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ABSTRACT

Graphs are essential tools for modeling complex relationships. While prior re-
search with earlier generations of large language models (LLMs) showed them
to struggle with basic graph primitives, we find that the situation has changed
with modern state-of-the-art (SOTA) LLMs, which excel at these tasks. Given
these advances, we propose a more challenging evaluation problem: graph mod-
ification, a foundational, interpretable, and non-trivial problem in which an LLM
must determine the outcome of adding or deleting a given sequence of nodes or
edges, and potentially then compute on the resulting modified graph. We intro-
duce GraphModQA, a novel benchmark dataset comprising graph modification
question-answer pairs designed to rigorously test LLMs’ abilities in graph manip-
ulation and dynamic reasoning. Our results show that while SOTA LLMs perform
well on static graph property tasks, their accuracy degrades on graph modifica-
tion tasks; their performance is particularly low as the number of modifications
increases, and when the adjacency matrix is used to represent the graph — an es-
sential encoding not explored in previous work. We provide new techniques for
improving performance on graph modification tasks, and we introduce Modify-
and-Print (MAP) prompting, which asks models to output the intermediate adja-
cency matrices at each step, and which markedly improves the models’ perfor-
mance. Our findings highlight a critical gap in current LLM capabilities regarding
dynamic graph reasoning tasks and underscore the potential of techniques like
MAP prompting to mitigate these challenges.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized various aspects of natural language process-
ing, demonstrating remarkable capabilities in understanding and generating human-like text (Brown
et al. (2020)). Despite their success, the intersection of LLMs and graph-based tasks remains un-
derstudied. Graphs are fundamental for modeling complex relationships in domains such as social
networks and recommender systems (Schneider et al. (2022); Wu et al. (2022)). Understanding how
LLMs can be leveraged to process and reason about graph structures is crucial for advancing their
applicability in these areas.

Previous work by Wang et al. (2024a) explored the ability of pretrained LLMs to handle a variety of
graph tasks. This study included tasks such as calculating shortest paths and simulating graph neural
networks, highlighting the challenges LLMs face with graph-structured data. Building upon this,
Fatemi et al. (2023) introduced GraphQA, a synthetic dataset of graph property question-answer
pairs, which included additional and more fundamental graph property tasks, such as calculating
the number of nodes in the graph or the degree of a particular node, noting the simplicity and
interpretability of these tasks compared to those in Wang et al. (2024a). Through these experiments,
Fatemi et al. (2023) concluded that LLMs, in particular models from the PaLM family (Anil et al.
(2023)) performed poorly on fundamental graph property tasks when provided with various graph
encoding functions such as incident lists or textual descriptions, indicating a limitation in their ability
to process and reason about structured data represented in graphs.

While prior research with earlier generations of large language models (LLMs) showed them to
struggle with basic graph primitives, it is unknown how modern state-of-the-art (SOTA) LLMs per-
form on these property tasks. Modern LLMs have shown huge performance increases across many
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reasoning tasks compared to PaLM (Dubey et al. (2024)), suggesting the possibility that these per-
formance increases may translate into the domain of graph reasoning. Our empirical analysis reveals
that contemporary state-of-the-art (SOTA) LLMs now excel at basic graph property tasks. Models
such as o1-mini and Llama 3.1 405B demonstrate proficiency in identifying patterns and making
simple inferences from graph data across different encoding methods.

Given these advances, we propose a more challenging evaluation problem: graph modification.
Unlike static graph property tasks, graph modification requires models to perform a sequence of
operations—such as adding or removing nodes or edges—and then answer questions about the re-
sulting graph or output the modified graph itself. These tasks, which have yet to be studied in the
context of LLMs, are foundational and interpretable yet non-trivial, as they necessitate maintaining
and updating an internal representation of the graph through each modification step. The task of out-
putting the final modified graph is especially complex due to the intricacies of the output space. In
real-world applications, graphs are rarely static; they evolve over time with the addition or removal
of nodes and edges. This dynamic nature is evident in domains like social network analysis, where
relationships and interactions constantly change (Kazemi et al. (2020)), and in evolving knowledge
bases that need to adapt to new information (Trivedi et al. (2017); Schneider et al. (2022)). To fully
assess the graph reasoning capabilities of modern LLMs, it is essential to evaluate their ability to
understand and manipulate graphs that undergo modifications. Reasoning on these graphs com-
bines the inherent difficulty of dynamic state maintenance with high-level reasoning about the final
modified graph, making it significantly more rigorous in evaluating a model’s capability to handle
evolving graph structures.

We introduce GraphModQA, a novel benchmark dataset containing graph modification question-
answer pairs. GraphModQA is designed to rigorously test LLMs’ abilities in graph manipulation
and dynamic reasoning. It includes a variety of graph encoding functions, with the addition of the
adjacency matrix—a fundamental representation not explored in previous work. Compared to static
graph property tasks, we find that SOTA LLMs’ performance degrades notably on graph modifica-
tion tasks, especially as the number of modifications increases. This decline is most pronounced
when using the adjacency matrix encoding, highlighting the unique challenges posed by this encod-
ing due to its dense and numerical nature.

To address this low performance, we explore and evaluate techniques aimed at improving LLM per-
formance on graph modification tasks. We find that Chain-of-Thought (CoT) prompting can lead to
performance increases for Claude 3.5 Sonnet and Llama 3.1 405B, yet we observe little to no perfor-
mance gain in most cases where more CoT examples are included in the prompt. Across all baseline
models and on multiple modification tasks, we find prompting the LLM to print intermediate graphs
leads to notable performance gains. We call this technique Modify-and-Print (MAP) prompting, a
simple yet effective technique where models are instructed to print the intermediate graph resulting
from each modification step. MAP prompting significantly improves the models’ ability to reason
about the final graph over multiple modification steps. By explicitly generating the intermediate
states, the models can better track changes and maintain accurate internal representations, leading
to enhanced performance on the final tasks.

While we identify prompting techniques that improve the performance of LLMs on graph modifica-
tion tasks, overall, LLMs are still not proficient in modifying graphs. The observed difficulties with
graph modifications and adjacency matrix encodings underscore the need for improved models or
training strategies that can handle dynamic, structured data more effectively. These results call for a
shift in benchmarking practices toward tasks that require manipulation of graph data, thereby better
aligning evaluations with real-world applications in dynamic networks and systems.

In summary, this work makes the following contributions:

1. Empirical Evidence of LLM Capabilities: We demonstrate that modern SOTA LLMs ex-
cel at basic graph property tasks across various encoding functions, challenging previous
notions of their limitations.

2. Introduction of GraphModQA: We present a novel benchmark dataset designed to eval-
uate LLMs on graph modification tasks, providing a rigorous testbed for dynamic graph
reasoning.
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Figure 1: Previous work (Fatemi et al. (2023)) focus their effort on evaluating LLMs on graph
property tasks (top), whereas this work focuses on graph modification tasks (bottom).

3. Analysis of LLM Performance on Graph Modifications: We reveal that SOTA LLMs ex-
perience significant performance degradation on graph modification tasks, especially with
adjacency matrix encodings and increasing numbers of modifications.

4. Development of MAP Prompting Technique: We propose the Modify-and-Print (MAP)
prompting method, which markedly improves LLM performance on dynamic graph tasks
by instructing models to output intermediate adjacency matrices.

By addressing the challenges identified in this study, we aim to advance the development of LLMs
capable of sophisticated reasoning over dynamic and structured data, thereby expanding their appli-
cability in complex, real-world scenarios.

2 RELATED WORKS

LLMs for graph reasoning: Wang et al. (2024a) explores the capability of LLMs to tackle various
graph-based tasks. This study evaluates tasks such as topological sort, maximum flow, and bipartite
graph matching. Fatemi et al. (2023) delves into different methods for encoding graphs as text, with
a particular focus on evaluating different encodings of graphs as text. This work builds upon Wang
et al. (2024a) by introducing more interpretable, straightforward, and fundamental tasks, focusing
on fundamental graph properties. The graph property tasks evaluated in Fatemi et al. (2023) in-
clude: Node Count (counting the total number of nodes in the graph), Edge Count (counting the
total number of edges in the graph), Node Degree (calculating the degree of a given node), Edge
Existence (determining if an edge exists between two nodes), Connected Nodes (identifying nodes
connected to a given node), and Cycle Check (determining whether or not a cycle exists in the
graph).

