaux & Scaman, 2018), while standard attacks restrict perturbations to fixed-radius balls around individual points (Katz et al., 2017; Ehlers, 2017; Weng et al., 2018; Singh et al., 2018). This mismatch stems from two limitations: certificates typically rely on global worst-case analysis that ignores the actual network geometry traversed by data, and attacks consider only point-wise perturbations rather than distributional shifts permitted by Wasserstein threat models (Singh et al., 2018; Gao & Kleywegt, 2023). The discrepancy is particularly pronounced for modern architectures with ReLU activations, where the network behaves as a piecewise-affine function whose local properties vary dramatically across regions (Jordan & Dimakis, 2020), and those with smooth activations (GELU, SiLU/Swish) exhibit complex nonlinear geometry (Hendrycks & Gimpel, 2016; Ramachandran et al., 2017; Elfwing et al., 2018). In this work, we aim to address both sides of this gap: our contributions can be summarized as follows.

1. For a class of networks with Rectified Linear Unit (ReLU) activations (Nair & Hinton, 2010), we analyze the upper and lower bounds of the Wasserstein Distributional Robust Optimization (WDRO) problem by connecting with the tight Lipschitz constant studied in Jordan & Dimakis, 2020. Our analysis is based on the classical underlying piecewise-affine structure of ReLU networks: on any strict ReLU cell, the logit map $\theta(\cdot)$ is affine with a constant input-logit Ja-

054 cobian J_D . Our contribution is to leverage this structure for WDRO, which requires combining
 055 the Lipschitz constant of the logit map and the sensitivity of the softmax cross-entropy,
 056 or the DLR loss. Our first theoretical result yields an upper bound of WDRO induced by
 057 $L \triangleq 2^{1/s} \max_{D \in \mathcal{D}_X} \|J_D\|_{r \rightarrow s}$, where J_D is general Jacobian of the logit map. (See 3.1 for
 058 precise definition of J_D .) In addition, we derive a lower bound of WDRO by constructing a
 059 concrete and finite worst-case distribution. (See equation 16 for the explicit formulation.) This
 060 worst-case distribution is constructed by perturbing the empirical sample along the direction in
 061 which the logit map is most varied. Moreover, we provide a sufficient condition where our lower
 062 and upper bounds match, and simulate an instance to illustrate this tightness, see Figure 2a.

063 2. We further analyze the upper and lower bounds of the Wasserstein Distributional Robust Opti-
 064 mization (WDRO) problem for a class of MLP with smooth activation and cross-entropy loss.
 065 Unlike ReLU activation or DLR loss, which might create degeneration edges, the chain rule is
 066 readily applied in this case, and the Lipschitz constant of the loss is naturally computed by esti-
 067 mating its gradients. Similar to the analysis of the ReLU networks, we obtain the upper bound
 068 of the WDRO as $L \triangleq 2^{1/s} \max_{x \in \mathcal{X}} \|\nabla \theta(x)\|_{r \rightarrow s}$ while the worst-case distribution and lower
 069 bound are constructed similar to the ReLU networks.

070 3. Finally, we bridge the gap between WDRO theory and adversarial evaluation by introducing
 071 the Wasserstein Distributional Attack (WDA), which directly constructs adversarial distributions
 072 within the Wasserstein ball rather than restricting to point-wise perturbations. Unlike existing
 073 attacks that place all adversarial examples on the ϵ -ball boundary, WDA flexibly interpolates
 074 between point-wise ($\kappa = 1$) and truly distributional attacks ($\kappa > 1$) by supporting adversarial
 075 distributions on $2N$ points. This offers a complementary perspective to strong baselines such
 076 as AutoAttack and the RobustBench leaderboard (Croce & Hein, 2020; Croce et al., 2021).
 077 Empirically, WDA with $\kappa = 2$ consistently finds stronger adversarial examples than state-of-
 078 the-art methods across diverse settings: achieving lower robust accuracy than APGD-DLR on
 079 CIFAR-10/100 with WideResNet backbone (Zagoruyko & Komodakis, 2016) on both ℓ_∞ and ℓ_2
 080 perturbations. When integrated into the Adaptive Auto Attack framework, our method matches
 081 or exceeds the ensemble performance of A³. These results demonstrate that the distributional
 082 perspective not only provides tighter theoretical certificates but also yields more effective at-
 083 tacks, validating our claim that existing robustness evaluations underestimate vulnerability by
 084 restricting to Ω_∞ rather than the larger Ω_1 ambiguity set assumed by certificates.



096 Figure 1: **Left:** Wasserstein ambiguity ball $\Omega_p = \{\mathbb{P}: \mathcal{W}_{d,p}(\mathbb{P}, \mathbb{P}_N) \leq \epsilon\}$ inclusion and its admissible attacks. Our
 097 proposed Wasserstein Distributional Attack (WDA) with $\kappa \geq 1$ includes its special case $\kappa = 1$ as a point-wise attack, and
 098 produces a distributional attack when $\kappa > 1$. Note that most of the existing tight certificates estimated an upper bound of
 099 WDRO w.r.t. $\Omega_{p=1}$, not $\Omega_{p=\infty}$. **Right:** Visualization of point-wise attack (N adversarial samples) versus our WDA ($2N$ adversarial samples). Our WDA allows not only a larger number of supports but also a wider range of perturbations.

2 PRELIMINARIES

100
 101 **Notations** We denote basis vector as e_k ; indicator function as $\mathbf{1}_{\{\cdot\}}$; Dirac measure as δ_z ; input
 102 dimension n , and output dimension as K . An empirical dataset is denoted $\{Z^{(1)}, \dots, Z^{(N)}\}$ with
 103 $Z = (x, y) \in \mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ where $\mathcal{X} \subset \mathbb{R}^n$ and $\mathcal{Y} \subset \mathbb{R}^K$; empirical distribution $\mathbb{P}_N = \sum_i \mu_i \delta_{Z^{(i)}}$ with
 104 $Z^{(i)} = (x^{(i)}, y^{(i)} = e_{k_i})$. Norms $\|\cdot\|_r$ and $\|\cdot\|_s$ are dual with $1/r + 1/s = 1$. For
 105 a matrix A , $\|A\|_{r \rightarrow s} = \sup_{\|u\|_r=1} \|Au\|_s$. Rectifier $[\cdot]_+ = \max\{0, \cdot\}$. Recession cone $\text{rec}(\cdot)$.

108 Interior set $\text{int}(\cdot)$. Ground cost $d((x', y'), (x, y)) = \|x' - x\|_r + \infty \cdot \mathbf{1}_{\{y' \neq y\}}$. Cross-entropy loss
 109 $\ell(x, y; \theta) = -\sum_{k=1}^K y_k \log \text{softmax}(\theta(x))_k$. Analogous DLR loss as defined in Croce & Hein
 110 (2020). We define the dual-norm maximizer \mathcal{M}_r by
 111

$$\mathcal{M}_r: g \mapsto \arg \max_h \{ \langle g, h \rangle \mid \|h\|_r = 1 \} = \begin{cases} \text{sign}(g) & \text{if } r = \infty, \\ g/\|g\|_2 & \text{if } r = 2, \\ \text{sign}(g_{k'}) \mathbf{e}_{k'} \text{ with } k' \in \arg \max_k |g_k| & \text{if } r = 1, \end{cases} \quad (1)$$

115 and projection $\Pi_{r,x,\kappa\epsilon}$ by
 116

$$\Pi_{r,x,R}: x \mapsto \arg \min_{\xi} \{ \|\xi - x\|_2^2 \mid \|\xi\|_r \leq R \}. \quad (2)$$

119 **Wasserstein Distributionally Robust Optimization (WDRO)** Robustness guarantees and cer-
 120 tificates aim to make model predictions trustworthy under adversarial manipulation (Wong &
 121 Kolter, 2018; Cohen et al., 2019; Salman et al., 2019). The empirical risk minimization model
 122 $\inf_{\theta} \mathbb{E}_{\mathbb{P}_N} [\ell(Z; \theta)]$ optimizes average performance on the observed data but offers no protection
 123 against worst-case shifts nearby. Distributionally robust optimization (DRO) addresses this by
 124 choosing parameters that perform well against all distributions within a prescribed neighborhood:
 125 $\inf_{\theta} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}} [\ell(Z; \theta)]$. Here, the worst-case loss is taken over all admissible distributions $\mathbb{P} \in \mathcal{P}$.
 126 The ambiguity (or uncertainty) set \mathcal{P} is often constructed by collecting all distributions \mathbb{P} that are
 127 similar to the empirical distribution \mathbb{P}_N .
 128

In this work, we focus on the Wasserstein ambiguity set, which is a ball centered at \mathbb{P}_N under the Wasserstein distance. Given a ground cost d on the space of data \mathcal{Z} , the Wasserstein distance (Villani et al., 2008) between two distributions \mathbb{P} and \mathbb{Q} it is defined as
 $\mathcal{W}_{d,p}(\mathbb{P}, \mathbb{Q}) \triangleq \left(\inf_{\pi \in \Pi(\mathbb{P}, \mathbb{Q})} \int_{\mathcal{Z} \times \mathcal{Z}} d^p(z', z) d\pi(z', z) \right)^{1/p}$ for $p \in [1, \infty)$; and $\mathcal{W}_{d,\infty}(\mathbb{P}, \mathbb{Q}) \triangleq \inf_{\pi \in \Pi(\mathbb{P}, \mathbb{Q})} \text{ess. sup}_{\pi}(d)$ for $p = \infty$. Intuitively, the Wasserstein distance between two distributions \mathbb{P} and \mathbb{Q} is defined as the minimum cost to transport the mass of \mathbb{P} to \mathbb{Q} . The WDRO problem with a given budget of perturbation $\epsilon > 0$ can be written as

$$\inf_{\theta} \sup_{\mathbb{P} \in \Omega_p} \mathbb{E}_{\mathbb{P}} [\ell(Z; \theta)] \text{ where } \Omega_p = \{ \mathbb{P} \mid \mathcal{W}_{d,p}(\mathbb{P}, \mathbb{P}_N) \leq \epsilon \}. \quad (3)$$

138 It is worth noting that $\mathcal{W}_{d,p} \leq \mathcal{W}_{d,p'}$ if $p \leq p'$, thus $\Omega_1 \supseteq \Omega_p \supseteq \Omega_{p'} \supseteq \Omega_\infty$ (see Figure 1). For more
 139 details of Wasserstein distributionally robust optimization, we refer reader to Kuhn et al. (2019) and
 140 our Appendix A.

