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Abstract

The rapid evolution of large language models (LLMs) and the real world has
outpaced the static nature of widely used evaluation benchmarks, raising concerns
about their reliability for evaluating LLM factuality. While substantial works
continue to rely on the popular but old benchmarks, their temporal misalignment
with real-world facts and modern LLMs, and their effects on LLM factuality
evaluation remain underexplored. Therefore, in this work, we present a systematic
investigation of this issue by examining five popular factuality benchmarks and
eight LLMs released across different years. An up-to-date fact retrieval pipeline
and three metrics are tailored to quantify benchmark aging and its impact on LLM
factuality evaluation. Experimental results and analysis illustrate that a considerable
portion of samples in the widely used factuality benchmarks are outdated, leading
to unreliable assessments of LLM factuality. We hope our work can provide a
testbed to assess the reliability of a benchmark for LLM factuality evaluation and
inspire more research on the benchmark aging issue2

1 Introduction

New large language models have been released at an unprecedented pace recently [Zhao et al., 2023,
Minaee et al., 2024]. Accompanying this proliferation is the rise of numerous benchmarks that aim
to compare diverse LLMs across a wide range of tasks [Liang et al., 2023, Chang et al., 2024, Ma
et al., 2025]. Many benchmarks are static [Vu et al., 2024], meaning that the factual information
they contain remains unchanged in response to real-world updates. For example, the answer to the
question “What is the most populated country in the world?” is India3 nowadays in 2025. However,
the gold answer from SelfAware [Yin et al., 2023a] released in May 2023 is still China. As a
result, LLMs that provide up-to-date and factually correct answers may be unfairly penalized when
evaluated against outdated benchmarks. Despite this issue, numerous studies continue to rely on
these static benchmarks to assess LLM factuality (§3.3). Although some works [Kasai et al., 2023,
Vu et al., 2024] have introduced real-time updated benchmarks or methods to help LLMs obtain
real-world information, the effects of using old benchmarks to evaluate present LLMs have not been
systematically investigated (See Appendix A for a detailed review of related works).

Motivated by this gap, we conduct a comprehensive empirical study on the temporal misalignment
with five popular factuality benchmarks across different years and explore their implications for
evaluating modern LLMs. Our study focuses on two key research questions:

• RQ1: To what extent do widely used static benchmarks contain outdated factual answers
compared to current real-world facts?

∗Corresponding Author.
2Codes are available in https://github.com/JiangXunyi/BenchAge.
3https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population
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• RQ2: How does benchmark aging affect the factuality evaluation of modern LLMs?

To answer these questions, we focus on time-sensitive questions (§2.1). We introduce a retrieval
pipeline to obtain current real-world facts for temporal comparison (§2.2). Three metrics, including
Dataset Drift Score, Evaluation Misleading Rate, and Temporal Alignment Gap, are tailored to
quantify temporal misalignment and measure the impacts of benchmark aging on LLM factuality
evaluation (§2.3). Extensive experiments are implemented across five commonly used benchmarks
and eight LLMs released over different years. The results illustrate a considerable portion of samples
in the old but popular benchmarks are outdated (RQ1). The systematic analysis reveals that the
temporal misalignment of the benchmarks with modern LLMs and the real-world facts will lead
to unreliable assessments, raising concerns about the trustworthiness of LLM factuality evaluation
(RQ2). We hope that our work can provide a testbed to evaluate the benchmark reliability for factuality
evaluation and inspire more considerations about benchmarking aging in future work.

2 Experimental Setup

To investigate temporal misalignment, we design a three-stage experiments to compare benchmark
gold labels, LLM responses, and real-world facts.

TriviaQA

NaturalQuestion

BoolQ

TruthfulQA

SelfAware

Latest Fact Retrieval

Factuality

Benchmarks

Time-sensitive 

Samples Extraction

Is this a time-

sensitive 

question?LLM Judger

Wikipedia

“What is the most 

populated country

in the world?”

Wikipedia 

Search

Extract 

Information

Google Search

Decompose 

Question into

Subgoals

Google 

Search

Retrieve & 

Extract 

InformationLLM

Answer: 

India

Google 

Search
Google

Search
LLM

Not
Found

Found

Not
Found

LLM

LLM

Found

Temporal Comparison

LLM:

India

Real World:

India

Benchmark: China

Temporal 

Accuracy

Evaluation

Misleading Rate,

Temporal 

Alignment Gap

Figure 1: Experimental setups. We first extract time-sensitive samples and then collect the corre-
sponding real-world fact (with the latest fact retrieval pipeline), LLM response, and the gold label
in the benchmark for each sample. Finally, we apply the proposed metrics to measure the temporal
misalignment among them.

