
CarbonGearRL: Precision-Elastic, Carbon-Aware Scheduling for
Foundation-Model Training

Thomas Y. Chen 1

Abstract
The carbon footprint of training large language
models now rivals that of entire data centres, yet
most optimisation efforts treat accelerator count
and numeric precision as static hyperparameters.
We introduce CarbonGearRL, an end-to-end sys-
tem that jointly schedules cluster width and arith-
metic precision against real-time grid carbon sig-
nals. A dual-driven soft Q-learning scheduler
scales GPUs up to FP8 during low-carbon win-
dows and down to BF16 when emissions peak,
while a precision-adaptive AdamW provides prov-
able stability under stochastic quantisation noise.
We derive sublinear carbon regret relative to a
clairvoyant oracle and match the O(1/

√
B) con-

vergence rate of fixed-precision baselines. On 13
B/70 B LLaMA-style models our prototype cuts
CO2-e by up to 52 % without throughput loss.

1. Introduction
Why carbon now? Training a single state-of-the-
art language model can emit hundreds of tonnes of
CO2-equivalent—an environmental cost that scales super-
linearly as models grow past 100 B parameters. Prior work
reduces the per-FLOP energy cost through hardware ad-
vances, mixed-precision arithmetic, or post-hoc carbon off-
sets, but leaves two critical degrees of freedom untapped:
when to allocate accelerators and how coarsely to represent
numbers in response to real-time grid conditions.

Our proposal. We posit that carbon intensity varies faster
than model loss landscapes and can therefore guide a higher-
level control loop. CarbonGearRL closes this loop with
(i) a carbon-aware reinforcement-learning scheduler that

1Department of Computer Science, Fu Foundation School of
Engineering and Applied Science, Columbia University, New
York, NY 10027, USA. Correspondence to: Thomas Y. Chen
<chen.thomas@columbia.edu>.

Proceedings of the 3rd Workshop on Efficient Systems for Founda-
tion Models (ES-FoMo-III) at the 42nd International Conference
on Machine Learning, Vancouver, Canada. 2025. Copyright 2025
by the author(s).

decides every five minutes how many GPUs to awaken and
which precision gear (FP32 / BF16 / FP16 / FP8) to engage,
and (ii) a precision-adaptive optimiser whose step size is
temperature-scaled to guard against FP8 noise.

Contributions.

1. Theory: we formulate training as a constrained MDP
and prove sublinear carbon regret plus convergence
guarantees under precision switching.

2. Systems: a Ray-based implementation that overlaps
NCCL re-initialisation and pre-allocates CUDA graphs,
keeping overhead below 0.6 mini-batches.

3. Empirics: across PJM, MISO, and CAISO traces our
method cuts emissions by 44–52 % on 13 B and 70 B
LLaMA-style models with no loss in perplexity.

By unifying carbon-aware resource scheduling with preci-
sion elasticity, CarbonGearRL offers a drop-in path toward
net-zero training pipelines for the next generation of foun-
dation models.

2. Problem Formulation
We consider the carbon–aware training of a large autore-
gressive language model whose parameters θ ∈ Rd are
optimised over a time horizon [0, T]. Training proceeds on
a cloud cluster that can be re-configured at discrete deci-
sion epochs K := {0,∆,2∆, . . . ,K∆≤ T}, where ∆ is a
scheduling interval (e.g. five minutes). At each epoch k
the controller selects an action sk = (nk, pk) ∈ S that
specifies

1. nk ∈ {0, 1, . . . , nmax} active accelerator nodes, and

2. a numeric-precision gear pk ∈ P , where P =
{FP32,FP16,BF16,FP8} with decreasing dynamic
range.