Both sets of tasks found in Wang et al. (2024a) and Fatemi et al. (2023) are limited to returning graph
properties. In addition, Fatemi et al. (2023) use LLMs in the PaLM family as their benchmarks and
concluded that LLMs perform poorly on these tasks. Our work evaluates SOTA LLMs on the graph
property tasks defined in Fatemi et al. (2023), finding that modern LLMs strongly outperform PaLM
62B on these tasks. We then shift the focus to graph modification tasks, which potentially better
evaluate the graph reasoning and manipulation capabilities of state-of-the-art LLMs.
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Outside of Fatemi et al. (2023) and Wang et al. (2024a), there exists a small yet emerging body of
work at the intersection of LLMs and graph reasoning. Perozzi et al. (2024) directly follows up
on Fatemi et al. (2023) by utilizing and finetuning soft-token prompts to better encode graphs for
LLMs, whereas this work aims to further investigate the inherit graph reasoning abilities of pre-
trained LLMs. In this paper, following Fatemi et al. (2023) and Wang et al. (2024a), we freeze
the parameters of the LLM, and the model operates in a black box setup, consuming and produc-
ing text without updating its parameters via any gradient-based optimization. Additionally, Zhang
et al. (2023) addresses the challenges of solving spatial-temporal problems on dynamic graphs us-
ing LLMs, evaluating various LLMs’ abilities to solve various spatio-temporal graph property tasks
rather than their abilities to modify a graph manually. He et al. (2024) utilizes retrieval-augmented
generation techniques to improve LLM performance on graph understanding and question answer-
ing. Guo et al. (2023) provides a broad empirical evaluation of LLMs’ understanding of graph-
structured data.

LLMs for graph generation: Yao et al. (2024) focuses on the generation of graphs from scratch
by LLMs. It explores the potential of LLMs to create coherent and meaningful graph structures,
whereas this work tests LLMs’ abilities to modify existing ones. Wang et al. (2024b) examines how
well LLMs can recall graph structures from text, emphasizing the accuracy of retrieving specific
graph microstructures.

Multi-step Reasoning Datasets: Datasets that test multi-step or multi-hop reasoning abilities of
LLMs are crucial for evaluating complex reasoning skills. Examples of such datasets include Hot-
potQA (Yang et al. (2018)), which involves answering questions that require synthesizing informa-
tion from multiple Wikipedia articles, and ComplexWebQuestions (Talmor & Berant (2018)), which
extends simple questions to multi-hop queries. These datasets challenge LLMs to perform intricate
reasoning over multiple steps to arrive at a correct answer.

The babI dataset (Weston et al. (2015)) is another significant benchmark in this context, designed to
test the multi-step reasoning capabilities of language models through a series of question-answering
tasks that require the model to follow a chain of reasoning steps. Its significance lies in its struc-
tured and incremental approach to testing different types of reasoning, making it a valuable tool for
assessing models’ abilities to handle sequential logical operations. Our work aims to build a sim-
ilar dataset to baBI, specifically targeting multi-step graph reasoning, in order to evaluate LLMs’
abilities to perform reasoning over dynamic graph structures.

3 PRELIMINARIES

This section outlines our approach to measuring the graph reasoning abilities of LLMs, detailing the
notation used, our evaluation methodology, and the construction of our datasets.

3.1 NOTATION

Let f represent the interface function to a generative AI model, which processes high-dimensional
discrete input tokens W and produces output in the same token space. For this study, f refers to a
pre-trained Large Language Model (LLM). We define graphs as G = (V,E), where V is the set of
nodes (vertices) and E ⊆ (V × V ) is the set of edges connecting them.

3.2 GRAPH REASONING WITH LLMS

Following Fatemi et al. (2023), we evaluate an LLM’s graph reasoning abilities by presenting it
with a graph G and a question Q. The LLM generates an answer A, which is compared to a ground-
truth solution S. Fatemi et al. (2023) conducted their evaluation over a dataset D of (g(G), q(Q), S)
triples . We define g(G) as the graph encoding function, which can represent G in various textual for-
mats, such as an adjacency matrix, an incident list, or a descriptive format. Similarly, we define q(Q)
as the question rephrasing function, which can employ different prompting methods, including zero-
shot prompting and chain-of-thought prompting (Wei et al. (2022)). The performance of the LLMs
is evaluated by iterating over D, and calculating the proportion of answers A = f(g(G), q(Q)) that
match with the corresponding ground-truth solution S.
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3.3 GRAPHQA

Fatemi et al. (2023) developed GraphQA, a significant and comprehensive synthetic dataset com-
prising (g(G), q(Q), S) triples. The questions in GraphQA target basic graph properties, such as
counting nodes and edges, with answers formatted as simple integer counts or yes/no responses.
The primary objective of Fatemi et al. (2023) was to explore the performance implications of vari-
ous graph encoding functions g(.), question rephrasing functions q(.), and LLM architectures f(.)
on the GraphQA dataset.

4 GRAPHMODQA

In this section, we introduce GraphModQA, a novel dataset specifically designed to evaluate the
graph modification capabilities of LLMs. We provide a detailed description of the graph generation
process, the structure of the dataset, and the types of modifications included to rigorously test LLMs’
abilities to manipulate graph structures.

4.1 GRAPH GENERATION

The foundation of GraphModQA lies in the diverse and robust generation of graph structures. Con-
sistent with the methodologies outlined by Wang et al. (2024a) and Fatemi et al. (2023), we generate
250 undirected Erdős-Rényi (ER) graphs, where the total number of nodes in each graph, n, is sam-
pled from a uniform distribution on a finite interval, and for each pair of nodes (i, j), the probability
p that an edge exists between them is also sampled from a uniform distribution U(0, 1). This diver-
sity in graph structure is crucial for ensuring that the dataset comprehensively evaluates the LLMs’
graph reasoning abilities across different graph configurations.

4.2 DATASET STRUCTURE

GraphModQA is constructed as a collection of (g(G),m(M,k), q(Q), S) 4-tuples. Here, G again
represents the generated graph. We introduce m(M,k) as the modification sequence function,
which outputs a sequence of k modifications of type M to be performed on G. Q denotes a final
question on the resulting graph, and S is the ground-truth solution to the question after all modi-
fications have been applied. We illustrate this in Figure 1 and in Section A.9, which shows some
example prompt inputs and model outputs. Additionally, we show the algorithms used to construct
GraphModQA in Section A.3.

4.2.1 GRAPH ENCODING FUNCTION g(G)

Similar to Fatemi et al. (2023), we define g(G) as the graph encoding function, which represents
the graph G in a format suitable for input to the LLM. In GraphModQA, we utilize two encoding
functions previously defined in Fatemi et al. (2023), namely the Incident List and Coauthorship en-
codings. In addition to these two encodings, we introduce the Adjacency Matrix encoding in this
work and focus on it in the main sections of the paper due to its challenging nature for LLMs.
The adjacency matrix is a matrix representation where each entry Aij indicates the presence (1) or
absence (0) of an edge between nodes i and j. Surprisingly, this encoding has yet to be explored
as a graph encoding function in previous studies. Effectively manipulating adjacency matrices is
important for LLMs because they are fundamental to many modern graph algorithms and applica-
tions. Adjacency matrices are widely used for storing and processing graph data in computational
systems due to their suitability for matrix operations and compatibility with linear algebra-based
techniques. Enabling LLMs to interpret and manipulate adjacency matrices extends their applicabil-
ity to a broader range of real-world tasks in network analysis, computational biology, and machine
learning for graphs, where adjacency matrices are a standard representation.

