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ABSTRACT

Graph Neural Networks (GNNs) extend convolutional neural networks to operate on graphs. Despite
their impressive performances in various graph learning tasks, the theoretical understanding of
their generalization capability is still lacking. Previous GNN generalization bounds ignore the
underlying graph structures, often leading to bounds that increase with the number of nodes – a
behavior contrary to the one experienced in practice. In this paper, we take a manifold perspective
to establish the statistical generalization theory of GNNs on graphs sampled from a manifold in the
spectral domain. As demonstrated empirically, we prove that the generalization bounds of GNNs
decrease linearly with the size of the graphs in the logarithmic scale, and increase linearly with the
spectral continuity constants of the filter functions. Notably, our theory explains both node-level and
graph-level tasks. Our result has two implications: i) guaranteeing the generalization of GNNs to
unseen data over manifolds; ii) providing insights into the practical design of GNNs, i.e., restrictions
on the discriminability of GNNs are necessary to obtain a better generalization performance. We
demonstrate our generalization bounds of GNNs using synthetic and multiple real-world datasets.

1 INTRODUCTION

Graph convolutional neural networks (GNNs) (Scarselli et al., 2008; Defferrard et al., 2016; Bruna et al., 2013) have
emerged as one of the leading tools for processing graph-structured data. There is abundant evidence of their empirical
success across various fields, including but not limited to weather prediction (Lam et al., 2023), protein structure
prediction in biochemistry (Jumper et al., 2021; Strokach et al., 2020), resource allocation in wireless communications
(Wang et al., 2022a), social network analysis in sociology (Fan et al., 2020), point cloud in 3D model reconstruction
(Shi & Rajkumar, 2020) and learning simulators (Fortunato et al., 2022).

The effectiveness of GNNs relies on their empirical ability to predict over unseen data. This capability is evaluated
theoretically with statistical generalization in deep learning theory (Kawaguchi et al., 2017), which quantifies the
difference between the empirical risk (i.e. training error) and the statistical risk (i.e. testing error). Despite the abundant
evidence of GNNs’ generalization capabilities in practice, developing concrete theories to explain their generalization is
an active area of research. Many recent works have studied the generalization bounds of GNNs without any dependence
on the underlying model responsible for generating the graph data (Scarselli et al., 2018; Garg et al., 2020; Verma &
Zhang, 2019). Generalization analysis on graph classification, when graphs are drawn from random limit models, is
also studied in a series of works (Ruiz et al., 2023; Maskey et al., 2022; 2024; Levie, 2024). In this work, we take the
manifold perspective to formulate graph data on continuous topological spaces, i.e., manifolds. We emphasize that
manifolds are realistic models to generate graph data that enable rigorous theoretical analysis and a deep understanding
of the behaviors of GNNs.

We explore the generalization bound of GNNs through the lens of manifold theory on both node-level and graph-level
tasks in the spectral domain. The graphs are constructed based on points randomly sampled from underlying manifolds,
indicating that the manifold can be viewed as a statistical model for these discretely sampled points. As convolutional
neural network architectures have been established over manifolds (Wang et al., 2022b), the convergence of GNNs
to manifold neural networks (MNNs) and the algebraical equivalence of these two frameworks facilitate a detailed
generalization understanding of GNNs through spectral analysis. We demonstrate that, with an appropriate graph
construction based on the sampled points from the manifold, the generalization gap between empirical and statistical
risks decreases with the number of sampled points in the graphs (Figure 1c) on both node-level and graph-level tasks.
More importantly, the generalization gap increases linearly with the continuity constants of frequency response functions
of graph filters composing the GNN (Figure 1d). We observe that with low-pass and spectral continuous filters, the
GNNs are generalizable across different nodes or graphs generated from the same underlying manifold. This provides
insight into the practical graph filter design from a spectral perspective. Moreover, the theoretical results indicate
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a trade-off between the discriminability and generalization capability of GNNs, suggesting that restrictions on the
discriminability of GNNs are necessary to maintain generalization performance.
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Figure 1: Synthetic experimental results are shown on the uniformly sampled chair manifold. We construct a graph with
different numbers of nodes, fix the weights of a GNN, and compute the generalization gap. We construct the graph by
computing the edges for nodes that are ϵ close (cf. equation 3). In Figure 1c we fix the spectral continuity constant (see
Definition 4) and vary the number of nodes. As our theory predicts, we see that a smaller spectral continuity constant
translates into a smaller generalization gap – as the blue line is below the green line which is below the orange line. In
Figure 1d we fix the number of nodes in the graph and vary the spectral continuity constant in the GNN. For the same
number of nodes, a larger spectral continuity constant translates into a larger generalization gap.

We introduce a novel unified analysis of the generalization of GNNs to unseen nodes and graphs, by relating the
GNNs with MNNs in the spectral domain. We further propose restrictions on the discriminability of GNNs from the
spectral perspective which results from assumptions on the continuity of the filter frequency response functions. We
provide extensive experiments both on synthetic and real-world datasets to verify our generalization conclusions. Our
contribution is four-fold:

1. We prove the generalization bound of GNNs on graphs generated from an underlying manifold on both
node-level (Theorem 1) and graph-level (Theorem 2) by relating the algebraically equivalent GNNs and MNN
in the spectral domain.

2. We provide novel generalization gap bounds that decrease linearly with the nodes of the graph in the logarithmic
scale, and increase linearly with the spectral continuity constants (Definition 4) of the filter functions.

3. We uncover an important trade-off between the discriminability and the generalization gap of GNNs, which
guides practical GNN designs.

4. We verify the dependence of our generalization gaps on parameters, especially the continuity parameter, with a
synthetic dataset – chair manifold – and eight real-world datasets – ArXiv, Citeseer, etc.

2 RELATED WORKS

2.1 GENERALIZATION BOUNDS OF GNNS

Node level tasks We first give a brief recap of the generalization bounds of GNNs on node level tasks. In (Scarselli
et al., 2018), the authors give a generalization bound of GNNs with a Vapnik–Chervonenkis dimension of GNNs. The
authors in (Verma & Zhang, 2019) analyze the generalization of a single-layer GNN based on stability analysis, which
is further extended to a multi-layer GNN in (Zhou & Wang, 2021). In (Ma et al., 2021), the authors give a novel
PAC-Bayesian analysis on the generalization bound of GNNs across arbitrary subgroups of training and testing datasets.
The authors derive generalization bounds for GNNs via transductive uniform stability and transductive Rademacher
complexity in (Esser et al., 2021; Cong et al., 2021; Tang & Liu, 2023). The authors in (Yehudai et al., 2021) propose a
size generalization analysis of GNNs correlated to the discrepancy between local distributions of graphs. Different
from these works, we consider a continuous manifold model when generating the graph data, which is theoretically
powerful and realistic when characterizing real-world data. Furthermore, the generalization bounds proved in these
works either grow with the size of the graph (Esser et al., 2021; Tang & Liu, 2023; Scarselli et al., 2018), with the node
degree of the graphs (Cong et al., 2021) or the maximum eigenvalues of the graph (Verma & Zhang, 2019). Notably,
our generalization bound decreases with the size of the graph given that it depends on the spectral properties of the filter
functions over the manifold.

Graph level tasks There are also related works on the generalization analysis of GNNs on graph-level tasks. In
(Garg et al., 2020), the authors form the generalization bound via Rademacher complexity. The authors in (Liao et al.,
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2020) build a PAC-Bayes framework to analyze the generalization capabilities of graph convolutional networks (Kipf
& Welling, 2016) and message-passing GNNs (Gilmer et al., 2017), based on which the authors in (Ju et al., 2023)
improve the results and prove a lower bound. The bounds either grow with the number of nodes (Liao et al., 2020) or
the degree of the graphs (Garg et al., 2020) while our bound decreases with the number of nodes in the graph given that
it better approximates the underlying model – the manifold. The works in (Maskey et al., 2022; 2024; Levie, 2024) are
most related to ours, which also consider the generalization of GNNs on a graph limit model, in their case a graphon.
Different from our setting, the authors see the graph limit as a random continuous model. They study the generalization
of graph classification problems with message-passing GNNs with graphs belonging to the same category sampled
from a continuous limit model. The generalization bound grows with the model complexity and decreases with the
number of nodes in the graph. We show that a GNN trained on a single graph sampled from each manifold is enough,
and can generalize and classify unseen graphs sampled from the manifold set.

2.2 NEURAL NETWORKS ON MANIFOLDS

Geometric deep learning has been proposed in (Bronstein et al., 2017) with neural network architectures raised in
manifold space. The authors in (Monti et al., 2017) and (Chakraborty et al., 2020) provide neural network architectures
for manifold-valued data. In (Wang et al., 2024b) and (Wang et al., 2022b), the authors define convolutional operation
over manifolds and see the manifold convolution as a generalization of graph convolution, which establishes the limit
of neural networks on large-scale graphs as manifold neural networks (MNNs). The authors in (Wang et al., 2024a)
further establish the relationship between GNNs and MNNs with non-asymptotic convergence results for different
graph constructions. Some studies have used graph samples to infer properties of the underlying manifold itself. These
properties include the validity of the manifold assumption (Fefferman et al., 2016), the manifold dimension (Farahmand
et al., 2007) and the complexity of these inferences (Narayanan & Niyogi, 2009; Aamari & Knop, 2021). Other research
has focused on prediction and classification using manifolds and manifold data, proposing various algorithms and
methods. Impressive examples include the Isomap algorithm (Choi & Choi, 2004; Wu & Chan, 2004; Yang et al., 2016a)
and other manifold learning techniques (Talwalkar et al., 2008). These techniques aim to infer manifold properties
without analyzing the generalization capabilities of GNNs operated on the sampled manifold.

3 PRELIMINARIES

3.1 GRAPH NEURAL NETWORKS

Setup An undirected graph G = (V, E ,W) contains a node set V with N nodes and an edge set E ⊆ V × V . The
weight function W : E → R assigns weight values to the edges. We define the Graph Laplacian L = diag(A1)−A
where A ∈ RN×N is the adjacency matrix. Graph signals are defined as functions mapping nodes to a feature value
x ∈ RN .

Graph convolutions and frequency response A graph convolutional filter hG is composed of consecutive graph
shifts by graph Laplacian, defined as hG(L)x =

∑K−1
k=0 hkL

kx with {hk}K−1
k=0 as filter parameters. We replace L with

eigendecomposition L = VΛVH , where V is the eigenvector matrix and Λ is a diagonal matrix with eigenvalues
{λi,N}Ni=1 as the entries. The spectral representation of a graph filter is

VHhG(L)x =

K−1∑
k=1

hkΛ
kVHx = ĥ(Λ)VHx. (1)

This leads to a point-wise frequency response of the graph convolution as ĥ(λ) =
∑K−1

k=0 hkλ
k.