2.1 Time-sensitive Samples Extraction

Focusing on temporal misalignment, we first extract time-sensitive samples, which have verifiable
factual answers that will change over time [Wei et al., 2024], from the benchmarks. The time-sensitive
questions are identified for each benchmark by an LLM with human evaluations, achieving a 100%
recall and 90% accuracy. The details are described in Appendix B.1 and C.2.

2.2 Latest Fact Retrieval

To obtain the real-world facts, we retrieve the up-to-date answer from the Internet for each time-
sensitive question. Our approach combines Wikipedia-focused retrieval and iterative web search,
as depicted in Figure 1. For each time-sensitive question, we first retrieve related information from
Wikipedia, a widely regarded source of reliable factual information for popular topics and recent
events [McDowell, 2024], using Brave Search4. Secondly, GPT-4o-mini5 is deployed to extract final
answers from the retrieved information. If Wikipedia lacks suitable coverage, we use the Google
Search API. Following ReAct and Chain-of-Action [Yao et al., 2023, Pan et al., 2025], we combine
iterative reasoning with evidence retrieval. The system (1) decomposes questions into subgoals;
(2) runs targeted searches for subgoals; (3) extracts key facts and temporal metadata; and (4) uses

4https://brave.com/search/api/
5https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
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Qwen2.5-14B-Instruct [Yang et al., 2024] to decide if further refinement and search are needed.
Detailed workflow is discussed in Appendix C.3. To assess the retrieval quality, each annotator
with instruction in Figure 8 manually reviewed 105 samples to determine whether the retrieved
answers accurately reflect the searched evidence. The process achieves 89.52% retrieval accuracy
with moderate inter-annotator agreement (κ = 0.6).

2.3 Temporal Comparison

After obtaining the latest fact and the LLM response (Appendix C.1) for each time-sensitive question,
we conduct a thorough analysis to explore temporal misalignment and its effects on LLM factuality
evaluation. We tailor the following metrics to help with analysis. Specifically, given the query
xi and the gold answer yi in each sample from the time-sensitive subset Dts of a benchmark D,
the corresponding LLM response ŷi, and the real-world answer y∗i searched from the Internet, we
compute two binary alignment scores: sgold

i = 1[ŷi = yi] (the agreement between yi and ŷi ), and
ssearch
i = 1[ŷi = y∗i ] (the agreement between ŷi and y∗i ).

RQ1 To quantify how the gold answers of time-sensitive samples in a benchmark have diverged
from up-to-date real-world facts, we propose Dataset Drift Score (DDS):

DDS =
1

|Dts|

|Dts|∑
i=1

1[yi ̸= y∗i ], (1)

RQ2 We introduce two metrics to capture how benchmark aging affects LLM evaluation. Evalua-
tion Misleading Rate (EMR) reflects how often benchmark aging results in misleading evaluation
results, which is the proportion of cases where an LLM gives an up-to-date answer, but is penalized
by outdated benchmark labels:

EMR =
1

|Dts|

|Dts|∑
i=1

1[ŷi = y∗i ∧ ŷi ̸= yi] (2)

Temporal Alignment Gap (TAG) measures the discrepancy between LLM–world (Temporal Accu-
racy, TA) and LLM–benchmark (Benchmark Fidelity, BF ):

TAG = TA−BF (3)

=
1

|Dts|

|Dts|∑
i=1

ssearch − 1

|Dts|

|Dts|∑
i=1

sgold (4)

=
1

|Dts|

|Dts|∑
i=1

(ssearch − sgold) (5)

A positive TAG indicates that the LLM responses align more with the real-world facts than with the
benchmark gold labels.

Based on these metrics, we investigate 8 diverse LLMs on commonly used LLM factuality benchmarks
(Figure 2b), including TriviaQA [Joshi et al., 2017], BoolQ [Clark et al., 2019], Natural Questions
[Kwiatkowski et al., 2019], TruthfulQA [Lin et al., 2022], and SelfAware [Yin et al., 2023b], which
were released in different years. The DDS and EMR are shown in Table 1. More details are shown
in Appendix C.1 and C.4.

3 Experimental Results and Analysis

3.1 RQ1: A Considerable Portion of the Benchmarks Are Outdated

DDS values in Table 1 show that at least 24.19% (even up to 63.78%) of time-sensitive samples are
outdated as of July 19, 2025. Among all benchmarks, the relatively old benchmark, BoolQ, exhibits
the highest DDS. In contrast, newer benchmarks such as SelfAware show relatively less misalignment,
reflecting shorter temporal distance from their release dates. These results suggest that a considerable
portion of the existing static and old benchmarks, though valid at release time, have become outdated
over time.
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Table 1: Dataset Drift Score (%) of five widely-used LLM factuality benchmarks released along with
time and Evaluation Misleading Rate (%) of the modern LLMs ( >20% ).