Additionally, the adjacency matrix provides a more challenging representation for the LLMs. This is
not only because the adjacency matrix presents a dense numerical format that lacks the natural lan-
guage cues of other encodings, or that the format forces models to reason on both the presence and
absence of edges, but also because it relies on an implicit numbering scheme for nodes, where node
identifiers correspond directly to the indices of the matrix. When modifications such as node re-
moval occur, this implicit numbering becomes particularly challenging, as the nodes in the resulting
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graph must be renumbered to maintain a contiguous matrix structure. For example, if an adjacency
matrix represents nodes 0 to 4 and node 2 is removed, the third row and column are eliminated, and
subsequent nodes are effectively renumbered—node 3 becomes node 2, node 4 becomes node 3.
This renumbering adds an extra layer of complexity for the LLM to manage during reasoning and
updates, increasing the difficulty of accurately interpreting and manipulating the graph.

4.2.2 MODIFICATION SEQUENCE FUNCTION m(M,k)

The modification sequence function m(M,k) lists in text the sequence of k modifications
m1,m2, ...,mk to be performed on G, resulting in a final graph Gk. The intermediate modifica-
tions in each sequence must belong to the same modification type M , where these types include: 1)
Add Edge (instructing the model to add an edge between two sampled and unconnected nodes), 2)
Remove Edge (instructing the model to remove the existing edge between two sampled and con-
nected nodes), 3) Add Node (instructing the model to add a new node to the graph), 4) Remove
Node (instructing the model to remove an existing node from the graph, along with all its associated
edges), and 5) Mix (uniformly sampling one of the four previously defined modifications at each
step k in the sequence).

4.2.3 FINAL QUESTION Q AND QUESTION REPHRASING q(Q)

We ask the LLM to answer a final question Q based on the final modified graph Gk. We include
multiple graph property questions from Fatemi et al. (2023) and give additional details regarding
these tasks in Section A.1. In addition to these property tasks, we introduce another final question,
Print Graph, which requires the LLM to output the entire Gk in the same format as the graph
encoding function g(G). This task is particularly challenging because it necessitates the model to
accurately reconstruct and output the full graph structure after multiple modifications, demanding
precise state tracking and a comprehensive internal representation.

We define q(Q) as the question rephrasing function, which can involve different prompting methods.
In GraphModQA, we explore various prompting techniques to assess their impact on the models’
performance, including zero-shot prompting (providing the question without any additional con-
text or examples), Chain-of-Thought (CoT) prompting with 1 to 3 examples (including a list of
examples that each demonstrate the reasoning process step-by-step), and Modify-and-Print (MAP)
prompting (a novel prompting technique for graph modification tasks introduced in Section 5.3).

4.3 DATASET CONSTRUCTION

For each randomly generated input graph G, we define five components that can vary when con-
structing a single dataset entry:

• Graph encoding function g(): We use three encoding types: Adjacency Matrix, Inci-
dent, and Coauthorship.

• Modification type M : There are five modification types: Add Edge, Remove Edge, Add
Node, Remove Node, and Mix.

• Number of modifications k: This ranges from 1 to 5.

• Final question Q: Five question types are used: Node Count, Edge Count, Node Degree,
Connected Nodes, and Print Graph.

• Question rephrasing function q(): We employ five prompting methods: zero-shot
prompting, CoT prompting with one example, CoT with two examples, CoT with
three examples, and MAP prompting.

To illustrate the dataset construction process, we include Algorithm 6 in Section A.3, which de-
scribes how GraphModQA entries are generated. The algorithm assumes fixed graph encoding and
question rephrasing functions. For each of the 250 initial graphs, the algorithm applies five rounds
of modifications. In each round, five different types of modifications are performed, resulting in 5
modified versions of the graph per round. For each modified graph, five questions are posed from
the predefined set of final questions Q. Each round builds upon the previous one, where each of the
five modified graphs undergoes an additional modification. Thus, each initial graph contributes 5

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

modification rounds × 5 modifications × 5 questions = 125 entries to the dataset. To account for
the three graph encoding functions and five question rephrasing methods, the total size of Graph-
ModQA becomes: 250 graphs × 125 entries per graph × 3 encodings × 5 rephrasings = 468,750
unique examples.

5 EXPERIMENTS

In this section, we summarize the results of our experiments. For each experiment, we evaluate
using 4 SOTA LLMs: GPT-4o mini, Llama 3.1 405B, Claude 3.5 Sonnet, and o1-mini. We
provide further implementation details of these experiments in Section A.2.

5.1 GRAPH PROPERTY TASKS

To establish a baseline and compare our findings with previous work, we evaluated the performance
of state-of-the-art (SOTA) LLMs on basic graph property tasks similar to those presented in Fatemi
et al. (2023). We follow Fatemi et al. (2023) by generating and evaluating on 500 ER graphs, where
the size of each graph n is drawn from U(5, 20). We provide results obtained from our experiments
with SOTA LLMs in the Appendix (see Tables 1 and 2). These tables clearly demonstrates that
SOTA LLMs significantly outperform the PaLM models previously reported in Fatemi et al. (2023)
on these basic graph property tasks. This substantial improvement highlights the advancements in
LLM capabilities and sets the stage for our exploration of more complex graph reasoning tasks in
the following sections.

5.2 GRAPH MODIFICATION TASKS

Building upon the baseline established with static graph property tasks, we investigated the per-
formance of SOTA LLMs on the more challenging graph modification tasks introduced in Graph-
ModQA. To evaluate the ability of LLMs to handle dynamic graph modifications, we utilized a
dataset comprising 250 initial graphs where the size of each graph n is drawn from U(7, 20). For
each of these graphs, using the Adjacency Matrix encoding, we applied 1 to 5 modifications for
each of the five modification types—Add Edge, Remove Edge, Add Node, Remove Node, and
Mix—resulting in multiple sets of modified graphs. After applying the specified modifications to
each initial graph, we posed the Print Graph final question to the LLMs, instructing them to out-
put the resulting modified graph in the form of an adjacency matrix. This comprehensive approach
allows us to systematically evaluate the models’ capabilities in maintaining and updating internal
graph representations across varying levels of complexity. We illustrate the performance of each
LLM in Figure 2, and we report the performance of each LLM on different graph encoders and final
questions in the Appendix in Section A.6.

Our results indicate that across all modification types, models generally perform worse as the number
of modifications increases, which suggests challenges in maintaining and updating an internal graph
representation over multiple steps. Notably, the models perform the worst on the Remove Node and
Mix modifications. The difficulty with the Remove Node modification can likely be attributed to
the challenges associated with managing the adjacency matrix representation, where when a node
is removed, not only must the corresponding row and column be deleted, but the indices of all
subsequent nodes must be decremented to maintain the proper numbering scheme. In the Mix
modifications, the models face the compounded challenge of handling a variety of modification
types within a single sequence. The necessity to adapt to different operations—such as adding an
edge in one step and removing a node in the next—requires flexible reasoning and robust state
tracking, which current LLMs struggle to perform effectively with the adjacency matrix encoding.
Overall, while Claude 3.5 Sonnet outperforms other models across the five modification types, o1-
mini demonstrates superior performance on the two most challenging tasks, Remove Node and Mix,
after a few modification steps. This suggests that o1-mini’s internal reasoning capabilities become
increasingly effective as the complexity of the modification sequence grows.

Overall, our findings indicate that while SOTA LLMs have made substantial progress in handling
static graph property tasks, significant challenges remain in the context of dynamic graph modifi-
cations, especially when dealing with complex encodings like the adjacency matrix. These results
emphasize the need for improved models and prompting techniques to enhance the graph reason-
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Figure 2: Results of all models on the Print Graph task, for each modification type, using the
Adjacency Matrix encoding.

ing capabilities of LLMs in real-world applications involving dynamic and evolving networks. We
include a detailed analysis on the types of errors these models make on the Print Graph task, as
well as the frequencies of these errors, in Section A.8. In subsequent sections, we explore potential
methods to improve performance.