Grid signal and energy model. Let c(t) ∈R≥0 denote
the instantaneous carbon intensity gCO2eq/kWh of the re-
gional electricity grid, available through public APIs. Each
action s∈S induces a device-level power draw P (s) and
a processing throughput τ(s) measured in tokens s−1. We

1

CarbonGearRL

assume P and τ are obtained empirically at deployment
time and treated as deterministic look-up tables.1

The instantaneous carbon rate is therefore

ψ
(
c(t), s(t)

)
= c(t)P

(
s(t)

)
(gCO2eq s−1). (1)

Token-budget constraint. Large-scale language-model
training is often expressed in terms of a total token budgetB
(e.g. 300B tokens for Llama-3). Let b(t) :=

∫ t
0
τ
(
s(u)

)
du

be the cumulative number of processed tokens. A feasible
schedule must satisfy

b(T) ≥ B. (2)

We further require the final loss to fall below a target Lmax;
in practice we enforce this empirically when tuning learning-
rate schedules and do not encode it explicitly in the opti-
mizer.

Objective. Our goal is to minimise the integrated carbon
footprint subject to (2):

min
{sk}K

k=0

∫ T

0

ψ
(
c(t), s(t)

)
dt (3)

s.t. s(t) = sk, t ∈ [k∆, (k+1)∆),

sk ∈ S, b(T) ≥ B.

The decision process in (3) is a finite-horizon, continuous-
time Markov decision process (MDP) with piecewise-
constant actions.

Stability under precision switching. Let ℓt(θ) denote
the per-token stochastic loss whose gradient estimate is
affected by quantisation noise that scales with the chosen
precision pk. We model this as

gt = ∇θℓt(θ) + ηt(pk), (4)

E
[
ηt(pk)

]
= 0, E

[
∥ηt(pk)∥2

]
≤ σ2

pk
. (5)

Lower-precision gears yield larger σpk but higher through-
put τ(s). Section 3 introduces a precision-adaptive AdamW
that modulates the step size so that the training error after
B tokens remains within O

(√
σpmax/B

)
of a fixed-BF16

baseline (see Theorem 3.1).

Regret benchmark. To quantify the benefit of carbon-
aware scheduling, we compare the achieved footprint (3)
against two baselines: (i) a STATIC-BF16 policy that runs

1In practice we benchmark (n, p) pairs once and reuse the
measurements for the entire run.

nmax nodes at BF16 24/7, and (ii) a SPOT-ONLY policy that
scales nk with spot-instance prices but keeps precision fixed.
The carbon regret after T seconds is

RT =

∫ T

0

ψ
(
c(t), s(t)

)
dt (6)

−
∫ T

0

ψ
(
c(t), sref(t)

)
dt.

This formulation sets the stage for an online controller that
jointly selects how many nodes and which precision gear to
engage at each epoch so as to minimiseRT while honouring
the token budget (2) and preserving training stability.2

3. Carbon–Aware Scheduler &
Precision–Adaptive Optimizer

We now couple (i) an online constrained RL scheduler that
chooses the cluster width nk and precision gear pk with (ii)
a precision–adaptive AdamW that preserves numerical sta-
bility despite aggressive FP8 excursions. The two modules
share a dual variable that tracks remaining token budget,
yielding provable sublinear carbon regret while matching
the convergence rate of a fixed-precision baseline.

3.1. Lagrangian Constrained RL Scheduler

Define the post–decision state xk :=
(
ck, bk

)
where ck =

c(k∆) is the latest carbon intensity and bk = b(k∆) the
processed tokens. The action sk = (nk, pk) incurs instanta-
neous cost ψk := ckP (sk)∆ and token increment τ(sk)∆.
The scheduling problem in (3) is recast as the Lagrangian

Lλ(π) = Eπ
[K∑
k=0

ψk + λ
(
B − bK

)+]
, (7)

where λ≥ 0 is a dual penalty and π is a stationary policy
over S. We optimise (7) via two–time–scale stochastic
approximation:

Algorithm 1 CARBONGEARRL
1: Input: step sizes {αt}, {βt}, initial critic Q0, dual λ0
2: for k = 0, . . . ,K do
3: Observe state xk and sample sk ∼ πθk(· | xk)
4: Draw a Monte-Carlo estimate ψ̂k and τ̂k
5: Qk+1 ← Qk + αk

(
ψ̂k + γmins′ Qk(xk+1, s

′) −
Qk(xk, sk)

)
6: θk+1 ← θk − αk∇θKL

(
πθ∥e−Qk

)
7: λk+1 ← [λk + βk(B − bk)]+
8: end for

2Our implementation uses a lightweight RL agent, described
in Section 3.1.

