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Abstract

We study a general clustering setting in which we have n elements to be clustered,
and we aim to perform as few queries as possible to an oracle that returns a noisy
sample of the weighted similarity between two elements. Our setting encompasses
many application domains in which the similarity function is costly to compute and
inherently noisy. We introduce two novel formulations of online learning problems
rooted in the paradigm of Pure Exploration in Combinatorial Multi-Armed Bandits
(PE-CMAB): fixed confidence and fixed budget settings. For both settings, we
design algorithms that combine a sampling strategy with a classic approximation
algorithm for correlation clustering and study their theoretical guarantees. Our
results are the first examples of polynomial-time algorithms that work for the case
of PE-CMAB in which the underlying offline optimization problem is NP-hard.

1 Introduction

Given a set V = [n] of n objects and a pairwise similarity measure s :
(
V
2

)
→ [0, 1] (where

(
V
2

)
is

the set of unordered pairs of elements of V , and the value closer to 1 means higher similarity), the
goal of Correlation Clustering [7] is to cluster the objects so that, to the best possible extent, similar
objects are put in the same cluster and dissimilar objects are put in different clusters. Assuming that
cluster identifiers are represented by natural numbers, a clustering C can be represented as a function
` : V → N, where each cluster is a maximal set of objects sharing the same label. The objective is to
minimize the following cost:

costs(`) =
∑

(x,y)∈(V2),
`(x)=`(y)

(1− s(x, y)) +
∑

(x,y)∈(V2),
`(x) 6=`(y)

s(x, y). (1)

The intuition underlying the above problem definition is that if two objects x and y are dissimilar,
expressed by a small value of s(x, y), yet they are assigned to the same cluster, we should incur a
high cost. Conversely, if s(x, y) is high, indicating that x and y are very similar, but they are assigned
to different clusters, we should also incur a high cost.

Two key features make correlation clustering quite suitable in real-world applications. Firstly, it does
not require the number of clusters as part of the input; instead, it automatically finds the optimal
number, performing model selection. Secondly, it only requires the pairwise information without

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



assuming any specific structure of the data. This reasonably eliminates the need for domain knowledge
about complex data. Correlation clustering has been applied to a wide range of problems across
various domains, including duplicate detection and similarity joins [34, 46], spam detection [12, 72],
co-reference resolution [66], biology [9, 14], image segmentation [54], social network analysis [13],
and clustering aggregation [42].

Correlation clustering is NP-hard even in the simplest formulations [7, 75], and minimizing the
cost function in (1) is APX-hard [20]; thus, we cannot expect a polynomial-time approximation
scheme. Nevertheless, there are a number of constant-factor approximation algorithms for various
settings [1, 3, 7, 20, 22, 30–32]. For the formulation of (1), Ailon et al. [3] presented KwikCluster, a
simple 5-approximation algorithm. The algorithm randomly picks a pivot v ∈ V and constructs a
cluster by taking all the vertices similar to v; then, the algorithm removes the cluster and repeats the
process until V is fully clustered. The simplicity and theoretical guarantees of KwikCluster have
produced a lot of variations in different scenarios [13, 29, 61, 69, 76, 79].

In practice, preparing the similarity function involves costly measurements. Given n items to be
clustered, Θ(n2) similarity computations are needed to prepare the input to correlation clustering
algorithms. Moreover, computing the similarity s(x, y) might have additional expenses (e.g., human
effort or financial resources) besides the mere computational cost. To mitigate these issues, some
query-efficient methods have been proposed based on the active learning framework [11, 15, 40].
In this framework, the similarity function is initially unknown but an oracle that returns the true
similarity in {0, 1} for a pair of objects is sequentially queried. In particular, these studies provided a
randomized algorithm that, given a budget T of queries, attains a solution whose expected cost is at
most 3 ·OPT + O(n

3

T ), where OPT is the optimal value of the problem.

However, the above methods for query-efficient correlation clustering have significant limitations.
Indeed, all the aforementioned works [11, 15, 40] only consider the binary similarity of {0, 1}, while
the similarity between two objects are often non-binary in real-world scenarios. For example, in
biological sciences, protein-protein interaction networks are commonly analyzed, where the strength
of the interactions among proteins is represented as a real-valued similarity [68]. As another example,
in entity resolution, i.e., a task central to data integration [80], real-valued similarity is used to indicate
the likelihood of matches of objects instead of binary decisions. Therefore, allowing the similarity
to be real-valued in the interval [0, 1] would be more practical and flexible. Furthermore, the above
works assume the access to the strong oracle that returns the true value of s(x, y) (= 0 or 1), while
evaluating s(x, y) might be inherently noisy, due to error-prone experiments, noisy measurements, or
biased judgments. In the above first example the strength of the interactions among proteins is often
measured based on biological experiments involving unavoidable noise, while in the second example
the likelihood of matches of objects is usually obtained based on biased human judgements.

In this paper, we focus on the challenging scenario where (i) the underlying similarity measure can
take any real value in [0, 1] rather than being binary, and (ii) we can only query a noisy oracle that
provides inaccurate evaluations of the weighted similarity s(x, y). The goal of this paper is to devise
clustering algorithms that perform as few queries on s(x, y) as possible to an oracle that returns
noisy answers to s(x, y). In pursuit of this goal, we introduce two novel formulations based on
multi-armed bandits problems, both of which achieve a reasonable trade-off between the number of
queries to the oracle and the quality of solutions.

While our problem formulations are novel, recent prior work has explored related issues. Silwal et al.
[76] proposed a practical model using the strong oracle along with a cheaper but inaccurate oracle.
Their algorithm achieves a cost of 3 ·OPT + εn2 using n+O(γε ) queries to the strong oracle, where
γ > 0 is the error level of noisy oracle and ε > 0 is the additive error. However, they still focus on
the binary similarity and there is no guarantee on the query upper bound for the noisy oracle. Unlike
theirs, our models are designed to handle the weighted similarity and do not rely on any strong oracle.
Aronsson and Chehreghani [4, 5] studied a non-persistent noise model where the oracle returns the
true value of s(x, y) with probability 1− γ and a noisy value otherwise. Their algorithm handles a
general weighted similarity but provides neither query complexity nor approximation guarantee.

1.1 Our contributions

In this paper, we study the problem of query-efficient correlation clustering with noisy oracles, where
the similarity function s :

(
V
2

)
→ [0, 1] is initially unknown, and only noisy feedback instead of
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the true similarity s(x, y) is observed when querying a pair of objects (x, y). In this scenario, it
is desired to achieve a reasonable trade-off between the number of queries to the oracle and the
cost of clustering. To this end, we introduce two formulations of online learning problems rooted
in the paradigm of Pure Exploration of Combinatorial Multi-Armed Bandits (PE-CMAB). In the
fixed confidence setting (Problem 1), given a confidence level δ ∈ (0, 1), the learner aims to find a
well-approximate solution with probability at least 1− δ while minimizing the number of queries
required to determine the output. Conversely, in the fixed budget setting (Problem 2), given a querying
budget T , the learner aims to maximize the probability that the output is a well-approximate solution.
Our contributions can be summarized as follows:

• For Problem 1, we design KC-FC (Algorithm 1), which effectively combines threshold bandits
with KwikCluster. We prove that given confidence level δ ∈ (0, 1), KC-FC finds a solution
whose expected cost is at most 5 · OPT + ε with probability at least 1 − δ, where OPT is the
optimal value of the problem, and provide the upper bound of the number of queries (Theorem 1).

• We design KC-FB (Algorithm 3) for Problem 2, which adaptively determines the number of
queries for each pair of objects based on KwikCluster. We prove that the error probability of the
expected cost being worse than 5 ·OPT + ε decreases exponentially with budget T (Theorem 2).

• We empirically validate our theoretical findings by demonstrating that KC-FC and KC-FB out-
perform baseline methods in terms of the sample complexity and cost of clustering, respectively.

It is worth noting that our approximation guarantees in Theorems 1 and 2 match the approximation
ratio 5 of KwikCluster [3], where s :

(
V
2

)
→ [0, 1] is known in advance, up to the additive error

ε > 0. These results are not achievable using existing PE-CMAB algorithms due to the NP-hardness
of correlation clustering. In the standard PE-CMAB, a learner aims to identify the best action
that maximizes the linear reward from the combinatorial decision set D ⊆ 2[m] with m-base arms.
Existing algorithms for PE-CMAB (e.g., [23, 25, 35, 52, 82]) rely on the assumption that the offline
problem is polynomial-time solvable. Redesigning them to obtain a well-approximate solution while
running efficiently is quite challenging, as the exact optimization of the offline problem is crucial to
achieving statistical validity and a correctness guarantee for the output. Ours are the first polynomial-
time algorithms that work for the case of PE-CMAB where the underlying offline optimization is
NP-hard, filling a critical gap in existing PE-CMAB algorithms, which is of independent interest.