Graph neural networks A graph neural network (GNN) is a layered architecture, where each layer consists of a
bank of graph convolutional filters followed by a point-wise nonlinearity σ : R → R. Specifically, the l-th layer of a
GNN that produces Fl output features {xp

l }
Fl
p=1 with Fl−1 input features {xq

l−1}
Fl−1

q=1 is written as

xp
l = σ

Fl−1∑
q=1

hlpq
G (L)xq

l−1

 , (2)

for each layer l = 1, 2 · · · , L. The graph filter hlpq
G (L) maps the q-th feature of layer l − 1 to the p-th feature of layer l.

We denote the GNN as a mapping ΦG(H,L,x), where H ∈ H ⊂ RP denotes a set of the graph filter coefficients with
a finite P dimension at all layers and H denotes the set of all possible parameter sets.
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3.2 MANIFOLD NEURAL NETWORKS

Setup We consider a d-dimensional compact, smooth and differentiable Riemannian submanifold M embedded in a
Mdimensional space RM with finite volume. This induces a Hausdorff probability measure µ over the manifold with
density function ρ : M → (0,∞), assumed to be bounded as 0 < ρmin ≤ ρ(x) ≤ ρmax < ∞ for all x ∈ M. The
manifold data supported on each point x ∈ M is defined by scalar functions f : M → R (Wang et al., 2024b). We use
L2(M) to denote L2 functions over M with respect to measure µ. The manifold with probability density function ρ is
equipped with a weighted Laplace operator (Grigor’yan, 2006), generalizing the Laplace-Beltrami operator as

Lρf = − 1

2ρ
div(ρ2∇f), (3)

with div denoting the divergence operator of M and ∇ denoting the gradient operator of M (Bronstein et al., 2017;
Gross & Meinrenken, 2023).

Manifold convolutions and frequency responses The manifold convolution operation is defined relying on the
Laplace operator Lρ and on the heat diffusion process over the manifold (Wang et al., 2024b). For a function f ∈ L2(M)
as the initial heat condition over M, the heat condition diffused by a unit time step can be explicitly written as e−Lρf .
A manifold convolutional filter (Wang et al., 2024b) can be defined in a diffuse-and-sum manner as

g(x) = h(Lρ)f(x) =

K−1∑
k=0

hke
−kLρf(x), (4)

with the k-th diffusion scaled with a filter parameter hk ∈ R. We consider the case in which the Laplace operator is self-
adjoint, positive-semidefinite and the manifold M is compact, in this case, Lρ has real, positive and discrete eigenvalues
{λi}∞i=1, written as Lρϕi = λiϕi where ϕi is the eigenfunction associated with eigenvalue λi. The eigenvalues
are ordered in increasing order as 0 = λ1 ≤ λ2 ≤ λ3 ≤ . . ., and the eigenfunctions are orthonormal and form an
eigenbasis of L2(M). When mapping a manifold signal onto the eigenbasis [f̂ ]i = ⟨f,ϕi⟩M =

∫
M f(x)ϕi(x)dµ(x),

the manifold convolution can be written in the spectral domain as

[ĝ]i =

K−1∑
k=0

hke
−kλi [f̂ ]i. (5)

Hence, the frequency response of manifold filter is given by ĥ(λ) =
∑K−1

k=0 hke
−kλ.

Manifold neural networks A manifold neural network (MNN) is constructed by cascading L layers, each of which
contains a bank of manifold convolutional filters and a pointwise nonlinearity σ : R → R. The output manifold function
of each layer l = 1, 2 · · · , L can be explicitly denoted as

fp
l (x) = σ

Fl−1∑
q=1

hpq
l (Lρ)f

q
l−1(x)

 , (6)

where fq
l−1, 1 ≤ q ≤ Fl−1 is the q-th input feature from layer l − 1 and fp

l , 1 ≤ p ≤ Fl is the p-th output feature of
layer l. We denote MNN as a mapping Φ(H,Lρ, f), where H ∈ H ⊂ RP is a collective set of filter parameters in all
the manifold convolutional filters.

4 GENERALIZATION ANALYSIS OF GNNS BASED ON MANIFOLDS

We consider a manifold M as defined in Section 3.2, with a weighted Laplace operator Lρ as defined in equation 3.
Since functions f ∈ L2(M) characterize information over manifold M, we restrict our analysis to a finite-dimensional
subset of L2(M) up to some eigenvalue of Lρ, defined as a bandlimited signal.

Definition 1. A manifold signal f ∈ L2(M) is bandlimited if there exists some λ > 0 such that for all eigenpairs
{λi,ϕi}∞i=1 of the weighted Laplacian Lρ when λi > λ, we have ⟨f,ϕi⟩M = 0.

Suppose we are given a set of N i.i.d. randomly sampled points XN = {xi}Ni=1 over M, with xi ∈ M sampled
according to measure µ. We construct a graph G(V, E ,W) on these N sampled points XN , where each point xi is a
vertex of graph G, i.e. V = XN . Each pair of vertices (xi, xj) is connected with an edge while the weight attached to
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(a) Gaussian kernel based graphs

  

  

(b) ϵ-graphs

Figure 2: Illustration of the constructed graphs on points sampled over a chair and a table model.

the edge W(xi, xj) is determined by a kernel function Kϵ. The kernel function is decided by the Euclidean distance
∥xi−xj∥ between these two points. The graph Laplacian denoted as LN can be calculated based on the weight function
(Merris, 1995). The constructed graph Laplacian with an appropriate kernel function has been proved to approximate
the Laplace operator Lρ of M (Calder & Trillos, 2022; Belkin & Niyogi, 2008; Dunson et al., 2021). We present the
following two definitions of Kϵ.
Definition 2 (Gaussian kernel based graph (Belkin & Niyogi, 2008)). The graph G(XN , E ,W) can be constructed as
a dense graph degree when the kernel function is defined as

W(xi, xj) = Kϵ,1

(
∥xi − xj∥2

ϵ

)
=

1

N

1

ϵd/2+1(4π)d/2
e−

∥xi−xj∥
2

4ϵ , (xi, xj) ∈ E . (7)

The weight function of a Gaussian kernel based graph is defined on unbounded support (i.e. [0,∞)), which connects
xi and xj regardless of the distance between them. This results in a dense graph with N2 edges. In particular, this
Gaussian kernel based graph has been widely used to define the weight value function due to the good approximation
properties of the corresponding graph Laplacians to the manifold Laplace operator (Dunson et al., 2021; Belkin &
Niyogi, 2008; Xie et al., 2013).
Definition 3 (ϵ-graph (Calder & Trillos, 2022)). The graph G(XN , E ,W) can be constructed as an ϵ-graph with the
kernel function defined as

W(xi, xj) = Kϵ,2

(
∥xi − xj∥2

ϵ

)
=

1

N

d+ 2

ϵd/2+1αd
1[0,1]

(
∥xi − xj∥2

ϵ

)
, (xi, xj) ∈ E , (8)

where αd is the volume of a unit ball of dimension d and 1 is the characteristic function.

The weight function of an ϵ-graph is defined on a bounded support, i.e., only nodes that are within a certain distance of
one another can be connected by an edge. It has also been shown to provide a good approximation of the manifold
Laplace operator (Calder & Trillos, 2022). Figure 2 gives an illustration of both Gaussian kernel based graphs and
ϵ-graphs sampled from point cloud models Wu et al. (2015).

4.1 MANIFOLD LABEL PREDICTION VIA NODE LABEL PREDICTION

Suppose we have an input manifold signal f ∈ L2(M) and a label (i.e. target) manifold signal g ∈ L2(M) over M.
With an MNN Φ(H,Lρ, ·), we predict the target value g(x) based on input f(x) at each point x ∈ M. By sampling
N points XN over this manifold, we can approximate this problem in a discrete graph domain. Consider a graph
G(XN , E ,W) constructed with XN as either a Gaussian kernel based graph (Definition 2) or an ϵ-graph (Definition 3)
equipped with the graph Laplacian LN . Suppose we are given graph signal {x,y} sampled from {f, g} to train a GNN
ΦG(H,LN , ·), explicitly written as

[x]i = f(xi), [y]i = g(xi) for all xi ∈ XN . (9)

We assume that the filters in MNN Φ(H,Lρ, ·) and GNN ΦG(H,LN , ·) are low-pass filters, which are defined
explicitly as follows and illustrated in Figure 3.
Definition 4. A filter is a low-pass filter if its frequency response function satisfies∣∣∣ĥ(λ)∣∣∣ = O

(
λ−d

)
,
∣∣∣ĥ′(λ)

∣∣∣ ≤ CLλ
−d−1, λ ∈ (0,∞), (10)

with CL a spectral continuity constant that regularizes the smoothness of the filter function.
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To introduce the first of our two main results, we require introducing two assumptions.

AS 1. (Normalized Lipschitz nonlinearity) The nonlinearity σ is normalized Lipschitz continuous, i.e., |σ(a)− σ(b)| ≤
|a− b|, with σ(0) = 0.

AS 2. (Normalized Lipschitz loss function) The loss function ℓ is normalized Lipschitz continuous, i.e., |ℓ(yi, y) −
ℓ(yj , y)| ≤ |yi − yj |, with ℓ(y, y) = 0.

Assumption 1 is satisfied by most activations used in practice such as ReLU, modulus and sigmoid.

The generalization gap is evaluated between the empirical risk over the discrete graph model and the statistical risk over
manifold model, with the manifold model viewed as a statistical model since the expectation of the sampled point is
with respect to the measure µ over the manifold. The empirical risk over the sampled graph that we trained to minimize
is therefore defined as

RG(H) =
1

N

N∑
i=1

ℓ ([ΦG(H,LN ,x)]i, [y]i) . (11)

The statistical risk over the manifold is defined as

RM(H) =

∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x). (12)

The generalization gap is defined to be

GA = sup
H∈H

|RM(H)−RG(H)| . (13)

Theorem 1. Suppose the GNN and MNN with low-pass filters (Definition 4) have L layers with F features in each layer
and the input signal is bandlimited (Definition 1). Under Assumptions 1 and 2 it holds in probability at least 1− δ that

GA ≤ LFL−1

(
(C1CL + C2)

ϵ√
N

+
π2
√

log(1/δ)

6N

)
+ FLC3

(
logN

N

) 1
d

, (14)

with C1, C2, and C3 depending on the geometry of M, CL is the spectral continuity constant in Definition 4.