Dataset
Release Time

TriviaQA
July 2017

BoolQ
May 2019

NaturalQuestion
July 2019

TruthfulQA
May 2022

SelfAware
July 2023

Dataset Drift Score (%) 37.05 63.78 24.19 36.88 28.26

LLM (Release Time) Evaluation Misleading Rate (%)
Llama-2-7B-chat-hf (Jul 2023) 14.74 9.11 10.28 11.25 15.22
Llama-3-8B-Instruct (Apr 2024) 11.16 8.22 10.28 8.13 19.57
Llama-3.1-8B-Instruct (Jul 2024) 12.35 7.56 11.40 9.38 14.49
Llama-3.2-3B-Instruct (Sep 2024) 9.16 8.67 9.52 10.63 10.51
Ministral-8B-Instruct-2410 (Sep 2024) 18.33 16.67 14.04 14.38 15.22
GPT-4o-mini-2024-07-18 (Jul 2024) 19.92 17.11 24.06 23.13 22.10
Qwen2.5-7B-Instruct (Sep 2024) 10.76 14.44 12.41 19.38 16.67
Qwen2.5-14B-Instruct (Sep 2024) 13.55 16.00 16.04 16.88 22.46

3.2 RQ2: Benchmark Aging Affects the Reliability of LLM Evaluation

The outdated benchmarks can mislabel factually correct model responses. According to Table 1,
more than half of the EMR is larger than 10%, indicating that a non-trivial fraction of LLM outputs
are factually correct with respect to the real-world facts but judged as incorrect by stale benchmark
labels. GPT-4o-mini and Qwen2.5-14B-Instruct exhibit relatively higher EMR across all datasets
than other LLMs, suggesting that newer LLMs are more vulnerable to evaluation bias, as they
more frequently produce up-to-date answers that conflict with outdated references. Overall, these
results highlight that benchmark aging introduces systematic misalignment between factual model
performance and reported evaluation scores.

The present LLMs are more aligned with real-world facts than with gold answers in the
benchmarks. We further analyze the temporal consistency between LLM outputs, benchmark
labels, and real-world facts through TAG in Figure 2a, Table 4, and 5. Overall, 70% of TAG
scores are positive, indicating that the LLMs mostly align more with up-to-date real-world facts than
with outdated benchmark labels. This pattern is observed consistently across the five benchmarks,
especially for SelfAware, whose data are from relatively old datasets, such as SQuaD [Rajpurkar
et al., 2016], TriviaQA [Joshi et al., 2017], and HotpotQA [Yang et al., 2018]. Figure 11 shows
Cohen’s Kappa κ [McHugh, 2012] between each other among LLM responses, searched real-world
information, and gold benchmark answers (Appendix D.1). The generally low κ of LLM vs Gold
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(<0) and Gold vs Search (mostly <0.6) emphasizes the significant temporal misalignment between
the gold labels in the benchmarks and the others.

3.3 Dataset Analysis

The usage of static benchmarks with outdated information is increasing. The release time
in Table 1 suggests that the benchmarks we investigated are very old, and there is a significant
time gap among the benchmarks, present LLMs, and real-world facts. The upward trend in Google
Scholar citations for these benchmarks is shown in Figure 2b. In the single year of 2024, the citations
of Natural Questions and TruthfulQA surpassed 1,000, demonstrating their popularity for LLM
evaluation. These benchmarks have not been systematically updated to reflect evolving real-world
facts. Nevertheless, they have been widely adopted in prior work and are likely to remain in use.
This persistent reliance highlights the need for more attention to the unreliable use of the outdated
benchmarks.

The outdated contexts amplify the temporal misalignment. In open-book QA tasks, outdated
information in the provided context can worsen factually temporal drift. BOOLQ [Clark et al., 2019],
for instance, includes a supporting passage before a query. As shown in Table 6, models consistently
exhibit more negative TAG when performing passage-grounded inference. For example, Qwen2.5-
7B-Instruct’s TAG drops from 2.67% without the passage to −12.22% with it. This indicates that
the passages often encode outdated facts and anchor the model toward obsolete answers instead of
correcting them since LLMs rely more on contexts instead of memorized knowledge [Li et al., 2023,
Zhou et al., 2023, Xie et al., 2024], which suggests temporal degradation is not limited to open-ended
generation but also affects passage-grounded evaluations.