1.2 Related work

Correlation clustering with noisy input. The bulk of the literature on noisy correlation clustering
(see Section 4.6 of Bonchi et al. [10]) considers the binary similarity and assumes that there is the
ground-truth clustering but some of the s(x, y) are wrong: they are 0 instead of 1, or vice versa.
The seminal work by Bansal et al. [7] and Joachims and Hopcroft [49] provided the bounds on the
error with which correlation clustering recovers the ground truth under a simple probabilistic model
over graphs. Mathieu and Schudy [64] studied the model starting from an arbitrary partition of the
n elements into clusters, where s(x, y) is perturbed independently with probability p, and a more
general model with the adversary. They proposed an algorithm that achieves some approximation
ratio and manages to approximately recover the ground truth. Chen et al. [28] extended the framework
to sparse Erdős–Rényi random graphs and obtained an algorithm that conditionally recovers the
ground truth. Finally, Makarychev et al. [62] overcame some limitations of Mathieu and Schudy [64]
and Chen et al. [28]; they assumed very little about the observations and gave two approximation
algorithms. Unlike the above models, ours is based on online learning with an unknown distribution
with mean of s(x, y), which is in general not binary, and does not assume any ground-truth clustering.

Combinatorial multi-armed bandits. Multi-Armed Bandit (MAB) is a classical decision-making
model [57, 59, 73]: There are m possible actions (called arms), whose expected reward µi for each
i ∈ [m] is unknown. At each round, a learner chooses an arm to pull and observes a stochastic
reward sampled from an unknown probability distribution. The most popular objective is to minimize
the cumulative regret [16, 18]. Another popular objective is to identify the arm with the maximum
expected reward. This problem, called the Best Arm Identification (BAI) or Pure Exploration
(PE) in MAB, has also received much attention [6, 8, 17, 21, 24, 37, 38, 41, 48, 53]. The model
of Combinatorial Multi-Armed Bandits (CMAB) is a generalization of MAB [19, 26], where an
interested subset of arms forms a certain combinatorial structure such as a spanning tree, matching,
or path. Since its introduction by Chen et al. [25], the study of PE-CMAB has been actively pursued
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in various settings [23, 35, 36, 47, 50, 52, 55, 56, 67, 78, 82]. Notably, Gullo et al. [44] addressed
regret minimization for correlation clustering by adapting UCB-type algorithms. However, regret
minimization in CMAB is quite different from pure exploration framework when working with
approximation oracles (i.e., offline approximation algorithms) for solving NP-hard problems. For
regret minimization, we can incorporate approximation oracles with the UCB framework, consistent
with the optimization under uncertainty principle (e.g., [26, 27, 81]). However, in pure exploration,
the lack of uniqueness of α-approximate solutions makes it difficult to determine the stopping
condition in the FC setting. In the FB setting, the Combinatorial Successive Accept Reject algorithm
proposed by Chen et al. [25] iteratively solves the so-called Constrained Oracle problem, which
is often NP-hard, as later addressed in Du et al. [35]. We anticipate a similar NP-hard problem in
correlation clustering, requiring a different approach.

Other clustering settings. Ailon et al. [2] and Saha and Subramanian [74] studied correlation
clustering with same-cluster queries, where all similarities of

(
V
2

)
are known in advance and their

query is further allowed to access the optimal clustering. Our setting differs significantly as we are
interested in the case where similarities are unknown and only noisy similarity values are received
rather than same-cluster queries. Finally, it is worth mentioning that Xia and Huang [83] and
Gupta et al. [45] proposed a MAB approach for clustering reconstruction with noisy same-cluster
queries [58, 65, 70, 71, 77]. However, this clustering reconstruction problem does not directly offer
any algorithmic result for correlation clustering. The detailed comparison is deferred to Appendix A.

2 Problem statements

Here we formally define our formulations of PE-CMAB for correlation clustering. Our problem
instances are characterized by (V, s), where V = [n] is the set of elements to be clustered and
s :
(
V
2

)
→ [0, 1] is the pairwise similarity function, which is unknown to the learner. Define the set of

unordered pairs as E =
(
V
2

)
with m := |E|.

At each round t = 1, 2, . . ., a learner will pull (i.e., query) one arm (i.e., pair of elements in V ) from
action space E =

(
V
2

)
based on past observations. After pulling e ∈ E, the learner can observe

the random feedback Xt(e), which is independently sampled from an unknown distribution such as
Bernoulli or R-sub-Gaussian with unknown mean s(e) ∈ [0, 1].1 After some exploration rounds, the
learner must identify a well-approximate solution. Let OPT(s) be the optimal value of the offline
problem minimizing the cost function (1) and let Cout be the output by an algorithm. For α ≥ 1 and
ε > 0, we say Cout to be an (α, ε)-approximate solution if costs(Cout) ≤ α ·OPT(s) + ε. We study
the following two formulations: Fixed Confidence (FC) and Fixed Budget (FB) settings.

Problem 1 (Fixed confidence setting). Let α ≥ 1. Given a confidence level δ ∈ (0, 1) and additive
error ε > 0, the learner aims to guarantee that the output Cout is an (α, ε)-approximate solution with
probability at least 1− δ. The evaluation metric of an algorithm is the sample complexity, i.e., the
number of queries to the oracle the learner uses.

Problem 2 (Fixed budget setting). Let α ≥ 1. Given a querying budget T and additive error ε > 0,
the learner aims to maximize the probability that the output Cout is an (α, ε)-approximate solution.

Note that the case of α = 1 corresponds to the standard PE-CMAB formulations. However, as the
offline problem minimizing the cost function (1) is APX-hard [20], we cannot expect any polynomial-
time algorithm that can handle α = 1 in the above formulations.

3 Fixed confidence setting

In this section, we design KC-FC (Algorithm 1) for Problem 1, built on a novel combination of
KwikCluster (detailed in Algorithm 4 in Appendix B) and techniques of threshold bandits. The key
idea of the proposed method is to first identify pairs with seemingly high similarity, which are then
passed to KwikCluster to produce a high-quality clustering.

1We use Bernoulli distribution for the sake of simplicity, i.e., Xt(e) ∼ Bern(s(e)), where s(e) is the
unknown mean. We can consider R-sub-Gaussian distribution and our results carry on, by simply adjusting the
statement of the Hoeffding inequality accordingly.
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Algorithm 1 KwikCluster with Fixed Confidence (KC-FC)
Input : Confidence level δ, set V of n objects, and error ε

1 E1 ← E, V1 ← V , r ← 1, and Cout ← ∅;
2 Compute Ĝε′ by TB-HS (Algorithm 2) with ε′ = ε

12m ;
3 Define Γ̂(v) := {u ∈ V : {u, v} ∈ Ĝε′};
4 while |Vr| > 0 do
5 Pick a pivot pr ∈ Vr uniformly at random;
6 Cout ← Cout ∪ {Cr}, where Cr := ({pr} ∪ Γ̂(pr)) ∩ Vr;
7 Vr+1 ← Vr \ Cr and r ← r + 1;
8 return Cout

For the first phase, we leverage one of the variants of MAB, called the threshold bandits [51, 60, 63],
which is defined as follows: Given a confidence level δ and m-arms, the learner must return the set
of good arms, i.e., arms whose expected rewards are greater than a given threshold θ > 0, as soon
as possible, and stops when the learner believes that there is no remaining good arm, w.p. at least
1 − δ. TB-HS (detailed in Algorithm 2) is our key procedure, which is designed for identifying
seemingly high similarity pairs. Note that, if we naively use the existing algorithm by Kano et al. [51]
for threshold bandits where the set of arms is E =

(
V
2

)
and the threshold is θ = 0.5, the algorithm

is not even guaranteed to terminate; the resulting sample complexity becomes infinitely large if
s(e) = s(e′) for different e, e′ ∈ E or if there exists e ∈ E with s(e) = 0.5, which may frequently
happen in practice. Our strategy to avoid such an unbounded sample complexity is to allow TB-HS
to misidentify pairs of elements with similarity close to 0.5, taking advantage of the fact that the
output accuracy can be guaranteed despite such misidentification.