141 **Lipschitz Certificate** For $p = 1$, the worst-case risk over a Wasserstein ball admits the standard
 142 Lipschitz upper bound
 143

$$\sup_{\mathbb{P} \in \Omega_1} \mathbb{E}_{\mathbb{P}} [\ell(Z; \theta)] \leq \mathbb{E}_{\mathbb{P}_N} [\ell(Z; \theta)] + L\epsilon. \quad (4)$$

144 where L is any Lipschitz constant of $z \mapsto \ell(z; \theta)$ with respect to the ground cost. This inequality
 145 follows from weak duality and is widely used to make the WDRO objective tractable: one replaces
 146 the inner maximization by the surrogate $L\epsilon$ and then controls L (Mohajerin Esfahani & Kuhn, 2018;
 147 Blanchet et al., 2019; Gao & Kleywegt, 2023; Gao et al., 2024). In practice, estimating L reduces to
 148 bounding the network’s (global or local) Lipschitz modulus, e.g., fast global products of per-layer
 149 operator norms (Virmaux & Scaman, 2018) or tighter activation-aware/local certificates (Jordan &
 150 Dimakis, 2020; Shi et al., 2022).
 151

152 **Adversarial Attack.** Adversarial attack methods often construct a perturbed distribution by shift-
 153 ing each sample $X^{(i)}$ along a specific adversarial direction $u^{(i)}$ to get $X_{\text{adv}}^{(i)}$ (Goodfellow et al., 2014;
 154 Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017). These methods are essentially point-
 155 wise attacks, which draws a distribution $\mathbb{P}_{\text{adv}} = \sum_{i=1}^N \frac{1}{N} \delta_{X_{\text{adv}}^{(i)}}$ in the Wasserstein ambiguity set
 156 $\Omega_p = \{ \mathbb{P}: \mathcal{W}_{d,p} \leq \epsilon \}$ when $p = \infty$ (see Figure 1). Whereas, in the $p = 1$ case, the ambiguity
 157 set only constrains the average transportation cost under an optimal coupling. Hence, the adversary
 158 may move some points farther and others less as long as the mean cost stays within budget. This
 159 creates a significant gap between the robustness measured against $\Omega_{p=\infty}$ attacks and the theoretical
 160 robustness or Lipschitz certificates 4 which are developed for $\Omega_{p=1}$ (Mohajerin Esfahani & Kuhn,
 161 2018; Carlini et al., 2019; Rice et al., 2021).

 162

3 TRACTABLE INTERPRETATION OF WDRO FOR NEURAL NETWORKS

 163

 164 For certain shallow and convex models (e.g., linear regression, support vector machines, etc.), the
 165 tractable representation of the WDRO problem 3 is well-established in the literature (Mohajerin Es-
 166 fahani & Kuhn, 2018; Blanchet et al., 2019; Gao & Kleywegt, 2023; Gao et al., 2024). This tractable
 167 form enables a computational advantage and provides a clear interpretation of the robustness of reg-
 168 ularization mechanisms. In that line of work, the Lipschitz constant often provides a practical and
 169 tight upper bound of the corresponding upper bounds. However, when the loss is non-convex, the
 170 Lipschitz certificate is not always tight, as outlined in the following remark.

 171 *Remark.* Consider a single-point empirical $\mathbb{P}_N = \delta_{\{X^{(1)}=2\}}$ and a loss given by
 172

173
$$\ell(x) = \begin{cases} |x| & \text{if } |x| \leq 1, \\ \frac{1}{2}|x| + \frac{1}{2} & \text{otherwise.} \end{cases}$$
 174

 175 Then ℓ is Lipschitz with modulus 1, however $\sup_{\Omega_1} \mathbb{E}_{\mathbb{P}}[\ell(X)] = \mathbb{E}_{\mathbb{P}_N}[\ell(X)] + \frac{\epsilon}{2}$ for any $\epsilon > 0$.
 176

 177 As presented in the following sections, our main theoretical results (Theorem 3.1 and 3.3) show
 178 that Lipschitz modulus provides a tight upper bound for the WDRO problem 3 for a class of ReLU
 179 neural networks and smooth activated neural networks.
 180

 181

3.1 EXACT AND TRACTABLE INTERPRETATION OF WDRO FOR RELU NEURAL NETWORKS

 182

 183 For a broad class of ReLU networks, the tight (local) Lipschitz constant can be found exactly via
 184 activation patterns. For example, for any H -layer ReLU network $\theta(x) = W_{H+1}(\text{ReLU}(\cdots(W_1x +$
 185 $b_1) \cdots) + b_H$, let

186
$$L_\theta = \sup_{x \in \mathcal{X}} \sup_{J \in \partial\theta(x)} \|J\|_{r \rightarrow \tilde{r}}, \quad (5)$$
 187

 188 where $J \in \partial\theta(x)$ is a general Jacobian of θ at x , then Jordan & Dimakis (2020, Theorem 1) has
 189 shown that $\|\theta(x') - \theta(x)\|_{\tilde{r}} \leq L_\theta \times \|x' - x\|_r$ for any x' , $x \in \mathcal{X}$. Moreover, if θ is in general position
 190 (Jordan & Dimakis, 2020, Definition 4), then the chain rule applies and any general Jacobian J must
 191 has a form as $W_{H+1}D_HW_H \cdots D_1W_1$ for some $[0, 1]$ -diagonal matrix D_h , $h = 1, \dots, H$. It is
 192 worth noting that the set of ReLU networks *not* in general position is negligible (Jordan & Dimakis,
 193 2020, Theorem 3). Now in equation 5, the maximizer of a convex function (norm operator) must
 194 happen at vertices, thus we only need to consider 0/1-diagonal matrix D_h .

195 We formally introduce the concept of mask as follows.

 196 **Definition 3.1** (Mask and Cell). Let $\theta(x) = W_{H+1}(\text{ReLU}(\cdots(W_1x + b_1) \cdots) + b_H)$ be a ReLU
 197 network which is in general position. For any tuple $\mathbf{D} = (D_1, \dots, D_H)$, we define
 198

199
$$J_{\mathbf{D}} = W_{H+1}D_HW_H \cdots D_1W_1.$$
 200

 201 For any $x \in \mathcal{X}$, we define the set of all 0/1-diagonal masks at x as
 202

203
$$\mathcal{D}_x = \{\mathbf{D} = (D_1, \dots, D_H) \mid J_{\mathbf{D}} \in \partial\theta(x), D_h \text{ is 0/1-diagonal, } h = 1, \dots, H\}$$
 204

 205 We denote $\mathcal{D}_{\mathcal{X}} = \cup_{x \in \mathcal{X}} \mathcal{D}_x$ as the (finite) set of all possible masks.

 206 For any mask $\mathbf{D} = (D_1, \dots, D_H) \in \mathcal{D}_x$, let $\mathcal{C}_{\mathbf{D}}$ be the cell, which is an open linear region, defined
 207 by

208
$$\mathcal{C}_{\mathbf{D}} = \{x \mid \text{pre}_h(x)_j > 0 \text{ if } D_h(j, j) = 1 \text{ and } \text{pre}_h(x)_j < 0 \text{ if } D_h(j, j) = 0, h = 1, \dots, H\},$$
 209

210 where the pre-activation functions are defined as
 211

212
$$\text{pre}_h: x \mapsto W_h(\text{ReLU}(\cdots(W_1x + b_1) \cdots) + b_h).$$
 213

 214 Given this definition of mask and note that $\mathcal{D}_{\mathcal{X}}$ is finite, one can rewrite equation 5 as $L_\theta =$
 215 $\max_{\mathbf{D} \in \mathcal{D}_{\mathcal{X}}} \|J_{\mathbf{D}}\|_{r \rightarrow \tilde{r}}$. We adopt this notion and show that it induces an upper bound for the Wasser-
 216 stein distributional robust optimization (WDRO) problem 3 with cross-entropy loss. Moreover, this
 217 upper bound is tight for a class of monotonic ReLU networks.

216 **Theorem 3.1** (WDRO for ReLU). *Given a ReLU network $\theta(x) = W_{H+1}(\text{ReLU}(\cdots(W_1x +$
217 $b_1) \cdots) + b_H)$ being in general position, $1/r + 1/s = 1$ and ℓ being the cross-entropy or DLR
218 loss, define*

$$219 \quad \mathbf{L} \triangleq 2^{1/s} \max_{\mathbf{D} \in \mathcal{D}_{\mathcal{X}}} \|J_{\mathbf{D}}\|_{r \rightarrow s}, \quad (6)$$

221 *and*

$$222 \quad \mathbf{l} \triangleq \max_{\substack{x \in \mathcal{X}, \\ \mathbf{D} \in \mathcal{D}_x}} \max_{k' \neq k} \sup_{\|u\|_r=1} \{(\mathbf{e}_{k'} - \mathbf{e}_k)^\top J_{\mathbf{D}} u \mid u \in \text{rec}(\mathcal{C}_{\mathbf{D}})\}. \quad (7)$$

224 *where $J_{\mathbf{D}}$, $\mathcal{C}_{\mathbf{D}}$, $\mathcal{D}_{\mathcal{X}}$ are defined in Definition 3.1 and $\text{rec}(\mathcal{C}_{\mathbf{D}})$ is the recession cone of $\mathcal{C}_{\mathbf{D}}$. Then for*
225 *any $\epsilon > 0$, we have*

$$226 \quad \mathbb{E}_{\mathbb{P}_N}[\ell(Z; \theta)] + \mathbf{l}\epsilon \leq \sup_{\mathbb{P}: \mathcal{W}_{d,1}(\mathbb{P}, \mathbb{P}_N) \leq \epsilon} \mathbb{E}_{\mathbb{P}}[\ell(Z; \theta)] \leq \mathbb{E}_{\mathbb{P}_N}[\ell(Z; \theta)] + \mathbf{L}\epsilon. \quad (8)$$

