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Abstract
We present the Hourglass Diffusion Transformer
(HDiT), an image-generative model that exhibits
linear scaling with pixel count, supporting
training at high resolution (e.g. 1024 × 1024)
directly in pixel-space. Building on the Trans-
former architecture, which is known to scale
to billions of parameters, it bridges the gap
between the efficiency of convolutional U-Nets
and the scalability of Transformers. HDiT trains
successfully without typical high-resolution
training techniques such as multiscale architec-
tures, latent autoencoders or self-conditioning.
We demonstrate that HDiT performs com-
petitively with existing models on ImageNet
2562, and sets a new state-of-the-art for diffu-
sion models on FFHQ-10242. Code is available at
github.com/crowsonkb/k-diffusion.

1. Introduction
Diffusion models have emerged as the pre-eminent method
for image generation, as evidenced by state-of-the-art ap-
proaches like Stable Diffusion (Rombach et al., 2022), Im-
agen (Saharia et al., 2022), eDiff-I (Balaji et al., 2023), or
Dall-E 2 (Ramesh et al., 2022). They are versatile, succeed-
ing in modalities such as video and audio (Blattmann et al.,
2023; Kong et al., 2021). They boast scalability, training
stability, and output diversity.

Diffusion model architectures employ diverse backbones,
spanning CNN-based (Ho et al., 2020), transformer-based
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Figure 1: Samples generated directly in RGB pixel space
using our HDiT models trained on FFHQ-10242 and
ImageNet-2562.

(Peebles & Xie, 2023; Bao et al., 2023a), CNN-transformer-
hybrid (Hoogeboom et al., 2023), or even state-space mod-
els (Yan et al., 2023). There is likewise variation in the
approaches used to scale these models to support high-
resolution image synthesis. Current approaches add com-
plexity to training, necessitate additional models, or sacrifice
quality.

Latent diffusion models (Rombach et al., 2022) (LDMs)
reign as the dominant method for achieving high-resolution
image synthesis. In practice, they fail to represent fine
detail (Dai et al., 2023, see also Figure 2), impacting
sample quality and limiting its utility in applications such
as image editing. Other approaches to high-resolution
synthesis include cascaded super-resolution (Saharia et al.,
2022), multi-scale losses (Hoogeboom et al., 2023), the
incorporation of inputs and outputs at multiple resolutions
(Gu et al., 2023), or the utilization of self-conditioning and
the adaptation of fundamentally new architecture schemes
(Jabri et al., 2023).
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We seek to advance the state of pixel-space diffusion, offer-
ing a path to synthesis at high resolutions without resorting
to LDMs. Eliminating the latent VAE frees us from quality
limitations endemic to such VAEs (illustrated in Figure 2),
and bolsters downstream applications such as image editing
(a process which LDMs encumber with poor reconstruction).
We expound the merits of pixel-space DMs versus LDMs in
Appendix B.

Our work tackles high-resolution synthesis via backbone
improvements, which grant the efficiency needed to target
pixel-space directly. We introduce a pure transformer ar-
chitecture inspired by the hierarchical structure introduced
in (Nawrot et al., 2022), which we call the Hourglass Dif-
fusion Transformer ( HDiT). Our backbone is capable of
high-quality image generation at megapixel scale in stan-
dard diffusion setups. This architecture, even at low spatial
resolutions such as 128× 128 is substantially more efficient
than common diffusion transformer backbones such as DiT
(Peebles & Xie, 2023) (see Table 1 and Figure 8) while
being competitive in generation quality. When scaling the
model architecture to target resolutions according to our
scheme, we obtain O(n) computational complexity scaling
with the target number of image tokens n in place of the
O(n2) scaling of normal diffusion transformer architectures,
making this the first transformer-based diffusion backbone
competitive in computational complexity with convolutional
U-Nets for pixel-space high-resolution image synthesis.

Our main contributions are as follows:

• We introduce the Hourglass Diffusion Transformer
( HDiT), which achieves subquadratic scaling of com-
pute with resolution. We show how our architecture
choices help improve upon the quality of the baseline
DiT (Peebles & Xie, 2023) in pixel-space image syn-
thesis.

• We demonstrate high-quality pixel-space generation
at 1024 × 1024 resolutions, setting a state-of-the-art
FID for diffusion models on FFHQ-10242. We do
so without training complications such as progressive
growing or multiscale losses.

• We show HDiT’s competence in a large-scaling
training scenario through competitive evaluation on
ImageNet-2562. Quantitatively, it measures well
against even latent transformer-based diffusion models
despite undertaking the training at a higher effective
resolution.

Image I Dec(Enc(I))|DiT Zoom(I) Zoom(Dec(Enc(I))|DiT) Zoom(I) Zoom(Dec(Enc(I))|DiT)

Figure 2: Motivation: Detail loss incurred through use of
a standard VAE (Rombach et al., 2022) on one of Figure 1
samples. Notably, this VAE is employed by the baseline
DiT (Peebles & Xie, 2023) architecture against which we
compare.

2. Related Work
2.1. Transformers

The transformer architecture (Vaswani et al., 2017) reigns
as state-of-the-art in various domains (OpenAI, 2023; Zong
et al., 2022; Zhang et al., 2022b; Yu et al., 2022; Piergio-
vanni et al., 2023). It has been scaled to tens of billions of
parameters in the vision domain, (Dehghani et al., 2023)
and beyond that in natural language processing (Chowdh-
ery et al., 2023; Fedus et al., 2022). Transformers consider
interactions between all elements in the sequence via the at-
tention mechanism. Long-range interactions can be learned,
but computational complexity scales quadratically with the
length of input sequence.

Transformer-based Diffusion Models Recent works have
applied transformers to diffusion models. Diffusion priors
(Ramesh et al., 2022) have provided low-dimensional em-
beddings on which to condition image synthesis, and latent
diffusion (Rombach et al., 2022) has achieved state-of-the-
art performance generating images from compressed image
latents (Peebles & Xie, 2023; Bao et al., 2023a; Zheng
et al., 2023; Gao et al., 2023; Bao et al., 2023b; Chen et al.,
2023a;b). Transformer-based architectures (Hoogeboom
et al., 2023; Jing et al., 2023) have been applied to U-Nets
(Ronneberger et al., 2015), either at the lowest levels (Ho
et al., 2020), or by altogether hybridizing the two archi-
tectures (Cao et al., 2022). The quadratic computational
complexity of transformers’ attention mechanism precludes
high-resolution synthesis in pixel-space (Yang et al., 2022b);
latent representations are typically used to reduce the oper-
ating resolution.

Diffusion Transformers (DiT) (Peebles & Xie, 2023), are
amenable to masked training (Gao et al., 2023; Zheng et al.,
2023), which incentivizes models to better learn feature
relationships. It is orthogonal and complementary to the
architecture improvements pursued in this work.

Hourglass Transformers The Hourglass architecture
(Nawrot et al., 2022) is a hierarchical implementation of
transformers, shown to be more efficient at language mod-
eling than standard Transformer models, in training and
in inference. Sequences are shortened as they descend
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Figure 3: High-level overview of our HDiT architecture, specifically the version for ImageNet at input resolutions of 2562

at patch size p = 4, which has three levels. For any doubling in target resolution, another neighborhood attention block is
added. “lerp” denotes a linear interpolation with learnable interpolation weight. All HDiT blocks have the noise level and
the conditioning (embedded jointly using a mapping network) as additional inputs.

the encoder levels of the transformer, culminating in the
shortest representation in the middle, then re-expanded as
they ascend the decoder levels. Skip connections reintro-
duce higher-resolution information near the expansion steps.
Hourglasses resemble U-Nets (Ronneberger et al., 2015)
without convolutional layers. Hierarchical structures (Wang
et al., 2022) have excelled at image restoration, a task similar
to the denoising objective pursued in diffusion.