Algorithm details. Let ŝt(e) be the empirical mean of the similarity for each pair e ∈ E kept
at round t. Let Nt(e) be the number of queries of e ∈ E that has been pulled by the end of

round t. TB-HS maintains the confidence bound defined as radt(e) :=
√

log(4mNt(e)
2/δ)

2Nt(e)
for each

e ∈ E. The arm selection at round t is based on the Lower-Confidence-Bound (LCB) score, i.e.,
st(e) := ŝt(e)−radt(e) and the Upper-Confidence-Bound (UCB) score, i.e., st(e) := ŝt(e)+radt(e).
We pull the arm êgt with the highest LCB (line 5) and the arm êbt with the lowest UCB (line 6). Then
êgt will be added to Ĝε if its LCB is no less than 0.5 − ε, and êbt will be added to B̂ε if its UCB is
no greater than 0.5 + ε. TB-HS continues this procedure until every e ∈ E is added to either Ĝε or
B̂ε. Our main algorithm KC-FC invokes TB-HS to compute Ĝε′ with parameter ε′ = ε

12m . Then
it carries out KwikCluster using the predicted similarity by Ĝε′ as follows. Until an unclustered
element exists, it picks one pivot element pr uniformly at random, builds a cluster Cr around it by
adding those among the unclustered elements that seemingly have high similarity with a pivot pr
(based on Ĝε′ ), and removes all the elements in Cr from the list of unclustered elements.

Analysis. For a given ε ∈ (0, 0.5), we define the following sets, which appear only in the
theoretical analysis and are unknown to the learner: E[0.5±ε] := {e ∈ E : |0.5 − s(e)| ≤ ε},
E(0.5+ε,1] := {e ∈ E : s(e) > 0.5 + ε}, and E[0,0.5−ε) := {e ∈ E : s(e) < 0.5 − ε}. For
ε ∈ (0, 0.5), we introduce the definition of the gaps that characterize our sample complexity:

∆̃e,ε :=
(

∆e + min
{
ε−∆min,

ε

2

})
for e ∈ [m], (2)

where ∆e := |s(e)− 0.5| for e ∈ [m] and ∆min := mine∈[m] ∆e.

Now we present our theorem, guaranteeing that KC-FC finds a (5, ε)-approximate solution with high
probability and provides an upper bound of the number of queries, i.e., the sample complexity.

Theorem 1. Given a confidence level δ ∈ (0, 1) and additive error ε > 0, KC-FC (Algorithm 1)
guarantees that

Pr[costs(Cout) ≤ 5 ·OPT(s) + ε] ≥ 1− δ,
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Algorithm 2 Threshold Bandits for indentifying High Similarity pairs with ε ∈ (0, 0.5) (TB-HS).
Input :Set E of m-arms and confidence level δ

1 Ĝε ← ∅ and B̂ε ← ∅;
2 Pull each e ∈ E once to initialize empirical mean ŝm(e), t← m, and Et ← E;

3 Compute radt(e) :=
√

log(4mNt(e)
2/δ)

2Nt(e)
for e ∈ Et;

4 while |Et| > 0 do
5 Pull êgt := argmaxe∈Et (̂st(e)− radt(e)) once;
6 Pull êbt := argmine∈Et (̂st(e) + radt(e)) once;
7 Update ŝt and radt for êgt and êbt ;
8 if st(ê

g
t ) := ŝt(ê

g
t )− radt(ê

g
t ) ≥ 0.5− ε then

9 Add êgt to good arms, i.e., Ĝε ← Ĝε ∪ {êgt }, and delete êgt from Et;

10 if st(ê
b
t) := ŝt(ê

b
t) + radt(ê

b
t) ≤ 0.5 + ε then

11 Add êbt to bad arms, i.e., B̂ε ← B̂ε ∪ {êbt}, and delete êbt from Et;
12 Et+2 ← Et;
13 t← t+ 2;

14 return Ĝε

and letting ε′ = ε
12m , the sample complexity T is

O

(∑
e∈E

1

∆̃2
e,ε′

log

(
n

∆̃2
e,ε′δ

log

(
n

∆̃2
e,ε′δ

))
+

n2

max
{

∆min,
ε′

2

}2

)
.

Furthermore, KC-FC runs in time polynomial in n.

Proof Sketch. For the outputs Ĝε and B̂ε of TB-HS (Algorithm 2) with parameters ε ∈ (0, 0.5) and
δ ∈ (0, 1), by using the Hoeffding inequality and the procedure of TB-HS (lines 8 and 10), it is
easy to see that E(0.5+ε,1] ⊆ Ĝε and E[0,0.5−ε) ⊆ B̂ε w.p. at least 1 − δ. Consider the similarity
function s̃ : E → [0, 1] such that for each e ∈ E, s̃(e) = s(e) if e ∈ E[0,0.5−ε) ∪ E(0.5+ε,1],
and s̃e otherwise, where s̃e is an arbitrary value that satisfies |s(e) − s̃e| < 2ε. Noticing that KC-
FC corresponds to KwikCluster associated with a certain choice of s̃ (i.e., s̃e for e ∈ E[0.5±ε]),
we can show that E[costs(Cout)] ≤ 5 · OPT(s) + 12ε|E[0.5±ε]| for the output Cout, providing the
approximation guarantee. The rest of the proof requires the analysis of the upper bound of the
number of queries that TB-HS used to stop. This can be done based on a prior analysis of threshold
bandits [51], while carefully handling ε > 0. The complete proof for analysis is given in Appendix C.

For the time complexity, each iteration of sub-routine TB-HS takes O(m) steps in a naive implemen-
tation or amortized O(log T ) steps if we manage arms using two heaps corresponding to LCB/UCB
values, and the other procedure in KC-FC runs in time polynomial in n.

Comparison with existing PE-CMAB methods in the FC setting. Existing methods for PE-
CMAB (e.g., [23, 25, 35, 82]) are limited by their reliance on the polynomial-time solvability of
the underlying offline problem. If we use an efficient approximation algorithm in those existing
methods, their stopping conditions no longer have a guarantee of the quality of the output. Specifically,
such existing methods use the LUCB-type strategy, and its stopping condition requires the exact
computation of the empirical best solution and the second empirical best solution to check if the
current estimation is enough or not. When we only have an approximate oracle (i.e., approximation
algorithm), such existing stopping conditions are no longer valid, and the algorithm is not guaranteed
to stop. In contrast, KC-FC runs in time polynomial in n while ensuring sample complexity and
approximation guarantee. We also note that ∆e, the distance between s(e) and 0.5, interestingly
characterizes our sample complexity, as we show that the learning task boils down to identifying
E(0.5+ε′,1] and E[0,0.5−ε′) thanks to the behavior of KC-FC – they leverage the property that by
accurately estimating the mean of the base arms (i.e., pairs of elements), we can maintain the
approximation guarantee of KwikCluster in the offline setting with small additive error.
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Statistical efficiency. In the noise-free setting,
(
n
2

)
queries are sufficient, while in the noisy setting,

there is even no trivial upper bound on the sample complexity to achieve some desired approximation
guarantee (e.g., our (5, ε)-approximation). Note that the value of ∆̃e,ε defined in (2) always has the
following lower bound: ∆̃e,ε = ∆e + ε/2 (> 0) if ε/2 ≥ ∆min holds and ∆̃e,ε = ∆e + ε−∆min ≥
ε (> 0) otherwise. Therefore, our sample complexity T given in Theorem 1 is always bounded,
contrasting existing results for threshold bandits [51]. The naive sampling algorithm (Uniform-FC
in Appendix E) requires O(n

6

ε2 log n
δ ) samples to achieve the (5, ε)-approximation w.p. at least

1 − δ. KC-FC achieves a much better sample complexity than Uniform-FC, as
∑
e∈E ∆̃−2

e,ε′ =∑
e∈E(∆e + ε′

2 )−2 � n6

ε2 when ∆min ≤ ε′

2 � ∆e for most e ∈ E, which is often the case in
practice. To the best of our knowledge, lower bounds on the sample complexity related to PE-CMAB
are known only for the following settings: (i) the time complexity of algorithms can be exponential,
or (ii) the underlying offline problem is assumed to be polynomial-time solvable and to have the
unique correct (namely optimal) solution [25, 35, 39]. Deriving an effective lower bound on the
number of samples required to guarantee an approximate solution is particularly challenging because
it necessitates dealing with multiple correct solutions [33], while most existing approaches rely on
the uniqueness of the correct solution. Evaluating the necessity of the second term n2

max{∆min,
ε′
2 }

2

and investigating a lower bound for our case are crucial and remain important future work. However,
it is worth noting that the additional term is independent of a dominating term involving log 1

δ .