5.3 IN-CONTEXT LEARNING

In this section, we explore potential methods for increasing the performance of LLMs on graph
modification tasks, focusing on the adjacency matrix encoder and the Print Graph task. We track
the performance of various in-context learning methods across 1 to 5 modification steps for the same
250 graphs, and compare the performance of these methods to the zero-shot performance reported
in the previous section. We show the results for o1-mini in Figure 3, and results for the other LLMs
can be found in Section A.4.

5.3.1 CHAIN-OF-THOUGHT PROMPTING

Chain-of-thought (CoT) prompting (Wei et al. (2022)) is a technique that encourages the model to
generate intermediate reasoning steps before producing the final answer. By providing examples of
detailed reasoning in the prompt, the model is guided to follow a similar process when answering
new questions. In our experiments, we evaluated the impact of including 1, 2, and 3 CoT examples
in the prompt on the models’ performance. The models differed crucially in how much they were
helped by CoT prompting. For Claude 3.5 Sonnet and Llama 3.1 405B, we observed in Figures
4 and 5 respectively that CoT prompting generally helps boost performance across all five modifi-
cation types. In contrast, for GPT-4o mini, we did not observe significant changes in performance
with CoT prompting, as shown in Figure 6. For all models, CoT performance remained relatively
consistent regardless of the number of examples included, indicates that they may not be leveraging
the additional reasoning steps provided in the prompt to enhance its performance on these tasks.

Interestingly, with the o1-mini model, we observed a large drop in performance when using CoT
prompting (Figure 3). In general, the model performed worse with CoT examples compared to
zero-shot prompting across all modification types. This decline in performance is likely due to the
fact that o1-mini reasons internally, and external CoT prompting does not complement its internal
reasoning processes.
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Figure 3: o1-mini In Context Learning Results.

5.3.2 MODIFY-AND-PRINT (MAP) PROMPTING

We introduce the Modify-and-Print (MAP) prompting technique as a simple yet effective method
to improve model performance on graph modification tasks. In MAP prompting, we instruct the
model to output every intermediate graph after each modification. By requiring the model to ex-
plicitly generate the intermediate adjacency matrices, we aim to help it maintain a clear internal
representation of the graph as it undergoes changes. We illustrate MAP prompting in Section A.9.

We find that MAP prompting performs especially well on edge-related tasks (Add Edge and Re-
move Edge). This is evident for the o1-mini and Claude 3.5 Sonnet models in Figures 3 and 4, where
MAP prompting consistently achieves higher accuracy than zero-shot and CoT prompting. The im-
provement is especially pronounced with the o1-mini model, where there is a large gap between
MAP prompting and the other methods. This suggests that MAP prompting effectively supports
the model’s reasoning process by reinforcing state tracking through explicit output of intermediate
graphs. On the other modifications—Add Node, Remove Node, and Mix—MAP prompting tends
to remain competitive with CoT prompting.

An interesting observation emerges when examining the performance of MAP prompting on the first
modification step. Intuitively, MAP prompting should perform near-identically to zero-shot prompt-
ing when only one modification is applied, as there is only one intermediate modification, which is
the final answer. However, we observe that MAP prompting greatly outperforms zero-shot prompt-
ing even on the first modification step. This indicates that the presence of the instruction to output
intermediate graphs has a significant positive effect on the models’ performance. Furthermore, this
suggests that MAP prompting not only aids in state tracking but also likely enhances the models’
attention to the modification process, leading to more accurate outputs.

Overall, MAP prompting demonstrates its potential as a powerful technique to improve LLM per-
formance on dynamic graph reasoning tasks. By encouraging explicit generation of intermediate
states, it helps models navigate complex sequences of modifications, especially in tasks involving
edge additions and removals. This finding underscores the importance of prompting strategies that
align closely with the reasoning demands of the task.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSION

In this paper, we have explored the graph reasoning capabilities of state-of-the-art large language
models (LLMs) by introducing GraphModQA, a novel benchmark designed to assess models on
dynamic graph modification tasks. Our findings reveal that while modern LLMs excel at basic graph
property tasks—a significant improvement over previous generations—they exhibit notable perfor-
mance degradation when tasked with modifying graphs, especially as the number of modifications
increases. This decline is most pronounced when using the newly-explored Adjacency Matrix en-
coding, highlighting the challenges LLMs face in interpreting and manipulating dense numerical
representations that require precise state tracking, node renumbering, and the recognition of both
the presence and absence of edges.

To address these challenges, we investigated the effectiveness of in-context learning strategies,
including Chain-of-Thought (CoT) prompting and our proposed Modify-and-Print (MAP)
prompting technique. We found that both CoT and MAP prompting can significantly improve
model performance, but their effectiveness varies depending on the task and the model. CoT prompt-
ing aids models by providing guided reasoning steps, which is particularly beneficial for models
like Claude 3.5 and Llama 3.1 in handling complex decision-making processes. MAP prompting
enhances performance by requiring models to explicitly generate intermediate graph states, thereby
aiding in state tracking and manipulation tasks—this was especially effective across all models in
edge addition and removal modifications. These findings suggest that leveraging the appropriate
prompting technique can help overcome specific challenges in dynamic graph reasoning. Our work
highlights the importance of tailored prompting strategies and calls for further research into meth-
ods that enhance LLMs’ abilities to process and reason about dynamic graph structures in various
contexts.
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A APPENDIX

A.1 FINAL QUESTIONS

After applying the sequence of k modifications to the initial graph G , we pose a final question Q to
the LLM based on the resulting modified graph Gk . The final questions are designed to assess the
model’s understanding and reasoning about the graph’s properties and structure. The following are
the types of final questions included in our evaluation:

• Node Count: Calculate the total number of nodes in the modified graph Gk . This question
evaluates the model’s ability to accurately track the addition or removal of nodes throughout
the modification sequence.

• Edge Count: Calculate the total number of edges present in the modified graph Gk This
requires the model to account for all edge additions and deletions, testing its capability to
maintain an updated edge set.

• Node Degree: Report the degree of a uniformly sampled node in the modified graph Gk.
The degree of a node is the number of edges incident to it. This question assesses the
model’s understanding of local graph topology and its ability to compute node-specific
properties after modifications.

• Connected Nodes: List all nodes that are directly connected to a uniformly sampled node
in the modified graph Gk. This task tests the model’s ability to identify and retrieve adja-
cency information for a given node.

• Print Graph: Output the entire modified graph Gk in the same format as the graph en-
coding function g(G). This question is particularly challenging as it requires the model to
reconstruct the complete structure of the graph after all modifications, demanding precise
state tracking and comprehensive internal representation.

These final questions cover both global properties (e.g., node and edge counts) and local properties
(e.g., node degree, connected nodes), as well as the ability to reproduce the full graph structure.
By including a variety of question types, we aim to thoroughly evaluate the LLMs’ proficiency in
understanding, manipulating, and reasoning about graphs after dynamic changes.

A.2 IMPLEMENTATION DETAILS

For our experiments, we evaluated four SOTA LLMs, o1-mini, GPT 4o-mini, Claude 3.5 Sonnet,
and Llama 3.1 405B, using the OpenAI, Anthropic, and Fireworks AI APIs. We set the decoding
temperature of all models to zero. We used the NetworkX library Hagberg et al. (2008) to generate
all ER, Star, Path, Complete and Empty graphs, as well as the solutions to each final question. For
each of the 250 ER input graphs from Section 5.2, the total number of nodes in each graph, n, is is
drawn from U(7, 20), and for each pair of nodes (i, j), the probability p that an edge exists between
them is also sampled from a uniform distribution U(0, 1). We used Algorithm 6 to generate the
entire GraphModQA dataset, resulting in 468,750 unique examples generated from the 250 input
graphs. We restricted our evaluation of all four models to these examples due to monetary costs, and
encourage future research to expand this dataset for further evaluation.
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A.3 DATASET GENERATION ALGORITHM

In this section, we provide the pseudocode for the algorithms necessary for generating the Graph-
ModQA dataset. Algorithms 1, 2, 3, 4, and 5 describe the generation behind individual modification
instructions, and 6 describes the dataset generation process for GraphModQA. Regarding Algorithm
4, when evaluating the LLMs on final questions that used the Adjacency Matrix encoding and in-
volved Remove Node modifications, we found that their performance was nearly zero until we
appended the phrase “and renumber the nodes accordingly” to “Remove node v from the graph”.
This highlights the importance of providing explicit instructions to LLMs when tasks involve im-
plicit node numbering schemes, as it ensures they correctly update and interpret the modified graph
representations.