4 Conclusion

In this work, we conduct a comprehensive empirical study and provide a testbed to investigate the
temporal misalignment of the existing static LLM benchmarks with present LLMs and the real world,
and its impacts on LLM factuality evaluation. The results and analysis reveal that a considerable
portion of samples in the widely used factuality benchmarks are outdated. Reliance on these aging
benchmarks will lead to unreliable LLM factuality evaluation. We hope this work can suggest future
research to consider temporal misalignment in the benchmark design and LLM factuality evaluation.
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Table 2: Overview of QA datasets with time-sensitive (TS) questions.

Property TriviaQA BoolQ NaturalQuestion

Year 2017 2019 2019
# QA Pairs 11,313 3,270 7,830
TS % 2.22 13.76 10.19
Type Open QA Multi-choice Open QA

Property TruthfulQA SelfAware

Year 2022 2023
# QA Pairs 817 2,475
TS % 19.58 11.15
Type Open QA Open QA

changes when trained and tested on temporally shifted datasets. Recently, WiNELL [Reddy et al.,
2025] tackles temporal misalignment from the data side by maintaining up-to-date content. These
efforts emphasize the importance of incorporating temporal dynamics into benchmark design to
ensure accurate and meaningful LLM evaluations.

Beyond temporal misalignment, recent research has revealed fundamental flaws in benchmark con-
struction and evaluation methodologies that compromise the reliability of performance assessments.
Systematic audits of popular reasoning benchmarks, including SocialIQa [Sap et al., 2019], FauxPas-
EAI [Shapira et al., 2023], and ToMi [Le et al., 2019], have uncovered issues across many dimensions
[Mousavi et al., 2025]. These studies show that a substantial portion of LLM errors are attributable
not to the model, but to flaws in benchmark design, including duplicated items, ambiguous wording,
implausible answers, and scoring procedures that prioritize output format over reasoning process.
These findings challenge the validity of current benchmark-based claims about reasoning in LLMs
and highlight the need for evaluation protocols that assess intended capabilities rather than unfairly
penalize models due to benchmark design flaws or outdated factual content.

B Dataset Information

B.1 Dataset Creation Year and Time-sensitive Percentage

Table 2 summarizes the statistics of QA datasets used in this paper, including release year, total QA
pairs, percentage of time-sensitive (TS) questions, and answer types. The time-sensitive questions
extraction details are shown in Appendix C.2. Aside from TriviaQA, which only contains 2.22%
time-sensitive questions, other datasets contains more than 10% of time-sensitive data. This shows
that a non-negligible proportion of time-sensitive data exists in these popular benchmarks.

B.2 Google Scholar Citation Trend

To estimate the influence of each benchmark, we measure its citation trend using Google Scholar 6.
The citation data we collect is as of Oct 3, 2025. Specifically, we record the number of "cited by"
results with year-specific filters from 2017 to 2025. In order to measure the future prediction trend,
we use a polynomial to predict the citations at the end of 2025. In 2024 single year, the summation
of citations for these 4 datasets is 3,521, revealing consistent scholarly interest in natural language
processing and factuality question answering task.

C Experiment Details

C.1 Experiment Setups

1. Computation environment: All experiments were conducted on an Ubuntu 22.04 worksta-
tion equipped with four NVIDIA RTX A6000 GPUs (48 GB each), running CUDA 12.6 and

6https://scholar.google.com/
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PyTorch 2.7.0+cu126. The software stack includes Python 3.10.18, Transformers 4.53.1, and
OpenCompass 0.5.0 for evaluation orchestration, together with vLLM 0.9.2 for optimized
inference.

2. Model architectural analysis: Models from different architectures released in a similar
timeframe (June-October 2024): Qwen2.5-7B-Instruct 7, Ministral-8B-Instruct-2410 8,
Llama-3.1-8B-Instruct 9, and GPT-4o-mini 10 . Controlling for release date isolates the
effects of architectural differences on temporal knowledge retention.

3. Model scale analysis: Qwen2.5 models of varying sizes (1.5B, 3B, 7B, and 14B) released
simultaneously in September 2024 [Yang et al., 2024], isolating the effect of model scale.

C.2 Time-sensitive Samples Extraction

We use Qwen-2.5-14B-Instruct to extract time-sensitive samples from existing QA benchmarks.
Specifically, we serve Qwen-2.5-14B-Instruct using the vLLM framework11 for efficient inference.
To reduce the randomness in LLM responses when identifying time-sensitive questions, we apply the
prompt shown in Figure 3 three times independently and determine the final label by majority voting.
We then conduct a grid search over the model’s temperature and the number of voting rounds. Our
results show that using three votes with a temperature of 1.0 yields the highest accuracy 90% while
maintaining 100% recall for time-sensitive questions.