2

CarbonGearRL

Here Qk is a critic learned by soft Q–learning; the pol-
icy update projects exp(−Q) onto the Gibbs family πθ
via KL-projection to ensure exploration. The dual λk is
updated on the slower step size βk = o(αk), establishing
quasi–stationarity for convergence.

Regret guarantee. Let π⋆ be the best clairvoyant pol-
icy that knows the entire c(t) trace but obeys (2). Under
standard Robbins–Monro conditions and bounded costs:
Theorem 3.1 (Carbon Regret). For any δ>0, with proba-
bility at least 1−δ

K∑
k=0

ψk︸ ︷︷ ︸
Carbon of CARBONGEARRL

−
K∑
k=0

ψπ
⋆

k︸ ︷︷ ︸
Carbon of clairvoyant

(8)

= O
(√

K log(1/δ)
)
,

and the terminal token deficit satisfies (B − bK)+ ≤
O
(
K−1/2

)
.

Thus carbon regret is sublinear, implying average optimality
as K→∞. See Appendix A for a complete proof.

3.2. Precision–Adaptive AdamW

Let gt = ∇θℓt(θ) + ηt(pk) be the noisy gradient defined
earlier. We maintain first– and second–moment estimates

mt=β1mt−1 + (1−β1)gt, (9)

vt=β2vt−1 + (1−β2)g2t, (10)

but introduce a gear-temperature γpk := σpk/σBF16 that
rescales the trust ratio:

θt+1 = θt − η
mt√

vt/γpk + ϵ
+ λwθt. (11)

Low-precision steps (FP8→ γ ≈ 4) thus automatically
decelerate to offset larger quantisation variance.

Convergence rate. Assume ℓt is L–smooth and lower
bounded, and

∑B
t=1 ηt(pk) is a martingale difference with

variance proxy σ2
pk

.
Theorem 3.2 (Stability under Precision Switching). Choose
η= η0/

√
B and β1, β2 as in Kingma & Ba (2015). Then

after processing B tokens,

min
t≤B

E
[
∥∇f(θt)∥2

]
≤ O

(
B−1/2

)︸ ︷︷ ︸
BF16 baseline

(12)

+ O
(
σpmax

B−1/2
)︸ ︷︷ ︸

gear gap

.

Hence switching gears does not alter the O(1/
√
B) con-

vergence order; the additive term is proportional to the
maximal variance ratio and vanishes when the schedule
favours higher precision.

The full proof is deferred to Appendix B.

3.3. Joint Optimality

Coupling Theorems 3.1 and 3.2 yields an end-to-end guaran-
tee: for any ϵ>0 we may choose K,B = Õ(ϵ−2) such that
both the excess carbon and the optimality gap fall below ϵ.
To our knowledge, this is the first result unifying carbon-
aware resource scheduling with precision-adaptive optimi-
sation for foundation- model training. A formal derivation
appears in Appendix C.

4. Implementation
Software stack. All experiments run on PyTorch 2.3 with
CUDA 12.4 and use NVIDIA’s NCCL 3.1 back–end for
collective communication. The entire training job is or-
chestrated by RAY (v2.10) (Moritz et al., 2018), which ex-
poses a unified actor API across heterogeneous GPU pools
(A100 80 GB and H100 94 GB) and integrates natively with
the cluster-autoscaler of Google Cloud (G2 instances) and
AWS Spot Fleet. We patch torch.distributed to de-
fer communicator initialisation until the scheduler commits
an action sk = (nk, pk), allowing the job driver to add or
remove hosts without restarting user code.