Remark. If we utilize TB-HS within the loop (Algorithm 5 in Appendix B), the algorithm achieves
(5, ε)-approximation guarantee with probability at least 1− δ, and the sample complexity T is:

O

 k∑
r=1

 ∑
e∈IVr (pr)

1

∆̃2
e,ε′r

log

(
n

∆̃2
e,ε′r

δ
log

(
n

∆̃2
e,ε′r

δ

))
+

|Vr|
max(∆min,r,

ε′r
2 )2

 ,

where k is the total number of loops in Algorithm 5, ε′r := ε/(12|IVr (pr)|), IVr (pr) ⊆ E represents
the set of pairs between the pivot pr selected in phase r and its neighbors in Vr, and ∆min,r :=
mine∈IVr (pr) ∆e. When k � n, the above sample complexity can be better than that of Theorem 1.
However, it should be noted that the symbols related to r and the total number of loops k, especially
instance-dependent gaps ∆̃e,ε′r , are all random variables. In contrast, the current Theorem 1 does not
contain any random variables. Specifically, the significant term related to log δ−1 is characterized by
the gap ∆̃e,ε or ∆e, which represents the distance from 0.5 and not a random variable.

4 Fixed budget setting

In this section, we investigate Problem 2 and design KC-FB (Algorithm 3). KC-FB is inspired by
the successive reject algorithm [6] and exploits KwikCluster to determine the number of queries for
each pair adaptively.

Algorithm. KC-FB proceeds in at most n phases and maintains the subset of elements Vr ⊆ V
in each phase r ∈ [n] starting with V1 = V . We denote the set of pairs that can be formed with
v in Vr by IVr (v) := {{v, u} ∈

(
Vr
2

)
: u ∈ Vr}. In each phase r, the algorithm chooses the

pivot pr uniformly at random from Vr, and pulls each e ∈ IVr (pr) for appropriately determined
τr times. Based on the empirical mean ŝr(e) :=

∑τr
k=1Xk(e)/τr for each e ∈ IVr (pr), it finds

one cluster Cr = {pr} ∪ ΓVr (pr, ŝr), where ΓVr (pr, ŝr) := {u ∈ Vr : ŝr(pr, u) > 0.5}, and
updates Vr+1 ← Vr \ Cr. This procedure will be continued until |Vr| = 0 and finally the algorithm
outputs Cout consisting of all clusters computed. Updating the number of pulls τr (line 8) is a key to
prove the statistical property. Intuitively, τr represents a pre-fixed budget of queries when e ∈

(
Vr
2

)
would be pulled: In the initial phase, we allocate τ1 := bT/mc to each e ∈

(
V1

2

)
. Notice that the

surplus, the sum of the pre-fixed budgets of pairs that have been removed without being queried,
is τ1 ·

(
|
(
V1

2

)
| − |

(
V2

2

)
| − (|V1| − 1)

)
, because the number of pairs that have been removed in this

phase is |
(
V1

2

)
| − |

(
V2

2

)
|, and among those pairs, the number of pairs that have been actually pulled by

the algorithm is (|V1| − 1). This surplus is additionally redistributed equally to each e ∈
(
V2

2

)
. This

will be also done for the remaining phases r = 2, . . . , n.
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Algorithm 3 KwikCluster with Fixed Budget (KC-FB)
Input : Budget T > 0, set V of n objects, additive error ε

1 V1 ← V , r ← 1, τ1 ← bT/mc, and Cout ← ∅;
2 while |Vr| > 0 do
3 Pick a pivot pr ∈ Vr uniformly at random;
4 Pull each e ∈ IVr (pr) for τr times and observe random feedback {Xk(e)}τrk=1;
5 Compute empirical mean ŝr(e) =

∑τr
k=1Xk(e)/τr for each e ∈ IVr (pr);

6 Cout ← Cout ∪ {Cr} where Cr := {pr} ∪ ΓVr (pr, ŝr);
7 Vr+1 ← Vr \ Cr;

8 τr+1 ← τr +

⌊
τr·(|(Vr2 )|−|(Vr+1

2 )|−(|Vr|−1))

|(Vr+1
2 )|

⌋
and r ← r + 1;

9 return Cout

Analysis. The following theorem states that KC-FB outputs a well-approximate solution with high
probability. The proof of Theorem 2 is deferred to Appendix D.
Theorem 2. For ε > 0, define the minimal gap ∆min,ε as

min
e∈E

max

{
ε

6 max{1, |E[0.5±ε]|}
,∆e

}
for ε ∈ (0, 0.5),

min
e∈E

max
{ ε

6m
,∆e

}
for ε ≥ 0.5,

where ∆e = |s(e)− 0.5| (∀e ∈ E).

Then, KC-FB (Algorithm 3) uses at most T queries to output Cout that satisfies

Pr[E[costs(Cout)] ≤ 5 ·OPT(s) + ε] ≥ 1− δ for δ ≤ 2n3 exp

(
−

2T∆2
min,ε

n2

)
. (3)

Assuming that each query takes O(1) time, the time complexity of KC-FB is O(T + n2).

Proof Sketch. We can show the random event Pr [
⋂n
r=1 Er] occurs with high probability, where

Er := {∀e ∈ IVr (pr), |s(e)− ŝr(e)| < max {ε,∆e}} for each phase r ∈ [n] (See Lemma 8 in
Appendix D.1). Under the assumption of such estimation success event

⋂n
r=1 Er, by utilizing the

unique feature of KwikCluster, we can maintain the approximation guarantee of KwikCluster in
the noise-free setting up to additive error (See Lemma 9 in Appendix D.2). Simply combining
these lemmas with adjusted parameter ε′ ∈ (0, 0.5), defined as ε

6 max{1, |E[0.5±ε]|}
if ε < 0.5 and ε

6m

otherwise, will conclude the proof (See Appendix D.3 for details).

The parameter δ ∈ (0, 1) in (3) represents the error probability of Cout being worse than any (5, ε)-
approximate solution, and it decays exponentially to the querying budget T . A larger parameter
∆min,ε provides the better guarantee; KC-FB performs better when the similarity function clearly
expresses similarity (+1) or dissimilarity (−1), as mine∈E ∆e tends to be large.

To evaluate the significance of our results, we analyze the uniform sampling algorithm (Uniform-FB
in Appendix E); Uniform-FB queries each e ∈ E uniformly bT/mc times to obtain ŝ(e), and then
applies any α-approximation algorithm to instance (V, ŝ) of the offline problem minimizing (1). We
see that the error probability that the output is not an (α, ε)-approximate solution is bounded by
O
(
n2 exp

(
− Tε2

α2n6

))
. In contrast, KC-FB adaptively allocates the budget to the remaining pairs,

which enables us to query essential pairs of elements, i.e., pairs whose estimated similarity values
affect the behavior of cluster construction, more times than bT/mc. This leads to a better performance
in the cost of clustering in practice (see Section 5).

Comparison with existing PE-CMAB methods in the FB setting. In the literature of PE-CMAB,
the FB setting presents even more computational challenges and a scarcity of theoretical results. The
current state-of-the-art algorithms [6, 25, 36] suffer from one or more of the following issues: (i)
inability to handle a partition structure in correlation clustering, (ii) requiring exponential running
time, and (iii) lacking any approximation guarantees when the underlying problem is NP-hard. By
leveraging the properties of KwikCluster, our approach ensures the polynomial-time complexity
of O(T + n2) while guaranteeing that the probability of obtaining a well-approximate solution
exponentially increases with the budget T , along with instance-dependent analysis.
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5 Experimental evaluation

In this section, we evaluate the performance of our proposed algorithms, KC-FC and KC-FB, using
various datasets, providing empirical evidence to support our theoretical findings.

Table 1: Real-world graphs used in our experiments.

Name # of vertices # of edges Description

Lesmis 77 254 Co-appearance network
Adjnoun 112 425 Word-adjacency network
Football 115 613 Sports team network
Jazz 198 2,742 Social network
Email 1,133 5,451 Communication network
ego-Facebook 4,039 88,234 Social network
Wiki-Vote 7,066 100,736 Wikipedia voting network

Datasets. We use publicly-available real-
world graphs presented in Table 1. In
the FC setting, to observe the behavior
of the sample complexity with respect to
the hidden minimum gap ∆min in (2), we
generate our instances as follows. For
each graph, we vary the lower bound on
∆min, which we denote by LB∆min

, in
{0.10, 0.15, 0.20, . . . , 0.50}. For each pair
of vertices u, v, we set s(u, v) = uniform[0.5 + LB∆min

, 1] if u, v have an edge in the graph, and
s(u, v) = uniform[0, 0.5 − LB∆min

] otherwise, where uniform[a, b] is the value drawn from the
interval [a, b] uniformly at random. On the other hand, in the FB setting, we employ a more re-
alistic setting: For each graph, our problem instance is generated by embedding the vertices into
a d-dimensional Euclidean space using node2vec [43], obtaining a vector vec(v) ∈ Rd for each
vertex v. Specifically, we used the publicly-available Python module of node2vec2 with default
parameter settings (particularly d = 64). Then, define the unknown similarity of each pair of ver-
tices u, v as s(u, v) = simcos(vec(u),vec(v))−min_cos

max_cos−min_cos ∈ [0, 1], where min_cos and max_cos are the
minimal and maximal cosine similarities, respectively, among all pairs of vertices. We note that
max_cos > min_cos holds for all instances. In all experiments, noisy feedback when querying a
pair e ∈ E is generated by a Bernoulli distribution with mean s(e).