1. When the graph is constructed with a Gaussian kernel equation 7, then ϵ ∼
(

log(C/δ)
N

) 1
d+4

.

2. When the graph is constructed as an ϵ-graph as equation 8, then ϵ ∼
(

log(CN/δ)
N

) 1
d+4

.

Proof. See Appendix D for proof and the definitions of C1, C2 and C3.

Theorem 1 shows that the generalization gap decreases approximately linearly with the number of nodes N in the
logarithmic scale and that it also increases with the dimension of the underlying manifold d. Another observation is that
the generalization gap scales with the size of the GNN architecture. Most importantly, we note the bound increases
linearly with the spectral continuity constant CL (Definition 4) – a smaller CL leads to a smaller generalization gap
bound, and thus a better generalization capability. While a smaller CL leads to a smoother GNN, it discriminates fewer
spectral components and, therefore, possesses worse discriminability. Consequently, we may observe a larger training
loss with these smooth filters, as filters with worse discriminability encompass a smaller hypothesis function class
and deteriorate the GNNs’ approximation to the target functions during training. Since the testing loss can be upper
bounded by the sum of training loss and the bound of generalization gap, on a smoother GNN (a smaller CL), the
performance on the training data will be closer to the performance on unseen testing data. Therefore, having a GNN
with a smaller spectral continuity constant CL can guarantee more generalizable performance over unseen data from
the same manifold. This also indicates that similar testing performance can be achieved by either a GNN with smaller
training loss and worse generalization or a GNN with larger training loss and better generalization. In all, this indicates
that there exists an optimal point to take the best advantage of the trade-off between a smaller generalization gap and
better discriminability, resulting in a smaller testing loss decided by the spectral continuity constant of the GNN.

4.2 MANIFOLD CLASSIFICATION VIA GRAPH CLASSIFICATION

6
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0 λ1 λi λ

ĥ(λ)

O(λ−2)

Figure 3: The x-axis stands for the spectrum, with each sample repre-
senting an eigenvalue. The black line illustrates a low-pass filter with red
lines initiating the frequency responses of a filter on a given manifold.
The blue dotted line shows the upper bound of the frequency response
in Definition 4.

Suppose we have a set of manifolds
{Mk}Kk=1, each of which is dk-dimensional,
smooth, compact, differentiable and embed-
ded in RM with measure µk. Each manifold
Mk equipped with a weighted Laplace op-
erator Lρk,k is labeled with yk ∈ R. We
assume to have access to Nk randomly sam-
pled points according to measure µk over
each manifold Mk and construct K graphs
{Gk}Kk=1 with graph Laplacians LNk,k. The
GNN ΦG·(H,LN·,·,x·) is trained on this
set of graphs with xk as the input graph sig-
nal sampled from the manifold signal fk ∈
L2(Mk) and yk ∈ R as the scalar target label.
The final output of the GNN is set to be the av-
erage of the output signal values on each node
while the output of MNN Φ(H,Lρ·,·, f·) is
the statistical average value of the output signal over the manifold. A loss function ℓ evaluates the difference between
the output of GNN and MNN with the target label. The empirical risk of the GNN is

RG(H) =

K∑
k=1

ℓ

(
1

Nk

Nk∑
i=1

[Φ(H,LNk,k,xk)]i, yk

)
. (15)

While the output of MNN is the average value over the manifold, the statistical risk is defined based on the loss evaluated
between the MNN output and the label as

RM(H) =

K∑
k=1

ℓ

(∫
Mk

Φ(H,Lρk,k, fk)(x)dµk(x), yk

)
. (16)

The generalization gap is therefore

GA = sup
H∈H

|RM(H)−RG(H)| . (17)

Theorem 2. Suppose the GNN and MNN with low-pass filters (Definition 4) have L layers with F features in each layer
and the input signal is bandlimited (Definition 1). Under Assumptions 1 and 2 it holds in probability at least 1− δ that

GA ≤ LFL−1
K∑

k=1

(C1CL + C2)

(
ϵk√
Nk

+
π2
√
log(1/δ)

6Nk

)
+ FLC3

K∑
k=1

(
logNk

Nk

) 1
dk

, (18)

with C1, C2, and C3 depending on the geometry of M, CL is the spectal continuity constant in Definition 4.

1. When the graphs are constructed with a Gaussian kernel equation 7, then ϵk ∼
(

log(C/δ)
Nk

) 1
dk+4

.

2. When the graphs are constructed as ϵ-graphs as equation 8, then ϵk ∼
(

log(CNk/δ)
Nk

) 1
dk+4

.

Proof. See Appendix F for proof and the definitions of C1, C2 and C3.

Theorem 2 shows that a single graph sampled from the underlying manifold with large enough sampled points Nk

from each manifold Mk can provide an effective approximation to classify the manifold itself. The generalization
gap also attests that the trained GNN can generalize to classify other unseen graphs sampled from the same manifold.
Similar to the generalization result in node-level tasks, the generalization gap decreases with the number of points
sampled over each manifold while increasing with the manifold dimension. A higher dimensional manifold, i.e. higher
complexity, needs more samples to guarantee the generalization. The generalization gap also shows a trade-off between
the generalization and discriminability as the bound increases linearly with the spectral continuity constant CL. That
is, to guarantee that a GNN for graph classification can generalize effectively, we must impose restrictions on the
continuity of its filter functions, which in turn limits the filters’ ability to discriminate between different graph features.

7
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Figure 4: In the top row, we plot the difference in the accuracy and loss for columns 4a, 4b and 4c, 4d, respectively. On
the bottom row, we plot the actual train and test values of the accuracy (4a, 4b), and the loss (4c, 4d). The plots are
for the Arxiv dataset and {64, 128, 256, 512} hidden units. For the bottom row, we also calculate the linear fit for the
values whose training accuracy is below 95%, showing that our linear bound on the logarithm of the generalization gap
for the logarithm of the number of nodes shares the same rate shown in Theorem 1.
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Figure 5: Generalization gap as a function of the number of nodes in the training set for accuracy (top) and loss (bottom)
for the Cora, CiteSeer, and PubMed datasets.

5 EXPERIMENTS

In this Section, we evaluate the claims that we put forward empirically. We study the generalization gap (Theorems
1 and 2) bound on several node classification and graph classification problems on both synthetic and real-world
datasets. We present three types of experiments: (i) synthetic graph experiment (see Figure 1), (ii) node classification
on real-world graphs, and (iii) graph classification on point cloud models.

Node classification In this section, we empirically study the generalization gap in 8 real-world datasets. The task
is to predict the label of a node given a set of features. The datasets vary in the number of nodes from 169, 343 to
3, 327, and in the number of edges from 1, 166, 243 to 9, 104. The feature dimension also varies from 8, 415 to 300
features, and the number of classes of the node label from 40 to 3. We consider the following datasets: OGBN-Arxiv
(Wang et al., 2020; Mikolov et al., 2013), Cora (Yang et al., 2016b), CiteSeer (Yang et al., 2016b), PubMed (Yang et al.,
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Figure 6: Accuracy generalization gap as a function of the number of nodes in the training set for the Amazon-Ratings,
Roman-Empire, CoAuthors CS, and CoAuthors Physics datasets.
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Figure 8: Generalization gap as a function of number of nodes for average GNN output differences for graph
classification over ModelNet10.

2016b), Coauthors CS (Shchur et al., 2018), Coauthors Physics (Shchur et al., 2018), Amazon-rating (Platonov et al.,
2023), and Roman-Empire (Platonov et al., 2023), details of the datasets can be found in Table 2. In all cases, we vary
the number of nodes in the training set by partitioning it in {1, 2, 4, 8, 16, 32, 64, 32, 64, 128, 256, 512, 1024} partitions
when possible. For both the training and testing sets, we computed the loss in cross-entropy loss, and the accuracy in
percentage (%).

Our main goal is to show that the rate presented in Theorem 1 holds in practice. That is to say, if we plot the logarithm
of the generalization gap as a function of the logarithm of the number of nodes we see a linear rate. To be consistent
with the theory, we also want to show that if the number of layers or the size of the features increases, so does the
generalization gap.

In Figure 4, we plot the generalization gap of the accuracy in the logarithmic scale for a two-layered GNN (Figure
4a), and for a three-layered GNN (Figure 4b). On the upper side, we can see that the generalization bound decreases
with the number of nodes and that outside of the strictly overfitting regime (when the training loss is below 95%), the
generalization gap shows a linear decay, as depicted in the dashed line. The same behavior can be seen in Figures 4c,
and 4d which correspond to the loss for 2 and 3 layered GNNs. As predicted by our theory, the generalization gap
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increases with the number of features and layers in the GNN. The behavior of the training and testing accuracy as a
function of the number of nodes is intuitive. For the training loss, when the number of nodes in the training set is small,
the GNN can overfit the training data. As the number of features increases, the GNN’s capacity to overfit also increases.

Dataset
Pearson

Correlation
Coefficient

OGBN-Arxiv −0.9980
Cora −0.9686

CiteSeer −0.9534
PubMed −0.9761

CS −0.8969
Physics −0.9145
Amazon −0.9972
Roman −1.0000

Table 1: Pearson correlation for 2 layer,
64 hidden units GNNs measured on the
accuracy generalization gap.

In Figures 5, and 6, we present the accuracy generalization gaps for 2 and
3 layers with 32 and 64 features. In the overfitting regime, the rate of our
generalization bound seems to hold – decreases linearly with the number of
nodes in the logarithmic scale. In the non-overfitting regime, our rate holds
for the points whose training accuracy is below 95%. Also, we validate that
the bound increases both with the number of features and the number of
layers.

In Table 1, we present the Pearson correlation coefficient to measure the
linear relationships in the generalization gaps of a 2 layers GNN with 64
hidden units in all datasets considered. In almost every case, the coefficient
is above 0.95 which translates into a strong linear correlation. In Appendix
J we explain how we computed these values. As seen in the experiment,
the GNN generalization gap experiences a linear decay with respect to the
number of nodes in the logarithmic scale. Theorem 1 presents an upper
bound on the generalization gap, whose rate can be seen to match the one
seen in practice both for the loss, as well as the accuracy gaps.