229 *Moreover, if the dual-norm maximizer $\mathcal{M}_r(J_{\mathbf{D}^*}^\top (\mathbf{e}_{k'^*} - \mathbf{e}_{k^*})) \in \text{rec}(\mathcal{C}_{\mathbf{D}^*})$ where \mathbf{D}^* is a maximizer*
230 *of 6 and (k'^*, k^*) is a maximizer of 7, and $(\mathbf{e}_{k'^*} - \mathbf{e}_{k^*})$ is the largest increment direction of $J_{\mathbf{D}^*}$,*
231 *then $\mathbf{l} = \mathbf{L}$.*

232 *Proof.* To prove inequality 8, we show that $\ell(\cdot, \theta)$ is \mathbf{L} -Lipschitz, and a direction u found in equation 7 induces an admissible attack \mathbb{P}_{adv} satisfying that $\mathbb{E}_{\mathbb{P}_{\text{adv}}}[\ell(Z; \theta)] \approx \mathbb{E}_{\mathbb{P}_N}[\ell(Z; \theta)] + \mathbf{l}\epsilon$ and $\mathcal{W}_{d,1}(\mathbb{P}_{\text{adv}}, \mathbb{P}_N) \leq \epsilon$. To verify the sufficient condition of $\mathbf{l} = \mathbf{L}$, we show that the constructed \mathbb{P}_{adv} provides $\mathbf{l} = \mathbf{L}$. We provide detailed proof in Appendix B.1. \square

232 In Figure 2a, we illustrate an instance in which our lower and upper bounds match. While equation 7
233 provides a tight lower bound of the WDRO, it is impractical to scan through all $x \in \mathcal{X}$ and its mask
234 \mathcal{D}_x . We then introduce a practical lower bound, of which we consider the mask associated with the
235 sample points only.

236 **Corollary 3.2** (Practical lower bound). *Given assumptions and notations used in Theorem 3.1, let*
237 $\mathcal{Z}_N = \{(X^{(1)}, Y^{(1)}), \dots, (X^{(N)}, Y^{(N)})\}$ *and*

$$238 \quad \mathbf{l}_N \triangleq \max_{\substack{(X^{(i)}, Y^{(i)}) \in \mathcal{Z}_N, \\ \mathbf{D} \in \mathcal{D}_x}} \max_k \sup_{\|u\|_r=1} \{(\mathbf{e}_k - Y^{(i)})^\top J_{\mathbf{D}} u \mid u \in \text{int}(\text{rec}(\mathcal{C}_{\mathbf{D}}))\}. \quad (9)$$

239 *Then $\mathbf{l}_N \leq \mathbf{l}$.*

240 *Based on the proof of our lower bound (equation 16), we construct a worst-case distribution by*
241 *moving mass from a sample along a direction u that maximizes the margin term in equation 7. In*
242 *Section 4, based on formulation 9, we create this construction empirically via the attack distribution*
243 *equation 10 by choosing adversarial direction $u^{(i)}$ for each sample i so that it maximizes the*
244 *first-order increase of the corresponding logit margin.*

245 3.2 EXACT AND TRACTABLE INTERPRETATION OF WDRO FOR SMOOTH ACTIVATION 246 NEURAL NETWORKS

247 For networks with smooth activations, e.g., GELU (Hendrycks & Gimpel, 2016), SiLU/Swish (Ra-
248 machandran et al., 2017; Elfwing et al., 2018), WDRO duality connects worst-case (adversarial)
249 risk to first-order geometry via the Jacobian of the logit map, yielding global Lipschitz-type upper
250 penalties of the form $\sup_{x \in \mathcal{X}} \|J(x)\|_{r \rightarrow s}$. Compared to piecewise-linear ReLU certificates, smooth
251 nets trade exact cell-wise constancy for differentiability along rays and curves, suggesting bounds
252 driven by asymptotic Jacobian behavior rather than activation masks.

253 Let t be a positive scalar, $\theta : \mathcal{X} \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^K$ be a classifier with smooth activations and cross-
254 entropy loss; let $J(x) \in \mathbb{R}^{K \times n}$ be its Jacobian. We then have the following result.

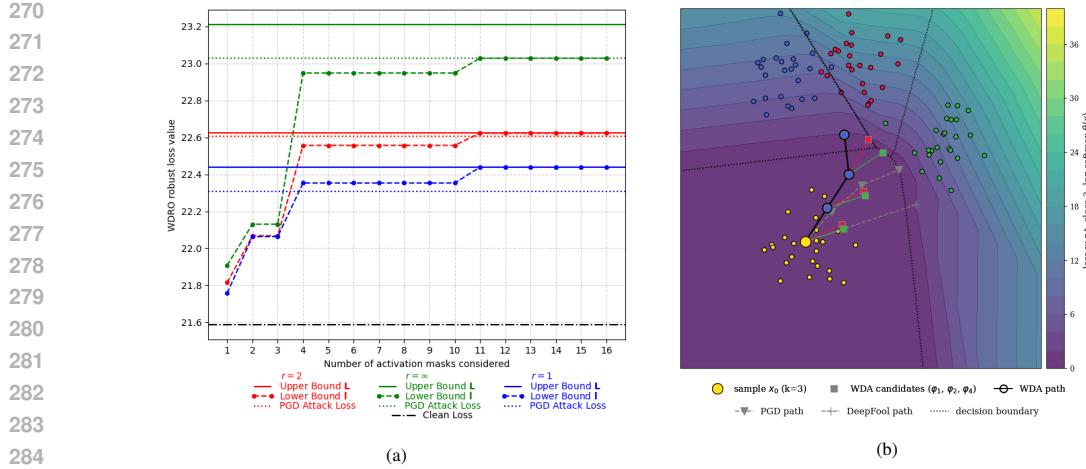


Figure 2: (a) WDRO bounds and PGD attack loss for a fixed $n = K = 2$ ReLU classifier with one hidden layer of dimension 8. Lower-bound curves are the cumulative \mathbf{l} as more reachable activation masks are considered. (b) Wasserstein Distributional Attack (WDA, Alg. 1) for $r = 2$. At each iteration x_t , WDA forms $K - 1$ candidates φ_j and updates using the one with the largest logit $\theta_j(\varphi_j)$. For reference, PGD follows the dual-norm gradient direction; DeepFool linearizes the decision boundary.

Theorem 3.3 (WDRO for Smooth Networks). *Let $\theta : \mathbb{R}^n \rightarrow \mathbb{R}^k$ be a differentiable network, $1/r + 1/s = 1$ and ℓ being the cross-entropy or DLR loss, define*

$$\mathbf{L} \triangleq 2^{1/s} \sup_{x \in \mathcal{X}} \|\nabla_x \theta(x)\|_{r \rightarrow s},$$

and

$$\mathbf{l} \triangleq \sup_{x \in \mathcal{X}} \max_{k' \neq k} \sup_{\|u\|_r=1} \{(e_{k'} - e_k)^\top \nabla_x \theta(x) u\}.$$

Then for any $\epsilon > 0$,

$$\mathbb{E}_{\mathbb{P}_N} [\ell(Z; \theta)] + \mathbf{l}\epsilon \leq \sup_{\mathbb{P} : \mathcal{W}_{d,1}(\mathbb{P}, \mathbb{P}_N) \leq \epsilon} \mathbb{E}_{\mathbb{P}} [\ell(Z; \theta)] \leq \mathbb{E}_{\mathbb{P}_N} [\ell(Z; \theta)] + \mathbf{L}\epsilon.$$

In this setting, first-order WDRO penalties are controlled by how $J(x)$ amplifies unit directions and how that amplification projects onto the most competitive non-true logit. The upper slope \mathbf{L} is the global worst-case amplification, while the lower, margin-directional slope \mathbf{l} follows rays $x^{(i)} + tu$ and harvests only the component along $(e_{k'} - e_{k_i})$. When a ray both attains the global operator norm and aligns with a margin difference, the bound is tight to first order ($\mathbf{l} = \mathbf{L}$). This motivates the adversarial procedure used in our adversarial attack algorithm WDA (Algorithm 1), where we search for a direction u and a rival class k' that maximize the first-order increase $(e_{k'} - e_{k_i})^\top J(x)u$.

4 WASSERSTEIN DISTRIBUTIONAL ATTACK

Existing point-wise attacks such as FGSM (Goodfellow et al., 2014), DeepFool (Moosavi-Dezfooli et al., 2016), AA (Croce & Hein, 2020), AAA (Liu et al., 2022), keep the adversarial distribution supported on exactly N points, where each point $X_{\text{adv}}^{(i)}$ is perturbed to be precisely on the boundary of the ϵ -ball centered at $X^{(i)}$. To address this issue, we propose a novel method called *Wasserstein Distributional Attack (WDA)*. At a high level, WDA constructs an adversarial distribution, \mathbb{P}_{adv} , supported on a set of $2N$ points. This set consists of N original empirical samples $X^{(i)}$ and N corresponding adversarial points $X_{\text{adv}}^{(i)}$, each perturbed to an r -norm distance $\kappa\epsilon$ from $X^{(i)}$ using the first-order, margin-aligned directions predicted by Theorems 3.1–3.3, for some $\kappa \geq 1$. In other words,

$$\mathbb{P}_{\text{adv}} = \frac{1}{N} \sum_{i=1}^N \left(\left(1 - \frac{1}{\kappa} \right) \delta_{(X^{(i)}, Y^{(i)})} + \frac{1}{\kappa} \delta_{(X_{\text{adv}}^{(i)}, Y^{(i)})} \right). \quad (10)$$

324 In the special case where $\kappa = 1$, our proposed attack reduces to existing point-wise methods. When
 325 $\kappa = 2$, WDA simplifies to a uniform distribution over all $2N$ points, with each point receiving a
 326 weight of $\frac{1}{2N}$. This $2N$ -support mixture belongs to the Ω_1 ambiguity set and serves as a constructive,
 327 distributional adversary; it is not necessarily the inner maximizer of WDRO. We now make the first-
 328 order ascent directions explicit; this is the step used by WDA to realize the margin-aligned rays from
 329 Theorems 3.1–3.3.