Algorithm 1 ADDEDGE

Require: Graph G
Ensure: Modified Graph G′

1: G′ ← G
2: (i, j) ∼ U(VG′ × VG′ \ EG′)
3: EG′ ← EG′ ∪ {(i, j)}
4: return G′, “Add an edge between nodes i and j.”

Algorithm 2 REMOVEEDGE

Require: Graph G
Ensure: Modified Graph G′

1: G′ ← G
2: (i, j) ∼ U(EG′)
3: EG′ ← EG′ \ {(i, j)}
4: return G′, “Remove the edge between nodes i and j.”

Algorithm 3 ADDNODE

Require: Graph G
Ensure: Modified Graph G′

1: G′ ← G
2: VG′ ← VG′ ∪ {v}, EG′ ← EG′

3: return G′, “Add a node v to the graph.”

Algorithm 4 REMOVENODE

Require: Graph G
Ensure: Modified Graph G′

1: G′ ← G
2: v ∼ U(VG′)
3: VG′ ← VG′ \ {v}, EG′ ← EG′ \ {(v, u) | u ∈ VG′}
4: return G′, “Remove node v from the graph.”

Algorithm 5 MIX

Require: Graph G
Ensure: Modified Graph G′

1: G′ ← G
2: MODIFICATION ∼ U({ADDEDGE, REMOVEEDGE, ADDNODE, REMOVENODE})
3: return MODIFICATION(G′)

13
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Algorithm 6 ConstructGraphModQA

Require: Number of graphs to generate N
Ensure: Dataset D containing multi-step tasks for all final queries and k values

1: Initialize an empty dataset D
2: Define the set of possible final questions Q = {Node Count,Edge Count,Node Degree,

Connected Nodes,Print Graph}
3: Define the maximum number of modifications kmax = 5
4: Define VG as the set of nodes in any graph G, and EG as the set of edges in any graph G
5: for i = 1 to N do
6: Sample n ∼ U(7, 20)
7: Generate an undirected Erdős-Rényi graph G = (V,E) with |V | = n and sample edge

probability p ∼ U(0, 1)
8: Initialize graphs GAE , GRE , GAN , GRN , GMX ← G
9: Initialize MAE ,MRE ,MAN ,MRN ,MMX ← []

10: for k = 1 to kmax do
11: GAE ,mAE ← ADDEDGE(GAE) 1
12: MAE ←MAE ∥mAE

13: GRE ,mRE ← REMOVEEDGE(GRE) 2
14: MRE ←MRE ∥mRE

15: GAN ,mAN ← ADDNODE(GAN ) 3
16: MAN ←MAN ∥mAN

17: GRN ,mRN ← REMOVENODE(GRN ) 4
18: MRN ←MRN ∥mRN

19: GMX ,mMX ← MIX(GMX ) 5
20: MMX ←MMX ∥mMX

21: Mods = {(GAE ,MAE), (GRE ,MRE), (GAN ,MAN ), (GRN ,MRN ), (GMX ,MMX)}
22: for Q ∈ Q do
23: for (GMod,MMod) ∈Mods do
24: if Q = Node Count then
25: S ← |VGMod

|
26: else if Q = Edge Count then
27: S ← |EGMod

|
28: else if Q = Node Degree then
29: v ∼ U(VGMod

)
30: S ← |{u ∈ VGMod

| (v, u) ∈ EGMod
}|

31: else if Q = Connected Nodes then
32: v ∼ U(VGMod

)
33: S ← {u ∈ VGMod

| (v, u) ∈ EGMod
}

34: else if Q = Print Graph then
35: S ← GMod

36: end if
37: D ← D ∪ (G,MMod, Q, S)
38: end for
39: end for
40: end for
41: end for
42: return D
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A.4 FURTHER IN CONTEXT LEARNING RESULTS

In this section we show the in context learning results achieved by Claude 3.5 Sonnet, Llama 3.1
405B, and GPT-4o mini on the Print Graph task using the Adjacency Matrix encoder.

Figure 4: Claude 3.5 Sonnet In Context Learning Results.

Figure 5: Llama 3.1 405B In Context Learning Results.
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Figure 6: GPT-4o mini In Context Learning Results.

A.5 GRAPH TYPES & THE PRESERVATION OF GRAPH STRUCTURE

In this section, we perform additional experiments to investigate the ability of Llama 3.1 405B,
Claude 3.5 Sonnet, and o1-mini to print the adjacency matrix across three modification steps of
different graph types, including: 1) star graphs, 2) path graphs, 3) complete graphs, and 4)
empty graphs. We evaluate each LLM on 250 graphs of each graph type.

Figures 7, 8, and 9 show the varying levels of strength each model exhibits on graph modification for
these more structured graph types. Interestingly, across all three models, we notice notable dropoffs
in performance at varying modification steps for the Add Node modification on the complete graph.
This drop in performance is most notable in the o1-mini model, which exhibits poor performance
across all graph types.

To explore this, for each graph type, we analyze the percentage of errors o1-mini makes that involves
connecting the newly added node to either the central node for star graphs, the final node in the path
(at the bottom row of the adjacency matrix) for path graphs, all existing nodes for complete graphs,
and any node for empty graphs. We show these results in Figure 10.

We observe that o1-mini has an extremely high intrinsic bias to connect the incoming node, and in
this way, o1-mini attempts to preserve the underlying structure of the input graph.
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Figure 7: Claude 3.5 Sonnet performance on different graph types.

Figure 8: Llama 3.1 405B performance on different graph types.

A.6 RESULTS ON VARYING FINAL QUESTIONS AND GRAPH ENCODERS

For the Adjacency Matrix encoding, in addition to the Print Graph question, we evaluated model
performance on other final questions, including Node Count, Edge Count, Node Degree, and
Connected Nodes. Detailed results for these tasks are provided in Figures 11, 14, 17, and 20
respectively. Our analysis reveals that models consistently perform poorly on the Print Graph
task when compared to other graph property tasks. This finding is significant because it shows that
maintaining the modified structure itself was approximately as challenging as computing quantities
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Figure 9: o1-mini performance on different graph types.

Figure 10: Percentage of total errors that involve o1-mini connecting the newly added node.

derived from it: outputting the entire adjacency matrix requires managing the structured data it
contains, and it suggests that a key part of the challenge in this problem comes as much from this
form of data maintenance as from computations performed on it.

Furthermore, we explored the impact of different graph encoding functions on model performance.
Besides the Adjacency Matrix encoding, we included the Incident and Coauthorship encodings
from Fatemi et al. (2023) in our experiments. Results for these encodings are presented in Figures
12, 13, 15, 16, 18, 19, 21, 22, 23, and 24. We observed that models generally perform substan-
tially worse on the Adjacency Matrix encoding compared to the other two encodings. With very
few exceptions, the performance of the models decreases as the number of modifications increases,
highlighting the challenges LLMs face when dealing with both dense numerical representations that
lack explicit linguistic cues and with increasingly complex sequences of modifications. Therefore,
future benchmarking efforts for graph reasoning should focus on the adjacency matrix encoder to
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better assess and improve LLMs’ abilities to handle complex, structured graph representations. Be-
low, we analyze the performance of all models on each of the final question types:

A.6.1 NODE COUNT

Across all three encodings, nearly all LLMs achieve close to 100% accuracy across the five modifica-
tion steps, except GPT 4o-mini. o1-mini demonstrates slight drops in performance on all modifica-
tion types compared to Claude 3.5 Sonnet and Llama 3.1 405B on the Adjacency Matrix encoding.
This observation follows from Table 2, which also indicates that even in the static case, o1-mini lags
slightly behind both Claude 3.5 Sonnet and Llama 3.1 405B on counting the number of nodes in an
adjacency matrix.