Spectral Continuity Constant Effect. To measure the impact of the
spectral continuity constant CL, we add a regularizer to the cross-entropy loss (see Appendix J.3). We vary the value of
the regularizer, noting that a larger regularizer translates into a smaller CL and therefore a smoother function. In Figures
7a and 7c we see the empirical manifestation of the bound that we showed (cf. Theorem 1) – a GNN with a smaller CL

(a larger regularizer) will attain a smaller generalization gap. We can see that a larger regularizer (smaller continuity
constant CL, green line, regularizer 0.01) attains a smaller generalization gap, and as the regularization decreases (CL

increases), the generalization gap increases. The effect of having smaller spectral continuity constants CL is the lack of
discriminability of the GNN. As can be seen in Figures 7b and 7d, the test error decreases when the multiplier is too
large (CL too small). Therefore, a spectral regularize not too large can be shown to guarantee good test accuracy, but if
the regularizer is too large, the test accuracy will be hurt by the lack of discriminability of the GNN as shown in Figure
7d. In all, we verify the fact that a GNN with a smoother spectral response will have a smaller generalization gap as
shown in Theorem 1.

Graph classification We evaluate the generalization gap on graph prediction using the ModelNet10 dataset (Wu
et al., 2015). We set the coordinates of each point as input graph signals, and the weights of the edges are calculated
based on the Euclidean distance between the nodes. The generalization gap is calculated by training GNNs on graphs
with N = 20, 40 . . . , 100 sampled points, and plotting the differences between the average output of the trained GNNs
on the trained graph and a testing graph with size N = 100. Figure 8a shows the generalization gaps for GNNs with
2 layers and Figure 8b shows the results of GNNs with 3 layers. We can see that the output differences between the
GNNs decrease with the number of nodes and decrease with the multiplier (increase with CL). This verifies the claims
of Theorem 2. In Appendix J.1, we present experiment results on more model datasets.

6 CONCLUSION

We study the statistical generalization of GNNs from a manifold perspective. We consider graphs sampled from
manifolds and prove that GNNs could effectively generalize to unseen data from the manifolds when the number of
sampled points is large enough and the filter functions are continuous in the spectral domain. We verify our theoretical
results on both synthetic and real-world datasets. The impact of this paper is to show a better understanding of
GNN generalization capabilities from a spectral perspective relying on a continuous model. Our work also motivates
the practical design of large-scale GNNs. Specifically, in order to achieve a better generalization, it is essential to
restrict the discriminability of GNNs by putting assumptions on the spectral continuity of the filter functions in the
GNNs. For future work, we will study the generalization of GNNs in more settings include transductive learning
and out-of-distribution generalization. We are also willing to look into more application scenarios to fully utilize our
theory on more complex and general manifold models. We will consider a better explanation and exploration deep
into the overfitting regime of node classification, which is of great interest where the figures show that our proposed
generalization upper bounds fit the rate.
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A INDUCED MANIFOLD SIGNALS

The graph signal attached to this constructed graph G can be seen as the discretization of the continuous function
over the manifold. Suppose f ∈ L2(M), the graph signal xN is composed of discrete data values of the function f
evaluated at XN , i.e. [xN ]i = f(xi) for i = 1, 2 · · · , N . With a sampling operator PN : L2(M) → L2(XN ), the
discretization can be written as

xN = PNf. (19)
Let µN be the empirical measure of the random sample as

µN =
1

N

N∑
i=1

δxi
. (20)

Let {Vi}Ni=1 be the decomposition (García Trillos et al., 2020) of M with respect to XN with Vi ⊂ Br(xi), where
Br(xi) denoted the closed metric ball of radius r centered at xi ∈ M. The decomposition can be achieved by the
optimal transportation map T : M → XN , which is defined by the ∞-Optimal Transport distance between µ and µN .

d∞(µ, µN ) := min
T :T#µ=µN

esssupx∈Md(x, T (x)), (21)

where T#µ = µN indicates that µ(T−1(V )) = µN (V ) for every Vi of M. This transportation map T induces the
partition V1, V2, · · ·VN of M, where Vi := T−1({xi}) with µ(Vi) =

1
N for all i = 1, · · ·N . The radius of Vi can be

bounded as r ≤ A(logN/N)1/d with A related to the geometry of M (García Trillos et al., 2020, Theorem 2).

The manifold function induced by the graph signal xN over the sampled graph G is defined by

(INxN )(x) =

N∑
i=1

[x]i1x∈Vi
, for all x ∈ M (22)

where we denote IN : L2(XN ) → L2(M) as the inducing operator.

B CONVERGENCE OF GNN TO MNN

The convergence of GNN on sampled graphs to MNN provides the support for the generalization analysis. We first
introduce the inner product over the manifold. The inner product of signals f, g ∈ L2(M) is defined as

⟨f, g⟩M =

∫
M

f(x)g(x)dµ(x), (23)

where dµ(x) is the volume element with respect to the measure µ over M. Similarly, the norm of the manifold signal f
is

∥f∥2M = ⟨f, f⟩M. (24)
Proposition 1. Let M ⊂ RM be an embedded manifold with weighted Laplace operator Lρ and a bandlimited manifold
signal f . Graph GN is constructed based on a set of N i.i.d. randomly sampled points XN = {x1, x2, · · · , xN}
according to measure µ over M. A graph signal x is the sampled manifold function values at XN . The graph Laplacian
LN is calculated based on equation 7 or equation 8 with ϵ as the graph parameter. Let Φ(H,Lρ, ·) be a MNN on
M equation 6 with L layers and F features in each layer. Let ΦG(H,LN , ·) be the GNN with the same architecture
applied to the graph GN . Then, with the filters as low-pass and nonlinearities as normalized Lipschitz continuous, it
holds in probability at least 1− δ that

1

N

N∑
i=1

∥ΦG(H,LN ,x)−PNΦ(H,Lρ, INx)∥2 ≤ LFL−1

(
C1ϵ+ C2

√
log(1/δ)

N

)
(25)

where C1, C2 are constants defined in the following proof.
Proposition 2. (Wang et al., 2024a, Proposition 2, Proposition 4) Let M ⊂ RM be equipped with Laplace operator
Lρ, whose eigendecomposition is given by {λi,ϕi}∞i=1. Let LN be the discrete graph Laplacian of graph weights
defined as equation 7 (or equation 8), with spectrum {λi,N ,ϕi,N}Ni=1. Fix K ∈ N+ and assume that ϵ = ϵ(N) ≥
(log(C/δ)/N)

1/(d+4) (or ϵ = ϵ(N) ≥ (log(CN/δ)/N)
1/(d+4)). Then, with probability at least 1− δ, we have

|λi − λi,N | ≤ CM,1λiϵ, ∥aiϕi,N − ϕi∥ ≤ CM,2
λi

θi
ϵ, (26)

with ai ∈ {−1, 1} for all i < K and θ the eigengap of L, i.e., θi = min{λi − λi−1, λi+1 − λi}. The constants CM,1,
CM,2 depend on d and the volume, the injectivity radius and sectional curvature of M.
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Proof. Because {x1, x2, · · · , xN} is a set of randomly sampled points from M, based on Theorem 19 in Von Luxburg
et al. (2008) we can claim that

|⟨PNf,PNϕi⟩ − ⟨f,ϕi⟩M| = O

(√
log(1/δ)

N

)
. (27)

This also indicates that

∣∣∥PNf∥2 − ∥f∥2M
∣∣ = O

(√
log(1/δ)

N

)
, (28)

which indicates ∥PNf∥ = ∥f∥M+O((log(1/δ)/N)1/4). We suppose that the input manifold signal is λM -bandlimited
with M spectral components. We first write out the filter representation as

∥h(LN )PNf −PNh(Lρ)f∥ =

∥∥∥∥∥
N∑
i=1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi

∥∥∥∥∥ (29)

≤

∥∥∥∥∥
M∑
i=1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi +

N∑
i=M+1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ (30)

≤

∥∥∥∥∥
M∑
i=1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi

∥∥∥∥∥+
∥∥∥∥∥

N∑
i=M+1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ (31)

The first part of equation 31 can be decomposed with the triangle inequality as∥∥∥∥∥
M∑
i=1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi

∥∥∥∥∥
≤

∥∥∥∥∥
M∑
i=1

(
ĥ(λi,N )− ĥ(λi)

)
⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥+
∥∥∥∥∥

M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥ . (32)

In equation equation 32, the first part relies on the difference of eigenvalues and the second part depends on the
eigenvector difference. The first term in equation 32 is bounded with Cauchy-Schwartz inequality as∥∥∥∥∥

M∑
i=1

(ĥ(λi,n)− ĥ(λi))⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ ≤
M∑
i=1

∣∣∣ĥ(λi,N )− ĥ(λi)
∣∣∣ |⟨PNf,ϕi,N ⟩| (33)

≤ ∥PNf∥
M∑
i=1

|ĥ′(λi)||λi,N − λi| (34)

≤ ∥PNf∥
M∑
i=1

CM,1CLϵλ
−d
i (35)

≤ ∥PNf∥CLCM,1ϵ

M∑
i=1

i−2 (36)

≤

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
CM,1ϵ

π2

6
:= A1(N) (37)

In equation 35, it depends on the low-pass filter assumption in Definition 4. In equation 36, we implement Weyl’s law
(Arendt et al., 2009) which indicates that eigenvalues of Laplace operator scales with the order λi ∼ i2/d. The last
inequality comes from the fact that

∑∞
i=1 i

−2 = π2

6 . The second term in equation 32 can be bounded with the triangle

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

inequality as

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥
≤

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨PNf,ϕi,N ⟩PNϕi)

∥∥∥∥∥
+

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩PNϕi − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥ (38)

The first term in equation 38 can be bounded with inserting the eigenfunction convergence result in Proposition 2 as

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨PNf,ϕi,N ⟩MPNϕi)

∥∥∥∥∥
≤

M∑
i=1

∣∣∣ĥ(λi)
∣∣∣ ∥PNf∥∥ϕi,N −PNϕi∥ (39)

≤
M∑
i=1

(λ−d
i )

CM,2ϵ

θi

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
(40)

≤ CM,2ϵ
π2

6
max

i=1,··· ,M
θ−1
i

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
(41)

:= A2(M,N). (42)

Considering the low-pass filter assumption, the second term in equation 38 can be written as

∥∥∥∥∥
M∑
i=1

ĥ(λi,N )(⟨PNf,ϕi,N ⟩PNϕi − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥
≤

M∑
i=1

∣∣∣ĥ(λi,N )
∣∣∣ |⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M| ∥PNϕi∥ (43)