330 Define (sub)gradient $g_j(x) \in \partial_x(\theta_j - \theta_k)(x)$. Then $\mathcal{M}_r(g_j)$ give the per-iteration, first-order
 331 version of the ray ascent used in Theorems 3.1–3.3: within a ReLU cell (affine logits) or for smooth
 332 activations (continuous J), moving along $u_j = \mathcal{M}_r(g_j)$ increases the gap at rate $\|g_j(x)\|_s$. During
 333 an initial probing phase, we evaluate all rivals $j \neq k$ using these first-order steps. At the end of that
 334 phase, we fix a single rival j^* based on the logits magnitude and continue the remaining iterations.
 335 If we allow j^* to change at every step, the update can oscillate across classes and chase locally steep
 336 but globally suboptimal directions for misclassifications. Finally, we project each step to the ball
 337 of radius $\kappa\varepsilon$ around the anchor $X^{(i)}$ to the WDRO budget. The procedure for implementing the
 338 Wasserstein Distributional Attack is presented in Algorithm 1. A visualization of our algorithm is
 339 shown in Figure 2b.

Algorithm 1 Wasserstein Distributional Attack (WDA)

```

1: Inputs: neural network  $\theta : \mathbb{R}^n \rightarrow \mathbb{R}^K$ , empirical distribution  $\mathbb{P}_N = \sum_{i=1}^N \delta_{(X^{(i)}, Y^{(i)})}$ , budget  $\epsilon > 0$ , cost-norm
2: Outputs: Wasserstein distributional attack  $\mathbb{P}_{\text{adv}}$  such that  $\mathcal{W}_{d,1}(\mathbb{P}_{\text{adv}}, \mathbb{P}_N) \leq \epsilon$  where  $d((x', y'), (x, y)) = \|x' - x\|_r + \infty \cdot \mathbf{1}_{\{y' \neq y\}}$ 
3: Initialize: dual-norm maximizer  $\mathcal{M}$  (1), projection  $\Pi$  (2)
4: for  $i = 1$  to  $N$  do
5:    $x_0 \leftarrow X^{(i)}$ ,  $\mathbf{e}_k \leftarrow Y^{(i)}$  for some  $k = 1, \dots, K$ 
6:   for iter = 0 to maxiter do
7:     if iter < prob then  $\mathcal{J} = \{1, \dots, K\} \setminus \{k\}$  else  $\mathcal{J} = \{j^*\}$ 
8:      $g_j \leftarrow \nabla_x \theta(x_{\text{iter}})^\top (\mathbf{e}_j - \mathbf{e}_k)$  for  $j \in \mathcal{J}$ 
9:      $u_j \leftarrow \mathcal{M}_r(g_j)$  for  $j \in \mathcal{J}$ 
10:     $\varphi_j \leftarrow \Pi_{r, X^{(i)}, \kappa\varepsilon}(x_{\text{iter}} + \alpha u_j)$  for  $j \in \mathcal{J}$ 
11:     $j^* = \arg \max_{j \in \mathcal{J}} \theta_j(\varphi_j)$ 
12:     $x_{\text{iter}+1} \leftarrow \varphi_{j^*}$ 
13:   end for
14:    $X_{\text{adv}}^{(i)} \leftarrow x_{\text{maxiter}}$ 
15: end for
16:  $\mathbb{P}_{\text{adv}} \leftarrow \frac{1}{N} \sum_{i=1}^N \left(1 - \frac{1}{\kappa}\right) \delta_{(X^{(i)}, Y^{(i)})} + \frac{1}{\kappa} \delta_{(X_{\text{adv}}^{(i)}, Y^{(i)})}$ 
17: return  $\mathbb{P}_{\text{adv}}$ 

```

5 RELATED WORK

361 **Robustness Certificates** Early scalable global certificates control the Lipschitz constant by multiplying per-layer operator norms, which is fast to compute yet data-agnostic and typically loose
 362 on deep nets (Viriaux & Scaman, 2018). For ReLU networks, local (activation-aware) methods
 363 exploit piecewise linearity to produce much tighter, input-conditioned certificates on individual ac-
 364 tivation regions (Katz et al., 2017; Ehlers, 2017; Weng et al., 2018; Singh et al., 2018; Shi et al.,
 365 2022). Most relevant to exact local Lipschitzness, Jordan & Dimakis (2020) showed that for a broad
 366 class of ReLU networks in general position, the local Lipschitz constant can be computed exactly
 367 by optimizing over activation patterns.

369 **Adversarial Attacks** Adversarial Attack methods seek for perturbation x' formed by adding a
 370 small, human-imperceptible perturbation to a clean input x that causes misclassification (Szegedy
 371 et al., 2014). The threat model specifies the attacker’s knowledge (white-box vs. black-box), the
 372 admissible perturbation set (e.g., r_2 balls with budget ϵ), and the objective (e.g., worst-case loss
 373 within the ball). Canonical white-box methods include FGSM (Goodfellow et al., 2014), multistep
 374 PGD (Madry et al., 2018), CW (Carlini & Wagner, 2017), and gradient-based margin attacks such
 375 as DeepFool (Moosavi-Dezfooli et al., 2016). Decision-based and score-free attacks (black-box)
 376 include Boundary Attack (Brendel et al., 2021) and Square Attack (Andriushchenko et al., 2020).
 377 Robust evaluation is subtle: gradient masking can inflate apparent robustness if attacks are not
 378 adapted (Athalye et al., 2018).

To standardize evaluation, AutoAttack (AA) (Croce & Hein, 2020) composes strong, parameter-free attacks (APGD-CE, APGD-DLR, FAB, Square) and is widely adopted for reporting robust accuracy. RobustBench (Croce et al., 2021) curates model zoos and standardized test protocols across datasets and r_p threat models, enabling comparable and reproducible robustness claims. Liu et al. (2022) proposed Adaptive Auto Attack (A^3), which incorporates Adaptive Direction Initialization (ADI) and Online Statistics-based Discarding (ODS) (Tashiro et al., 2020) to enhance attack efficiency. In our experiments, we report robustness under AA and A^3 following RobustBench conventions and use them as baselines for comparison.

Several works have focused on adversarial attacks tailored to ReLU networks. Croce & Hein (2018) introduced rLR-QP, a gradient-free method that navigates the piecewise-linear regions of ReLU models by solving convex subproblems and enhancing exploration with randomization and local search. More recently, Zhang et al. (2022) developed BaB-Attack, a branch-and-bound framework that operates in activation space, leveraging bound propagation, beam search, and large neighborhood search to uncover stronger adversarial examples than conventional gradient-based approaches, particularly on hard-to-attack inputs. **As pointed out in Zhang et al. (2022); Croce et al. (2020), rLR-QP and BaB-Attack are not as efficient as gradient based attack, therefore, we only use APGD as single-method baseline in our experiment.**

Table 1: Comparison of robust accuracy of WDA and baseline methods against various defenses on CIFAR-10, CIFAR-100 and ImageNet. The best (lowest) attack accuracy of single methods and ensemble methods are highlighted in underline and **bold**, respectively.

PAPER	MODEL	CLEAN	SINGLE METHOD				ENSEMBLE METHOD		
			APGD-CE	APGD-DLR	WDA ($\kappa = 1$)	WDA ($\kappa = 2$)	AA	A^3	A^3++
CIFAR-10 – r_∞, $\epsilon = 8/255$									
BARTOLDSON ET AL. (2024)	WRN-94-16	93.68	76.15	74.31	74.05	<u>65.25</u>	73.71	73.55	73.54
BARTOLDSON ET AL. (2024)	WRN-82-8	93.11	74.17	72.54	71.85	<u>62.06</u>	71.59	71.46	71.46
CUI ET AL. (2024)	WRN-28-10	92.16	70.60	68.62	68.07	<u>60.01</u>	67.73	67.58	67.57
WANG ET AL. (2023)	WRN-70-16	93.25	73.46	71.68	71.02	<u>63.08</u>	70.69	70.53	70.52
WANG ET AL. (2023)	WRN-28-10	92.44	70.24	68.24	67.60	<u>60.96</u>	67.31	67.17	67.17
XU ET AL. (2023)	WRN-28-10	93.69	67.08	69.00	66.39	<u>63.25</u>	63.89	63.93	63.84
SEHWAG ET AL. (2022)	RN-18	84.59	58.40	57.66	56.30	<u>54.65</u>	55.54	55.50	55.50
CIFAR-10 – r_2, $\epsilon = 0.5$									
WANG ET AL. (2023)	WRN-70-16	95.54	85.66	85.30	85.00	<u>77.63</u>	84.97	84.96	84.97
WANG ET AL. (2023)	WRN-28-10	95.16	84.52	83.89	83.71	<u>76.31</u>	83.68	83.68	83.68
SEHWAG ET AL. (2022)	WRN-34-10	90.93	78.23	78.16	77.51	<u>72.01</u>	77.24	77.22	77.25
SEHWAG ET AL. (2022)	RN-18	89.76	75.24	75.32	74.69	<u>69.75</u>	74.41	74.41	74.40
DING ET AL. (2020)	WRN-28-4	88.02	66.62	66.62	66.22	<u>63.04</u>	66.09	66.05	66.06
CUI ET AL. (2024)	WRN-28-10	89.05	66.58	67.08	66.59	<u>64.19</u>	66.44	66.41	66.42
CIFAR-100 – r_∞, $\epsilon = 8/255$									
WANG ET AL. (2023)	WRN-28-10	72.58	44.09	39.66	<u>39.12</u>	43.61	38.77	38.70	38.71
ADDEPALLI ET AL. (2022)	RN-18	65.45	33.47	28.82	<u>28.26</u>	37.64	27.67	27.65	27.63
CUI ET AL. (2024)	WRN-28-10	73.85	43.82	40.37	<u>39.57</u>	43.68	39.18	39.17	39.14
IMAGENET – r_∞, $\epsilon = 4/255$									
LIU ET AL. (2025)	CONVNEXT-B	76.02	55.90	56.78	54.38	<u>52.95</u>	55.82	53.19	53.18
SINGH ET AL. (2023)	CVNeXt-S-CvST	74.10	52.82	53.20	51.04	<u>50.31</u>	52.42	49.92	49.90