A.6.2 EDGE COUNT

o1-mini consistently outperforms all other models across the three encodings, aligning with the
trends observed in Table 1. Among the encodings, the Adjacency Matrix encoding is the most
challenging for all models, likely because its dense representation makes it harder for LLMs to infer
and count edge relationships directly. Conversely, models perform best on the Incident encoding,
as it explicitly represents the connections between nodes with numerical node ID. This structure
simplifies edge tracking and counting for the models.

A.6.3 NODE DEGREE

All models maintain nearly 100% accuracy on the Incident and Coauthorship encodings, except
GPT 4o-mini, which lags slightly. The adjacency matrix encoding presents the most difficulty, espe-
cially on Remove Node modifications. This is unsurprising because removing a node in an adjacency
matrix requires adjustments across both rows and columns, increasing the likelihood of errors. On
this encoding, o1-mini again outperforms others for all modification types except Add Node. The
Adjacency Matrix results underscore that remove node is inherently a more error-prone operation
due to the renumbering and recalibration of indices. Interestingly, Claude 3.5 Sonnet’s performance
increases slightly on the Add Node modification as the number of modifications increase.

A.6.4 CONNECTED NODES

The Connected Nodes task mirrors the patterns found in Node Degree. o1-mini outperforms all
other models on Adjacency Matrix encoding, the most challenging format. As with Node Degree,
the Remove Node modification introduces the most notable performance drop for all models. Llama
3.1 405B shows slight improvement in accuracy for Add Node modifications as the number of
modifications increases.

A.6.5 PRINT GRAPH

Performance varies significantly across encodings. Models perform much better on the Incident
and Coauthorship encodings than on the Adjacency Matrix, with Incident again being the easiest
to process.
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Figure 11: Node Count, Adjacency Matrix.

Figure 12: Node Count, Coauthorship.
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Figure 13: Node Count, Incident List.

Figure 14: Edge Count, Adjacency Matrix.
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Figure 15: Edge Count, Coauthorship.

Figure 16: Edge Count, Incident List.
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Figure 17: Node Degree, Adjacency Matrix.

Figure 18: Node Degree, Coauthorship.
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Figure 19: Node Degree, Incident List.

Figure 20: Connected Nodes, Adjacency Matrix.
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Figure 21: Connected Nodes, Coauthorship.

Figure 22: Connected Nodes, Incident List.
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Figure 23: Print Graph, Coauthorship.

Figure 24: Print Graph, Incident List .
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A.7 EDGE DENSITY AND GRAPH SIZE ABLATION

In this section, we investigate how varying edge density and graph size impact model perfor-
mance. For this analysis, we evaluate graphs with sizes n ∈ {7, 10, 15, 20} and edge densities
p ∈ {0.1, 0.5, 0.9}. For each combination of size and density, we generate 100 unique input graphs
and follow the same procedure outlined in Algorithm 6 to create additional examples, focusing
specifically on the Print Graph task. All evaluations are conducted using Claude 3.5 Sonnet with
the Adjacency Matrix encoder.

With the Add Edge modification (Figure 25), the model maintains strong performance, with slight
drops in performance observed as the number of nodes in the graph increases. Interestingly, the
model performs poorly when asked to add a single edge for low-density graphs, indicating that the
sparsity of the matrix may be influencing the model’s ability to update the correct 0 entry, an issue
that the model seems to correct as it makes more modifications.

The Remove Edge modification (Figure 26) shows strong overall performance, but an inverse trend
compared to Add Edge is observed. As the number of nodes increases, the model struggles at
removing edges from high-density graphs, and this challenge becomes more pronounced with an
increasing number of modifications. This suggests that the model struggles to accurately identify
the correct 1 entry to update in the adjacency matrix for dense graphs.

The Add Node modification (Figure 27) demonstrates very strong performance initially, but accu-
racy declines as the number of nodes in the graph increases. At moderate edge densities on large
graphs (n = 20), the model performs well, but its performance begins to falter at higher densities.
For low-density graphs, the model struggles more significantly, with accuracy further decreasing as
the number of modifications increases.

Finally, for the Remove Node modification (Figure 28), both graph density and size significantly
impact performance. The model struggles increasingly as the number of nodes grows. Interestingly,
performance is lowest for low-density graphs, while high-density graphs tend to yield the best results
overall across all graph sizes.

Figure 25: Add Edge Ablation.
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Figure 26: Remove Edge Ablation.

Figure 27: Add Node Ablation.
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Figure 28: Remove Node Ablation.
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Figure 29: Error Types on Add Edge Modification.

A.8 ERROR ANALYSIS

In this section, we analyze the types and frequencies of errors made by the four benchmark models
on the Print Graph task using the Adjacency Matrix encoder. These error types help highlight
each model’s performance and challenges in graph modification tasks.

A.8.1 ADD EDGE

Figure 29 shows the different types of errors all four models make on the Add Edge modification.
We observe the following error types:

• Altered correct index and adjacent index: This error occurs when the model correctly
identifies the indices to modify in the adjacency matrix but also erroneously adds an edge
to at least one adjacent index. This is the most frequent error type across all models. Both
Llama 3.1 405B and GPT-4o mini exhibit an increase in this error type as the number of
modifications grows, indicating a scaling issue. For both o1-mini and Claude 3.5 Sonnet,
this error overwhelmingly dominates their performance, as they both make few other types
of errors. Interestingly, Claude 3.5 Sonnet reduces this error frequency as the number of
modifications increases. This reduction may explain the model’s improved performance
under higher problem complexity observed in Figure 2, as it hallucinates fewer erroneous
adjacent edges.

• Altered adjacent index: In this case, the model modifies an adjacent index without altering
the correct one. This error becomes more common for Llama 3.1 405B and GPT-4o mini
with an increasing number of modifications. Claude 3.5 Sonnet and o1-mini both maintain
relatively constant and lower rates of this error.
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Figure 30: Error Types on Remove Edge Modification.

• Altered non-adjacent index: This error involves modifying an index that is not adjacent to
the correct index. While rare in most models, it is more prominent in GPT-4o mini, suggest-
ing that this error decreases with larger model sizes and improved reasoning capabilities.
Interestingly, GPT-4o mini makes this error less often as the number of modifications in-
creases. As shown by Figure 2, GPT-4o mini’s performance on the Add Edge modification
still decreases across the number of modifications, suggesting that the model’s edits become
increasingly closer to the correct indices as the complexity of the problem increases.

• No modification made: This occurs when the model outputs the unmodified input adja-
cency matrix. It is rare across all models and entirely absent in o1-mini.

• Dimension error: This error arises when the model returns an object that is not a valid ma-
trix, and in our analysis this object mostly takes the form of a list of rows with inconsistent
column counts. While infrequent, this error is never produced by Claude 3.5 Sonnet.

• Changed dimensionality: Here, the model outputs a well-defined matrix but with incorrect
dimensions. This error occurs only occasionally in o1-mini and GPT-4o mini.

A.8.2 REMOVE EDGE

Figure 30 illustrates the types and frequencies of errors made by the models on the Remove Edge
modification, demonstrating a similar error distribution to the Add Edge modification:

• Altered correct index and adjacent index: This remains the most common error across
models. Both Llama 3.1 405B and GPT-4o mini exhibit an increase in this error as the
number of modifications grows, reflecting a recurring challenge with hallucinating adjacent
edges. For o1-mini and Claude 3.5 Sonnet, this error type also dominates.
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Figure 31: Error Types on Add Node Modification.

• Altered adjacent index: Similar to the Add Edge modification, this error is most promi-
nent in Llama 3.1 405B and GPT-4o mini, while remaining rare for o1-mini and Claude 3.5
Sonnet.