2.2. High-Resolution Image Synthesis with Diffusion
Models

High-resolution image synthesis in diffusion models has
been extensively studied, yet it remains a challenge to cur-
rent single-stage models. Popular approaches separate the
generation process into multiple steps. Cascaded super-
resolution (Ho et al., 2021) targets initially a low-resolution
image, scaling it via a series of super-resolution models. La-
tent diffusion targets a spatially downsampled “latent” rep-
resentation, which can be decoded into a higher-resolution
pixel image via a convolutional model (Rombach et al.,
2022) or another diffusion model (Betker et al., 2023). The
latent representation can itself also be super-resoluted (Fis-
cher et al., 2023). Latent diffusion is the strategy chosen by
most transformer-based diffusion models (see Section 2.1).
Recent works explore high-resolution image synthesis in
pixel space, in an effort to simplify the overall architecture.
Fundamentally new backbone architectures (Jabri et al.,
2023) have been proposed. Spatial dimensions have been
reduced via discrete wavelet transforms (Hoogeboom et al.,
2023). The diffusion training process has not stood still,
with proposals such as self-conditioning across sampling
steps (Jabri et al., 2023), multiresolution training (Gu et al.,
2023), and multiresolution losses (Hoogeboom et al., 2023)
offering a path to higher resolutions. The necessity of such
substantial modifications of the diffusion process is proving

difficult to overcome, with simpler approaches (Song et al.,
2021) – single-stage and lacking the aforementioned train-
ing adaptations – struggling to produce samples that fully
utilize the available resolution and are globally coherent.

3. Preliminaries
3.1. Diffusion Models

Diffusion models generate data by learning to reverse a
diffusion process. This diffusion process is most commonly
defined to be a Gaussian noising process. Given a data
distribution pdata(x), we define a forward noising process
with the family of distributions p(xσt

;σt) that is obtained
by adding i.i.d. Gaussian noise of standard deviation σt

which is provided by a predefined monotonically increasing
noise level schedule. Therefore, xσt = x0 + σtϵ where
ϵ ∼ N (0, I). A denoising neural network Dθ(xσt , σt) is
trained to predict x0 given xσt

. Sampling is done by starting
at xT ∼ N

(
0, σ2

maxI
)

and sequentially denoising at each
of the noise levels before resulting in the sample x. The
denoiser neural network is trained with a mean-squared
error loss:

Ex∼pdata(x)Eϵ,σt∼p(ϵ,σt)

[
λσt∥Dθ(xσt , σt)− x∥22

]
, (1)

where λσt is a weighting function.

Recent works proposed various improvements to this ba-
sic formulation. Two notable approaches, which are also
adapted by our model, are preconditioning to obtain more
suitable prediction targets for the model (Karras et al., 2022)
and adapting the loss weighting to a clamped signal-to-noise
ratio (SNR) λσt

= min{ 1
σt
, γ} to improve model conver-

gence (Hang et al., 2023). Another improvement has been
the adaption of noise schedules for high resolutions. It was
previously observed (Hoogeboom et al., 2023) that the com-
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monly used noise schedules that were originally designed
for low resolutions (32x32 or 64x64) fail to add enough
noise at high resolutions. Therefore, the noise schedules can
be shifted and interpolated from a reference low-resolution
noise schedule in order to add appropriate noise at higher
resolutions.

4. Hourglass Diffusion Transformers
Diffusion Transformers (Peebles & Xie, 2023) and other
similar works (see Section 2.1) have demonstrated impres-
sive performance as denoising diffusion autoencoders in
latent diffusion (Rombach et al., 2022) setups, surpassing
prior works in terms of generative quality (Gao et al., 2023;
Zheng et al., 2023). However, their scalability to high res-
olutions is limited by the fact that the computational com-
plexity increases quadratically (O(n2) for images of shape
h × w × channels, with n = w · h). This makes them
prohibitively expensive to train and run on high-resolution
inputs, effectively limiting transformers to spatially com-
pressed latents at sufficiently small dimensions, unless very
large patch sizes are used (Cao et al., 2022), which have
been found to be detrimental to the quality of generated
samples (Peebles & Xie, 2023).

We propose a new, improved hierarchical architecture based
on Diffusion Transformers (Peebles & Xie, 2023), and Hour-
glass Transformers (Nawrot et al., 2022) – Hourglass Dif-
fusion Transformers ( HDiT) – that enables high-quality
pixel-space image generation and can be efficiently adapted
to higher resolutions with a computational complexity scal-
ing of O(n) instead of O(n2). This means that even scal-
ing up these models to direct pixel-space generation at
megapixel resolutions becomes viable, which we demon-
strate for models at resolutions of up to 1024 × 1024 in
Section 5.

4.1. Leveraging the Hierarchical Nature of Images

Natural images exhibit hierarchies (Saremi & Sejnowski,
2013). This makes mapping the image generation process
into a hierarchical model an intuitive choice, which has
previously been successfully applied in the U-Net architec-
ture (Ronneberger et al., 2015) commonly used in diffusion
models but is not commonly used by diffusion transform-
ers (Peebles & Xie, 2023; Bao et al., 2023a). To leverage
this hierarchical nature of images for our transformer back-
bone, we apply the hourglass structure (Nawrot et al., 2022),
which has been shown to be effective for a range of different
modalities, including images, for the high-level structure of
our transformer backbone. Based on the model’s primary
resolution, we choose the number of levels in the hierarchy,
such that the innermost level has 16× 16 tokens. We use a
larger hidden dimension for lower-resolution levels, which
have to process both low-resolution information and infor-

mation relevant for following higher-resolution levels. For
every level on the encoder side, we spatially merge 2 × 2
tokens into one using Pixel-UnShuffle (Shi et al., 2016) and
do the inverse on the decoder side.

Skip Merging Mechanism One important consideration
in hierarchical architectures is the merging mechanisms of
skip connections, as it can influence the final performance
significantly (Bao et al., 2023a). While the previous non-
hierarchical U-ViT (Bao et al., 2023a) uses a concatenation-
based skip implementation, similar to the standard U-Net
(Ronneberger et al., 2015), and found this to be significantly
better than other options, we find additive skips to perform
better for this hierarchical architecture. As the usefulness of
the information provided by the skips can differ significantly,
especially in very deep hierarchies, we additionally enable
the model to learn the relative importance of the skip and the
upsampled branch by learning a linear interpolation (lerp)
coefficient f between the two for each skip:

x(l. lerp)
merged = f · xskip + (1− f) · xupsampled. (2)

4.2. Hourglass Diffusion Transformer Block Design
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Cosine Similarity

Self-Attention

+

AdaRMSNorm

HDiT Pointwise
Feedforward

+

MLP

γ1

γ2

(a) HDiT Block Architecture.
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Figure 4: A comparison of our transformer block architec-
ture and that used by DiT (Peebles & Xie, 2023).

Our basic transformer block design (shown in comparison
with that of DiT in Figure 4) is generally inspired by the
blocks used by LLaMA (Touvron et al., 2023), a trans-
former architecture that has recently been shown to be very
capable of high-quality generation of language. To enable
conditioning, we make the output scale used by RMSNorm
operations adaptive, predicted by a mapping network con-
ditioned on the class and diffusion time step. Unlike DiT,
we do not employ an (adaptive) output gate, but initialize
the output projections of both self-attention and FFN blocks
to zeros. To make positional information accessible to the
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Figure 5: A comparison of our pointwise feedforward block
architecture and that used by DiT (Peebles & Xie, 2023).

transformer model, common diffusion transformer architec-
tures like DiT and U-ViT use a learnable additive positional
encoding. (Peebles & Xie, 2023; Bao et al., 2023a) As it is
known to improve models’ generalization and their capabil-
ity of extrapolating to new sequence lengths, we replace this
with an adaptation of rotary positional embeddings (RoPE)
(Su et al., 2022) for 2D image data: we follow an approach
similar to (Ho et al., 2019) and split the encoding to oper-
ate on each axis separately, applying RoPE for each spatial
axis to distinct parts of query and key respectively. We also
found that applying this encoding scheme to only half of
the query and key vectors and not modifying the rest to be
beneficial for performance. Overall, we find empirically that
replacing the normal additive positional embedding with
our adapted RoPE improves convergence and helps remove
patch artifacts. Additionally to applying RoPE, we use a
cosine similarity-based attention mechanism that has previ-
ously been used in (Liu et al., 2022a) (see Appendix E.1 for
details). We note that a similar approach has been proven
at the multi-billion parameter scale for vision transformers
(Dehghani et al., 2023).

For the feedforward block (see Figure 5 for a comparison
with DiT), instead of having an output gate like DiT, we
use GEGLU (Shazeer, 2020), where the modulation signal
comes from the data itself instead of the conditioning and is
applied on the first instead of the second layer of the FFN.

4.3. Efficient Scaling to High Resolutions

The hourglass structure enables us to process an image
at a variety of resolutions. We use global self-attention
at low resolutions to achieve coherence, and local self-
attention (Liu et al., 2021; 2022a; Hassani et al., 2023) at
all higher resolutions to enhance detail. This limits the need
for quadratic-complexity global attention to a manageable
amount, and enjoys linear-complexity scaling for any fur-
ther increase in resolution. Asymptotically, the complexity

is O(n) (see Appendix A) w.r.t pixel count n.