6 EXPERIMENTS

Experimental settings To evaluate the effectiveness of WDA, we test the adversarial robustness of several state-of-the-art defense models on CIFAR-10, CIFAR-100 and ImageNet. We report r_∞ and r_2 robustness under perturbation budgets $\epsilon \in \{4/255, 8/255, 0.5\}$. In addition to point-wise attack, we conduct a separate Wasserstein distributional attack experiment to further validate our method. Specifically, we set $\kappa = 2$ in Algorithm 1 to find the adversarial (distributional) attack \mathbb{P}_{adv} (equation 10) and reporting classification accuracy on the distribution by $(1 - 1/\kappa) \times \text{acc}_{\text{clean}} + (1/\kappa) \times \text{acc}_{\text{adv}}$. Our attack is benchmarked against AA, APGD-DLR, APGD-CE (Croce & Hein, 2020), and A^3 (Liu et al., 2022). The defense models, along with their official implementations and pretrained weights, are obtained from RobustBench Croce et al. (2021). All experiments are conducted on 2x NVIDIA GeForce RTX 4090 GPU and 1x NVIDIA H200.

432
433

6.1 COMPARISON WITH EXISTING BASELINES

434
435
436
437

Setup For the baselines AA, APGD-DLR, APGD-CE, and A^3 , we adopt the configurations reported in their respective research papers. Meanwhile, in WDA, we set the number of probe steps to $\alpha_{probe} = 10$, and use $\alpha_{atk} = 20$ attack iterations. We further propose A^3++ , an extension of A^3 that incorporates our attack into its framework.

438

439
440
441
442
443
444
445
446
447
448
449

Robustness on r_∞ and r_2 Perturbations for CIFAR-10 Table 1 presents the robust accuracy of several attack methods under r_∞ perturbations with $\epsilon = 8/255$ and r_2 perturbations with $\epsilon = 0.5$. Across both single and ensemble based threat models, WDA consistently outperforms other single-method attacks (APGD-CE and APGD-DLR), highlighting its effectiveness as a stronger standalone adversarial evaluation. Moreover, WDA achieves results that are often comparable to ensemble-based methods, indicating its ability to match the strength of more computationally demanding attack aggregations. Within the ensemble family, A^3++ demonstrates clear improvements over AA and provides competitive performance with A^3 , surpassing it on several defense models (3 out of 7 under r_∞ and 1 out of 6 under r_2). Notably, under r_∞ and r_2 , WDA ($\kappa = 2$) produces lower robust accuracy values than other attacking methods across all defense models. This highlights the potential of Wasserstein distributionally attack.

450
451

6.2 ABLATION STUDY

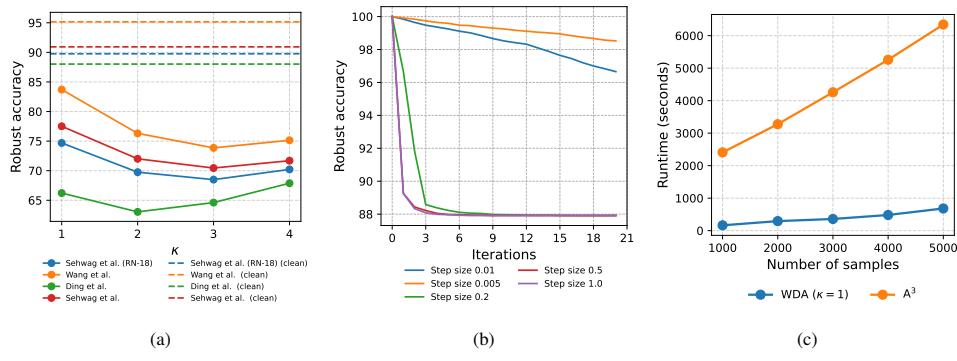
452
453
454
455
456
457
458
459
460
461
462463
464
465
466

Figure 3: Analysis of κ and step size effect. (a) Robust accuracy with varying κ on different defense method. (b) Convergence of Wang et al. (2023) under r_2 perturbations ($\epsilon = 0.5$). (c) Run time comparision between WDA and A^3 .

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 3a illustrates how the robust accuracy of WDA varies as the parameter κ increases. Across all models, raising κ beyond 1 generally leads to a noticeable drop in robust accuracy. Specifically, for the models from Wang et al. (2023), Sehwag et al. (2022), and Sehwag et al. (2022) (RN-18), the best performance is observed at $\kappa = 3$, whereas for Ding et al. (2020), the lowest robust accuracy occurs at $\kappa = 2$. These results indicate that increasing κ consistently weakens model robustness, with the precise κ that produces the largest drop depending on the architecture. Figure 3b presents robust accuracy for the Wang et al. (2023) model with r_2 perturbations and with different step sizes for attack. The x-axis represents iterations, and the y-axis shows robust accuracy. In Figure 3b, smaller step sizes (0.01 and 0.005) lead to higher robust accuracy (97%–99%), reflecting weaker attacks. The most effective attack occurs at step size 0.2, where the accuracy drops to around 88%. At larger step sizes (0.5 and 1.0), robust accuracy stabilizes at lower values despite initial drops, suggesting reduced attack effectiveness. Figure 3c reports the runtimes (in seconds) of our WDA and A^3 on ImageNet dataset with number of sample ranging from 1000 to 5000. We can observe that WDA has lower computational time and grows slower than A^3 , verifying the scalability of our method.

7 CONCLUSIONS

We presented tight robustness certificates and stronger adversarial attacks for deep neural networks by exploiting their local geometric structure. For ReLU networks, we derived exact WDRO bounds

486 using their piecewise-affine property, computing data-dependent Lipschitz constants from activation
 487 patterns that significantly tighten existing global bounds. For networks with smooth activations
 488 (GELU, SiLU), we characterized the worst-case loss through asymptotic Jacobian behavior
 489 along adversarial rays, providing the first tractable WDRO analysis for these modern architectures.
 490 Our Wasserstein Distributional Attack (WDA) algorithm constructs adversarial distributions on $2N$
 491 points rather than restricting to N perturbed points, achieving lower robust accuracy than state-of-
 492 the-art methods across CIFAR-10/100 benchmarks. While WDA incurs additional computational
 493 overhead compared to single-point attacks due to evaluating multiple candidate perturbations per it-
 494 eration, it demonstrates that existing robustness evaluations significantly underestimate vulnerability
 495 by considering only point-wise perturbations. Together, these contributions narrow the gap between
 496 theoretical certificates and practical evaluation, revealing that both tighter bounds and stronger at-
 497 tacks emerge from properly leveraging network geometry and distributional perspectives.
 498

499 REFERENCES

500 Sravanti Addepalli, Samyak Jain, et al. Efficient and effective augmentation strategy for adversarial
 501 training. *Advances in Neural Information Processing Systems*, 35:1488–1501, 2022.
 502

503 Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
 504 tack: a query-efficient black-box adversarial attack via random search. In *European conference*
 505 *on computer vision*, pp. 484–501. Springer, 2020.

506 Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of se-
 507 curity: Circumventing defenses to adversarial examples. In *International conference on machine*
 508 *learning*, pp. 274–283. PMLR, 2018.

509

510 Brian R Bartoldson, James Diffenderfer, Konstantinos Parasyris, and Bhavya Kailkhura. Adversar-
 511 ial robustness limits via scaling-law and human-alignment studies. In *Proceedings of the 41st*
 512 *International Conference on Machine Learning*, pp. 3046–3072, 2024.

513

514 Jose Blanchet, Yang Kang, and Karthyek Murthy. Robust wasserstein profile inference and applica-
 515 tions to machine learning. *Journal of Applied Probability*, 56(3):830–857, 2019.

516

517 Wieland Brendel, Jonas Rauber, Matthias Bethge, and Decision-Based Adversarial. Decision-based
 518 adversarial attacks: Reliable attacks against black-box machine learning models. *Advances in*
 519 *Reliably Evaluating and Improving Adversarial Robustness*, pp. 77, 2021.

520

521 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017*
 522 *IEEE Symposium on Security and Privacy (SP)*, pp. 39–57. IEEE, 2017.

523

524 Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris
 525 Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial
 526 robustness. *arXiv preprint arXiv:1902.06705*, 2019.

527

528 Hong Chu, Meixia Lin, and Kim-Chuan Toh. Wasserstein distributionally robust optimization and
 529 its tractable regularization formulations. *arXiv preprint arXiv:2402.03942*, 2024.

530

531 Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
 532 smoothing. In *International Conference on Machine Learning*, pp. 1310–1320. PMLR, 2019.

533

534 Francesco Croce and Matthias Hein. A randomized gradient-free attack on relu networks. In *German*
 535 *Conference on Pattern Recognition*, pp. 215–227. Springer, 2018.

536

537 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
 538 of diverse parameter-free attacks. In *International Conference on Machine Learning*, pp. 2206–
 539 2216. PMLR, 2020.

540

541 Francesco Croce, Jonas Rauber, and Matthias Hein. Scaling up the randomized gradient-free adver-
 542 sarial attack reveals overestimation of robustness using established attacks. *International Journal*
 543 *of Computer Vision*, 128(4):1028–1046, 2020.

540 Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
 541 marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversar-
 542 ial robustness benchmark. In *Thirty-fifth Conference on Neural Information Processing Systems*
 543 *Datasets and Benchmarks Track (Round 2)*, 2021.

544 Jiequan Cui, Zhuotao Tian, Zhisheng Zhong, Xiaojuan Qi, Bei Yu, and Hanwang Zhang. Decoupled
 545 kullback-leibler divergence loss. *Advances in Neural Information Processing Systems*, 37:74461–
 546 74486, 2024.