• Altered non-adjacent index: Again, rare in most models, and most prominent in GPT-4o
mini, but again we observe that the frequency of this error decreases as number of mods
increases. As in the Add Edge modification, this error is rare across most models but is
most frequently observed in GPT-4o mini. Again, we observe that GPT-4o mini makes this
error less often as the number of modifications increase.

• No modification made: Consistent with previous observations, this error is rare across all
model, with the only difference being that now Llama 3.1 405B never makes this error as
opposed to o1-mini.

• Dimension error: We again observe that this error is rarely made across all models.

• Changed dimensionality: This error is absent across all models except o1-mini, which
rarely makes this error.

A.8.3 ADD NODE

Figure 31 showcases the types and frequencies of errors made by the models during the Add Node
modification. The plots highlight the strong performance of Claude 3.5 Sonnet and Llama 3.1 405B,
which make very few errors overall:

• Connected added node: This error involves incorrectly connecting the newly added node
to at least one existing node. It is rare across all models, with Claude 3.5 Sonnet making this
error only once. o1-mini produces this error slightly more frequently than other models.
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Figure 32: Error Types on Remove Node Modification.

• Miscopy error: This error occurs when the model correctly adds a new row and column
of zeros to the adjacency matrix but mistakenly modifies at least one existing edge. It is
an uncommon error, though o1-mini again displays a slightly higher error rate compared to
others.

• Added too few nodes: When the required number of modifications is k, this error arises
when the model adds fewer than k nodes. This error is rare but becomes more prevalent for
GPT-4o mini as k increases, indicating that the model struggles with accurately tracking the
number of modifications needed as the task complexity grows, potentially due to challenges
in state management.

• Added too many nodes: This error occurs when the model adds more than the specified k
nodes to the graph. It is an infrequent error type, observed only in GPT-4o mini.

• Dimension error: This error is a frequent issue for both o1-mini and GPT-4o mini, with
GPT-4o mini making this error more often, yet not as often at both high and low values of
k.

A.8.4 REMOVE NODE

Figure 32 illustrates the types of errors encountered in the Remove Node modification, the most
challenging modification in GraphModQA:

• Removed too many nodes: This error arises when the model removes more than the re-
quired k nodes. It is less frequent in o1-mini and Llama 3.1 405B but occurs at a high
frequency in GPT-4o mini and Claude 3.5 Sonnet, with Claude 3.5 Sonnet exhibiting an
increase in this error as k grows.
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• Removed too few nodes: This error occurs when the model removes fewer than k nodes.
It is generally infrequent, though Llama 3.1 405B makes this error slightly more often than
the other models.

• No modification made: Only Llama 3.1 405B produces this error, and produces it very
rarely.

• Dimension error: This error is made by Claude 3.5 Sonnet and o1-mini, while Llama 3.1
405B produces it slightly more often. However, this is the most frequent error for GPT-4o
mini, indicating that it struggles significantly with maintaining a valid matrix structure and
returning a mathematically well-defined object.

• Incorrect implementation: This error occurs when the model removes the correct number
of rows and columns, but the internal connections of the resulting matrix deviate substan-
tially from the solution matrix. This is the most common error type across all models except
GPT-4o mini, which struggles to produce valid outputs at all due to frequent dimension er-
rors. o1-mini makes this error less frequently than Claude 3.5 Sonnet and Llama 3.1 405B,
contributing to its superior overall performance on the Remove Node modification as seen
in Figure 2.
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A.9 ILLUSTRATING PROMPTS AND MODEL OUTPUTS

In this section, we show example input prompts and model outputs from the three in-context methods
we evaluate on GraphModQA. We evaluated Claude 3.5 Sonnet on a single example using the Adja-
cency Matrix encoding, involving three Add Edge modifications followed by a Print Graph task.
Figures 33 and 34 show the input prompt and model output respectively using zero-shot prompting,
Figures 35 and 36 show the input prompt and model output respectively using MAP prompting, and
Figures 37 and 38 show the input prompt and model output respectively using CoT prompting with
one example.

Zero-shot Prompt

The following matrix represents the adjacency matrix of an
undirected graph, where the first row corresponds to node 0, the
second row corresponds to node 1, and so on:

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]
[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 1 0 1 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]
[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]
[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]
[0 1 0 0 0 0 1 0 0 1 0 0 0 0 0]
[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]
[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]
[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 1 0 1 0 1 0 0 0]]

Perform the following operations on the graph:
1: Add an edge between node 14 and node 8.
2: Add an edge between node 8 and node 3 in the resulting graph of

operation 1.
3: Add an edge between node 2 and node 8 in the resulting graph of

operation 2.
Q: What is the final resulting adjacency matrix?
A:

Figure 33: An example zero-shot prompt. The prompt consists of three Add Edge modification,
followed by the Print Graph task using the Adjacency Matrix encoding.
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LLM Output on Zero-shot Prompt

To answer this question, I’ll start with the given adjacency matrix
and perform the requested operations one by one. After each

operation, I’ll update the matrix. Here’s the process:

1. Add an edge between node 14 and node 8:
This adds a 1 in position (14,8) and (8,14) of the matrix.

2. Add an edge between node 8 and node 3:
This adds a 1 in position (8,3) and (3,8) of the matrix.

3. Add an edge between node 2 and node 8:
This adds a 1 in position (2,8) and (8,2) of the matrix.

After performing these operations, the final resulting adjacency
matrix is:

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]
[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]
[0 1 0 0 0 0 0 1 0 0 1 0 1 0 0]
[0 1 0 0 0 0 0 1 0 0 0 0 1 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]
[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]
[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]
[0 1 1 1 0 0 1 0 0 1 0 0 0 0 1]
[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]
[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]
[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

This matrix represents the final state of the graph after all the
requested operations have been performed.

Incorrect!

Figure 34: The output of Claude 3.5 Sonnet on the example prompt from Figure 33. Here, the model
got the question wrong, as the model modified positions (2, 7) and (3, 7) instead of positions (2, 8)
and (3, 8), despite modifying positions (8, 2) and (8, 3) correctly. Correctly modified indicies are
highlighted in green while incorrectly modified indicies are highlighted in red.
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MAP Prompt

The following matrix represents the adjacency matrix of an
undirected graph, where the first row corresponds to node 0, the
second row corresponds to node 1, and so on:

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]
[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 1 0 1 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]
[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]
[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]
[0 1 0 0 0 0 1 0 0 1 0 0 0 0 0]
[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]
[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]
[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 1 0 1 0 1 0 0 0]]

Perform the following operations on the graph:
1: Add an edge between node 14 and node 8.
2: Add an edge between node 8 and node 3 in the resulting graph of

operation 1.
3: Add an edge between node 2 and node 8 in the resulting graph of

operation 2.
Q: What is the final resulting adjacency matrix? For each operation

, write out the entire resulting adjacency matrix.
A:

Figure 35: An example MAP prompt, created by appending the phrase For each operation, write
out the entire resulting adjacency matrix. to the prompt from Figure 33.
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LLM Output on MAP Prompt

I’ll perform the operations step by step and provide the resulting
adjacency matrix after each operation.

Operation 1: Add an edge between node 14 and node 8

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]
[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]
...
[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

Operation 2: Add an edge between node 8 and node 3

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]
[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 1 0 1 0 0]
[0 1 0 0 0 0 0 0 1 0 0 0 1 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]
[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]
[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]
[0 1 0 1 0 0 1 0 0 1 0 0 0 0 1]
[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]
[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]
[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

Operation 3: Add an edge between node 2 and node 8

Here’s the final resulting adjacency matrix:

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]
[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]
[0 1 0 0 0 0 0 0 1 0 1 0 1 0 0]
[0 1 0 0 0 0 0 0 1 0 0 0 1 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]
[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]
[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]
[0 1 1 1 0 0 1 0 0 1 0 0 0 0 1]
[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]
[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]
[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

Correct!