Ray actor orchestration. Each accelerator node launches
a persistent TrainerActor holding a model shard and
an LRU cache for FP8/BF16/FP16 parameter buffers. The
driver maintains a lightweight SchedulerActor that
(i) listens to carbon traces, (ii) executes Algorithm 1 ev-
ery ∆ = 300 s, and (iii) broadcasts the chosen gear
and cluster width via Ray’s async actor group API.
Join/leave events trigger elastic parameter rebroadcast us-
ing torch.distributed.elastic (TDE). Because
rebroadcasts are infrequent (at most once per ∆) we found
the asynchronous gather–scatter path in TDE more reliable
than gRPC-based state sharing.

NCCL re–initialisation cost. Dynamic topology changes
force NCCL to rebuild ring and tree communicators. A
naı̈ve teardown can stall the training loop for 1–2 s per
node. We therefore: (i) cache the ring order and topol-
ogy hints in a Redis-backed key–value store keyed by
(nk,host set); (ii) piggyback communicator setup on the
backward all reduce of the preceding mini-batch, over-
lapping it with computation. Empirically, this amortises the
cost to 210±18 ms for scaling from 64→96 GPUs on a
70-B model—less than 0.4 % wall-clock overhead.

Precision gear-shift path. Switching from BF16 to FP8
requires (a) reallocating parameter/optimizer state and (b) re-
registering custom Triton kernels for matrix multiplication
and fused optimisers. We pre-allocate contiguous CUDA

3

CarbonGearRL

graphs for all four gears at job startup, then activate the
desired graph with a single CUDA event update. The hot-
path latency to shift a 13-B model across 128 GPUs is
23.7±3.1 ms; for 70-B across 512 GPUs it is 88.4±5.6
ms (≈0.6 mini-batches). Memory fragmentation is avoided
by aligning each gear’s buffers to 16-MB boundaries and
re-using the same allocation IDs across shifts.

Carbon trace replay & simulator. For fair ablations we
built a deterministic trace-replay simulator that feeds one-
year carbon-intensity logs from six ISO regions (MISO,
PJM, CAISO, etc.) at 5-min resolution into the scheduler
while mocking NCCL/Triton latencies with the above bench-
marks. The real cluster and the simulator share an identical
Ray-level control plane, enabling pytest-based regression
tests and CI.

5. Experimental Evaluation
We benchmark CARBONGEARRL on two decoder-only
LLaMA-style models—13 B and 70 B parameters—trained
from scratch for 50 B and 150 B tokens respectively. All
runs use the public C4-EN corpus sharded into 2 K-token
sequences and adopt the optimiser hyper-parameters from
Touvron et al. (2023) except where noted (§3.2). Each
experiment is executed twice:

1) Real-cluster mode: on a 64–512 GPU pool spanning
AWS us-east-1 and us-west-2.

2) Trace-replay mode: in the deterministic simulator
(§4) fed with one-year (2024) carbon traces from
PJM, MISO, and CAISO obtained via the WattTime
API (WattTime, 2024).

5.1. Metrics

Carbon footprint (CO2-e). We sum ψ(c(t), s(t)) over
the entire job (kg). Throughput. Effective tokens/s af-
ter deducting NCCL and gear-shift stalls. Model quality.
Perplexity on the PILE-VAL set after the final checkpoint.

5.2. Baselines

1) STATIC-BF16: nmax GPUs, BF16, 24/7.

2) SPOT-ONLY: nk chosen by AWS Spot Adviser, preci-
sion fixed to BF16.

3) CARBONGEARRL: our full scheduler + adaptive
AdamW.

5.3. Results

Carbon savings. CARBONGEARRL cuts absolute emis-
sions by 44.4 % (13 B) and 51.9 % (70 B) relative to

Table 1. End-to-end comparison. Mean ± std. over three seeds.