547 Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang. Mma training: Direct
 548 input space margin maximization through adversarial training. In *International Conference on*
 549 *Learning Representations*, 2020.

550 Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In *Inter-
 551 national Symposium on Automated Technology for Verification and Analysis*, pp. 269–286. Springer,
 552 2017.

553 Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
 554 function approximation in reinforcement learning. *Neural Networks*, 107:3–11, 2018.

555 Rui Gao and Anton Kleywegt. Distributionally robust stochastic optimization with wasserstein
 556 distance. *Mathematics of Operations Research*, 48(2):603–655, 2023.

557 Rui Gao, Xi Chen, and Anton J Kleywegt. Wasserstein distributionally robust optimization and
 558 variation regularization. *Operations Research*, 72(3):1177–1191, 2024.

559 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 560 examples. *CoRR*, abs/1412.6572, 2014.

561 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
 562 ruptions and perturbations. In *International Conference on Learning Representations*, 2019.

563 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*
 564 *arXiv:1606.08415*, 2016.

565 Matt Jordan and Alexandros G Dimakis. Exactly computing the local lipschitz constant of relu
 566 networks. *Advances in Neural Information Processing Systems*, 33:7344–7353, 2020.

567 Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
 568 efficient smt solver for verifying deep neural networks. In *International Conference on Computer*
 569 *Aided Verification*, pp. 97–117. Springer, 2017.

570 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
 571 subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
 572 benchmark of in-the-wild distribution shifts. In *International Conference on Machine Learning*,
 573 pp. 5637–5644. PMLR, 2021.

574 Daniel Kuhn, Peyman Mohajerin Esfahani, Viet Anh Nguyen, and Soroosh Shafieezadeh-Abadeh.
 575 Wasserstein distributionally robust optimization: Theory and applications in machine learning.
 576 In *Operations Research & Management Science in the Age of Analytics*, Tutorials in Operations
 577 Research, pp. 130–166. INFORMS, 2019. doi: 10.1287/educ.2019.0198. URL <https://doi.org/10.1287/educ.2019.0198>.

578 Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
 579 In *Artificial intelligence safety and security*, pp. 99–112. Chapman and Hall/CRC, 2018.

580 Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun Zhu, Yuefeng Chen, Yuan
 581 He, Hui Xue, and Shibao Zheng. A comprehensive study on robustness of image classification
 582 models: Benchmarking and rethinking. *Int. J. Comput. Vis.*, 133(2):567–589, February 2025.
 583 URL <https://doi.org/10.1007/s11263-024-02196-3>.

584 Ye Liu, Yaya Cheng, Lianli Gao, Xianglong Liu, Qilong Zhang, and Jingkuan Song. Practical
 585 evaluation of adversarial robustness via adaptive auto attack. In *Proceedings of the IEEE/CVF*
 586 *Conference on Computer Vision and Pattern Recognition*, pp. 15105–15114, 2022.

594 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 595 Towards deep learning models resistant to adversarial attacks. In *International Conference on*
 596 *Learning Representations*, 2018.

597

598 Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimization
 599 using the wasserstein metric: Performance guarantees and tractable reformulations. *Mathematical*
 600 *Programming*, 171(1):115–166, 2018.

601 Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
 602 accurate method to fool deep neural networks. In *Proceedings of the IEEE conference on com-*
 603 *puter vision and pattern recognition*, pp. 2574–2582, 2016.

604

605 Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
 606 *Proceedings of the 27th international conference on machine learning (ICML-10)*, pp. 807–814,
 607 2010.

608 Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
 609 Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
 610 evaluating predictive uncertainty under dataset shift. *Advances in Neural Information Processing*
 611 *Systems*, 32, 2019.

612 Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. *arXiv*
 613 *preprint arXiv:1710.05941*, 2017.

614

615 Leslie Rice, Anna Bair, Huan Zhang, and J Zico Kolter. Robustness between the worst and average
 616 case. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in*
 617 *Neural Information Processing Systems*, 2021.

618 Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and
 619 Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. *Ad-*
 620 *vances in Neural Information Processing Systems*, 32, 2019.

621

622 Filippo Santambrogio. Optimal transport for applied mathematicians. 2015.

623

624 Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui Dai, Chong Xiang, Mung Chiang, and
 625 Prateek Mittal. Robust learning meets generative models: Can proxy distributions improve ad-
 626 versarial robustness? In *International Conference on Learning Representations*, 2022.

627

628 Zhouxing Shi, Yihan Wang, Huan Zhang, J Zico Kolter, and Cho-Jui Hsieh. Efficiently computing
 629 local lipschitz constants of neural networks via bound propagation. *Advances in Neural Infor-*
 630 *mation Processing Systems*, 35:2350–2364, 2022.

631

632 Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast and
 633 effective robustness certification. *Advances in Neural Information Processing Systems*, 31, 2018.

634

635 Naman Deep Singh, Francesco Croce, and Matthias Hein. Revisiting adversarial training for ima-
 636 genet: Architectures, training and generalization across threat models. In *Thirty-seventh Confer-*
 637 *ence on Neural Information Processing Systems*, 2023. URL [https://openreview.net/](https://openreview.net/forum?id=Pbpk9jUzAi)
 638 [forum?id=Pbpk9jUzAi](https://openreview.net/forum?id=Pbpk9jUzAi).

639

640 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 641 and Rob Fergus. Intriguing properties of neural networks. In *2nd International Conference on*
 642 *Learning Representations, ICLR 2014*, 2014.

643

644 Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig
 645 Schmidt. Measuring robustness to natural distribution shifts in image classification. *Advances*
 646 *in Neural Information Processing Systems*, 33:18583–18599, 2020.

647

648 Yusuke Tashiro, Yang Song, and Stefano Ermon. Diversity can be transferred: Output diversification
 649 for white-and black-box attacks. *Advances in Neural Information Processing Systems*, 33:4536–
 650 4548, 2020.

651

652 Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2008.

648 Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
649 efficient estimation. *Advances in Neural Information Processing Systems*, 31, 2018.
650

651 Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion
652 models further improve adversarial training. In *International Conference on Machine Learning*,
653 pp. 36246–36263. PMLR, 2023.

654 Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
655 and Inderjit Dhillon. Towards fast computation of certified robustness for relu networks. In
656 *International Conference on Machine Learning*, pp. 5276–5285. PMLR, 2018.

657

658 Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
659 adversarial polytope. In *International Conference on Machine Learning*, pp. 5286–5295. PMLR,
660 2018.

661 Yuancheng Xu, Yanchao Sun, Micah Goldblum, Tom Goldstein, and Furong Huang. Exploring and
662 exploiting decision boundary dynamics for adversarial robustness. In *The Eleventh International
663 Conference on Learning Representations*, 2023.

664 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In *British Machine Vision
665 Conference 2016*. British Machine Vision Association, 2016.

666

667 Huan Zhang, Shiqi Wang, Kaidi Xu, Yihan Wang, Suman Jana, Cho-Jui Hsieh, and Zico Kolter. A
668 branch and bound framework for stronger adversarial attacks of relu networks. In *International
669 Conference on Machine Learning*, pp. 26591–26604. PMLR, 2022.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A PRELIMINARIES ON WASSERSTEIN DISTANCE AND WDRO

704 Recall that given two probability measures \mathbb{P} and \mathbb{Q} on \mathcal{Z} , the Wasserstein distance is defined as

$$706 \quad 707 \quad \mathcal{W}_{d,p}(\mathbb{P}, \mathbb{Q}) \triangleq \left(\inf_{\pi \in \Pi(\mathbb{P}, \mathbb{Q})} \int_{\mathcal{Z} \times \mathcal{Z}} d^p(z', z) d\pi(z', z) \right)^{1/p}$$

709 for $p \in [1, \infty)$, and $\mathcal{W}_{d,p}(\mathbb{P}, \mathbb{Q}) \triangleq \inf_{\pi \in \Pi(\mathbb{P}, \mathbb{Q})} \text{ess. sup}_{\pi}(d)$ for $p = \infty$, where the feasible set is
710 given by

$$711 \quad 712 \quad \Pi(\mathbb{P}, \mathbb{Q}) \triangleq \{ \pi \text{ on } \mathcal{Z} \times \mathcal{Z} : \pi(A \times \mathcal{Z}) = \mathbb{P}(A), \pi(\mathcal{Z} \times B) = \mathbb{Q}(B) \forall A, B \subseteq \mathcal{Z} \}$$

713 the set of couplings (transport plans) between \mathbb{P} and \mathbb{Q} . Intuitively, a transportation plan π is feasible
714 if it is a joint distribution whose first marginal is \mathbb{P} and second marginal \mathbb{Q} . In the ambiguity set $\Omega_p =$
715 $\{ \mathbb{P} \mid \mathcal{W}_{d,p}(\mathbb{P}, \mathbb{P}_N) \leq \epsilon \}$ (equation 3), a (distributional) attack \mathbb{P} is admissible if the minimal effort for
716 moving mass from \mathbb{P} to the empirical distribution \mathbb{P}_N is not exceeding budget ϵ . Unlike traditional
717 approaches which only allows point-wise perturbations, WDRO min-max model (equation 3) allows
718 both discrete and continuous distribution \mathbb{P} , which is extremely practical in certain scenarios where
719 the ground-truth distribution \mathbb{P}_{true} is unknown and possibly continuous.