≤
M∑
i=1

(λ−d
i,N ) |⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M|

(
1 +

(
log(1/δ)

N

) 1
4

)
(44)

≤
M∑
i=1

(1 + CM,1ϵ)
−d(λ−d

i ) |⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M|

(
1 +

(
log(1/δ)

N

) 1
4

)
(45)

≤ π2

6
|⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M|

(
1 +

(
log(1/δ)

N

) 1
4

)
:= A3(N) (46)

The term |⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M| can be decomposed by inserting a term ⟨PNf,PNϕi⟩ as

|⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M| ≤ |⟨PNf,ϕi,N ⟩ − ⟨PNf,PNϕi⟩+ ⟨PNf,PNϕi⟩ − ⟨f,ϕi⟩M| (47)
≤ |⟨PNf,ϕi,N ⟩ − ⟨PNf,PNϕi⟩|+ |⟨PNf,PNϕi⟩ − ⟨f,ϕi⟩M| (48)
≤ ∥PNf∥∥ϕi,N −PNϕi∥+ |⟨PNf,PNϕi⟩ − ⟨f,ϕi⟩M| (49)

≤

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
CM,2λiϵ

θi
+

√
log(1/δ)

N
(50)
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Then equation equation 45 can be bounded as∥∥∥∥∥
M∑
i=1

ĥ(λi,N )(⟨PNf,ϕi,N ⟩PNϕi − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥
≤

M∑
i=1

(1 + CM,1ϵ)
−d(λ−d

i )

((
∥f∥M +

(
log(1/δ)

N

) 1
4

)
CM,2λiϵ

θi
+

√
log(1/δ)

N

)(
1 +

(
log(1/δ)

N

) 1
4

)
(51)

≤ π2

6
max

i=1,··· ,M

CM,2ϵ

θi

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
+

π2

6

√
log(1/δ)

N
(52)

The second term in equation 31 can be bounded with the eigenvalue difference bound in Proposition 2 as∥∥∥∥∥
N∑

i=M+1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ ≤
N∑

i=M+1

(λ−d
i,N )

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
(53)

≤
∞∑

i=M+1

(λ−d
i,N )∥f∥M (54)

≤ (1 + CM,1ϵ)
−d

∞∑
i=M+1

(λ−d
i )∥f∥M (55)

≤ M−1∥f∥M := A4(M). (56)

We note that the bound is made up by terms A1(N) + A2(M,N) + A3(N) + A4(M), related to the bandwidth of
manifold signal M and the number of sampled points N . This makes the bound scale with the order

∥h(LN )PNf −PNh(Lρ)f∥ ≤ C ′
1ϵ+ C ′

2ϵθ
−1
M + C ′

3

√
log(1/δ)

N
+ C ′

4M
−1, (57)

with C ′
1 = CLCM,1

π2

6 ∥f∥M, C ′
2 = CM,2

π2

6 , C ′
3 = π2

6 and C ′
4 = ∥f∥M. As N goes to infinity, for every δ > 0,

there exists some M0, such that for all M > M0 it holds that A4(M) ≤ δ/2. There also exists n0, such that for all
N > n0, it holds that A1(N) + A2(M0, N) + A3(N) ≤ δ/2. We can conclude that the summations converge as N
goes to infinity. We see M large enough to have M−1 ≤ δ′, which makes the eigengap θM also bounded by some
constant. We combine the first two terms as

∥h(LN )PNf −PNh(Lρ)f∥ ≤ (C1CL + C2)ϵ+
π2

6

√
log(1/δ)

N
, (58)

with C1 = CM,1
π2

6 ∥f∥M and C2 = CM,2
π2

6 θ−1
δ′−1 . To bound the output difference of MNNs, we need to write in the

form of features of the final layer

∥ΦG(H,LN ,PNf)−PNΦ(H,Lρ, f))∥ =

∥∥∥∥∥
F∑

q=1

xq
n,L −

F∑
q=1

PNfq
L

∥∥∥∥∥ ≤
F∑

q=1

∥∥∥xq
n,L −PNfq

L

∥∥∥ . (59)

By inserting the definitions, we have∥∥∥xp
n,l −PNfp

l

∥∥∥ =

∥∥∥∥∥σ
(

F∑
q=1

hpq
l (LN )xq

n,l−1

)
−PNσ

(
F∑

q=1

hpq
l (Lρ)f

q
l−1

)∥∥∥∥∥ (60)

with xn,0 = PNf as the input of the first layer. With a normalized point-wise Lipschitz nonlinearity, we have

∥xp
n,l −PNfp

l ∥ ≤

∥∥∥∥∥
F∑

q=1

hpq
l (LN )xq

n,l−1 −PN

F∑
q=1

hpq
l (Lρ)f

q
l−1

∥∥∥∥∥ (61)

≤
F∑

q=1

∥∥∥hpq
l (LN )xq

n,l−1 −PNhpq
l (Lρ)f

q
l−1

∥∥∥ (62)
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The difference can be further decomposed as

∥hpq
l (LN )xq

n,l−1 −PNhpq
l (Lρ)f

q
l−1∥

≤ ∥hpq
l (LN )xq

n,l−1 − hpq
l (LN )PNfq

l−1 + hpq
l (LN )PNfq

l−1 −PNhpq
l (Lρ)f

q
l−1∥ (63)

≤
∥∥∥hpq

l (LN )xq
n,l−1 − hpq

l (LN )PNfq
l−1

∥∥∥+ ∥∥hpq
l (LN )PNfq

l−1 −PNhpq
l (Lρ)f

q
l−1

∥∥ (64)

The second term can be bounded with equation 57 and we denote the bound as ∆N for simplicity. The first term can be
decomposed by Cauchy-Schwartz inequality and non-amplifying of the filter functions as∥∥∥xp

n,l −PNfp
l

∥∥∥ ≤
F∑

q=1

∆N∥xq
n,l−1∥+

F∑
q=1

∥xq
l−1 −PNfq

l−1∥. (65)

To solve this recursion, we need to compute the bound for ∥xp
l ∥. By normalized Lipschitz continuity of σ and the fact

that σ(0) = 0, we can get

∥xp
l ∥ ≤

∥∥∥∥∥
F∑

q=1

hpq
l (LN )xq

l−1

∥∥∥∥∥ ≤
F∑

q=1

∥hpq
l (LN )∥ ∥xq

l−1∥ ≤
F∑

q=1

∥xq
l−1∥ ≤ F l−1∥x∥. (66)

Insert this conclusion back to solve the recursion, we can get∥∥∥xp
n,l −PNfp

l

∥∥∥ ≤ lF l−1∆N∥x∥. (67)

Replace l with L we can obtain

∥ΦG(H,LN ,PNf)−PNΦ(H,Lρ, f))∥ ≤ LFL−1∆N , (68)

when the input graph signal is normalized. By replacing f = INx, we can conclude the proof.

C LOCAL LIPSCHITZ CONTINUITY OF MNNS

We propose that the outputs of MNN defined in equation 6 are locally Lipschitz continuous within a certain area, which
is stated explicitly as follows.
Proposition 3. (Local Lipschitz continuity of MNNs) Let MNN be L layers with F features in each layer, suppose the
manifold filters are nonamplifying with |ĥ(λ)| ≤ 1 and the nonlinearities normalized Lipschitz continuous, then there
exists a constant C such that

|Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(y)| ≤ FLC ′dist(x− y), for all x, y ∈ Br(M), (69)

where Br(M) is a ball with radius r over M.

Proof. The output of MNN can be written explicitly as

|Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(y)| =

∣∣∣∣∣σ
(

F∑
q=1

hq
L(Lρ)f

q
L−1(x)

)
− σ

(
F∑

q=1

hq
L(Lρ)f

q
L−1(y)

)∣∣∣∣∣ (70)

≤

∣∣∣∣∣
F∑

q=1

hq
L(Lρ)f

q
L−1(x)−

F∑
q=1

hq
L(Lρ)f

q
L−1(y)

∣∣∣∣∣ ≤ F max
q=1,··· ,F

∣∣hq
L(Lρ)f

q
L−1(x)− hq

L(Lρ)f
q
L−1(y)

∣∣ . (71)

We have fq
L−1(x) = σ

(∑F
p=1 h

p
L−1f

p
L−2(x)

)
. The process can be repeated recursively, and finally, we can have

|Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(y)| ≤ FL|hL(Lρ) · · ·h1(Lρ)f(x)− hL(Lρ) · · ·h1(Lρ)f(y)|. (72)

With f as a λ-bandlimited manifold signal, we suppose g = hL(Lρ) · · ·h1(Lρ)f . As ⟨f,ϕi⟩ = 0 for all i > M , g is
also bandlimited and possesses M spectral components. The gradient can be bounded according to (Shi & Xu, 2010)
combined with the non-amplifying property of the filter function as

∥∇g∥∞ ≤ C
∑
λi≤λ

∣∣∣ĥ(λi)
∣∣∣L λ

d+1
2

i ∥f∥M ≤ C
∑
λi≤λ

λ
d+1
2

i ∥f∥M (73)
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From Theorem 4.5 in (Evans, 2018), g is locally Lipschitz continuous as

|g(x)− g(y)| ≤ C ′dist(x− y), with x, y ∈ Br(M), (74)

where Br(M) is a closed ball with radius r with C ′ depending on the geometry of M.

Combining the above, we have the continuity of the output of MNN as

|Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(y)| ≤ FLC ′dist(x− y), with x, y ∈ Br(M), (75)

which concludes the proof.
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D PROOF OF THEOREM 1

Proof. To analyze the difference between the empirical risk and statistical risk, we introduce an intermediate term
which is the induced version of the sampled MNN output. We define IN as the inducing operator based on the Voronoi
decomposition {Vi}Ni=1 defined in Section A. This intermediate term is written explicitly as

Φ(H,Lρ, f)(x) = INPNΦ(H,Lρ, f)(x) =

N∑
i=1

Φ(H,Lρ, f)(xi)1x∈Vi
, for all x ∈ M, (76)

where xi ∈ XN are sampled points from the manifold.

Suppose H ∈ argminH∈H RM(H), we have

GA = sup
H∈H

|RG(H)−RM(H)| (77)

The difference between RG(H) and RM(H) can be decomposed as

|RG(H)−RM(H)|

=

∣∣∣∣∣ 1N
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)

∣∣∣∣∣ (78)

=

∣∣∣∣∣ 1N
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)

+

∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)−

∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)

∣∣∣∣∣ (79)

≤

∣∣∣∣∣ 1N
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)

∣∣∣∣∣
+

∣∣∣∣∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)−

∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)
∣∣∣∣ (80)

We analyze the two terms in equation 80 separately, with the first term bounded based on the convergence of GNN to
MNN and the second term bounded with the smoothness of manifold functions.