Prompt

You are a helpful assistant. Your task is to determine 

whether a question is time-sensitive, meaning it requires 

current or up- to-date knowledge to be answered correctly.

A question is considered t ime-sensit ive ONLY IF both of the 

following are true: 

1. It has a verif iable factual answer, AND

2. That answer can change over t ime due to events, 

leadership, scientif ic progress, or changing data.

A question is NOT time-sensitive if :

- It is subjective or opinion-based (e.g., "What is the best 

medicine?")

- It is hypothetical or open-ended (e.g., " If  it's cold outside, 

what does that tell us about global warming?")

- It has no specif ic factual answer or depends on 

personal/local context

You must reason in two steps:

Step 1: Reasoning

Start with "Reasoning:"  and explain whether the question 

meets both time-sensitivity criteria.

Step 2: Final Decision

Start with "Answer:"  and respond only with "Yes"  or "No."

Figure 3: Prompt for Determining the Time-Sensitivity of Dataset Questions.

To further validate the labeling quality, we conduct a human evaluation. Given the instruction in
Figure 4, three domain experts manually annotate 150 questions, with results presented in Table 3. All

7https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
8https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
9https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

10https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
11https://github.com/vllm-project/vllm
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Human Evaluation Guidelines: Time-sensit ive Questions

Here is the instruction for annotation:

A question is TIME-SENSITIVE only if  BOTH of the following are true:
1. It has a verif iable factual answer.
2. The correct answer can change over time (due to events, updated 
data, leadership change, etc.).

For each question in the form, please answer whether the question is 
time sensitive. You can type: y (represent yes)/ n (represent no)

The result is like:
{
    "question" : "How has poverty changed over time in Africa?",
    "human": "y"
}

Figure 4: Instructions for Human Evaluation of Time-sensitive Questions

annotations were performed by graduate-level NLP researchers from our institution. These annotators
are fluent in English and have prior experience evaluating QA datasets. Since the annotation task
involved only publicly available benchmark data, no new human subject data was collected. Impor-
tantly, no crowd-sourcing platforms were involved; instead, the annotators participated voluntarily
without any financial compensation. As a result, issues of participant recruitment, payment fairness,
or data consent do not apply. Nonetheless, the annotation process and data usage were reviewed
internally to ensure ethical compliance.

Table 3: Human evaluation of time-sensitive question detection.

Metric Recall F1 Score Accuracy Cohen’s Kappa

Score 1.000 0.909 0.9 0.83375

C.3 Web Search Pipeline

All web search results were collected during a fixed time window from July 18 to July 19, 2025,
ensuring consistency and temporal alignment across all queries. We utilize both the Google Search
API and Brave Search (which includes access to Wikipedia content) to retrieve supporting evidence
from the open web. To ensure robustness, our system is designed to tolerate transient network errors
and incomplete results. In practice, we implement a retry mechanism: for Brave search, we retry up
to three times in the event of failure. For Google search, as shown in Figure 5, we repeat the search
process adaptively until either sufficient information is found (as judged by the LLM) or a hard limit
of 15 search attempts is reached. These search engines are chosen for their broad coverage, freshness,
and reliability—especially valuable for capturing real-world updates that static benchmarks fail to
reflect.

This design reflects the reality that many benchmark answers cannot be verified from a single source
like Wikipedia. Our logs reveal that only 22.3% of our selected questions were retrieved using
Wikipedia as the source. The remainder required external evidence. To address this, our pipeline
combines search engines, evidence consolidation, and LLM-based filtering, ensuring higher precision.
We report the sources and methods used for transparency, and emphasize that our pipeline is intended
for analysis of benchmark staleness, not as a replacement for routine benchmark updating. Notably,
FreshQA also relies on web search to retrieve the latest answers for their benchmark questions,
underscoring that web-based retrieval is a practical and accepted strategy for keeping benchmarks
aligned with real-world facts.

To support the retrieval and reasoning process, we design a set of LLM prompts tailored to each stage
of the pipeline. These prompts guide the model through subgoal planning, evidence extraction, fact
sufficiency evaluation, and final answer generation. Visualizations of the four prompt templates are
shown in Figures 6a–7b.
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"What is the most populated 
country in the world?"