720 B PROOFS

721 B.1 PROOF OF THEOREM 3.1

724 **Proof of Upper Bound** It is a standard result that for any $y = \mathbf{e}_k$, if ℓ is the cross-entropy loss
725 then

$$726 \quad 727 \quad |\ell(x', y; \theta) - \ell(x, y; \theta)| = |\log [\text{softmax } \theta(x')]_k - \log [\text{softmax } \theta(x)]_k| \leq 2^{1/s} \|\theta(x') - \theta(x)\|_s, \quad (11)$$

728 or if ℓ is the DLR loss then

$$730 \quad 731 \quad |\ell(x', y; \theta) - \ell(x, y; \theta)| = |(\max_{k_1 \neq k} \theta(x')_{k_1} - \theta(x')_k) - (\max_{k_2 \neq k} \theta(x)_{k_2} - \theta(x)_k)| \leq 2^{1/s} \|\theta(x') - \theta(x)\|_s. \quad (12)$$

732 In addition, by Jordan & Dimakis (2020), we have that for any $x', x \in \mathcal{X}$,

$$734 \quad 735 \quad \|\theta(x') - \theta(x)\|_s \leq \max_{\mathbf{D} \in \mathcal{D}_{\mathcal{X}}} \|J_{\mathbf{D}}\|_{r \rightarrow s} \times \|x' - x\|_r. \quad (13)$$

736 Thus,

$$737 \quad 738 \quad |\ell(x', y; \theta) - \ell(x, y; \theta)| \leq 2^{1/s} \max_{\mathbf{D} \in \mathcal{D}_{\mathcal{X}}} \|J_{\mathbf{D}}\|_{r \rightarrow s} \times \|x' - x\|_r = \mathbf{L} \times d((x', y), (x, y)). \quad (14)$$

739 for any $x', x \in \mathcal{X}$ and therefore by using Lipschitz certificate (Mohajerin Esfahani & Kuhn, 2018;
740 Blanchet et al., 2019; Gao & Kleywegt, 2023; Gao et al., 2024; Chu et al., 2024), we have

$$741 \quad 742 \quad \sup_{\mathbb{P} : \mathcal{W}_{d,1}(\mathbb{P}, \mathbb{P}_N) \leq \epsilon} \mathbb{E}_{\mathbb{P}}[\ell(Z; \theta)] \leq \mathbb{E}_{\mathbb{P}_N}[\ell(Z; \theta)] + \mathbf{L}\epsilon, \quad (15)$$

744 for any $\epsilon > 0$.

745 **Proof of Lower Bound** To show that the lower bound of the worst-case loss is $\mathbb{E}_{\mathbb{P}_N}[\ell(Z; \theta)] + \mathbf{L}\epsilon$,
746 it is enough to construct a perturbation \tilde{Z} , a weight $\eta \in (0, 1]$, and a distribution
747

$$748 \quad 749 \quad \mathbb{P}_{\text{adv}} = \sum_{i=1, i \neq \iota}^N \frac{1}{N} \delta_{Z^{(i)}} + \frac{1-\eta}{N} \delta_{Z^{(\iota)}} + \frac{\eta}{N} \delta_{\tilde{Z}}, \quad (16)$$

751 so that $\mathcal{W}_{d,1}(\mathbb{P}_{\text{adv}}, \mathbb{P}_N) \leq \epsilon$ and $\mathbb{E}_{\mathbb{P}_{\text{adv}}}[\ell(Z; \theta)] \approx \mathbb{E}_{\mathbb{P}_N}[\ell(Z; \theta)] + \mathbf{L}\epsilon$.

753 Since $\mathcal{D}_{\mathcal{X}}$ is finite, let $x^*, \mathbf{D}^*, k'^*, k^*$ and sequence $\{u_t^*\}$ be the maximizer in 7, i.e., $\mathbf{D}^* \in$
754 \mathcal{D}_{x^*} , $k'^* \neq k^*$, $\{u_t^*\} \subset \text{int}(\text{rec}(\mathcal{C}_{\mathbf{D}^*}))$ and

$$755 \quad (\mathbf{e}_{k'^*} - \mathbf{e}_{k^*})^\top J_{\mathbf{D}^*} u_t^* \rightarrow \mathbf{l} \text{ when } t \rightarrow \infty.$$

In particular, θ is affine and differentiable on $\text{rec}(\mathcal{C}_{D^*})$. Since u_t^* belongs to the open cone $\text{rec}(\mathcal{C}_{D^*})$, one has that for any $\alpha > 0$,

$$\tilde{x} = x^* + \alpha u_t^* \in \text{rec}(\mathcal{C}_{D^*}), \quad (17)$$

and thus

$$\nabla_x \theta(\tilde{x}) = J_{D^*}, \quad \theta(\tilde{x}) - \theta(x^*) = \alpha J_{D^*} u_t^*. \quad (18)$$

Choose root ι so that $(X^{(\iota)}, Y^{(\iota)} = e_{k^*})$. Then when ℓ is the cross-entropy loss or DLR loss, by a technical Lemma B.1 one has

$$\lim_{\alpha \rightarrow \infty} \frac{\Delta \ell(\alpha)}{\alpha} = \lim_{\alpha \rightarrow \infty} \frac{\ell(\tilde{x}, Y^{(\iota)}; \theta) - \ell(x^*, Y^{(\iota)}; \theta)}{\alpha} \geq v_{k'^*} - v_{k^*}. \quad (19)$$

where $v = J_{D^*} u_t^*$. Now choose α large enough so that $\Delta \ell(\alpha) \approx \alpha(v_{k'^*} - v_{k^*})$, $\Delta \ell(\alpha) \gg \ell(x^*, Y^{(\iota)}; \theta) - \ell(X^{(\iota)}, Y^{(\iota)}; \theta)$, and $N\epsilon < \|\tilde{x} - X^{(i)}\|_r \approx \alpha$. Set $\tilde{Z} = (\tilde{x}, Y^{(\iota)})$, then

$$\begin{aligned} \ell(\tilde{Z}; \theta) - \ell(Z^{(\iota)}; \theta) &= \Delta \ell(\alpha) + \ell(x^*, Y^{(\iota)}; \theta) - \ell(X^{(\iota)}, Y^{(\iota)}; \theta) \\ &\approx \|\tilde{x} - X^{(i)}\|_r (v_{k'^*} - v_{k^*}) \\ &= d(\tilde{Z}, Z^{(\iota)}) \times (e_{k'^*} - e_{k^*})^\top J_{D^*} u_t^* \xrightarrow{t \rightarrow \infty} l \times d(\tilde{Z}, Z^{(\iota)}). \end{aligned} \quad (20)$$

Now set $\eta = \frac{N\epsilon}{d(\tilde{Z}, Z^{(\iota)})} \in (0, 1]$, then

$$\mathcal{W}_{d,1}(\mathbb{P}_{\text{adv}}, \mathbb{P}_N) \leq \frac{\eta}{N} d(\tilde{Z}, Z^{(\iota)}) = \epsilon. \quad (21)$$

Moreover,

$$\begin{aligned} \mathbb{E}_{\mathbb{P}_{\text{adv}}}[\ell(Z; \theta)] &= \mathbb{E}_{\mathbb{P}_N}[\ell(Z; \theta)] + \frac{\eta}{N} \left(\ell(\tilde{Z}; \theta) - \ell(Z^{(\iota)}; \theta) \right) \\ &\approx \mathbb{E}_{\mathbb{P}_N}[\ell(Z; \theta)] + \frac{\epsilon}{d(\tilde{Z}, Z^{(\iota)})} l d(\tilde{Z}, Z^{(\iota)}) \\ &= \mathbb{E}_{\mathbb{P}_N}[\ell(Z; \theta)] + l\epsilon. \end{aligned} \quad (22)$$

Therefore, the lower bound of the worst-case loss is $\mathbb{E}_{\mathbb{P}_N}[\ell(Z; \theta)] + l\epsilon$.

Sufficient condition of $l = L$ Suppose that the dual-norm maximizer $\xi = \mathcal{M}_r(J_{D^*}^\top (e_{k'^*} - e_{k^*})) \in \text{rec}(\mathcal{C}_{D^*})$ where D^* is a maximizer of 6 and (k'^*, k^*) is a maximizer of 7, then we have

$$\begin{aligned} l &= (e_{k'^*} - e_{k^*})^\top J_{D^*} u_t^* \\ &\geq (e_{k'^*} - e_{k^*})^\top J_{D^*} \xi && \text{(since } u_t^* \text{ is the maximizer)} \\ &= \|(e_{k'^*} - e_{k^*})^\top J_{D^*}\|_s && \text{(by definition of dual-norm maximizer)} \\ &= \|(e_{k'^*} - e_{k^*})\|_r \|J_{D^*}\|_{r \rightarrow s} \\ &= 2^{1/s} \|J_{D^*}\|_{r \rightarrow s} = L, \end{aligned} \quad (23)$$

where the second last equality holds true because $(e_{k'^*} - e_{k^*})$ is the largest increment direction of J_{D^*} .

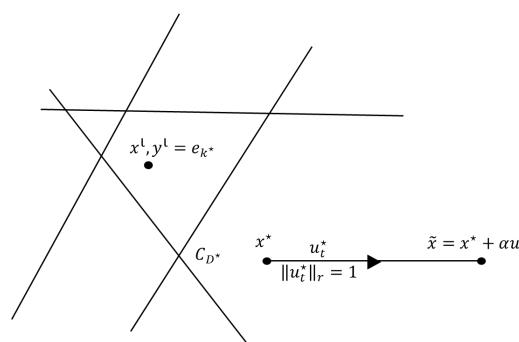


Figure 4: Illustration of Proof of Lower Bound

810 B.2 PROOF OF THEOREM 3.3
811812 *Proof.* The proof for the upper and lower bounds is similar to the methodology we discussed in our
813 previous exchange.814 **Proof of Upper Bound** The WDRO upper bound is a direct consequence of the Lipschitz con-
815 tinuity of the loss function. The Lipschitz constant of the combined loss function, $L_\ell =$
816 $\sup_{Z \in \mathcal{Z}} \|\nabla_x \ell(Z; \theta)\|_r$, is bounded by the product of the Lipschitz constant of the loss with respect
817 to the output and the Lipschitz constant of the network. That is,

818
$$L \leq \|J(x)\|_{r \rightarrow s} \cdot \|\nabla_\theta \ell\|_s = \|J(x)\|_{r \rightarrow s} \cdot 2^{1/s}$$