Baselines. We compare our methods with Uniform-FC in the FC setting and Uniform-FB in the FB
setting, whose pseudocode and full analysis are given in Appendix E. Uniform-FC pulls each e ∈ E
for d 18m2

ε2 log 2m
δ e times and employs KwikCluster with respect to the empirical similarity, while

Uniform-FB is its adaption to the FB setting. Moreover, we compare the cost of clustering of our
algorithms with that of KwikCluster having access to the unknown (true) similarity, which is regarded
as the stronger baseline than other KwikCluster-based methods for the binary case [11, 15, 40, 76].

Machine and code. The experiments were performed on a machine with Apple M1 Chip and 16 GB
RAM. The code was written in Python 3, which is available online.3

Performance of KC-FC. We evaluate the performance of algorithms in terms of not only the cost
of clustering but also the sample complexity. In both KC-FC and Uniform-FC, we set ε =

√
n

allowing each element to make only 1/
√
n mistakes, and δ = 0.01 following a standard choice in

PE-MAB. Taking into account the limited scalability of the algorithms, we only use the instances with
n < 1,000. In particular, as will be shown later, Uniform-FC requires a large number of samples,
which makes the algorithm prohibitive even for quite small instances. Therefore, we do not run the
algorithm and just report the sample complexity, which can be calculated without running it. For
each LB∆min , we run both KC-FC and KwikCluster having access to the unknown similarity 100
times and report the average value and the standard deviation.
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Figure 1: Sample complexity of KC-FC & Uniform-FC.

The results are depicted in Figures 1 and 2. As can be seen, the sample complexity of KC-FC is much
smaller than that of Uniform-FC. In fact, the sample complexity of Uniform-FC makes the algorithm

2https://pypi.org/project/node2vec/
3https://github.com/atsushi-miyauchi/CC-Bandits
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Figure 2: Cost of clustering of KC-FC & KwikCluster having the access to the unknown similarity.

prohibitive even for very small instances. Moreover, consistent with the theoretical analysis, as (the
lower bound LB∆min

on) ∆min increases, the sample complexity of KC-FC becomes smaller. This
desirable property is not possessed by Uniform-FC. Remarkably, looking at Figure 2, we see that
KC-FC outputs a clustering whose quality is comparable with that of KwikCluster having access to
the unknown similarity.

Table 2: Cost of clustering of KC-FB & baselines (n ≥ 1,000).
Name KC-FB Uniform-FB KwikCluster(V, s)

Email 218k±1.1k 221k±0.5k 209k±0.5k
ego-Facebook 3,716k±36.5k 3,780k±29.6k 3,373k±59.8k
Wiki-Vote 10,222k±45.5k 10,428k±32.0k 9,749k±34.7k

Performance of KC-FB. Here we evaluate the performance of KC-FB. For small instances with
n < 1,000, we vary T in {n2.1, n2.2, . . . , n3.0} and observe the cost of clustering with respect to the
budget T . For large instances with n ≥ 1,000, we fix T = n2.2 for scalability. For each instance and
T , we run both KC-FB and Uniform-FB 100 times and report the average value and the standard
deviation. As KwikCluster having access to the unknown similarity is independent of T , we just run
it 100 times for each instance.
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Figure 3: Cost of clustering of KC-FB & baselines (n < 1,000).

The results are shown in Figure 3 and Table 2. As can be seen, KC-FB outperforms the baseline
method Uniform-FB. In fact, for all instances and almost all values of T , KC-FB outputs a better
clustering than that of Uniform-FB. We can see that this superiority comes from the fact that KC-FB
estimates the unknown similarity better than Uniform-FB thanks to its sophisticated sampling strategy.
Indeed, KwikCluster having access to the unknown similarity showcases the best performance,
verifying the importance of the precise estimation of the unknown similarity.

6 Conclusions

We studied the online learning problems of correlation clustering, where the similarity function is
initially unknown and only noisy feedback is observed. For the FC setting, we devised KC-FC
and proved the upper bound of the number of queries required to find a clustering whose cost is at
most 5 · OPT +ε with high probability. For the FB setting, we devised KC-FB and showed that
the error probability of the expected cost being worse than 5 ·OPT +ε decays exponentially with
budget T . Importantly, our algorithms are the first examples of PE-CMAB with NP-hard offline
problems. One future work, yet a significant challenge, is to derive information-theoretic lower
bounds of PE-CMAB in the case where the offline problem is NP-hard. Investigating other variants
of correlation clustering or exploring the case where the variance of random feedback differs across
pairs, namely heteroscedastic noise, would also be worthwhile directions.
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Appendix

A Additional comparison with other clustering models

Cluster recovering with noisy same-cluster queries. Another line of studies has focused on
clustering reconstruction with noisy same-cluster queries, which was first proposed by Mazumdar
and Saha [65] and further investigated by Larsen et al. [58], Peng and Zhang [70], Pia et al. [71],
Tsourakakis et al. [77] and Xia and Huang [83]. In this model, given a set of n elements, the goal is to
recover the underlying ground-truth k-clustering by asking pairwise queries to an oracle, which tells
us if the two elements belong to the same cluster, but whose answer is correct only with probability
1
2 + δ

2 . Recently, Gupta et al. [45] first considered a noisy and inconsistent oracle, in contrast to a
consistent oracle that returns the same answer when queried. Although this clustering reconstruction
problem shares the intuition with correlation clustering, there are also important differences which
do not allow to transfer algorithmic results from one to the other. Firstly, in correlation clustering
the input information might be inconsistent (e.g., a is very similar to b, which is very similar to c,
but a is not similar to c), instead in clustering reconstruction this is not possible: if a is in the same
cluster of b and b is in the same cluster of c, then a is in the same cluster of c. Secondly, the aim is
to reconstruct the exact underlying clustering, while we aim at minimizing the cost function in (1).
Lastly and more importantly, the number of clusters k is part of the input to the problem, while in
correlation clustering it is unknown. Therefore, the theoretical results and techniques for solving the
clustering reconstruction problem cannot be directly applied to correlation clustering.

Query-based correlation clustering. As fully discussed in the main text, our work lies in query-
efficient correlation clustering, for which we utilize the methodology of PE-CMAB. Table 3 summa-
rizes how existing query-based settings differ from our attempt. Note that the oracle in Aronsson
and Chehreghani [4, 5] is assumed to return the true value of s(x, y) with probability 1 − γ and
a noisy value with probability γ, which is different from our models; we only observe a random
variable independently sampled from an unknown distribution with mean s(x, y) ∈ [0, 1]. While
one might consider using majority voting on repeated queries to handle noise when the underlying
distribution is Bernoulli, this approach lacks any approximation guarantees and query complexity
bounds. Moreover, for R-sub-Gaussian noise, majority voting is not well-defined. Instead, using
sample mean estimates, as done in PE-MAB methods, is standard. Our approach leverages these
principles, ensuring a (5, ε)-approximation guarantee with fewer queries and statistical guarantees.

Table 3: Different problem settings in correlation clustering with queries.
Feature/Study Similarity

Function
Similarity
Type

Oracle Theoretical
Guarantee

Ailon et al. [2]
Saha and Subramanian [74] Known Binary Strong with access to same-cluster

queries in the optimal clustering
X

Bonchi et al. [11]
Bressan et al. [15]

García-Soriano et al. [40]
Unknown Binary Strong with access to the true value

of s(x, y) ∈ {0, 1}
X

Silwal et al. [76] Unknown Binary Both strong with access to the true
value of s(x, y) ∈ {0, 1} and noisy

X

Aronsson and Chehreghani [4, 5] Unknown Weighted Noisy (true value of s(x, y) is re-
turned with probability 1− γ and a
noisy value is retuned otherwise)

Not provided

Our Work Unknown Weighted Noisy (stochastic feedback) X

B Pseudocode of KwikCluster and Algorithm 5

We detail the pseudocode of KwikCluster [3] in Algorithm 4. The approximation guarantee of
KwikCluster is 5 for the weighted similarity case (and 3 for the restricted binary similarity case).
We also detail the pseudocode of Algorithm 5, which sequentially uses TB-HS at each phase in the
framework of KC-FC.
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Algorithm 4 KwikCluster(V, s)
Input : Set V of n objects, and similarity function s

1 C ← ∅;
2 while |V | > 0 do
3 Pick a pivot p ∈ V uniformly at random;
4 C ← C ∪ {Cp} where Cp := {p} ∪ {u ∈ V : s(p, u) > 0.5};
5 V ← V \ Cp;
6 return C