The first term in equation 80 can be written as∣∣∣∣∣ 1N
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)

∣∣∣∣∣ (81)

=
1

N

∣∣∣∣∣
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
N∑
i=1

ℓ(Φ(H,Lρ, f)(xi), g(xi))

∣∣∣∣∣ (82)

≤ 1

N

N∑
i=1

|ℓ([ΦG(H,LN ,x)]i, [y]i)− ℓ(Φ(H,Lρ, f)(xi), g(xi))| (83)

≤ 1

N

N∑
i=1

∣∣∣[ΦG(H,LN ,x)]i −Φ(H,Lρ, f)(xi)
∣∣∣ (84)

≤ 1

N
∥ΦG(H,LN ,x)−PNΦ(H,Lρ, INx)∥1 (85)

≤ 1√
N

LFL−1

(
(C1CL + C2)ϵ+

π2

6

√
log(1/δ)

N

)
(86)

From equation 81 to equation 82, we use the definition of induced manifold signal defined in equation 76. We utilize
the Lipschitz continuity assumption on loss function from equation 83 to equation 84. From equation 84 to equation 85,
it depends on the fact that x is a single-entry vector and that [y]i is the value sampled from target manifold function g
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evaluated on xi. Finally the bound depends on the convergence of GNN on the sampled graph to the MNN as stated in
Proposition 1.

The second term is decomposed as∣∣∣∣∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)−

∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)
∣∣∣∣ (87)

≤

∣∣∣∣∣
N∑
i=1

∫
Vi

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)−

N∑
i=1

∫
Vi

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)

∣∣∣∣∣ (88)

≤
N∑
i=1

∫
Vi

∣∣ℓ (Φ(H,Lρ, f)(x), g(x)
)
− ℓ (Φ(H,Lρ, f)(x), g(x))

∣∣ dµ(x) (89)

≤
N∑
i=1

∫
Vi

∣∣Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(x)
∣∣ dµ(x) (90)

≤
N∑
i=1

∫
Vi

|Φ(H,Lρ, f)(xi)−Φ(H,Lρ, f)(x)| dµ(x) (91)

From equation 87 to equation 88, it relies on the decomposition of the MNN output over {Vi}Ni=1. From equation 89 to
equation 90, we use the Lipschitz continuity of loss function. From equation 90 to equation 91, we use the definition of
Φ(H,Lρ, f). Proposition 3 indicates that the MNN outputs are Lipschitz continuous within a certain range, which
leads to

N∑
i=1

∫
Vi

|Φ(H,Lρ, f)(xi)−Φ(H,Lρ, f)(x)| dµ(x)

≤
N∑
i=1

∫
Vi

FLC3

(
logN

N

) 1
d

dµ(x) (92)

= FLC3

(
logN

N

) 1
d

N∑
i=1

∫
Vi

dµ(x) (93)

≤ FLC3

(
logN

N

) 1
d

. (94)

Combining equation 86 and equation 92, we can conclude the proof.
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E COROLLARY OF THEOREM 1

Corollary 1. Suppose the GNN with low-pass filters (Definition 4 have L layers with F features in each layer and the
input signal is bandlimited (Definition 1)). Suppose graphs G1 with N1 nodes and G2 with N2 nodes are sampled from
the same underlying manifold M. Under Assumptions 1 and 2 it holds in probability at least 1− δ that

sup
H∈H

∣∣∣∣∣ 1

N1

N1∑
i=1

ℓ ([ΦG1
(H,LN1

,x1)]i, [y1]i)−
1

N2

N2∑
i=1

ℓ ([ΦG2
(H,LN2

,x2)]i, [y2]i)

∣∣∣∣∣ ≤
LFL−1

(
(C1CL + C2)

ϵ(
√
N1 +

√
N2)√

N1N2

+
π2(N1 +N2)

√
log(1/δ)

6N1N2

)
+ FLC3

(
logN1

N1

) 1
d

+ FLC3

(
logN2

N2

) 1
d

,

(95)

with C1, C2, and C3 depending on the geometry of M, CL is the spectral continuity constant in Definition 4.

Proof. By importing the statistical risk over the manifold RM(H) in equation 12, the bound can be derived with a
triangle inequality as

sup
H∈H

∣∣∣∣∣ 1

N1

N1∑
i=1

ℓ ([ΦG1(H,LN1 ,x1)]i, [y1]i)−
1

N2

N2∑
i=1

ℓ ([ΦG2(H,LN2 ,x2)]i, [y2]i)

∣∣∣∣∣
= sup

H∈H

∣∣∣∣∣ 1

N1

N1∑
i=1

ℓ ([ΦG1
(H,LN1

,x1)]i, [y1]i)−RM(H) +RM(H)− 1

N2

N2∑
i=1

ℓ ([ΦG2
(H,LN2

,x2)]i, [y2]i)

∣∣∣∣∣
(96)

≤ sup
H∈H

∣∣∣∣∣ 1

N1

N1∑
i=1

ℓ ([ΦG1
(H,LN1

,x1)]i, [y1]i)−RM(H)

∣∣∣∣∣+ sup
H∈H

∣∣∣∣∣ 1

N2

N2∑
i=1

ℓ ([ΦG2
(H,LN2

,x2)]i, [y2]i)−RM(H)

∣∣∣∣∣ .
(97)

Inserting the result in Theorem 1 concludes the proof.
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F PROOF OF THEOREM 2

Proof. We can write the difference as

|RG(H)−RM(H)|

≤
K∑

k=1

∣∣∣∣∣ℓ
(

1

N

N∑
i=1

[ΦG(H,LN,k,xk)]i, yk

)
− ℓ

(∫
Mk

Φ(H,Lρ,k, fk)dµk(x), yk

)∣∣∣∣∣ (98)

Based on the property of absolute value inequality and the Lipschitz continuity assumption of loss function (Assumption
2), we have ∣∣∣∣∣ℓ

(
1

N

N∑
i=1

[ΦG(H,LN,k,xk)]i, yk

)
− ℓ

(∫
Mk

Φ(H,Lρ,k, fk)dµk(x), yk

)∣∣∣∣∣
≤

∣∣∣∣∣ 1N
N∑
i=1

[ΦG(H,LN,k,xk)]i −
∫
Mk

Φ(H,Lρ,k, fk)dµk(x)

∣∣∣∣∣ (99)

We insert an intermediate term Φ(H,Lρ,k, fk)(xi) as the value evaluated on the sampled point xi, which leads to∣∣∣∣∣ 1N
N∑
i=1

[ΦG(H,LN,k,xk)]i −
∫
Mk

Φ(H,Lρ,k, fk)dµk(x)

∣∣∣∣∣ (100)

≤

∣∣∣∣∣ 1N
N∑
i=1

[ΦG(H,LN,k,xk)]i −
1

N

N∑
i=1

Φ(H,Lρ,k, fk)(xi)

∣∣∣∣∣+∣∣∣∣∣ 1N
N∑
i=1

Φ(H,Lρ,k, fk)(xi)−
∫
Mk

Φ(H,Lρ,k, fk)dµk(x)

∣∣∣∣∣ (101)

The first term in equation 101 can be bounded similarly as equation 85, which is explicitly written as∣∣∣∣∣ 1N
N∑
i=1

[ΦG(H,LN,k,xk)]i −
1

N

N∑
i=1

Φ(H,Lρ,k, fk)(xi)

∣∣∣∣∣ (102)

≤ 1

N
∥ΦG(H,LN ,xk)−PNΦ(H,Lρ, fk)∥1 (103)

≤ 1√
N

∥ΦG(H,LN ,xk)−PNΦ(H,Lρ, fk)∥2 (104)

≤ 1√
N

(
(C1CL + C2)ϵ+

π2

6

√
log(1/δ)

N

)
(105)

The second term is ∣∣∣∣∣ 1N
N∑
i=1

Φ(H,Lρ,k, fk)(xi)−
∫
Mk

Φ(H,Lρ,k, fk)dµk(x)

∣∣∣∣∣ (106)

=

∣∣∣∣∣
N∑
i=1

∫
Vi

Φ(H,Lρ,k, fk)(xi)dµk(x)−
N∑
i=1

∫
Vi

Φ(H,Lρ,k, fk)(x)dµk(x)

∣∣∣∣∣ (107)

≤
N∑
i=1

∫
Vi

|Φ(H,Lρ,k, fk)(xi)−Φ(H,Lρ,k, fk)(x)| dµk(x) (108)

≤ FLC3

(
logN

N

) 1
d

(109)

This depends on the Lipschitz continuity of the output manifold function in Proposition 3.
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G FURTHER REFERENCES

Graphon theory Different from the manifold model we’re using, some research constructs graphs derived from
graphons, which can be viewed as a random limit graph model. This research has focused on their convergence,
stability, as well as transferability (Ruiz et al., 2020; Maskey et al., 2023; Keriven et al., 2020). In (Parada-Mayorga
et al., 2023), graphon is used as a pooling tool in GNNs. Despite its utility, the graphon presents several limitations
compared to the manifold model we use. Firstly, the graphon model assumes an infinite degree at every node (Lovász,
2012), which is not the case in the manifold model. Additionally, graphons offer limited insight into the underlying
model; visualizing a graphon is challenging, except in the stochastic block model case. Manifolds, however, are more
interpretable, especially when based on familiar shapes like spheres and 3D models (see Figure 2). Finally, the manifold
model supports a wider range of characterizable models, making it a more realistic choice.

Transferability of GNNs The transferability of GNNs has been extensively studied by examining the differences
in GNN outputs across graphs of varying sizes as they converge to a limit model. This analysis, however, often lacks
statistical generalization. Several studies have explored GNN transferability with graphon models, proving bounds on
the differences in GNN outputs (Ruiz et al., 2023; 2020; Maskey et al., 2023). Other research has demonstrated how
increasing graph size during GNN training can improve generalization to large-scale graphs (Cervino et al., 2023). The
transferability of GNNs has also been investigated in the context of graphs generated from general topological spaces
(Levie et al., 2021) and manifolds (Wang et al., 2024a). Furthermore, a novel graphop operator has been proposed as a
limit model for both dense and sparse graphs, with proven transferability results (Le & Jegelka, 2024). Further research
has focused on transfer learning for GNNs by measuring distances between graphs without assuming a limit model (Lee
et al., 2017; Zhu et al., 2021). Finally, a transferable graph transformer has been proposed and empirically validated
(He et al., 2023).