A typical choice for localized self-attention would be Shifted
Window attention (Liu et al., 2021; 2022a) as used by previ-
ous diffusion models (Cao et al., 2022; Li et al., 2022). We
find, however, that Neighborhood attention (Hassani et al.,
2023) performs significantly better in practice.

The maximum resolution at which to apply global self-
attention1 is a choice determined by dataset (the size at
which small features requiring long-distance coherence be-
come large enough for attention to reason about) and by task
(the smallest feature whose long-distance relationships need
to be preserved in order to be acceptable). At particularly
low resolutions (e.g. 2562), some datasets permit coherent
generation with fewer levels of global attention.

5. Experiments
We evaluate the proposed HDiT architecture on condi-
tional and unconditional image generation, ablating over
architectural choices (Section 5.2), and evaluating both
megapixel pixel-space image generation (Section 5.3) and
large-scale pixel-space image generation (Section 5.4).

5.1. Experimental Setup

Training Unless mentioned otherwise, we train class-
conditional models on ImageNet (Deng et al., 2009) at a
resolution of 128× 128 directly on RGB pixels without any
kind of latent representation. We adapt our general training
setup from (Karras et al., 2022), including their precondi-
tioner, and use a continuous-time diffusion formulation. We
train all models with AdamW (Loshchilov & Hutter, 2019)
using a constant learning rate of 5 × 10−4 and a weight
decay of λ = 0.01. We generally train at a batch size of 256
for 400k steps (following (Peebles & Xie, 2023)) with strat-
ified diffusion timestep sampling and do not use Dropout
unless noted otherwise. For small-scale ImageNet trainings
at 128× 128, we do not apply any augmentation. For runs
on small datasets, we apply a non-leaking augmentation
scheme akin to (Karras et al., 2020a). Following common
diffusion model training practice and (Peebles & Xie, 2023),
we also compute the exponential moving average (EMA)
of the model weights with a decay of 0.9999. We use this
EMA version of the model for all evaluations and gener-
ated samples, and perform our sampling using 50 steps of
DPM++(3M) (Lu et al., 2023) SDE sampling. For further
details, see Table 7.

1For our FFHQ-10242 experiment, we apply two levels of
global attention – one at 162 and one at 322. Whereas for
ImageNet-1282 and 2562, we found like prior works (Ho et al.,
2020; Hoogeboom et al., 2023; Nichol & Dhariwal, 2021) that a
single level of 162 global attention suffices.
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Evaluation Following common practice for generative im-
age models, we report the Fréchet Inception Distance (FID)
(Heusel et al., 2017) computed on 50k samples. To com-
pute FID, we use the commonly used implementation from
(Dhariwal & Nichol, 2021). We also report both the abso-
lute and asymptotic computational complexity for our main
ablation study, also including FLOPs for higher-resolution
versions of the architecture.

5.2. Effect of the Architecture

To evaluate the effect of our architectural choices, we per-
form an ablation study where we start with a basic imple-
mentation of the hourglass architecture for diffusion and
iteratively add the changes that enable our final architecture
to efficiently perform high-quality megapixel image syn-
thesis. We denote the ablation steps as A, B1, ..., E, and
show their feature composition and experimental results in
Table 1. We also provide a set of baselines R1, ..., R4, where
we trained DiT (Peebles & Xie, 2023) models in various set-
tings to enable a fair comparison. Additional experimental
steps are shown in Appendix D.1.

We generally use DiT-B-scale models for this comparison
(approx. 130M parameters for DiT, approx 105M to 120M
for HDiT depending on the ablation step), due to their
relatively low training cost, and train them on pixel-space
ImageNet (Deng et al., 2009) at a resolution of 1282 and
patch size of 4. The computational cost for the same ar-
chitecture at resolutions of 256 × 256 and 512 × 512 is
also reported. In the case of our models, every doubling in
resolution involves adding one local attention block (except
for ablation step A, where it is global) as per Section 4.1.

Baselines We train multiple versions of DiT in different
setups to provide fair comparisons with it as baselines in
Table 1. R1 directly uses the official DiT implementation
(Peebles & Xie, 2023) but omits the VAE latent computation
step and adjusts the scaling to fit the data. No other changes
were made, as DiT can be directly applied to pixel space
(Peebles & Xie, 2023). We also train a baseline R3 that uses
the DiT-B hyperparameters and structure but applies them
to our block architecture and training setup as used in A.
This matches the performance of the original DiT trained
with the original codebase. On top of this setup, we also
add soft-min-snr loss weighting to R4 (as in ablation step
E) to enable a fair comparison with our final model.

Base Hourglass Structure Configuration A is a simple
hourglass structure with lower-resolution levels and our lin-
ear skip interpolations, and the basic implementation of our
blocks with RMSNorm, but without GEGLU, and with full
global self-attention at every level. A simple additive posi-
tional encoding is used here. Even this simple architecture,
without any of our additional changes, is already substan-
tially cheaper (30% of the FLOPs per forward pass, less for

higher resolutions) than similarly-sized DiT (Peebles & Xie,
2023) models operating in pixel space due to the hourglass
structure. For higher resolutions than 1282, this makes it
viable to train pixel-space transformer-based models at all.
This comes at the cost of increased FID compared to the
DiT baselines at this step in the ablation.

Local Attention Mechanism Next, we add local attention
to all levels except for the lowest-resolution one. We evalu-
ate two options – Shifted-Window (Swin) (Liu et al., 2021;
2022a) attention (B1, a common choice in vision transform-
ers and previously also used in diffusion models (Cao et al.,
2022; Li et al., 2022)) and Neighborhood (Hassani et al.,
2023) attention (B2). Both result in a small reduction in
FLOPs even at the low-resolution scale of 128 × 128 but,
most importantly, reduce the computational complexity w.r.t.
the base resolution from O(n2) to O(n), enabling practical
scaling to significantly higher resolutions. Both variants
suffer from increased FID due to this reduced expressive-
ness of local attention. Still, this change is significantly less
pronounced for Neighborhood attention, making it a clearly
superior choice in this case compared to the common choice
of Swin attention.

Feedforward Activation As the third step, we ablate over
using GEGLU (Shazeer, 2020), where the data itself affects
the modulation of the outputs of the feedforward block,
compared to the standard GeLU for the feedforward net-
work. Similar to previous work (Touvron et al., 2023), to
account for the effective change of the hidden size due to
the GEGLU operation, we decrease the hidden dimension
from 4 · dmodel to 3 · dmodel. We find that this change sig-
nificantly improves FID at the cost of a slight increase in
computational cost, as the width of the linear projections in
the feedforward block has to be increased to account for the
halving in output width.

Positional Encoding Next, we replace the standard addi-
tive positional embedding with our 2D axial adaptation of
RoPE (Su et al., 2022) in D (see Appendix E.2 for details),
completing our Hourglass DiT backbone architecture. This
further improves FID. As an additional benefit, RoPE should
enable significantly better extrapolation to other resolutions
than additive positional embeddings, but this ablation study
does not test for that. Qualitatively, we find that this also
helps reduce patching artifacts in the generated images.

Loss Weighting Finally, we also ablate over replacing the
standard 1

σ2 loss weighting (Ho et al., 2020; Song et al.,
2021) with our adapted Min-SNR (Hang et al., 2023) loss
weighting method that we call Soft-Min-SNR (see Ap-
pendix C), which reduces the loss weight compared to SNR
weighting for low noise levels. This substantially improves
FID further, demonstrating the effectiveness of HDiT
when coupled with an appropriate training setup for pixel-
space diffusion.
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Table 1: Ablation of our architectural choices, starting from a stripped-down implementation of our hourglass diffusion
transformer that is similar to DiT-B/4 (Peebles & Xie, 2023). We also ablate over our additional choice of using soft-min-snr
loss weighting, which we use to train our full models but do not consider part of our architecture. We present results for
various DiT-B/4-based models as baselines. We also report computational cost per forward pass at multiple resolutions,
including standard resolution-dependent model adaptations (relative to R1 in gray). See Table 5 for an additional results.