          Task Decomposit ion

Sub Goals

           Google Search

URLs, Snippets
Crawling 

from Web

       Fact Extraction
        Fact Suff iciency 

Judgment

No

Final Answer 

Generation

Yes

Google Search

Figure 5: Workflow of Google Search and Fact Retrieval.

Task Decomposit ion Prompt

You are a reasoning assistant.

Your job is to break down the following question into a 

sequence of smaller information retrieval questions.

Original Question: " {question}"

Please list 2-4 sub-questions needed to answer this.

Output format:

-  Subgoal 1: ...

-  Subgoal 2: ...

(a) Task Decomposition Prompt

Fact Extraction Prompt

Given the following documents, extract the most relevant 

facts and evidence that could help answer a factual question. 

Do NOT generate an answer. Just list facts.

Document1:

{text1}

Document2:

{text2}

(b) Fact Extraction Prompt

Figure 6: Prompts used in the fact retrieval pipeline: (a) task decomposition and (b) fact extraction.

To assess the quality of web search output, we adopt two complementary methods:

Human Evaluation: We randomly sample 105 questions from the dataset and ask three domain
experts to manually assess whether the web search outputs provide factually correct answers. The
overall accuracy reaches 89.52%, indicating a high degree of factual consistency. Furthermore, inter-
annotator agreement, measured using Cohen’s Kappa, is 0.58, which reflects moderate agreement.
The detailed annotation instruction is provided in Figure 8.

Cohen’s Kappa Analysis: To further evaluate the alignment between web search results and the
dataset’s gold answers, we calculate Cohen’s Kappa scores across all time-sensitive questions. As
illustrated in Figure 11, the green polygon representing this agreement lies between 0.5 and 0.8,
suggesting a relatively strong consistency between search-derived answers and dataset labels. This
level of agreement is expected, as only a small portion of questions involve fast-changing knowledge.
Therefore, we infer that the retrieved web search results are generally reliable and can serve as a valid
approximation of current factual information.

C.4 LLM-as-a-judge Prompt

To evaluate how well the model responses, benchmark answers, and real-world information agree
with each other, we use Cohen’s Kappa coefficient. This metric measures how consistently different
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Fact Suff iciency Judgment

You are helping evaluate whether the current facts are enough 

to reasonably answer a given question.

QUESTION:

"{question}"

FACTS:

{list of facts}

SNIPPETS:

{list of snippets}

INSTRUCTION:

-  Determine whether the available information is suff icient to 

give a ** reasonable and helpful answer**, even if  the data is 

**not the most recent**, * *precise**, or **complete**.

-  If  the information provides a reasonable estimate or an 

approximate range that is directly related to the question, 

consider it * *suff icient**.

-  Only consider it * * insuff icient**  if  the information is clearly 

irrelevant, outdated by more than a decade without mention, 

or off- topic.

Respond in **exactly**  one of the following two formats:

If  suff icient:

Yes

If not suff icient:

No  

REASON: <why it's not suff icient>  

REVISED QUESTION: <a better follow-up query to help answer 

the original question>

(a) Fact Sufficiency Judgment Prompt

Final Answer Generation

You are a helpful and intelligent assistant.

Your task is to answer the user's question based on the 

following evidence gathered from web search.

Main Question:

{question}

The following subgoals were used to break down the 

question, and for each subgoal, supporting evidence is 

provided.

Subgoal 1: {question1}

Evidence: {evidence}

Facts: { facts}

Please use the information from the evidence to answer the 

main question as accurately and clearly as possible.

-  You may synthesize facts from multiple sources.

-  If  the evidence contains conflicting or incomplete 

information, explain what is uncertain.

-  If  the answer requires inference (e.g., numerical 

comparison, trend analysis), explain your reasoning.

-  If  the answer is straightforward and factual, answer directly.

Final Answer:

(b) Final Answer Generation Prompt

Figure 7: Prompts used in the final stages of the retrieval pipeline: (a) fact sufficiency judgment and
(b) final answer generation.

Instructions for Human Evaluation of  Web Search Results

You are asked to evaluate the factual accuracy of search results produced by 

web search algorithms. For each example, please refer to the `search_results` 

f ield and determine whether the information provided is factually accurate.

If  the search result is factually accurate, enter for the `accurate_or_not` f ield.

If  the search result is factually incorrect or misleading, enter 0 for the 

`accurate_or_not` f ield.

Please follow the format below when recording your judgment:

"accurate_or_not" : 1 or "accurate_or_not" : 0

Thank you for your careful evaluation.