Algorithm 5 KC-FC variant with sequential use of TB-HS
Input : Confidence level δ, set V of n objects, and error ε

7 E1 ← E, V1 ← V , r ← 1, and Cout ← ∅;
8 while |Vr| > 0 do
9 Pick a pivot pr ∈ Vr uniformly at random;

10 Let IVr (pr) ⊆ E be the set of pairs between the pivot pr and its neighbors in Vr;
11 ε′r := ε/(12|IVr (pr)|);
12 Compute Ĝ(r)

ε′ by TB-HS (Algorithm 2) with the input of error ε′r , confidence level δ/n, and the
set of pairs IVr (pr);

13 Define Γ̂(r)(v) := {u ∈ V : {u, v} ∈ Ĝ(r)
ε′ };

14 Cout ← Cout ∪ {Cr}, where Cr := ({pr} ∪ Γ̂(r)(pr)) ∩ Vr;
15 Vr+1 ← Vr \ Cr and r ← r + 1;
16 return Cout

C Analysis of KC-FC

In this section, we provide a complete proof of Theorem 1 in Section 3. In particular, Lemma 4
guarantees the accuracy of the subroutine TB-HS, and based on this, Lemma 5 assures the (5, ε)-
approximation using the properties of KwikCluster. Moreover, Lemma 6 establishes an upper bound
crucial for the sample complexity via novel analysis dependent on ε and ∆min (Lemma 7). Finally,
by combining the sample complexity required by subroutine TB-HS (Lemma 6) and the output
guarantee of KC-FC (Lemma 5), Theorem 1 is demonstrated.

C.1 Basic lemmas

We first introduce the Hoeffding inequality, which will be frequently used in our proof. Note that
we consider Bernoulli distribution for the sake of simplicity, but our results would carry on for
R-sub-Gaussian distribution by simply adjusting the Hoeffding inequality for the case accordingly.
Lemma 1 (Hoeffding inequality for bounded random variables). Let X1, . . . , Xk be k independent
random variables such that, E[Xi] = µ and a ≤ Xi ≤ b for each i ∈ [k]. Let X̄ = 1

k

∑k
i=1Xi

denote the average of these random variables. Then, for any λ > 0, we have

Pr
[
X̄ ≤ µ− λ

]
≤ exp

(
− 2kλ2

(b− a)2

)
.

The next lemma presents the probability that some random event happens, which will be used later.
Lemma 2. Let ŝe,k be the empirical mean of the rewards when e has been pulled k times. For each
e ∈ [m] and k, define the random event Ee,k as follows:

Ee,k :=

{
|s(e)− ŝe,k| <

√
log(4mk2/δ)

2k

}
.

Let Ek be the random event that for all e ∈ [m], the random event Ee,k happens. Then we have

Pr

[ ∞⋂
k=1

Ek

]
≥ 1− δ.
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Proof of Lemma 2. We have

Pr

[ ∞⋃
k=1

¬Ee,k

]
=

∞∑
k=1

Pr

[
|s(e)− ŝe,k| ≥

√
log(4mk2/δ)

2k

]
≤
∞∑
k=1

δ

2mk2
=

π2δ

12m
≤ δ

m
,

where the first inequality follows from the Hoeffding inequality (Lemma 1). Therefore, by taking the
union bound, we have

Pr

[ ∞⋂
k=1

Ek

]
≥ 1− Pr

 ⋃
e∈[m]

∞⋃
k=1

¬Ee,k

 ≥ 1− δ.

C.2 Approximation guarantee

We provide the following lemmas for guaranteeing the quality of the output.
Lemma 3. Let ε ∈ (0, 0.5) and δ ∈ (0, 1). TB-HS (Algorithm 2) with parameter ε, δ outputs, with
probability at least 1− δ, Ĝε and B̂ε such that

s(e) ≥ 0.5− ε for every e ∈ Ĝε,
s(e) ≤ 0.5 + ε for every e ∈ B̂ε,
Ĝε ∪ B̂ε = E, Ĝε ∩ B̂ε = ∅.

Proof of Lemma 3. The proof is almost straightforward by the procedure of the algorithm, line 8
and 10, as follows. By Lemma 2, we have Pr [

⋂∞
k=1 Ek] ≥ 1 − δ. Now we assume that

⋂∞
k=1 Ek

happens. Let t > 0 be the stopping time, where every e ∈ E has been added to either Ĝε or
B̂ε. For e ∈ Ĝε, from the stopping condition and the random event

⋂∞
k=1 Ek, it is easy to see that

s(e) ≥ ŝt′(e) − radt′(e) ≥ 0.5 − ε, where t′ denotes the round that arm e was added to Ĝε. For
e ∈ B̂ε, it is also easy to see that s(e) ≤ ŝt′(e) + radt′(e) ≤ 0.5 + ε, where t′ denotes the round
that arm e was added to B̂ε. The third condition is obvious from the stopping condition of the
algorithm.

Lemma 4. Let ε ∈ (0, 0.5) and δ ∈ (0, 1). Let Ĝε and B̂ε be the output of TB-HS (Algorithm 2)
with parameters ε, δ. Then, with probability at least 1− δ, we have that (i) every e ∈ E(0.5+ε,1] is
included in Ĝε, and (ii) every e ∈ E[0,0.5−ε) is included in B̂ε.

Proof of Lemma 4. We have Pr [
⋂∞
k=1 Ek] ≥ 1− δ by Lemma 2 again, and we assume that

⋂∞
k=1 Ek

happens. Consider any e ∈ E(0.5+ε,1]. Suppose that e is not included in Ĝε. Then, from Lemma 3,
we see that e ∈ B̂ε, and thus s(e) ≤ 0.5 + ε, which contradicts the fact that e ∈ E(0.5+ε,1]. Therefore,
e is included in Ĝε. Similarly, consider any e ∈ E[0,0.5−ε). Suppose that e is not included in B̂ε.
Then, from Lemma 3, we see that e ∈ Ĝε, and thus s(e) ≥ 0.5− ε, which contradicts the fact that
e ∈ E[0,0.5−ε). Therefore, e is included in B̂ε.

Based on Lemma 4, we prove the following key lemma.
Lemma 5 (Approximation guarantee). Let ε ∈ (0, 0.5) and δ ∈ (0, 1). With probability at least
1− δ, the output Cout of KC-FC (Algorithm 1), where subroutine TB-HS (Algorithm 2) is invoked
with parameters ε, δ, is a (5, 12ε|E[0.5±ε]|)-approximate solution for instance (V, s) of the offline
problem minimizing (1).

Proof of Lemma 5. By Lemma 4, we have E(0.5+ε,1] ⊆ Ĝε and E[0,0.5−ε) ⊆ B̂ε w.p. at least 1− δ.
Construct the similarity function s̃ : E → [0, 1] such that for each e ∈ E,

s̃(e) =

{
s(e) if e ∈ E[0,0.5−ε) ∪ E(0.5+ε,1],

s̃e otherwise,
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where s̃e is an arbitrary value that satisfies |s(e)− s̃e| < 2ε. Consider running KwikCluster with the
similarity s̃. Let C′out be the output of this algorithm. Then we have

E[costs(C′out)] < E[cost̃s(C′out)] + 2ε|E[0.5±ε]|
≤ 5 · OPT(̃s) + 2ε|E[0.5±ε]|
< 5

(
OPT(s) + 2ε|E[0.5±ε]|

)
+ 2ε|E[0.5±ε]|

= 5 · OPT(s) + 12ε|E[0.5±ε]|.
Noticing that KC-FC corresponds to the above algorithm associated with a certain choice of s̃ (i.e.,
s̃e for e ∈ E[0.5±ε]), we have the lemma.

C.3 Sample complexity analysis and proof of Theorem 1

We prove the following main lemma to evaluate the sample complexity of TB-HS. Let mg be the
number of pairs (i.e., arms) whose similarity is no less than the threshold 0.5. Without loss of
generality, we assume that E = [m] indexed as s(1) ≥ · · · ≥ s(mg) ≥ 0.5 > s(mg + 1) ≥ · · · ≥
s(m) in whole analysis.
Lemma 6 (Sample complexity). The upper bound of the sample complexity of TB-HS (Algorithm 2)
with parameters ε ∈ (0, 0.5) and δ ∈ (0, 1) is

T = O

(∑
e∈E

1

∆̃2
e,ε

log

(√
m/δ

∆̃2
e,ε

log

(√
m/δ

∆̃2
e,ε

))
+

m

max{∆min, ε/2}2

)
.