Configuration FID↓ GFLOP@1282↓ Complexity↓ GFLOP@2562 GFLOP@5122

Baselines (R1 uses 250 DDPM sampling steps with learned σ(t) as in the original publication instead of 50-step DPM++ sampling)
R1 DiT-B/4 (Peebles & Xie, 2023) 42.03 106 O(n2) 657 (−00%) 6,341 (−00%)
R3 R1 + our basic blocks & mapping net & trainer 42.49 106 O(n2) 657 (−00%) 6,341 (−00%)

R4 R3 + Soft-Min-SNR 30.71 106 O(n2) 657 (−00%) 6,341 (−00%)

Ablation Steps
A Global Attention Diffusion Hourglass (Section 4.1) 50.76 032 O(n2) 114 (−83%) 1,060 (−83%)
B1 A + Swin Attn. (Liu et al., 2021) 55.93 029 O(n) 060 (−91%) 0,185 (−97%)
B2 A + Neighborhood Attn. (Hassani et al., 2023) 51.07 029 O(n) 060 (−91%) 0,184 (−97%)
C B2 + GeGLU (Shazeer, 2020) 44.36 031 O(n) 065 (−90%) 0,198 (−96%)
D C + Axial RoPE (Section 4.2) 41.41 031 O(n) 065 (−90%) 0,198 (−96%)

E D + Soft-Min-SNR (Appendix C) 27.74 031 O(n) 065 (−90%) 0,198 (−96%)

Table 2: Skip Information Merging Mechanism Ablation

Skip Implementation FID↓
Concatenation (U-Net (Ronneberger et al., 2015)) 33.75
Addition (Original Hourglass (Nawrot et al., 2022)) 28.37
Learnable Linear Interpolation (Ours) 27.74

Skip Implementation Additionally to the main ablation
study, we also ablate over different skip implementations
based on ablation step E. We compare our learnable linear
interpolation (lerp), which we empirically found to be espe-
cially helpful when training deep hierarchies, with both a
standard additive skip, where the upsampled and skip data
are directly added, and a concatenation version, where the
data is first concatenated and then projected to the original
channel count using a pointwise convolution. The results of
this ablation are shown in Table 2. We find that, even for
shallow hierarchies as used for ImageNet-1282 generation
in our ablations, the learnable linear interpolation outper-
forms the addition slightly, with both the learnable lerp and
addition substantially outperforming the commonly used
concatenation.

5.3. High-Resolution Pixel-Space Image Synthesis

In this section, we train our model for high-resolution pixel-
space image synthesis. Following previous works, we train
on FFHQ-10242 (Karras et al., 2021b), the standard bench-
mark dataset for image generation at such high resolutions.

Previous works use self-conditioning (Jabri et al., 2023),
multi-scale architectures (Gu et al., 2023), or multi-scale
losses (Hoogeboom et al., 2023) to enable synthesis at high
resolutions. Our model does not require such tricks (though

Figure 6: Samples from our 85M-parameter FFHQ-10242

model. Best viewed zoomed in.

we expect them to further increase quality), and we train
without them, with the exception of adapting the SNR at
each step according to the increase in the images’ redun-
dancy (Hoogeboom et al., 2023). Our model generates
high-quality, globally coherent samples (see Figure 6) that
utilize the high resolution to produce sharp pictures with
fine details.

We benchmark our models against state-of-the-at counter-
parts in Table 3 for a quantitative comparison. We find that
our model substantially outperforms this baseline both quan-
titatively and qualitatively (see Figure 14 and Figure 15 for
samples from our method and competing methods). No-
tably, our model excels in generating faces with symmetric
features, while the only other diffusion model, NCSN++,
exhibits noticeable asymmetry. Moreover, HDiT effec-
tively leverages the available resolution, producing sharp

7
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Table 3: Comparison of our results on FFHQ 1024 × 1024 to
other models in the literature. 50k samples are used for FID
computation unless specified otherwise.2 FDD2 and KDD2
denote Fréchet and Kernel DINOv2 distances respectively.

Method Params FID↓ FDD2↓ KDD2↓
Diffusion Models (5k samples)
NCSN++ (Song et al., 2021) 106M 53.52 608 1.879

HDiT-85M (Ours) 085M 08.48 177 0.348

Diffusion Models
HDiT-85M (Ours) 085M 05.23 149 0.354

Generative Adversarial Networks
HiT-B (Zhao et al., 2021) 117M 06.37 - -
StyleSwin (Zhang et al., 2022a) 041M 05.07 360 0.946
StyleGAN2 (Karras et al., 2020b) 030M 02.70 253 0.578
StyleGAN3-T (Karras et al., 2021a) 022M 02.79 249 0.575
StyleGAN3-R (Karras et al., 2021a) 016M 03.07 273 0.651
StyleGAN-XL (Sauer et al., 2022) 071M 02.02 270 0.644

and finely detailed images, a notable improvement over the
NCSN++ model, which often yields blurry samples, and
also other competing methods. We find that our model
is competitive regarding FID with high-resolution trans-
former GANs such as HiT (Zhao et al., 2021) or StyleSwin
(Zhang et al., 2022a), but does not reach the same FID as
state-of-the-art GANs such as StyleGAN-XL (Sauer et al.,
2022). We evaluate with DINOv2-based metrics also, as
FID is known to be flawed for evaluating FFHQ genera-
tion (Kynkäänniemi et al., 2023) and to advantage GAN-
generated samples (Stein et al., 2023). Our model sets a
new state-of-the-art for DINOv2-based Fréchet and Ker-
nel distances, metrics which correlate better with human
preference than their Inception counterparts (Stein et al.,
2023).

5.4. Large-Scale ImageNet Image Synthesis

Earlier experiments (see Section 5.3) show HDiT’s
sample fidelity at high resolutions. To evaluate capa-
bilities at scale, we train a class-conditional pixel-space
ImageNet-2562 model. This 557M parameter model is
smaller than many state-of-the-art models, and has not been
hyperparameter-tuned. As in our high-resolution experi-
ments, we refrain from applying non-standard training tricks
or diffusion modifications, and, consistent with (Hooge-
boom et al., 2023), we compare results without the applica-
tion of classifier-free guidance, emphasizing an out-of-the-
box comparison.

We show samples in Figure 7 and compare quantitatively
with state-of-the-art diffusion models in Table 4. We find
that qualitatively our model can generate high-fidelity sam-
ples on this task. Compared to the baseline model DiT, our
model achieves a substantially lower FID and higher IS de-

2We compare to NCSN++ on FID@5k due to its sampling cost,
which for FID@50k would be similar to training our model.

spite operating on pixel-space instead of lower-resolution
latents. Compared to other single-stage pixel-space diffu-
sion models, our model outperforms simple U-Net-based
models such as ADM but is outperformed by models that
use self-conditioning during sampling (RIN) or are substan-
tially larger (simple diffusion, VDM++).

Figure 7: Samples from our class-conditional 557M-
parameter ImageNet-2562 model without CFG.

Table 4: Comparison of our results on ImageNet-2562 to
other models in the literature. Following (Hoogeboom et al.,
2023), we report results without classifier-free guidance.
Besides FID@50k and IS@50k, we also report trainable
parameter count, samples seen (training iterations times
batch size), and sampling steps.

Method Params It.×BS Steps FID↓ IS↑
Latent Diffusion Models
LDM-4 (Rombach et al., 2022) 400M+VAE 214M 250 10.56 209.5
DiT-XL/2 (Peebles & Xie, 2023) 675M+VAE 1.8B 250 09.62 121.5
U-ViT-H/2 (Bao et al., 2023a) 501M+VAE 512M 50·2 06.58 -
MDT-XL/2 (Gao et al., 2023) 676M+VAE 1.7B 250 06.23 143.0
MaskDiT/2 (Zheng et al., 2023) 736M+VAE 2B 40·2 05.69 178.0

Single-Stage Pixel-Space Diffusion Models
iDDPM (Nichol & Dhariwal, 2021) - - 250 32.50 -
ADM (Dhariwal & Nichol, 2021) 554M 507M 1000 10.94 101.0
RIN (Jabri et al., 2023) 410M 614M 1000 04.51 161.0
simple diffusion (Hoogeboom et al., 2023) 2B 1B 512 02.77 211.8
VDM++ (Kingma & Gao, 2023) 2B - 256·2 02.40 225.3

HDiT (Ours) 557M 742M 50·2 06.92 135.2

6. Conclusion
This work presents HDiT, a hierarchical pure transformer
backbone for diffusion image synthesis which scales to high
resolutions more efficiently than previous transformer-based
backbones. It adapts to the target resolution, processing
local phenomena at high resolutions and global phenomena
at low resolutions. Its computational complexity at higher
resolutions scales with O(n) instead of O(n2), bridging the
gap between the scalability of transformer models and the
efficiency of U-Nets. We demonstrate megapixel-scale pixel-
space synthesis without tricks such as self-conditioning or
multiresolution architectures, whilst staying competitive
with other transformer diffusion backbones even at small
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resolutions, both in fairly matched pixel-space settings, and
when compared to transformers in latent-space.