Figure 8: Human Evaluation Instruction for Web Search Results

sources align in their answers. We treat each source—the model, the benchmark, and the web
search result—as an independent evaluator. Using the LLM-as-a-judge setup, we apply a clear and
interpretable prompt in Figure 9 that asks the LLM to judge whether two answers express the same
factual content. This process allows us to convert the answers into simple agreement scores, giving us
a reliable and style-independent way to compare factual consistency across sources that may reflect
knowledge from different points in time.

Similar to time-sensitive classification and websearch, we perform human evaluation of LLM-as-a-
judge with the instructions in Figure 10. Outputs yields the following agreement: the accuracy is
97% and the average Cohen’s Kappa between three evaluators is 0.72.

D Experiment Results

D.1 Cohen’s Kappa Score

To systematically evaluate the agreement between different information sources, we compute the
Cohen’s Kappa coefficient, a standard inter-rater reliability metric in statistics and NLP. Formally,
Cohen’s Kappa is defined as κ = po−pe

1−pe
, where po is the observed agreement and pe the expected

agreement by chance. Unlike raw accuracy, Cohen’s Kappa adjusts for chance-level agreement and
thus provides a more robust and interpretable measure of consistency across different answer sources.

13



Prompt

If  Answer 1 and Answer 2 state the same

fact  (allowing synonyms, abbreviations, 

or different date formats), reply True. 

Otherwise reply False. 

Reply w ith exactly one word: True or False.

Q: question 

Answer 1: a1 
Answer 2: a2 

Figure 9: Prompt for determining the time-sensitivity of dataset questions.

Human Evaluation Guidelines: LLM-as-a-Judge 

Please review each question and its corresponding prediction and 

reference (gold or search-based answer). For each entry, complete 

the `annotator_label` f ield using the following criteria: 

Label as 1 if  you believe the prediction and reference convey the 

same factual meaning, allowing for synonyms, paraphrasing, or 

minor stylistic differences. 

Label as 0 if  the prediction and reference differ semantically or 

factually.   

Your judgment should focus on factual consistency, not 

surface- level similarity. 

Thank you for your careful evaluation.

Figure 10: Human Evaluation Instructions for LLM-as-a-judge

Figure 11 presents a radar plot of pairwise Cohen’s Kappa scores among model outputs, web search
results, and benchmark gold labels, computed across four datasets and ten representative LLMs. The
radar shape reveals several insights. First, the agreement between web search and gold answers is
generally high, indicating that our retrieval pipeline reliably captures accurate, up-to-date information.
Second, the agreement between LLMs and the benchmark is lower, suggesting possible misalignment
due to temporal drift or limitations in training data coverage. Finally, the agreement between LLMs
and web search tends to be more variable, highlighting the inconsistent ability of models to match
real-world facts in time-sensitive contexts.

Overall, this analysis illustrates the discrepancy between static benchmarks, dynamic web content,
and model outputs. It motivates the need for time-aware evaluation and fact-checking frameworks
that consider real-world knowledge freshness.
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Figure 11: Cohen’s Kappa Score between each other among LLMs’ responses, searched real-world
information, and gold benchmark answers from datasets and LLMs.

D.2 Temporal Accuracy and Benchmark Fidelity

We calculate TAG from Temporal Accuracy and Benchmark Fidelity. TA is shown in Table 4.
GPT-4o-mini-2024-07-18 still performs best overall datasets. This represents that GPT-4o-mini-
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2024-07-18 contains most up-to-date real world information. As the only close-source model, this
observation highlights that currently the commercial model update more frequently.

Table 4: Temporal Accuracy (%): the proportion of time-sensitive questions answered correctly with
respect to present-day information, reported across benchmarks.

Model / Dataset (Release Time) TriviaQA
July 2017

BoolQ
May 2019

NaturalQuestions
July 2019

TruthfulQA
May 2022

SelfAware
July 2023

Llama-2-7B-chat-hf 29.88% 49.78% 17.42% 20.63% 24.64%
Llama-3-8B-Instruct 28.69% 54.22% 17.04% 25.00% 28.62%
Llama-3.1-8B-Instruct 34.66% 57.56% 22.68% 24.38% 28.62%
Llama-3.2-3B-Instruct 21.91% 49.56% 17.92% 18.75% 22.46%
Ministral-8B-Instruct-2410 37.45% 59.56% 21.30% 32.50% 28.99%
GPT-4o-mini 2024-07-18 51.79% 77.78% 36.97% 51.25% 40.22%
Qwen2.5-7B-Instruct 25.90% 56.44% 18.30% 37.50% 28.99%
Qwen2.5-14B-Instruct 32.67% 63.78% 24.19% 40.63% 38.41%

Table 5: Benchmark Fidelity (%) showing model alignment with benchmark gold answers.