To prove Lemma 6, we begin with the following lemma. Recall that ∆̃e,ε and ∆min are defined by
(2).
Lemma 7. Let ε ∈ (0, 0.5) and δ ∈ (0, 1). Define

ke :=
1

∆̃2
e,ε

log

(
4
√
m/δ

∆̃2
e,ε

log

(
5
√
m/δ

∆̃2
e,ε

))
. (4)

Let se,k := ŝe,k −
√

log(4mk2/δ)
2k , and se,k := ŝe,k +

√
log(4mk2/δ)

2k , where ŝe,k is the empirical mean
of the rewards when e has been pulled k times. If k ≥ ke holds, then

Pr[se,k ≤ 0.5− ε] ≤ exp(−2kmax{∆min, ε/2}2), ∀e ∈ [mg],

Pr[se,k ≥ 0.5 + ε] ≤ exp(−2kmax{∆min, ε/2}2), ∀e ∈ [m] \ [mg].

It also holds that

E

[ ∞∑
k=1

1
[
se,k ≤ 0.5− ε

]]
≤ ke +

1

2 max{∆min, ε/2}2
, ∀e ∈ [mg],

E

[ ∞∑
k=1

1[se,k ≥ 0.5 + ε]

]
≤ ke +

1

2 max{∆min, ε/2}2
, ∀e ∈ [m] \ [mg].

Proof of Lemma 7. Suppose that√
log(4mk2/δ)

2k
≤ ∆e −max

{
∆min − ε,−

ε

2

}
.

Then, for each e ∈ [mg], we have

Pr[se,k ≤ 0.5− ε] = Pr

[
ŝe,k − s(e) ≤ −∆e − ε+

√
log(4mk2/δ)

2k

]
≤ Pr

[̂
se,k − s(e) ≤ −∆e − ε+ ∆e −max

{
∆min − ε,−

ε

2

}]
= Pr

[̂
se,k − s(e) ≤ −max

{
∆min,

ε

2

}]
≤ exp

(
−2kmax

{
∆min,

ε

2

}2
)
,

19



where the last inequality follows from the Hoeffding equality (Lemma 1). Now we show, via a similar
analysis of Lemma 2 in Kano et al. [51], that for k ≥ ke, it indeed holds that√

log(4mk2/δ)

2k
≤ ∆e −max

{
∆min − ε, −

ε

2

}
. (5)

Let ce :=
(
∆e + min

{
ε−∆min,

ε
2

})2
for simplicity, Then we can rewrite k ≥ ke as

k =
1

ce
log

4t
√
m/δ

ce

for some t ≥ log
5
√
m/δ

ce
> 1. Then we have

√
log(4mk2/δ)

2k
≤ ∆e + min

{
ε−∆min,

ε

2

}
⇔ log(4mk2/δ) ≤ 2cek

⇔ log


4m

(
log

(
4t
√
m/δ

ce

))2

c2eδ

 ≤ log

(
16t2m

c2eδ

)

⇔ log

(
4t
√
m/δ

ce

)
≤ 2t

⇐ t− 1 + log

(
4
√
m/δ

ce

)
≤ 2t

⇔ log

(
4
√
m/δ

e · ce

)
≤ t,

where e is the base of natural logarithms and log t ≤ t − 1 is used. Therefore, t ≥ log
5
√
m/δ

ce
is

sufficient to fulfill (5).

The second statement of Lemma 7 can easily be shown by adapting the proof of Lemma 3 in Kano
et al. [51]. For each e ∈ [mg], we have

E

[ ∞∑
k=1

1[se,k ≤ 0.5− ε]

]
≤ E

[
ke∑
k=1

1 +

∞∑
k=ke+1

1
[
se,k ≤ 0.5− ε

]]

≤ ke +

∞∑
k=1

Pr[se,k ≤ 0.5− ε]

≤ ke +

∞∑
k=1

exp(−2kmax{∆min, ε/2}2)

≤ ke +
1

e2 max{∆min,ε/2}2 − 1

≤ ke +
1

2 max{∆min, ε/2}2
.

For e ∈ [m] \ [mg], we omit the proof, as the analysis is essentially the same as the case for
e ∈ [mg].
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Proof of Lemma 6. Let a(t) ∈
(
V
2

)
denote the selected pair (i.e., arm) by the algorithm in round t.

Then we have

T =

∞∑
t=1

1[a(t) ∈ [m], t ≤ T ]

=

∞∑
t=1

1[a(t) ∈ [mg], t ≤ T ] +

∞∑
t=1

1[a(t) ∈ [m] \ [mg], t ≤ T ]

≤
∞∑
t=1

1[a(t) ∈ [mg]] +

∞∑
t=1

1[a(t) ∈ [m] \ [mg]]

≤
∑
e∈[mg]

∞∑
t=1

1[a(t) = e] +
∑

e∈[m]\[mg]

∞∑
t=1

1[a(t) = e]

=
∑
e∈[mg]

∞∑
t=1

∞∑
k=1

1[a(t) = e,Nt(e) = k] +
∑

e∈[m]\[mg ]

∞∑
t=1

∞∑
k=1

1[a(t) = e,Nt(e) = k]

≤
∑
e∈[mg]

∞∑
k=1

1

[ ∞⋃
t=1

{a(t) = e,Nt(e) = k}

]
+

∑
e∈[m]\[mg ]

∞∑
k=1

1

[ ∞⋃
t=1

{a(t) = e,Nt(e) = k}

]
,

where the third inequality follows from the fact that event {a(t) = e,Nt(e) = k} occurs for at most
one t ∈ N. For e ∈ [mg], we have

∞∑
k=1

1

[ ∞⋃
t=1

{a(t) = e,Nt(e) = k}

]
≤ E

[ ∞∑
k=1

1
[
se,k ≤ 0.5− ε

]]
≤ ke +

1

2 max{∆min, ε/2}2
,

where the second inequality follows from Lemma 7.

Similarly, for each e ∈ [m] \ [mg], we have

∞∑
k=1

1

[ ∞⋃
t=1

{a(t) = e,Nt(e) = k}

]
≤ E

[ ∞∑
k=1

1[se,k ≥ 0.5 + ε]

]
≤ ke +

1

2 max{∆min, ε/2}2
.

Therefore, by combining the above, we have

T ≤
∑
e∈[m]

ke +
m

2 max{∆min, ε/2}2
,

which concludes the proof.

Proof of Theorem 1. Finally, we are ready to complete the proof of Theorem 1. In KC-FC, TB-HS
is run with parameter ε′ = ε

12m and confidence δ. Therefore, by Lemma 5 for ε′, δ, we have the
approximation guarantee:

E[costs(Cout)] ≤ 5 · OPT(s) + 12ε′|E[0.5±ε′]| ≤ 5 · OPT(s) + ε.

The sample complexity of KC-FC is equal to that of TB-HS with parameters ε′, δ, which is given by
Lemma 6 for ε′, δ.

D Analysis of KC-FB

In this section, we prove Theorem 2 in Section 4.

D.1 Basic analysis of some random event and its occurrence probability

The following lemma states that ŝr for phase r ∈ [n] is well-estimated with high probability. The
proof is almost straightforward from the Hoeffding inequality (Lemma 1) and union bounds.
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Lemma 8. Let ε ∈ (0, 0.5). Given a phase r ∈ [n], we define the random event

Er := {∀e ∈ IVr (pr), |s(e)− ŝr(e)| < max {ε,∆e}} . (6)

Then, we have

Pr

[
n⋂
r=1

Er

]
≥ 1− 2n3 exp

(
−2T mine∈E max {ε,∆e}2

n2

)
.

Proof. We first evaluate Pr [|̂sr(e)− s(e)| ≥ max {ε,∆e}] for a fixed phase r ∈ [n] and e ∈ IVr (pr).
Each e ∈ IVr (pr) has been pulled at least bT/mc times because the initial budget for the pair was set
to τ1 = bT/mc and the budget has not decreased in the later iterations. Then we have

Pr [|̂sr(e)− s(e)| ≥ max {ε,∆e}] = Pr

[∣∣∣∣∣
τr∑
k=1

Xk(e)/τr − s(e)

∣∣∣∣∣ ≥ max {ε,∆e}

]

≤ Pr

[∣∣∣∣∣
τr∑
k=1

Xk(e)/τr − s(e)

∣∣∣∣∣ ≥ max {ε,∆e}

]
≤ 2 exp

(
−2τr max {ε,∆e}2

)
≤ 2 exp

(
−2T max {ε,∆e}2

m

)
, (7)

where the second inequality follows from Lemma 1. Taking a union bound for r ∈ [n] and all
e ∈ IVr (pr), we further have

Pr

[
n⋂
r=1

Er

]
≥ 1−

n∑
r=1

∑
e∈IVr (pr)

Pr [|̂sr(e)− s(e)| ≥ max {ε,∆e}]

≥ 1−
n∑
r=1

∑
v∈Vr

∑
e∈IVr (v)

Pr [|̂sr(e)− s(e)| ≥ max {ε,∆e}]

≥ 1−
n∑
r=1

∑
v∈Vr

∑
e∈IVr (v)

2 exp

(
−2T max {ε,∆e}2

m

)

= 1−
n∑
r=1

2|Vr||IVr (pr)| exp

(
−2T mine∈E max {ε,∆e}2

m

)

= 1−
n∑
r=1

2|Vr|(|Vr| − 1) exp

(
−2T mine∈E max {ε,∆e}2

m

)

≥ 1−
n∑
r=1

2n2 exp

(
−2T mine∈E max {ε,∆e}2

m

)

= 1− 2n3 exp

(
−2T mine∈E max {ε,∆e}2

m

)
,

where the third inequality follows from (7).