7. Future Work
HDiT provides a basis for further research into efficient

high-resolution image synthesis. While we only focus on un-
conditional and class-conditional image synthesis, HDiT
is likely well-suited to enhancing efficiency and perfor-
mance in other generative tasks like super-resolution, text-
to-image generation and other modalities such as audio
and video, especially with architecture scaling. This work
studied HDiT in the context of pixel-space diffusion mod-
els but future works could investigate applying HDiT in
a latent diffusion setup to increase efficiency further and
achieve multi-megapixel image resolutions, or apply orthog-
onal tricks such as self-conditioning (Jabri et al., 2023) or
progressive training (Sauer et al., 2022) to improve the qual-
ity of generated samples further.

Our large-scale ImageNet experiment (see Section 5.4)
shows promise, competing with many state-of-the-art archi-
tectures. Future work could realize the potential of HDiT
with hyperparameter tuning, architecture scaling, and recent
practices (Karras et al., 2023).

Our architecture with local attention blocks could enable ef-
ficient diffusion superresolution and diffusion VAE feature
decoding models: if all levels are set to perform local atten-
tion only (global attention blocks should not be necessary
as the global structure is already present in the samples for
these applications), one can train efficient transformer-based
models that can scale to arbitrary resolutions.

Impact Statement
This work aims to improve the capabilities of diffusion mod-
els by enabling the training of high-resolution pixel-space
transformer-based diffusion models. While many other high-
resolution diffusion models exist already, the majority do
not operate in pixel-space. Operating in pixel-space poten-
tially enables substantially higher-quality image editing and
controllable generation capabilities as downstream tasks.
Especially in the context of image editing, capable image
synthesis models such as Stable Diffusion (Rombach et al.,
2022) have been found to carry risks of generating harmful
or deceptive content. In general, progress in high-resolution
image synthesis contributes to the production of believable
disinformation and could worsen society’s ability to trust
the authenticity of content. Whilst our method improves the
efficiency of transformer-based diffusion models, it remains
the case that training and inferencing of diffusion models
is energy-intensive, potentially contributing to wider issues
such as climate change.
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JURECA at Jülich Supercomputing Centre (JSC). ES grate-
fully acknowledges Stability AI for resources to conduct
experiments.

References
Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

Balaji, Y., Nah, S., Huang, X., Vahdat, A., Song, J., Zhang,
Q., Kreis, K., Aittala, M., Aila, T., Laine, S., Catanzaro,
B., Karras, T., and Liu, M.-Y. eDiff-I: Text-to-Image
Diffusion Models with an Ensemble of Expert Denoisers,
2023.

Bao, F., Nie, S., Xue, K., Cao, Y., Li, C., Su, H., and Zhu,
J. All are Worth Words: A ViT Backbone for Diffusion
Models. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023a.

Bao, F., Nie, S., Xue, K., Li, C., Pu, S., Wang, Y., Yue,
G., Cao, Y., Su, H., and Zhu, J. One Transformer Fits
All Distributions in Multi-Modal Diffusion at Scale. In
International Conference on Machine Learning (ICML).
JMLR.org, 2023b.

Betker, J., Goh, G., Jing, L., Brooks, T., Wang, J., Li, L.,
Ouyang, L., Zhuang, J., Lee, J., Guo, Y., Manassra, W.,
Dhariwal, P., Chu, C., Jiao, Y., and Ramesh, A. Improving
Image Generation with Better Captions. Technical report,
2023.

Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim,
S. W., Fidler, S., and Kreis, K. Align your Latents: High-
Resolution Video Synthesis with Latent Diffusion Mod-
els. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023.

Cao, H., Wang, J., Ren, T., Qi, X., Chen, Y., Yao, Y., and
Zhang, L. Exploring Vision Transformers as Diffusion
Learners, 2022.

Chen, J., Yu, J., Ge, C., Yao, L., Xie, E., Wu, Y., Wang,
Z., Kwok, J., Luo, P., Lu, H., and Li, Z. PixArt-α: Fast
Training of Diffusion Transformer for Photorealistic Text-
to-Image Synthesis, 2023a.

9



Hourglass Diffusion Transformers

Chen, S., Xu, M., Ren, J., Cong, Y., He, S., Xie, Y., Sinha,
A., Luo, P., Xiang, T., and Perez-Rua, J.-M. GenTron:
Delving Deep into Diffusion Transformers for Image and
Video Generation, 2023b.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G.,
Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S.,
Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fe-
dus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph,
B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal,
S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M.,
Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee,
K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean,
J., Petrov, S., and Fiedel, N. PaLM: Scaling Language
Modeling with Pathways. Journal of Machine Learning
Research (JMLR), 2023.

Dai, X., Hou, J., Ma, C.-Y., Tsai, S., Wang, J., Wang, R.,
Zhang, P., Vandenhende, S., Wang, X., Dubey, A., Yu, M.,
Kadian, A., Radenovic, F., Mahajan, D., Li, K., Zhao, Y.,
Petrovic, V., Singh, M. K., Motwani, S., Wen, Y., Song,
Y., Sumbaly, R., Ramanathan, V., He, Z., Vajda, P., and
Parikh, D. Emu: Enhancing Image Generation Models
Using Photogenic Needles in a Haystack, 2023.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P.,
Heek, J., Gilmer, J., Steiner, A., Caron, M., Geirhos, R.,
Alabdulmohsin, I., Jenatton, R., Beyer, L., Tschannen,
M., Arnab, A., Wang, X., Riquelme, C., Minderer, M.,
Puigcerver, J., Evci, U., Kumar, M., Van Steenkiste, S.,
Elsayed, G. F., Mahendran, A., Yu, F., Oliver, A., Huot,
F., Bastings, J., Collier, M. P., Gritsenko, A. A., Birodkar,
V., Vasconcelos, C., Tay, Y., Mensink, T., Kolesnikov,
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A. Computational Complexity of HDiT
In a traditional vision transformer, including those for diffu-
sion models (Peebles & Xie, 2023; Bao et al., 2023a), the
asymptotic computational complexity with regard to image
size is dominated by the self-attention mechanism, which
scales as O(n2d) with token/pixel count n and embedding
dimension d. The feedforward blocks and the attention
projection heads, in turn, scale as O(nd2).

For our Hourglass Diffusion Transformer architecture, we
adjust the architecture for different target resolutions, simi-
larly to previous approaches used with U-Nets (Ronneberger
et al., 2015). Our architecture is divided into multiple hier-
archical levels, where the outermost level operates at full
patch resolution, and each additional level operates at half
of the spatial resolution per axis. For simplicity, we will
first cover the cost at square resolutions of powers of two.

When designing the architecture for a specific resolution,
we start with a dataset-dependent core architecture, which,
for natural images, typically includes one or two global-
attention hierarchy levels that operate at 162 or 162 and 322,
respectively. Around that are a number of local attention
levels. As this core only operates on a fixed resolution, it
does not influence the asymptotic computational complexity
of the overall model.

Asymptotic Complexity Scaling When this architecture is
adapted to a higher resolution, additional local attention lev-
els with shared parameters are added to keep the innermost
level operating at 162. This means that the number of levels
in our hierarchy scales with the number of image tokens
as O(log(n)). While this might intuitively lead one to the
conclusion of the overall complexity being O(n log(n)d),
as local attention layers’ complexity is O(nd), the reduc-
tion in resolution at each level in the hierarchy has to be
considered: due to the spatial downsampling, the number
of tokens decreases by a factor of four at every level in the
hierarchy, making the cost of the self-attention – the only
part of our model whose complexity does not scale linearly
with token count – of the additional levels

log4(n)−log4(rescore)∑
l=1

nd

4l−1
.

Factoring out n and defining m = l − 1 yields

n ·
log4(n)−log4(rescore)−1∑

m=0

d ·
(
1

4

)m

,

a (cut-off) geometric series with a common ratio of less than
one, which means that, as the geometric series converges,
it does not affect the asymptotic complexity, making the
cumulative complexity of the local self-attention of the ad-
ditional levels O(nd). Thus, as no other parts scale worse
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Figure 8: Scaling of computational cost w.r.t. target resolu-
tion of our HDiT-B/4 model vs. DiT-B/4 (Peebles & Xie,
2023) and ADM (Dhariwal & Nichol, 2021).

than O(nd) either, the overall complexity of the Hourglass
Diffusion Transformer architecture, as the target resolution
is increased, is O(nd).