Figure 36: The output of Claude 3.5 Sonnet on the example MAP prompt from Figure 35. The first
intermediate matrix is truncated in order to fit the entire output on the page. Here, the model got the
question right, and the correctly modified indicies are highlighted in green in the final matrix.
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CoT Prompt with one example

The following matrix represents the adjacency matrix of an
undirected graph, where the first row corresponds to node 0, the
second row corresponds to node 1, and so on:

[[0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0]
[1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0]
[1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1]
[0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1]
[0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0]
[1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0]
[1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0]
[0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0]
[1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0]
[1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0]
[0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0]
[0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0]
[0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0]
[0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0]]

Perform the following operations on the graph:
1: Add an edge between node 15 and node 13.
2: Add an edge between node 15 and node 3 in the resulting graph of

operation 1.
3: Add an edge between node 10 and node 7 in the resulting graph of

operation 2.
Q: What is the final resulting adjacency matrix? Write out the

entire final resulting adjacency matrix.
A: After changing both entries [15, 13] and [13, 15] from 0 to 1,

both entries [15, 3] and [3, 15] from 0 to 1, and both entries
[10, 7] and [7, 10] from 0 to 1, the resulting adjacency matrix
is as defined below:

[[0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0]
[1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0]
[1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1]
[0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1]
[0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1]
[0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0]
[1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0]
[1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0]
[0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0]
[1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0]
[1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0]
[0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0]
[0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1]
[0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0]
[0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0]]

The following matrix represents the adjacency matrix of an
undirected graph, where the first row corresponds to node 0, the
second row corresponds to node 1, and so on:

...
Q: What is the final resulting adjacency matrix?
A:

Figure 37: An example CoT prompt with one example, created by adding the example before the
prompt (truncated) from Figure 33.
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LLM Output on CoT Prompt

To solve this problem, we’ll perform the operations one by one and
update the adjacency matrix accordingly. Remember that for an
undirected graph, when we add an edge between two nodes, we need
to update both corresponding entries in the matrix.

Let’s perform the operations:

1. Add an edge between node 14 and node 8:
Update [14][8] and [8][14] from 0 to 1

2. Add an edge between node 8 and node 3:
Update [8][3] and [3][8] from 0 to 1

3. Add an edge between node 2 and node 8:
Update [2][8] and [8][2] from 0 to 1

After applying these changes, the final resulting adjacency matrix
is:

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]
[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]
[0 1 0 0 0 0 0 0 1 0 1 0 1 0 0]
[0 1 0 0 0 0 0 0 1 0 0 0 1 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]
[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]
[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]
[0 1 1 1 0 0 1 0 0 1 0 0 0 0 1]
[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]
[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]
[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

This is the final resulting adjacency matrix after performing all
the specified operations.

Correct!

Figure 38: The output of Claude 3.5 Sonnet on the CoT prompt from Figure 37. Here, the model got
the question right, and the correctly modified indicies are highlighted in green in the final matrix.
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Table 1: Accuracy percentages (mean ± s.d) on graph property questions from Fatemi et al. (2023).

Graph Encoder Final Task GPT-4o mini Llama 3.1 Claude 3.5 o1-mini

Adjacency List

Node Count 86.6 89.8 95.4 99.8
Edge Count 30.4 48.8 54.8 93.6
Node Degree 95.2 100.0 100.0 98.4
Edge Existence 71.8 70.6 86.8 66.0
Connected Nodes 97.8 100.0 100.0 98.2
Cycle 90.4 91.0 95.0 99.0
Average 78.7 ± 23.2 83.4 ± 18.3 88.7 ± 15.8 92.5 ± 12.02

Incident

Node Count 100.0 99.8 100.0 100.0
Edge Count 30.0 60.4 76.2 99.0
Node Degree 99.2 99.2 100.0 99.6
Edge Existence 95.2 91.0 99.8 66.6
Connected Nodes 99.8 100.0 100.0 100.0
Cycle 86.2 87.4 88.4 98.8
Average 85.1 ± 25.1 91.3 ± 14.2 94.1 ± 9.0 94.0 ± 12.3

Friendship

Node Count 99.6 98.8 100.0 100.0
Edge Count 27.6 49.2 57.0 86.8
Node Degree 91.6 98.2 100.0 98.0
Edge Existence 73.0 76.0 77.4 66.0
Connected Nodes 87.8 93.4 95.2 92.6
Cycle 91.6 91.8 95.6 99.8
Average 78.5 ± 24.1 84.6 ± 17.5 87.5 ± 15.7 90.5 ± 11.9

Coauthorship

Node Count 99.0 99.0 95.6 100.0
Edge Count 27.4 42.8 54.2 78.2
Node Degree 88.0 94.0 99.6 96.4
Edge Existence 85.6 84.2 88.6 65.0
Connected Nodes 75.2 91.6 98.2 93.4
Cycle 92.4 95.6 100.0 99.4
Average 77.9±23.7 84.5±19.2 89.4±16.2 88.7 ± 12.9

Expert

Node Count 87.4 82.8 79.2 99.4
Edge Count 35.2 52.2 62.8 95.0
Node Degree 95.8 99.8 100.0 99.4
Edge Existence 67.0 66.8 100.0 65.0
Connected Nodes 97.4 97.4 95.2 89.4
Cycle 86.2 85.8 96.0 98.0
Average 78.2±21.6 80.8±16.7 88.9±13.6 91.0 ± 12.1

Social Network

Node Count 99.6 99.4 100.0 100.0
Edge Count 26.4 48.0 57.8 81.8
Node Degree 94.0 97.4 100.0 97.2
Edge Existence 86.6 85.2 100.0 64.2
Connected Nodes 85.4 92.8 94.8 93.4
Cycle 91.8 90.4 93.6 98.6
Average 80.6±24.7 85.5±17.4 91.0±15.1 89.2 ± 12.7

Politician

Node Count 99.4 100 99.6 100.0
Edge Count 25.2 48.2 55.4 85.8
Node Degree 94.0 97.0 99.8 98.6
Edge Existence 88.8 81.6 71.0 66.0
Connected Nodes 79.6 79.4 100.0 97.2
Cycle 91.4 89.0 95.8 99.4
Average 79.7±25.1 82.5±17.1 86.9±17.4 91.2 ± 12.2

GoT

Node Count 100.0 100.0 99.0 100.0
Edge Count 26.8 46.0 57.4 84.8
Node Degree 93.2 95.2 100.0 96.8
Edge Existence 83.4 80.4 87.4 65.2
Connected Nodes 68.4 95.8 100.0 94.6
Cycle 91.4 95.6 94.8 100.0
Average 77.2±24.6 85.5±18.7 89.8±15.1 90.2 ± 12.3

SP

Node Count 99.4 99.8 99.2 100.0
Edge Count 26.0 44.4 59.2 86.0
Node Degree 94.4 96.4 100.0 98.2
Edge Existence 85.2 87.0 82.2 65.2
Connected Nodes 74.2 98.6 100.0 98.0
Cycle 91.4 93.0 95.0 99.6
Average 78.4±24.8 86.5±19.3 89.3±14.8 91.2 ± 12.6
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Table 2: Accuracy percentages (mean ± s.d) on graph property questions from Fatemi et al. (2023)
for the adjacency matrix encoder. As this work was being conducted, the PaLM API was deprecated,
and fortunately we were able to evaluate PaLM 2 L on the adjacency matrix encoder before this.

Graph Encoder Final Task PaLM 2 L GPT-4o mini Llama 3.1 Claude 3.5 o1-mini

Adjacency Matrix

Node Count 55.4 98.4 100.0 100.0 98.4
Edge Count 6.4 28.0 44.8 38.6 91.2
Node Degree 28.6 73.4 88.6 98.6 99.2
Edge Existence 70.3 85.0 93.8 99.2 68.2
Connected Nodes 8.4 84.8 98.2 99.0 98.8
Cycle 49.6 87.8 87.6 92.8 100.0
Average 36.5 ± 23.9 76.2 ± 22.8 85.5 ± 18.8 88.0 ± 22.2 92.6 ± 11.3
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