D.2 Theoretical guarantee of the output

Next we prove a key lemma that provides the theoretical guarantee of the output Cout of KC-FB.
Lemma 9. Let ε ∈ (0, 0.5). Under the assumption that

⋂n
r=1 Er happens, the output Cout of KC-FB

is a (5, 6ε|E[0.5±ε]|)-approximate solution for instance (V, s) of the offline problem minimizing (1).

Proof. Let Ê ⊆ E be the set of pairs that have been pulled in the algorithm. For e = {u, v} ∈ Ê, let
re be the phase, in which either u or v is selected as a pivot. Construct the weight s̃ : E → [0, 1] such
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that for each e ∈ E,

s̃(e) =

{
ŝre(e) if e ∈ E[0.5±ε] ∩ Ê,
s(e) otherwise.

Consider running KwikCluster (Algorithm 4) with the similarity s̃ while respecting the selection of
pivots pr of KC-FB, that is, in the r-th iteration, the algorithm selects the pivot pr if it exists. In the
first iteration, the algorithm can select the pivot p1 and construct the cluster {p1}∪ΓV1

(p1, s̃). By the
definition of s̃ and the assumption of the lemma, we have ΓV1

(p1, s̃) = ΓV1
(p1, ŝ1). In fact, for any

element u in V1 (except for p1), we see that s̃(p1, u) > 0.5 if and only if ŝ(p1, u) > 0.5. Therefore,
the cluster produced is exactly the same as C1 in KC-FB. In the second iteration, the algorithm can
select p2 because p2 was not contained in the cluster of the first iteration, and by applying the same
argument as above, we see that the cluster of this iteration is exactly the same as C2 in KC-FB.
The later iterations can be handled in the same way. Therefore, we see that the output of the above
algorithm coincides with that of KC-FB.

Then it suffices to show that the output of the above algorithm has the desired approximation guarantee.
Let C′out be the output of the above algorithm. Recalling that KC-FB picks pivot pt uniformly at
random, we have

E[costs(C′out)] ≤ E[cost̃s(C′out)] + ε|E[0.5±ε]|
≤ 5 · OPT(̃s) + ε|E[0.5±ε]|
≤ 5

(
OPT(s) + ε|E[0.5±ε]|

)
+ ε|E[0.5±ε]|

= 5 · OPT(s) + 6ε|E[0.5±ε]|,

where the first and third inequalities follow from the fact that s(e) and s̃(e) may be different only for
e ∈ E[0.5±ε] (∩ Ê) and the difference there is at most ε from the assumption of the lemma.

D.3 Proof of Theorem 2

Proof of Theorem 2. For ε > 0, define ε′ ∈ (0, 0.5) as ε
6 max{1, |E[0.5±ε]|}

if ε < 0.5 and ε
6m other-

wise. By Lemma 8 for ε′, we have that

Pr

[
n⋂
r=1

E ′r

]
≥ 1− 2n3 exp

(
−2T mine∈E max {ε′,∆e}2

n2

)
,

where E ′r is the random event for phase r ∈ {1, . . . , n} that is defined by (6) with ε′. Therefore, using
Lemma 9 for ε′, we can see that the output Cout of KC-FB is a (5, ε)-approximate solution for instance

(V, s) of the offline problem minimizing (1) w.p. at least 1 − 2n3 exp

(
− 2T mine∈E max{ε′,∆e}2

n2

)
.

Finally, we can easily confirm that KC-FB does not exceed the given budget T due to the algorithm
procedure of line 8, which concludes the proof.

E Uniform sampling algorithms

Here we provide the complete description and analysis of the naive uniform-sampling algorithms
for both the FC setting (Algorithm 6) and the FB setting (Algorithm 7). Note that in the FC setting,
no feasible stopping conditions are known from previous studies to guarantee that the output is an
approximate solution, even with uniform or arbitrary sampling strategies. Therefore existing analysis
of uniform sampling given in Chen et al. [25] is not applicable to our case with offline optimization
being NP-hard.

First, we show a basic analysis of the cost of clustering when the estimate ŝ is close to the unknown
similarity s.
Lemma 10. Let ε ∈ (0, 0.5). Assume that |s(e)− ŝ(e)| ≤ ε for every e ∈ E. Let Cout be the output
of any α-approximation algorithm for instance (V, ŝ) of the offline problem minimizing (1). Then
Cout is an (α, (α+ 1)εm)-approximate solution for instance (V, s) of the offline problem.
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Algorithm 6 Uniform sampling in the FC setting (Uniform-FC)
Input : Set V of n objects, confidence level δ, additive error ε > 0

1 T (e)← d (α+1)2m2

2ε2 log 2m
δ e for each e ∈ E;

2 Sample each e ∈ E for T (e) times and compute empirical mean ŝ(e);
3 Ĉ ← solution of an approximation algorithm for instance (V, ŝ) of the offline problem minimizing

(1);
4 return Cout := Ĉ

Algorithm 7 Uniform sampling in the FB setting (Uniform-FB)
Input : Set V of n objects, budget T

1 Sample each e ∈ E for bT/mc times and compute the empirical mean ŝ(e);
2 Ĉ ← solution of an approximation algorithm for instance (V, ŝ) of the offline problem minimizing

(1);
3 return Cout := Ĉ

Proof. We have

E[costs(Cout)] ≤ E[cost̂s(Cout)] + εm

≤ α · OPT(̂s) + εm

≤ α (OPT(s) + εm) + εm

= α · OPT(s) + (α+ 1)εm.

Next we evaluate the performance of Algorithm 6.

Proposition 1. Given a confidence level δ ∈ (0, 1) and an additive error ε ∈ (0, 0.5), the uniform
sampling algorithm with an α-approximation oracle for the FC setting (Algorithm 6) outputs Cout

that satisfies

Pr [costs(Cout) ≤ α ·OPT(s) + ε] ≥ 1− δ,

and the upper bound of the number of samples is

T = O
(
α2n6

ε2
log

2n2

δ

)
.

Proof. As the algorithm samples each e ∈ E for T (e) times, by the Hoeffding inequality (Lemma 1),
it holds that

Pr

[
|̂s(e)− s(e)| ≥ ε

(α+ 1)m

]
≤ 2 exp

(
− 2T (e)ε2

(α+ 1)2m2

)
.

Note that T (e) ≥ (α+1)2m2

2ε2 log 2m
δ gives

exp

(
− 2T (e)ε2

(α+ 1)2m2

)
≤ δ

2m
.

Therefore, by taking a union bound, we have

Pr

[
|̂s(e)− s(e)| < ε

(α+ 1)m
, ∀e ∈ E

]
≥ 1− δ.

By Lemma 10 for ε := ε
(α+1)m , we see that Cout is an (α, ε)-approximate solution for instance (V, s)

of the offline problem minimizing (1) w.p. at least 1− δ, as desired.

The next proposition evaluates the performance of Algorithm 7.
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Proposition 2. Given a sampling budget T and additive error ε ∈ (0, 0.5), the uniform sampling
algorithm with an α-approximation oracle for the FB setting (Algorithm 7) outputs Cout that satisfies

Pr [costs(Cout) > α ·OPT(s) + ε] = O
(
n2 exp

(
− Tε2

α2n6

))
.

Proof. As e ∈ E has been pulled at least b Tmc times, by Lemma 1, we have

Pr

[
|̂s(e)− s(e)| ≥ ε

(α+ 1)m

]
≤ 2 exp

(
− 2Tε2

(α+ 1)2m3

)
.

Taking a union bound for all e ∈ E, we have

Pr

[
|̂s(e)− s(e)| < ε

(α+ 1)m
, ∀e ∈ E

]
≥ 1− 2

∑
e∈E

exp

(
− 2Tε2

(α+ 1)2m3

)
≥ 1− 2m exp

(
− 2Tε2

(α+ 1)2m3

)
.

By Lemma 10, when for all e ∈ E, |̂s(e)− s(e)| < ε
(α+1)m , we have costs(Cout) ≤ α ·OPT(s) + ε,

which concludes the proof.
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