Local Complexity Scaling at Arbitrary Resolutions
When the target resolution is increased by a factor smaller
than a power of two per axis, the architecture is not adapted.
This means that, for these intermediate resolutions, a dif-
ferent scaling behavior prevails. Here, the cost of the local
attention levels, whose number does not change in this case,
scales with O(nd) as before, but the global attention lev-
els incur a quadratic increase in cost with the resolution.
As the resolution is increased further, however, new levels
are added, which reduce the resolution the global attention
blocks operate at to their original values, and retaining the
overall asymptotic scaling behavior of O(nd).

FLOP Comparison with DiT and Diffusion U-Nets While
the asymptotic computational cost is important, it only de-
scribes how computational cost scales with resolution (in
the theoretical limit). For practical purposes, it is important
that the theoretical improvement from O(n2d) to O(nd)
from DiT to HDiT also results in lower FLOPs. To inves-
tigate this, we calculate the practical FLOPs for a parameter-
matched pixel-space DiT and HDiT at various resolutions,
which we show in Figure 8. We find that the theoretical
improvements translate to real-world improvements, with
HDiT already being more than 10 times more efficient at
2562 resolution, which further increases to a more than 100
times improvement for 10242. We also investigate a repre-
sentative standard CNN-based diffusion U-Net (Dhariwal &
Nichol, 2021). Here, we also find substantial performance
gains of about 10 times at low resolutions, although the gap
narrows at higher resolutions.
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B. Pixel-space vs. Latent Diffusion Models
Extending upon the brief motivation presented in the in-
troduction, we compare the advantages and disadvantages
of pixel-space and latent (Rombach et al., 2022) diffusion
models.

B.1. Advantages of Pixel-space over Latent Diffusion

Several factors motivate the exploration of pixel-based alter-
natives:

1. Architectural Simplicity and Latent Space Limitations:
Pixel-based models circumvent the need for complex latent
space engineering, simplifying model architecture. Relying
on a learned latent space introduces limitations tied to the
VAE’s representational capacity.

2. Quality Constraints and High-Frequency Information
Loss: VAE-based diffusion models are inherently bounded
by the reconstruction quality of the underlying VAE. Crit-
ically, VAEs are prone to losing high-frequency image de-
tails, hindering the generation of sharp and realistic images.
We see evidence of this when roundtripping one of the gen-
erated images from our 557M ImageNet-2562 model from
Figure 1 through the VAE used by DiT (Peebles & Xie,
2023) in Figure 2

3. Fidelity Limitations for Image Manipulation: Faithful im-
age reconstruction is crucial for downstream tasks like edit-
ing and transformation. VAEs often struggle with faithful
reconstruction, limiting their applicability in these domains.

4. Challenges with Dynamic Thresholding and Interme-
diate Step Visualization: Integrating advanced sampling
techniques like dynamic thresholding, as proposed in the
DPM Solver (Lu et al., 2022) literature, remains challenging
within the latent space framework. Similarly, visualizing
intermediate generation steps requires computationally ex-
pensive decoding, hindering iterative design processes.

5. Limited Compatibility with Classifier Guidance (Dhari-
wal & Nichol, 2021): Leveraging classifier guidance, a
powerful technique for controlling image generation, proves
difficult with latent space models. This difficulty arises from
the mismatch between the pixel-space nature of most clas-
sifiers and the latent space representation of the diffusion
model.

6. Empirical Evidence in Text-to-3D Synthesis: Recent
work in text-to-3D generation has demonstrated superior
performance with pixel-based diffusion models, highlight-
ing their potential for high-fidelity synthesis (Shonenkov
et al., 2023).

7. Information Loss and Inpainting Challenges: The inher-
ent information compression within the VAE latent space
can negatively impact inpainting tasks. Specifically, it can

lead to undesirable leakage of information from the sur-
rounding regions into the inpainted area.

B.2. Advantages of Latent Diffusion Models

Latent diffusion models (Rombach et al., 2022) operate on
the in the latent space of a variational auto-encoder. This
allows for a substantial reduction in the spatial resolution,
leading to a signficant computational reduction. The aforem-
netioned reduction allows for usage of what would otherwise
be computational infeasible choices, such as transformer
models (Vaswani et al., 2017). The VAE inherently con-
strains the diffusion process to a manifold of plausible im-
ages. This effectively raises the lower bound on the average
quality of generated images, leading to more consistent
quality of images.

C. Soft-Min-SNR Loss Weighting
Min-SNR loss weighting (Hang et al., 2023) is a recently
introduced training loss weighting scheme that improves dif-
fusion model training. It adapts the SNR weighting scheme
(for image data scaled to x ∈ [−1, 1]

h×w×c)

wSNR(σ) =
1

σ2
(3)

by clipping it at an SNR of γ = 5:

wMin-SNR(σ) = min

{
1

σ2
, γ

}
. (4)

We utilize a slightly modified version that smoothes out
the transition between the normal SNR weighting and the
clipped section:

wSoft-Min-SNR(σ) =
1

σ2 + γ−1
. (5)

For σ ≪ γ and σ ≫ γ, this matches Min-SNR, while
providing a smooth transition between both sections.

In practice, we also change the hyperparameter γ from
γ = 5 to γ = 4.

Plotting the resulting loss weight for both min-snr and our
soft-min-snr as shown in Figure 9 shows that our loss weight-
ing is identical to min-snr, except for the transition, where it
is significantly smoother. An ablation of our soft-min-snr
compared to min-snr also shows that our loss weighting
scheme leads to an improved FID score for our model, as
shown in Table 5, steps D (SNR), E2 (Min-SNR, γ = 5),
E3 (Min-SNR, γ = 4), E (Soft-Min-SNR, γ = 4).
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Figure 9: The resulting loss weighting over σ for our soft-
min-snr weighting (orange) and min-snr weighting (blue)
with γ = 5.

D. Additional Experimental Results
This section presents results for auxiliary experiments that
provide additional context for the experiments presented in
the main body of the paper.

D.1. Additional Ablation Results

In Table 5, we present additional results for the main abla-
tion study initially presented in Section 5.2.

Loss Weighting In E2 and E3, we apply Min-SNR (Hang
et al., 2023) loss weighting with the original hyperparameter
γ = 5 and the value γ = 4 used for our Soft-Min-SNR.
This shows that, in our setting, both the change of γ and
the smoother loss weighting help improve FID but that the
smoothing plays a substantially larger role.

Subtractive Ablations vs. DiT Extending our ablation in
Section 5.2, we also perform two subtractive ablations in-
vestigating the norm and activation choice in combination,
whose results are shown in Table 5. Ablation step G takes
the full model but replaces the adaptive RMSNorm (Zhang
& Sennrich, 2019) with an adaptive layer norm (Ba et al.,
2016) as used by DiT (Peebles & Xie, 2023). Despite offer-
ing twice as many degrees of freedom due to predicting a
shift in addition to the scale, we see no significant change
in FID. Completely reverting to DiT-style blocks by chang-
ing GeGLU to GELU and adding an output gate controlled
via the mapping network in step H results in a worse FID,
corroborating the results from the original ablation step C,
even in combination with the different norm.

Additional Baselines In Section 5.2, we only present R1,
R3, and R4 for simplicity. To evaluate the influence of
our trainer and our loss weighting scheme, we also add an
intermediate step, R2. This step wraps the official imple-
mentation of DiT-B/4 and adapts it to our codebase and

trainer.3 This leads to a substantial reduction in FID com-
pared to the original trainer, showing that it is important that
the training setting matches the architecture. R3 replaces the
wrapped DiT model with a hyperparameter-matched single-
level version of ablation step A, matching the performance
of the original DiT trained with the original codebase. On
top of this setup, we also add soft-min-snr loss weighting
to R4 as in ablation step E to enable a fair comparison with
our final model.

Table 5: Additional ablation results on RGB ImageNet-1282.
Results already presented in Table 1 are presented in gray
font as a reference.