H LOW PASS FILTER ASSUMPTION

In the main results, we assume that the GNN and MNN are low-pass filters. This is a reasonable assumption because
high-frequency signals on graphs or manifolds can fluctuate significantly between adjacent entries, leading to instability
and learning challenges. We expect a degree of local homogeneity, which translates to low-frequency signals. This
assumption is supported by empirical evidence in various domains, including opinion dynamics, econometrics, and
graph signal processing (Degroot, 1974; Billio et al., 2012; Ramakrishna et al., 2020). Moreover, several other effective
learning techniques, such as Principal Component Analysis (PCA) and Isomap, implicitly employ low-pass filtering.
Therefore, we believe that the low-pass filter assumption is not restrictive and is well-supported by both practical
applications and theoretical considerations.

I MANIFOLD ASSUMPTION

In this paper, we considered the case in which graphs are sampled from manifolds. This is an assumption that has been
widely used in practice. From dynamical systems (Talmon et al., 2015) to images (Peyré, 2009; Osher et al., 2017),
assuming an underlying low dimensional manifold is a common practice. Real-world graphs, like the ones considered
in the node prediction experiments, can be assumed to be sampled from d-dimensional manifolds. To support this
argument, in Figure 9, we plot the 100 largest eigenvalues of the Laplacian matrix associated with each graph. By doing
this, we show a fast decay in the values of the eigenvalues progress. This decay shows that the information is mostly
supported on a subset of the eigenvalues thus reinforcing the idea that it comes from a low dimensional manifold.

J EXPERIMENT DETAILS AND FURTHER EXPERIMENTS

All experiments were done using a NVIDIA GeForce RTX 3090, and each set of experiments took at most 10
hours to complete. In total, we run 10 datasets, which amounts for around 100 hours of GPU use. All datasets
used in this paper are public, and free to use. They can be downloaded using the pytorch package (https:
//pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html), the ogb pack-
age (https://ogb.stanford.edu/docs/nodeprop/) and the Princeton ModelNet project (https://
modelnet.cs.princeton.edu/). In total, the datasets occupy around 5 gb. However, they do not need to
be all stored at the same time, as the experiments that we run can be done in series.
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Figure 9: Top 100 eigenvalues of the graph for each dataset considered in the node classification problem.

J.1 MODELNET10 AND MODELNET40 GRAPH CLASSIFICATION TASKS

ModelNet10 dataset (Wu et al., 2015) includes 3,991 meshed CAD models from 10 categories for training and 908
models for testing as Figure 10 shows. ModelNet40 dataset includes 38,400 training and 9,600 testing models as Figure
11 shows. In each model, N points are uniformly randomly selected to construct graphs to approximate the underlying
model, such as chairs, tables.

Figure 10: Point cloud models in ModelNet10 with N = 300 sampled points in each model, corresponding to bathtub,
chair, desk, table, toiler, and bed.

Figure 11: Point cloud models from ModelNet40 with N = 300 sampled points in each model, corresponding to
airplane, person, car, guitar, plant, and bottle.

The weight function of the constructed graph is determined as equation 7 with ϵ = 0.1. We calculate the Laplacian
matrix for each graph as the input graph shift operator. In this experiment, we implement GNNs with different numbers
of layers and hidden units with K = 5 filters in each layer. All the GNN architectures are trained by minimizing the
cross-entropy loss. We implement an ADAM optimizer with the learning rate set as 0.005 along with the forgetting
factors 0.9 and 0.999. We carry out the training for 40 epochs with the size of batches set as 10. We run 5 random
dataset partitions and show the average performances and the standard deviation across these partitions.
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(a) Differences of the outputs of 3-layer GNNs.
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(b) Differences of the outputs of 4-layer GNNs.

Figure 12: Graph outputs differences of GNNs with different architectures on ModelNet40 dataset.

J.2 NODE CLASSIFICATION TRAINING DETAILS AND DATASETS

In this section, we present the results for node classification. In this paragraph we present the common details for all
datasets, we will next delve into each specific detail inside the dataset subsection that follows.

Name Nodes Edges Features Number
of Classes Reference

Arxiv 169, 343 1, 166, 243 128 40 Wang et al. (2020); Mikolov et al. (2013)
Cora 2, 708 10, 556 1, 433 7 Yang et al. (2016b)

CiteSeer 3, 327 9, 104 3, 703 6 Yang et al. (2016b)
PubMed 19, 717 88, 648 500 3 Yang et al. (2016b)

Coauthor Physics 18, 333 163, 788 6, 805 15 Shchur et al. (2018)
Coauthor CS 34, 493 495, 924 8, 415 5 Shchur et al. (2018)

Amazon-ratings 24, 492 93, 050 300 5 Platonov et al. (2023)
Roman-empire 22, 662 32, 927 300 18 Platonov et al. (2023)

Table 2: Details of the datasets considered in the experiments.

In all datasets, we used the graph convolutional layer GCN, and trained for 1000 epochs. For the optimizer, we used
AdamW, with using a learning rate of 0.01, and 0 weight decay. We trained using the graph convolutional layer, with a
varying number of layers and hidden units. For dropout, we used 0.5. We trained using the cross-entropy loss. In all
cases, we trained 2 and 3 layered GNNs.

To compute the linear approximation in the plots, we used the mean squared error estimator of the form

y = s ∗ log(n) + p. (110)

Where s is the slope, p is the point, and n is the vector with the nodes in the training set for each experiment. Note
that we repeated each experiment for 10 independent runs. In all experiments, we compute the value of s and p that
minimize the mean square error over the mean of the experiment runs, and we compute the Pearson correlation index
over those values.

Our experiment shows that our bound shows the same rate dependency as the experiments. That is to say, in the
logarithmic scale, the generalization gap of GNNs is linear with respect to the logarithm of the number of nodes. In
most cases, the Pearson correlation index is above 0.9 in absolute value, which indicates a strong linear relationship.
We noticed that the linear relationship changes the slope in the overfitting regime, and in the non-overfitting regime.
That is to say, when the GNN is overfitting the training set, the generalization gap decreases at a much slower rate than
it does with the GNN does not have the capacity to do so. Therefore, in the case in which the GNN overfits the training
set for all nodes when computed s using all the samples in the experiment. On the other hand, when the number of
nodes is large enough that the GNN cannot overfit the training set, then we computed the s and p with the nodes in the
non overfitting regime.
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J.3 SPECTRAL CONTINUITY CONSTANT REGULARIZER

We add a regularization term to the loss to better control the value of the spectral continuity constant (defined in
Definition 4) while training. To do so, given a convolutional filter h ∈ RK , its associated spectral continuity constant is

R(h) =

K−1∑
k=0

k|hk|λk−1
max, (111)

Where λmax is the largest eigenvalue of the graph G.

J.3.1 ARXIV DATASET

For this datasets, we trained 2, 3, 4 layered GNN. We also used a learning rate scheduler ReduceLROnPlateau with
mode min, factor 0.5, patience 100 and a minimum learning rate of 0.001.
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Figure 13: Generalization gap for the OGBN-Arxiv dataset on the accuracy as a function of the number of nodes in the
training set.

J.3.2 CORA DATASET

For the Cora dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Planetoid(root="./data",name=’Cora’).

J.3.3 CITESEER DATASET

For the CiteSeer dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Planetoid(root="./data",name=’CiteSeer’).

J.3.4 PUBMED DATASET

For the PubMed dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Planetoid(root="./data",name=’PubMed’).
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Figure 14: Generalization gap for the OGBN-arxiv dataset on the loss (cross-entropy) as a function of the number of
nodes in the training set.
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Figure 15: Values of slope (a) and point (b) corresponding to the linear fit (a ∗ log(N) + b) of Figures 14 and 13.
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Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 64 −6.301e− 01 3.621e+ 00 −9.980e− 01
Accuracy 2 128 −6.034e− 01 3.663e+ 00 −9.985e− 01
Accuracy 2 256 −5.347e− 01 3.493e+ 00 −9.952e− 01
Accuracy 2 512 −5.328e− 01 3.605e+ 00 −9.975e− 01
Accuracy 3 64 −6.271e− 01 3.600e+ 00 −9.987e− 01
Accuracy 3 128 −5.730e− 01 3.567e+ 00 −9.970e− 01
Accuracy 3 256 −4.986e− 01 3.393e+ 00 −9.910e− 01
Accuracy 3 512 −4.529e− 01 3.315e+ 00 −9.934e− 01
Accuracy 4 64 −5.343e− 01 3.236e+ 00 −9.971e− 01
Accuracy 4 128 −5.096e− 01 3.299e+ 00 −9.987e− 01
Accuracy 4 256 −4.827e− 01 3.337e+ 00 −9.920e− 01
Accuracy 4 512 −4.264e− 01 3.229e+ 00 −9.927e− 01

Loss 2 64 −6.853e− 01 2.265e+ 00 −9.975e− 01
Loss 2 128 −6.562e− 01 2.311e+ 00 −9.988e− 01
Loss 2 256 −5.907e− 01 2.174e+ 00 −9.968e− 01
Loss 2 512 −5.848e− 01 2.280e+ 00 −9.989e− 01
Loss 3 64 −6.739e− 01 2.228e+ 00 −9.980e− 01
Loss 3 128 −6.229e− 01 2.224e+ 00 −9.976e− 01
Loss 3 256 −5.581e− 01 2.111e+ 00 −9.942e− 01
Loss 3 512 −5.141e− 01 2.057e+ 00 −9.955e− 01
Loss 4 64 −6.039e− 01 1.964e+ 00 −9.980e− 01
Loss 4 128 −5.701e− 01 2.014e+ 00 −9.991e− 01
Loss 4 256 −5.379e− 01 2.051e+ 00 −9.951e− 01
Loss 4 512 −4.810e− 01 1.957e+ 00 −9.937e− 01

Table 3: Details of the linear approximation of the Arxiv Dataset. Note that in this case, we used only the values of the
generalization gap whose training error is below 95%.
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(a) Generalization Gap.
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Figure 16: Generalization gap, testing, and training losses with respect to the number of nodes in the Cora dataset. The
top row is in accuracy, and the bottom row is the cross-entropy loss.
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Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 16 −2.839e− 01 2.022e+ 00 −9.803e− 01
Accuracy 2 32 −2.917e− 01 2.014e+ 00 −9.690e− 01
Accuracy 2 64 −3.006e− 01 2.021e+ 00 −9.686e− 01
Accuracy 3 16 −2.656e− 01 1.996e+ 00 −9.891e− 01
Accuracy 3 32 −2.637e− 01 2.008e+ 00 −9.679e− 01
Accuracy 3 64 −2.581e− 01 1.981e+ 00 −9.870e− 01

Loss 2 16 −3.631e− 01 9.406e− 01 −9.250e− 01
Loss 2 32 −4.228e− 01 9.638e− 01 −9.657e− 01
Loss 2 64 −4.991e− 01 1.067e+ 00 −9.776e− 01
Loss 3 16 −4.131e− 01 1.276e+ 00 −9.753e− 01
Loss 3 32 −4.605e− 01 1.385e+ 00 −9.730e− 01
Loss 3 64 −4.589e− 01 1.455e+ 00 −9.756e− 01

Table 4: Details of the linear approximation of the Cora Dataset. Note that in this case we used all the values given that
the training accuracy is 100% for all nodes.
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Figure 17: Generalization gap, testing, and training losses with respect to the number of nodes in the CiteSeer dataset.
The top row is in accuracy, and the bottom row is the cross-entropy loss.