819

820 **Proof of Lower Bound** The proof of the lower bound is identical with the ReLU network case,
821 where it relies on constructing a specific adversarial distribution. This finds a point x^* and a direc-
822 tion u^* that maximize the rate of change of the loss. The constant l is defined as this maximum
823 rate of change. By constructing a perturbed point $\tilde{x} = x^* + \alpha u^*$ and a corresponding adversarial
824 distribution, it is shown that the worst-case loss is at least $\mathbb{E}_{\mathbb{P}_N}[\ell(Z; \theta)] + l\epsilon$.
825 \square
826827 B.3 TECHNICAL PROOFS
828829 **Lemma B.1** (Technical lemma). *In equation 19, if $\ell = \ell_{CE}$ is the cross-entropy loss, then*

830
$$\lim_{\alpha \rightarrow \infty} \frac{\Delta \ell_{CE}}{\alpha} = \max_i (J_{D^*} u_t^*)_i - (J_{D^*} u_t^*)_{k^*}.$$

831

832 *Else if $\ell = \ell_{DLR}$ is the DLR loss, then*

833
$$\lim_{\alpha \rightarrow \infty} \frac{\Delta \ell_{DLR}}{\alpha} = \max_{i \neq k^*} (J_{D^*} u_t^*)_i - (J_{D^*} u_t^*)_{k^*}.$$

834

835 *Proof.* Let $\theta^* = \theta(x^*)$ and the change in network output be $\Delta\theta = \theta(\tilde{x}) - \theta(x^*) = \alpha J_{D^*} u_t^*$. We
836 will analyze the limit for each loss function separately.
837838 **Cross-Entropy Loss:** The difference in loss is $\Delta \ell_{CE} = \ell_{CE}(\theta(\tilde{x}), e_{k^*}) - \ell_{CE}(\theta(x^*), e_{k^*})$. Using
839 the property $\ell_{CE}(z, e_{k^*}) = -(z_{k^*} - \log \sum_k e^{z_k})$, the loss difference is:

840
$$\Delta \ell_{CE} = -\Delta \theta_{k^*} + \log \left(\sum_k e^{\Delta \theta_k} \cdot \text{softmax}(\theta^*)_k \right)$$

841

842 To find the limit of the average rate of change, $\frac{\Delta \ell_{CE}}{\alpha}$, we substitute $\Delta\theta = \alpha v$, where $v_k =$
843 $(J_{D^*} u_t^*)_k$.

844
$$\lim_{\alpha \rightarrow \infty} \frac{\Delta \ell_{CE}}{\alpha} = \lim_{\alpha \rightarrow \infty} \left[\frac{1}{\alpha} \log \left(\sum_k \text{softmax}(\theta^*)_k e^{\alpha v_k} \right) - v_{k^*} \right]$$

845

846 Let $v_{\max} = \max_k v_k$. Factoring out the dominant term $e^{\alpha v_{\max}}$ from the sum, the expression be-
847 comes:

848
$$\begin{aligned} &= \lim_{\alpha \rightarrow \infty} \left[\frac{1}{\alpha} \left(\log(e^{\alpha v_{\max}}) + \log \left(\sum_k \text{softmax}(\theta^*)_k e^{\alpha(v_k - v_{\max})} \right) \right) - v_{k^*} \right] \\ &= \lim_{\alpha \rightarrow \infty} \left[v_{\max} + \frac{1}{\alpha} \log \left(\sum_k \text{softmax}(\theta^*)_k e^{\alpha(v_k - v_{\max})} \right) - v_{k^*} \right] \end{aligned}$$

849

850 The sum inside the logarithm converges to a constant value, as all terms with $v_k < v_{\max}$ go to 0.
851 The logarithmic term is therefore bounded. The term $\frac{1}{\alpha}$ causes the entire second term to go to 0.
852 The limit is thus:

853
$$= v_{\max} - v_{k^*} = \max_k (J_{D^*} u_t^*)_k - (J_{D^*} u_t^*)_{k^*}$$

854

855 **DLR Loss:** The difference in DLR loss is $\Delta \ell_{DLR} = \ell_{DLR}(\theta(\tilde{x}), k^*) - \ell_{DLR}(\theta(x^*), k^*)$.
856

857
$$\Delta \ell_{DLR} = \left(\max_{k \neq k^*} \theta(\tilde{x})_k - \theta(\tilde{x})_{k^*} \right) - \left(\max_{k \neq k^*} \theta(x^*)_k - \theta(x^*)_{k^*} \right)$$

858

864 Substituting $\theta(\tilde{x}) = \theta^* + \Delta\theta$:

$$\Delta\ell_{DLR} = \left(\max_{k \neq k^*} (\theta_k^* + \Delta\theta_k) - \max_{k \neq k^*} \theta_k^* \right) - \Delta\theta_{k^*}$$

865 To find the limit of the average rate of change, $\frac{\Delta\ell_{DLR}}{\alpha}$, we substitute $\Delta\theta = \alpha v$ and analyze as
 866 $\alpha \rightarrow \infty$.

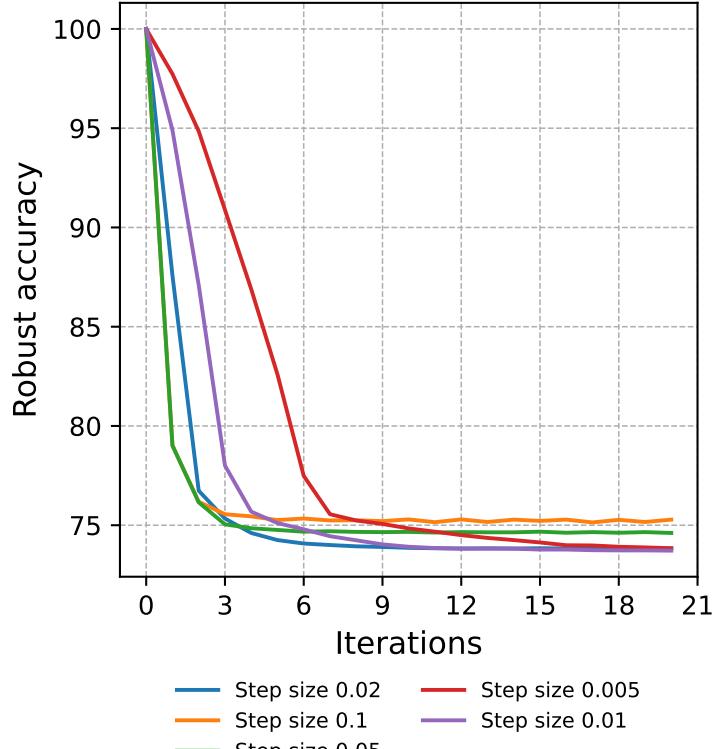
$$\lim_{\alpha \rightarrow \infty} \frac{\Delta\ell_{DLR}}{\alpha} = \lim_{\alpha \rightarrow \infty} \frac{1}{\alpha} \left(\max_{k \neq k^*} (\theta_k^* + \alpha v_k) - \max_{k \neq k^*} \theta_k^* \right) - v_{k^*}$$

867 As $\alpha \rightarrow \infty$, the term αv_k dominates inside the maximum function. The limit of the maximum term
 868 is therefore $\max_{k \neq k^*} v_k$.

$$\lim_{\alpha \rightarrow \infty} \frac{\Delta\ell_{DLR}}{\alpha} = \left(\max_{k \neq k^*} v_k \right) - v_{k^*} = \max_{k \neq k^*} (J_{D^*} u_t^*)_k - (J_{D^*} u_t^*)_{k^*}$$

□

873 C ADDITIONAL RESULT

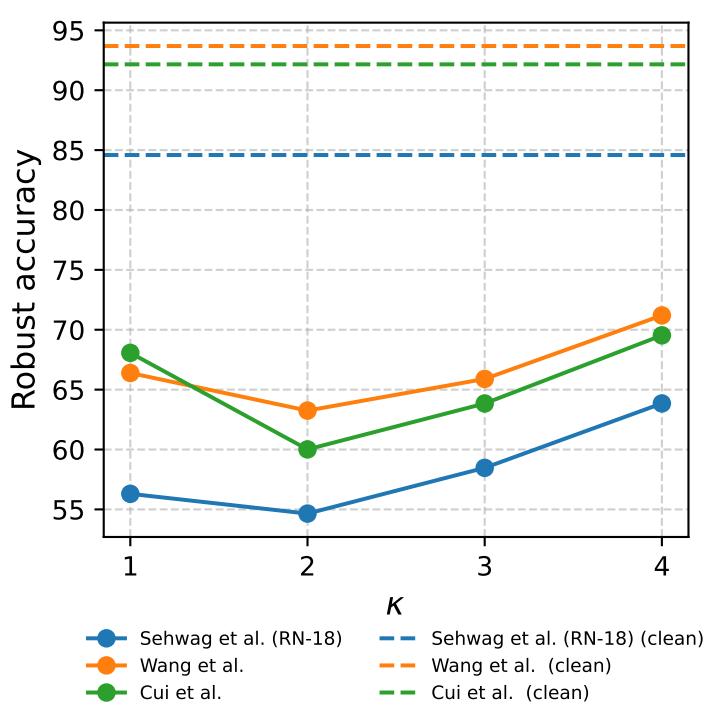


908 Figure 5: Comparison of step size effect on model Cui et al. (2024) under r_∞ perturbation ($\epsilon = 8/255$).

909
 910 Figure 5 illustrates the convergence behavior of Cui et al. (2024) in terms of robust accuracy. Larger
 911 step sizes (0.1, 0.5) lead to higher final accuracy, whereas a smaller step size of 0.02 results in the
 912 lowest robust accuracy, indicating the most effective attack.

913
 914 Figure 6 presents the robust accuracy across different values of κ . Among the tested settings, $\kappa = 2$
 915 consistently produces the lowest robust accuracy for all models (Cui et al. (2024), Wang et al. (2023),
 916 and Sehwag et al. (2022)).

917

Figure 6: Comparison of robust accuracy with varying κ

D USAGE OF LARGE LANGUAGE MODELS (LLMs)

We used ChatGPT solely for revising the writing of the paper. Note that revision here strictly means enhancing the clarity and readability of the text (e.g., fixing typos or constructing latex tables), and not for any other purposes.