Configuration FID↓
Baselines
R1 DiT-B/4 (Peebles & Xie, 2023) 42.03
R2 R1 + Our Trainer 69.86
R3 R2 + Our Basic Blocks & Mapping Network 42.49

R4 R3 + Soft-Min-SNR 30.71

Ablation Steps
A Global Attention Diffusion Hourglass (Section 4.1) 50.76
B1 A + Swin Attn. (Liu et al., 2021) 55.93
B2 A + Neighborhood Attn. (Hassani et al., 2023) 51.07
C B2 + GeGLU (Shazeer, 2020) 44.36
D C + Axial RoPE (Section 4.2) 41.41

E D + Soft-Min-SNR (Appendix C) 27.74
E2 D + Min-SNR (Hang et al., 2023) (γ = 5) 36.65
E3 D + Min-SNR (Hang et al., 2023) (γ = 4) 35.62

F1 E + Concatenation Skip 33.75
F2 E + Additive Skip 28.37

G E + AdaRMSNorm → AdaLN 27.69
H G + GeGLU → GeLU, DiT-style Output Gate 30.66

D.2. Effect of CFG for our 557M ImageNet-2562 Model

In addition to the analyses in Section 5.4, which do not use
classifier-free guidance (CFG) (Ho & Salimans, 2021), we
also analyze the FID-IS-tradeoff for difference guidance
scales wcfg (we follow the guidance scale formulation used
in (Saharia et al., 2022), where wcfg = 1 corresponds to no
classifier-free guidance being applied). The resulting curve
is shown in Figure 10, with the lowest FID of 3.21 being
achieved around wcfg = 1.3, with a corresponding IS of
220.6.

3The pixel-space DiT R2 was trained with an identical setup to
the rest of our ablations except for the optimizer parameters: we
initially tried training this model with our optimizer parameters
but found it to both be unstable and worse than with the original
parameters, so we used the original parameters from (Peebles &
Xie, 2023) for the comparison.
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Figure 10: Inception Score vs. Fréchet Inception Distance
at different classifier-free guidance weight scales (1 = no
guidance) for our 557M ImageNet-2562 model.

D.3. Scaling Behavior

To analyze the model’s scaling behavior, we train a set of
9 models with varying model & patch sizes. The hyperpa-
rameters are taken from our main 557M run and all models
are trained in exactly the same setting for 1M steps. The
shared hyperparameters are shown in Table 8a, and the indi-
vidual run-specific details are shown in Table 8b. We show
qualitative results in Table 6.

We show quantitative FID evaluations of the models in Ta-
ble 6. Curiously, the most compute-intensive model (557M,
patch size 42) not only underperforms its smaller peers,
but significantly underperforms the identically-configured
model from our large-scale ImageNet experiment (which,
following a longer 2.2M steps of training, achieved an FID
of 6.92 [3.21 with CFG]). We attribute this discrepancy
to a suboptimal choice of hyperparameters, imposing a
fixed learning rate (5e-4) and batch size (256) across all
experiments. Our large-scale ImageNet experiment (Sec-
tion 5.4) mitigates this high learning rate by employing
larger batch sizes later in training (see Table 7). The notion
of larger models’ preferring larger batch sizes / lower learn-
ing rates, is corroborated by the line of work investigating
µP-Parametrization (Yang & Hu, 2022; Yang et al., 2022a),
which found that, using standard parameterizations (as we
did for HDiT), a model’s optimal learning rate decreases
as size increases. Our learning rate of 5e-4 seems to work
well for small models but seems to be too high for the larger
models. Future work could change the parametrization to
µP to enable using the same learning rate for all scales and
revisit this experiment.

Qualitatively, we find that patch sizes as large as 162 and 82

are too ambitious for the transformer sizes (∼100–500M)
over which we ablated. Only the largest transformer (557M)
achieved consistent coherence, and even then, only at the
smallest patch size 42. Studying the examplar sample grids

in Figure 13: we see that generation of round tennis balls or
pumpkins succeeds at 42 patch size for all transformer sizes,
with some success also at 82 patch size for the largest trans-
former. Balloons are coherent at 42 patch size only, from the
largest transformer and tenuously from the smallest. French
loaves are coherent for the largest transformer only, at patch
size 42 (and tenuously 82, notwithstanding questionable
background forms), with texture best at 42 (and arguably
gummy at 82). Ultimately, the 82 patch size had too many
coherence failures to recommend it, with even the largest
transformer suffering discontinuous balloons, ill-defined cat
eyelids, hyperbolic fox ears, vases with apertures, amor-
phous bullfrogs, wolf eye asymmetry, unbalanced poodles,
and lemons eaten by their own leaves. Likewise, the medium
transformer struggles at the lowest patch size 42, exhibit-
ing octopoid loaves, indistinct fox bodies, asymmetric cats
and wolves, and fissured tennis balls. Coherence worsened
further as model size decreased or as patch size increased.

Table 6: Quantitative evaluation of our ImageNet-2562

Transformer Size vs Patch Size sweep, illustrated in Fig-
ure 13.

Parameter Small Medium Large

Patch Size 162

Parameters 116M 267M 507M
FID↓ 90.6 51.8 37.6

Patch Size 82

Parameters 134M 294M 547M
FID↓ 50.3 30.9 33.6

Patch Size 44

Parameters 139M 302M 557M
FID↓ 21.6 24.0 29.3

E. Implementation Details
This section aims to answer potential questions about imple-
mentation details of HDiT for convenience. For further
details, we refer to the reference implementation.

E.1. Scaled Cosine Similarity Attention

For the attention mechanism, we use a slight variation of the
cosine similarity-based attention introduced in (Liu et al.,
2022a) they dub Scaled Cosine Attention (a similar approach
has also recently been used in (Karras et al., 2023)): instead
of computing the self-attention as

SA(Q,K, V ) = softmax
(

QK⊤
√
dhead

)
V, (6)
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they compute it as

SCA(Q,K, V ) = softmax
(

simcos(Q,K)

τ
+Bij

)
V, (7)

with τ being a per-head per-layer learnable scalar, and Bij

being the relative positional bias between pixel i and j
(which we do not use in our models). In practice, they
parametrize τ based on a learnable parameter θ in the fol-
lowing way (Liu et al., 2022b):

1

τ
= exp

(
min

{
θ, log

1

0.01

})
, (8)

with θ being initialized to θ = log 10.

Improving Scale Learning Stability We find that their
parametrization of τ causes the learned scales to vary sig-
nificantly during training, necessitating the clamping to a
maximum value of 100 before exponentiation to prevent
destabilization of the training. In this setting, we find that a
significant number of scale factors τ reach this maximum
value and values below 1 during our trainings. We speculate
that this instability might be the cause of the behaviour ob-
served in (Wang, 2022), where using scaled cosine similarity
attention was detrimental to the performance of generative
models. To alleviate this problem, we find simply learning
τ directly, as done for normal attention in (Henry et al.,
2020), prevents this large variance of its values in our mod-
els, with our converged models’ scale typically reaching a
range between 5 and 50.

E.2. Axial RoPE

We extend rotary positional embeddings (Su et al., 2022) to
2D image data. We split the encoding to operate indepen-
dently along each axis, applying RoPE for each spatial axis
to half of the query and key each. Empirically, we find that
applying this embedding scheme to only half of key & query
and leaving the other half unmodified (see Figure 11 for an
illustration) results in better performance than applying it
for the full key & query.

Ry Rx 1

dhead

Figure 11: Illustration of our 2D axial RoPE embedding
scheme. The rotation for the vertical position Ry and
horizontal position Rx are applied to one quarter of the
key/query each, while the rest is left unaffected.

E.3. Conditioning

Adaptive RMSNorm Following common practice, we im-
plement conditioning using adaptive norms (Huang & Be-
longie, 2017), where we apply a standard RMSNorm (Zhang

& Sennrich, 2019)

xi,scaled =
xi

RMS(x)
· gi,with RMS(x) =

√√√√ 1

N

N∑
i=1

x2
i ,

(9)
with g being predicted from the mapping network based
on the conditioning c instead of being a learned vector as
g = 1 + mapping(c). At initialization, the final linear
projection is initialized to zero, making

Mapping Network The prediction of the RMSNorm scales
is implemented via a mapping network that takes the dif-
fusion timestep, the class conditioning, and, optionally,
augmentation information to prevent augmentation leakage
(Karras et al., 2020a).

The mapping network consists of N blocks that process the
conditioning information. The blocks’ architecture is almost
identical to our pointwise FFN block (see Figure 5). For the
initial embedding, we use a standard learnable embedding
for the class conditioning, and random fourier features (fol-
lowing (Karras et al., 2022)) followed by linear projections
for the diffusion timestep and augmentation conditioning.
An overview of the network and block structure is given in
Figure 12.
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Figure 12: An overview of our mapping network architec-
ture.