J.3.5 COAUTHORS CS DATASET

For the CS dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Coauthor(root="./data", name=’CS’). In this case, given
that there are no training and testing sets, we randomly partitioned the datasets and used 90% of the samples for training
and the remaining 10% for testing.

J.3.6 COAUTHORS PHYSICS DATASET

For the Physics dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Coauthor(root="./data", name=’Physics’). In this case,
given that there are no training and testing sets, we randomly partitioned the datasets and used 90% of the samples for
training and the remaining 10% for testing.
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Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 16 −1.699e− 01 1.972e+ 00 −9.518e− 01
Accuracy 2 32 −1.856e− 01 1.978e+ 00 −9.714e− 01
Accuracy 2 64 −1.749e− 01 1.966e+ 00 −9.534e− 01
Accuracy 3 16 −1.585e− 01 1.956e+ 00 −9.721e− 01
Accuracy 3 32 −1.659e− 01 1.963e+ 00 −9.721e− 01
Accuracy 3 64 −1.658e− 01 1.967e+ 00 −9.702e− 01

Loss 2 16 −1.049e− 01 7.757e− 01 −5.924e− 01
Loss 2 32 −1.762e− 01 7.646e− 01 −7.981e− 01
Loss 2 64 −2.186e− 01 8.384e− 01 −9.120e− 01
Loss 3 16 −1.802e− 01 1.169e+ 00 −8.345e− 01
Loss 3 32 −1.629e− 01 1.200e+ 00 −8.767e− 01
Loss 3 64 −5.917e− 02 1.283e+ 00 −2.562e− 01

Table 5: Details of the linear approximation of the CiteSeer Dataset. Note that in this case we used all the values given
that the training accuracy is 100% for all nodes.
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Figure 18: Generalization gap, testing, and training losses with respect to the number of nodes in the PubMed dataset.
The top row is in accuracy, and the bottom row is the cross-entropy loss.

J.3.7 HETEROPHILOUS AMAZON RATINGS DATASET

For the Amazon dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.HeterophilousGraphDataset(root="./data", name=’Amazon’).
In this case, we used the 10 different splits that the dataset has assigned.

J.3.8 HETEROPHILOUS ROMAN EMPIRE DATASET

For the Roman dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.HeterophilousGraphDataset(root="./data", name=’Roman’).
In this case, we used the 10 different splits that the dataset has assigned.
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Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 16 −2.523e− 01 1.834e+ 00 −9.942e− 01
Accuracy 2 32 −2.433e− 01 1.812e+ 00 −9.583e− 01
Accuracy 2 64 −2.764e− 01 1.869e+ 00 −9.761e− 01
Accuracy 3 16 −2.748e− 01 1.844e+ 00 −9.910e− 01
Accuracy 3 32 −2.661e− 01 1.861e+ 00 −9.712e− 01
Accuracy 3 64 −2.558e− 01 1.827e+ 00 −9.890e− 01

Loss 2 16 −4.166e− 01 7.695e− 01 −9.718e− 01
Loss 2 32 −4.733e− 01 7.852e− 01 −9.137e− 01
Loss 2 64 −4.368e− 01 7.547e− 01 −9.718e− 01
Loss 3 16 −4.424e− 01 1.067e+ 00 −9.549e− 01
Loss 3 32 −5.518e− 01 1.223e+ 00 −9.655e− 01
Loss 3 64 −5.246e− 01 1.169e+ 00 −9.632e− 01

Table 6: Details of the linear approximation of the PubMed Dataset. Note that in this case we used all the values given
that the training accuracy is 100% for all nodes.
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Figure 19: Generalization gap, testing, and training losses with respect to the number of nodes in the CS dataset. The
top row is in accuracy, and the bottom row is the cross-entropy loss.
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(a) Linear fit for accuracy generalization gap
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Figure 20: Generalization gaps as a function of the number of nodes in the training set in the CS dataset.

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 32 −2.138e− 01 1.659e+ 00 −9.007e− 01
Accuracy 2 64 −2.250e− 01 1.685e+ 00 −8.969e− 01
Accuracy 3 32 −1.979e− 01 1.695e+ 00 −9.009e− 01
Accuracy 3 64 −1.862e− 01 1.646e+ 00 −8.980e− 01

Loss 2 32 −2.523e− 01 6.273e− 01 −8.244e− 01
Loss 2 64 −2.933e− 01 7.762e− 01 −7.925e− 01
Loss 3 32 −3.558e− 01 1.207e+ 00 −8.924e− 01
Loss 3 64 −3.560e− 01 1.256e+ 00 −8.568e− 01

Table 7: Details of the linear approximation of the CS Dataset. Note that in this case we used all the values given that
the training accuracy is 100% for all nodes.

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 32 −1.524e− 01 1.235e+ 00 −9.064e− 01
Accuracy 2 64 −1.478e− 01 1.218e+ 00 −9.145e− 01
Accuracy 3 32 −1.227e− 01 1.190e+ 00 −9.328e− 01
Accuracy 3 64 −1.268e− 01 1.200e+ 00 −8.826e− 01

Loss 2 32 −1.111e− 01 −5.257e− 02 −7.591e− 01
Loss 2 64 −9.684e− 02 −7.335e− 02 −7.696e− 01
Loss 3 32 −1.410e− 01 2.875e− 01 −8.280e− 01
Loss 3 64 −1.068e− 01 2.388e− 01 −7.679e− 01

Table 8: Details of the linear approximation of the Physics Dataset. Note that in this case we used all the values given
that the training accuracy is 100% for all nodes.
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Figure 21: Generalization gap, testing, and training losses with respect to the number of nodes in the Physics dataset.
The top row is in accuracy, and the bottom row is the cross-entropy loss.

102 103 104

Number of nodes in training set

101

4 × 100

6 × 100

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

32 hidden units, 2 layers
32 hidden units, 2 layers linear fit
64 hidden units, 2 layers
64 hidden units, 2 layers linear fit
32 hidden units, 3 layers
32 hidden units, 3 layers linear fit
64 hidden units, 3 layers
64 hidden units, 3 layers linear fit

(a) Linear fit for accuracy generalization gap
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(b) Linear fit for loss generalization gap

Figure 22: Generalization Gaps as a function of the number of nodes in the training set in the Physics dataset.

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 32 −7.693e− 01 4.236e+ 00 −9.914e− 01
Accuracy 2 64 −7.788e− 01 4.404e+ 00 −9.972e− 01
Accuracy 3 32 −7.268e− 01 4.101e+ 00 −9.868e− 01
Accuracy 3 64 −7.354e− 01 4.257e+ 00 −9.921e− 01

Loss 2 32 −1.086e+ 00 3.971e+ 00 −9.968e− 01
Loss 2 64 −1.096e+ 00 4.189e+ 00 −9.985e− 01
Loss 3 32 −1.134e+ 00 4.339e+ 00 −9.965e− 01
Loss 3 64 −1.154e+ 00 4.629e+ 00 −9.991e− 01

Table 9: Details of the linear approximation of the Amazon Dataset. Note that in this case we used only the values of
the generalization gap whose training error is below 95%.
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Figure 23: Generalization gap, testing, and training losses with respect to the number of nodes in the Amazon dataset.
The top row is in accuracy, and the bottom row is the cross-entropy loss.
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(a) Linear fit for accuracy generalization gap
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(b) Linear fit for loss generalization gap

Figure 24: Generalization Gaps as a function of the number of nodes in the training set in the Amazon dataset.
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Figure 26: Generalization Gaps as a function of the number of nodes in the training set in the Roman dataset.

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 32 −8.408e− 01 4.644e+ 00 −9.963e− 01
Accuracy 2 64 −7.435e− 01 4.477e+ 00 −1.000e+ 00
Accuracy 3 32 −9.476e− 01 5.049e+ 00 −9.956e− 01
Accuracy 3 64 −9.145e− 01 5.182e+ 00 −1.000e+ 00

Loss 2 32 −1.006e+ 00 3.829e+ 00 −9.992e− 01
Loss 2 64 −9.656e− 01 3.915e+ 00 −1.000e+ 00
Loss 3 32 −1.244e+ 00 4.764e+ 00 −9.994e− 01
Loss 3 64 −1.225e+ 00 5.011e+ 00 −1.000e+ 00

Table 10: Details of the linear approximation of the Roman Dataset. Note that in this case we used only the values of
the generalization gap whose training error is below 95%

39


	Introduction
	Related works
	 Generalization bounds of GNNs
	Neural networks on manifolds

	Preliminaries
	Graph neural networks
	Manifold neural networks

	Generalization analysis of GNNs based on manifolds
	Manifold label prediction via node label prediction
	Manifold classification via graph classification 

	Experiments
	Conclusion
	Induced manifold signals
	Convergence of GNN to MNN
	Local Lipschitz continuity of MNNs
	Proof of Theorem 1
	Corollary of Theorem 1
	Proof of Theorem 2
	Further references
	Low Pass Filter Assumption
	Manifold Assumption
	Experiment details and further experiments
	ModelNet10 and ModelNet40 graph classification tasks
	Node classification training details and datasets
	Spectral Continuity Constant Regularizer
	Arxiv dataset
	Cora dataset
	CiteSeer dataset
	PubMed dataset
	Coauthors CS dataset
	Coauthors Physics dataset
	Heterophilous Amazon ratings dataset
	Heterophilous Roman Empire dataset