Model / Dataset (Release Time) TriviaQA
July 2017

BoolQ
May 2019

NaturalQuestions
July 2019

TruthfulQA
May 2022

SelfAware
July 2023

Llama-2-7B-chat-hf 25.10% 57.56% 20.18% 16.88% 19.57%
Llama-3-8B-Instruct 28.69% 66.00% 21.05% 32.50% 14.86%
Llama-3.1-8B-Instruct 38.25% 70.00% 22.56% 26.88% 22.10%
Llama-3.2-3B-Instruct 24.30% 59.78% 19.80% 17.50% 21.01%
Ministral-8B-Instruct-2410 29.08% 54.67% 17.79% 31.25% 23.19%
GPT-4o-mini 2024-07-18 44.22% 73.33% 23.93% 35.63% 25.36%
Qwen2.5-7B-Instruct 23.11% 53.78% 15.29% 31.25% 18.12%
Qwen2.5-14B-Instruct 28.69% 59.11% 17.92% 40.00% 22.46%

D.3 BoolQ TAG Comparison by Controlling Context

To investigate how outdated context in benchmarks can override updated internal knowledge in LLMs,
we conduct controlled experiments on the BoolQ using two prompts, as illustrated in Figure 12. One
setting provides both the passage and the question, while the other includes only the question without
any supporting passage.

2. With Context

Question: question
Passage: passage
Answer:

1. Without Context

Question: question
Answer:

Figure 12: Two prompt formats used in BoolQ experiments: with and without passage context.

Interestingly, we observe a significant increase in Temporal Alignment Gap when the passage is
included. This suggests that although models may have internally updated knowledge, the inclusion
of outdated passages often causes them to regress toward older information. Quantitatively, this effect
is most pronounced in Ministral-8B-Instruct-2410, which shows a TAG increase of 20.67 when
conditioned on the passage. Similarly, GPT-4o-mini-2024-07-18 exhibits an increase of 19.33. These
large deltas indicate that the models’ updated knowledge is not robust against temporally stale input.

While BoolQ is originally constructed for reading comprehension, our analysis reveals that its static
passages can contain outdated facts that actively mislead the model. The TAG between the two
settings quantifies the vulnerability of LLMs to temporal anchoring by context, and highlights the
need for temporal-awareness in prompt construction and model alignment.
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Table 6: TAG (%) on BoolQ with and without passage contexts. Positive values (highlighted) indicate
alignment between model outputs and current web results, diverging from outdated benchmark gold
answers.

Model w/o Passage w/ Passage
LLaMA-2-7B-Instruct -7.78 -7.56
LLaMA-3-8B-Instruct -11.78 -16.22
LLaMA-3.1-8B-Instruct -12.44 -21.33
LLaMA-3.2-3B-Instruct -10.22 -16.44
Ministral-8B-Instruct-2410 4.89 -15.78
GPT-4o-mini-2024-07-18 4.44 -14.89
Qwen2.5-7B-Instruct 2.67 -12.22
Qwen2.5-14B-Instruct 4.67 -13.56

D.4 Model Analysis

We categorize LLMs into two different groups based on isolated factors to analyze their impacts
on temporal misalignment, as shown in Appendix C.1. To quantify the impact of time-sensitive
questions, we define TAG-adjusted accuracy aTAG and the EMR-adjusted accuracy aEMR.

aTAG = ao + TAG · |Dts|
|D|

(6)

aEMR = ao + EMR · |Dts|
|D|

(7)

ao denotes the LLM accuracy on D. These adjusted accuracies measure the overall impact of the
temporal change of facts in the benchmarks.

Model Family: The times of memorized facts vary between different LLM families. Despite
similar release periods and size, LLMs vary in knowledge recency and accuracy, as shown in
Figure 13a. For example, GPT-4o-mini-2024-07-18 shows a larger performance improvement on the
searched information while Llama-3.1-8B-Instruct relies more on outdated answers, indicating that
different LLM architectures and training data lead to different times of LLM-memorized facts.

Model Size: larger models are more robust to time change. A study of the Qwen models with
different sizes (Figure 13b) reveals that as model size increases, LLm responses align more with
up-to-date searched answers instead of the outdated benchmark answers, suggesting that larger
models are more robust and better at adapting to time changes. We conjecture that more training data
for larger models [Yang et al., 2024] will cover more recent information.
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(a) Across model architecture families.
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(b) Across model sizes within the Qwen family.

Figure 13: Performance comparison across model families and sizes. Accuracy is reported in three
settings: Dataset Accuracy, TAG-adjusted Accuracy, and EMR-adjusted Accuracy.
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