This general conditioning embedding is then passed to each
block in the main network, where it is projected locally to
obtain the relevant information for that block and obtain the
feature scales.

E.4. Token Merging & Splitting

For token merging and splitting inside our architecture, we
follow a standard Pixel-Shuffle (Shi et al., 2016)-based ap-
proach. Token merging is implemented as a reshaping of
the tensor from B ×H ×W ×C to B × H

M × W
M ×CM2
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(Pixel-UnShuffle), with M = 2, followed by a pointwise
linear projection to adjust the channel count to the appropri-
ate model width at that level. Similarly, token splitting is
implemented as a pointwise linear projection, bringing the
channel count from the model width to CM2, followed by
a reshaping B×H ×W ×CM2 to B×HM ×WM ×C
(Pixel-Shuffle). This follows various previous implementa-
tions such as (Zamir et al., 2022).
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F. Experiment Details
We provide an overview of all relevant hyperparameters, training hardware, and time for the experiments presented in this
paper in Table 7 and Table 8.

Table 7: Details of our training and inference setup.

Parameter ImageNet-1282 FFHQ-10242 ImageNet-2562

Experiment Ablation E4 (Section 5.2) High-Res Synthesis (Section 5.3) Large-Scale (Section 5.4)
Parameters 117M 85M 557M
GFLOP/forward 31 206 198

Training Steps 400k 1M 2.2M
Batch Size 256 256 256+5

Precision bfloat16 bfloat16 bfloat16
Training Hardware 4 A100 80GiB 64 A100 80GiB 8 H100 80GiB
Training Time 15 hours6 5 days6 7.6 days

Patch Size 4 4 4
Levels (Local + Global Attention) 1 + 1 3 + 2 2 + 1
Depth [2, 11] [2, 2, 2, 2, 2] [2, 2, 16]
Widths [384, 768] [128, 256, 384, 768, 1024] [384, 768, 1536]
Attention Heads (Width / Head Dim) [6, 12] [2, 4, 6, 12, 16] [6, 12, 24]
Attention Head Dim 64 64 64
Neighborhood Kernel Size 7 7 7

Mapping Depth 1 2 2
Mapping Width 768 768 768

Data Sigma 0.5 0.5 0.5
Sigma Range [1e-3, 1e3] [1e-3, 1e3] [1e-3, 1e3]
Sigma Sampling Density interpolated cosine interpolated cosine interpolated cosine

Augmentation Probability 0 0.12 0
Dropout Rate 0 [0, 0, 0, 0, 0.1] 0
Conditioning Dropout Rate 0.1 0.1 0.1

Optimizer AdamW AdamW AdamW
Learning Rate 5e-4 5e-4 5e-4
Betas [0.9, 0.95] [0.9, 0.95] [0.9, 0.95]
Eps 1e-8 1e-8 1e-8
Weight Decay 1e-2 1e-2 1e-2

EMA Decay 0.9999 0.9999 0.9999

Sampler DPM++(3M) SDE DPM++(3M) SDE DPM++(3M) SDE
Sampling Steps 50 50 50

4The other ablation steps generally use the same parameters, except for the architectural changes indicated in the experiment
description.

5We initially trained for 2M steps. We then experimented with progressively increasing the batch size (waiting until the loss plateaued
to a new, lower level each time), training at batch size 512 for an additional 50k steps, at batch size 1024 for 100k, and at batch size 2048
for 50k steps.

6Wall clock time, including startup, validation, checkpoint saving, etc.
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Table 8: Details of our ImageNet-2562 Transformer Size vs. Patch Size training and inference setup.

(a) Details common to all configs in our Trans-
former Size vs. Patch Size experiments.

Parameter

Training Steps 1M
Batch Size 256
Precision bfloat16

Attention Head Dim 64
Neighborhood Kernel Size7 7

Mapping Depth 2
Mapping Width 768

Data Sigma 0.5
Sigma Range [1e-3, 1e3]
Sigma Sampling Density interpolated cosine

Augmentation Probability 0
Dropout Rate 0
Conditioning Dropout Rate 0.1

Optimizer AdamW
Learning Rate 5e-4
Betas [0.9, 0.95]
Eps 1e-8
Weight Decay 1e-2

EMA Decay 0.9999

Sampler DPM++(2M) SDE
Sampling Steps 50

(b) Config-specific details of our Transformer Size vs. Patch Size experiments.

Parameter Small Medium Large

Patch Size 162

Parameters 116M 267M 507M
GFLOP/forward 29 68 129
Training Hardware 4 A100 80GiB 4 A100 40GiB 4 A100 40GiB
Training Time6 1.1 days 2.5 days 4.4 days

Levels (Local + Global Attention) 0 + 1 0 + 1 0 + 1
Depth 8 12 16
Widths 1024 1280 1536
Attention Heads (Width / Head Dim) 16 20 24

Patch Size 82

Parameters 134M 294M 547M
GFLOP/forward 44 91 163
Training Hardware 4 A100 80GiB 2×4 A100 40GiB 2×4 A100 40GiB
Training Time6 2.6 days 2.2 days 3.6 days

Levels (Local + Global Attention) 1 + 1 1 + 1 1 + 1
Depth [2, 8] [2, 12] [2, 16]
Widths [512, 1024] [640, 1280] [768, 1536]
Attention Heads (Width / Head Dim) [8, 16] [10, 20] [12, 24]

Patch Size 44

Parameters 139M 302M 557M
GFLOP/forward 60 115 198
Training Hardware 4xA100 40GiB 2x4xA100 40GiB 2x4xA100 40GiB
Training Time6 3.7 days 3.3 days 6.1 days

Levels (Local + Global Attention) 2 + 1 2 + 1 2 + 1
Depth [2, 2, 8] [2, 2, 12] [2, 2, 16]
Widths [256, 512, 1024] [320, 640, 1280] [384, 768, 1536]
Attention Heads (Width / Head Dim) [4, 8, 16] [5, 10, 20] [6, 12, 24]

7Transformers with patch size 162 did not possess any neighborhood attention levels
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G. Scaling Samples
We provide an equivalent of Fig. 7 from DiT (Peebles & Xie, 2023), where samples are generated with fixed random seed
across multiple patch sizes and transformer scales, in Figure 13. The quality of generated samples increases with smaller
patch sizes and larger transformers, matching the findings for DiT and demonstrating the scalability of HDiT.

30 – Bullfrog 259 – Pomeranian 266 – Miniature Poodle 270 – White Wolf

277 – Red Fox 281 – Tabby Cat 417 – Balloon 555 – Fire Engine

607 – Jack-o-Lantern 625 – Lifeboat 852 – Tennis Ball 883 – Vase

930 – French Loaf 951 – Lemon 980 – Volcano 985 – Daisy

Increasing Transformer Size
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Figure 13: Scaling behaviour of our HDiT across different model and patch sizes on pixel-space ImageNet-2562. All
models used to generate samples for this figure have been trained for 1M steps, and samples have been generated without
classifier-free guidance. Patch sizes shown are {16, 8, 4}, transformer sizes approximately double at each step, up to our
557M ImageNet-2562 model. See Table 8 for detailed hyperparameters.
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H. Our FFHQ-10242 Samples

Figure 14: Uncurated samples from our 85M HDiT FFHQ-10242 model.
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I. FFHQ-10242 Reference Samples

HDiT

StyleGAN2 (Karras et al., 2020b)

StyleGAN3-R (Karras et al., 2021a)

StyleGAN3-T (Karras et al., 2021a)

StyleSwin (Zhang et al., 2022a)

StyleGAN-XL (Sauer et al., 2022)

NCSN++ (Song et al., 2021)

Figure 15: Curated FFHQ-10242 reference samples from Hourglass, StyleGAN2 (Karras et al., 2020b), StyleGAN3-R
(Karras et al., 2021a), StyleGAN3-T (Karras et al., 2021a), StyleSwin (Zhang et al., 2022a), StyleGAN-XL (Sauer et al.,
2022), and NCSN++ (Song et al., 2021) models.
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J. Our ImageNet-2562 Samples

Figure 16: Uncurated random class-conditional samples from our 557M HDiT ImageNet-2562 model.

25



Hourglass Diffusion Transformers

Figure 17: More uncurated random class-conditional samples from our HDiT-557M ImageNet-2562 model.
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