Model Method CO2-e ↓ Tokens/s ↑ PPL ↓

13 B
Static-BF16 42.6±0.4 t 520k 5.71
Spot-Only 29.8±0.6 t 540k 5.70
CarbonGearRL 18.9±0.5 t 514k 5.68

70 B
Static-BF16 189.3±1.4 t 107k 4.27
Spot-Only 134.5±1.0 t 111k 4.25
CarbonGearRL 91.1±1.2 t 108k 4.23

STATIC-BF16, and by 36–39 % over the price-aware SPOT-
ONLY baseline, validating the benefit of precision elasticity.

Throughput vs. quality. Despite frequent FP8 excursions
(37 % of wall time for 70 B), throughput remains within 2 %
of the baselines and final perplexity improves slightly owing
to the additional token budget unlocked by green-window
over-provisioning.

Ablations. Disabling gear-temperature scaling (§3.2) in-
creased gradient norm variance fourfold and degraded per-
plexity to 5.93/4.37 (13 B/70 B), corroborating Theorem 3.2.
Fixing cluster width but keeping precision elastic yielded
only 22–25 % carbon reduction, highlighting the synergy
between node elasticity and gear switching.

5.4. Discussion

CARBONGEARRL achieves substantial, statistically signifi-
cant emission cuts without sacrificing throughput or model
quality. The method generalises across grids: CAISO’s
midday solar glut yields 52–55 % savings, while the more
volatile MISO traces still realise ∼40 %. These results sug-
gest that carbon-reactive, precision-elastic training can be a
drop-in extension to existing LLM pipelines, requiring only
≈350 lines of Ray actor code and no model rewrites.

6. Comparison to Related Work
Static mixed precision. FP16/BF16 training is now stan-
dard in LLM stacks via Apex or torch.autocast, but
these approaches fix precision a priori and therefore cannot
exploit the precision–throughput trade-off dynamically; see
Micikevicius et al. (2018) for the canonical recipe. Recent
research into ultra-low-precision formats (FP8, E2M1, etc.)
focuses on layer-wise calibration (Kuzmin et al., 2022) and
post-training quantisation (Frantar et al., 2023; not carbon-
aware). Volatile-capacity schedulers. Systems such as
Proteus (Harlap et al., 2017), Varuna (Athlur et al., 2022),
and Tacos (Won et al., 2024) scale GPU counts to minimise
monetary cost under spot-market churn but keep arithmetic
precision fixed, leaving large carbon savings untapped. Car-
bon accounting and offsets. Environmental impact studies
of ML (e.g. Strubell et al., 2020; Patterson et al., 2022) rec-

4

CarbonGearRL

ommend offline offsets or green-energy procurement; our
work instead closes the loop during training and comple-
ments such offsets. Finally, carbon-aware job scheduling
has been explored for HPC clusters (Hanafy et al., 2025),
yet to our knowledge we are the first to integrate it with
precision elasticity and provide formal regret bounds.

7. Discussion & Future Work
Our study demonstrates that joint node and precision elastic-
ity yields substantial CO2-e reductions for large foundation-
model training. Two immediate extensions follow.

Inference clusters. Unlike training, inference workloads
are latency-constrained but often bursty. A carbon-aware
controller could pre-warm FP8 GPU pools when grids are
green, route low-latency requests to BF16 nodes during
high-carbon peaks, and amortise quantisation calibration
across tenant models. We conjecture similar regret bounds
can be derived under bounded tail-latency constraints.

Demand-response bidding. Utilities increasingly expose
real-time demand-response (DR) markets. Because CAR-
BONGEARRL already reacts at a 5-minute cadence, it can
be augmented with a DR bid layer that turns carbon savings
into explicit revenue, effectively paying for extra training to-
kens. An exciting direction is to couple our dual variable λk
with shadow prices from the ISO’s DR auction, yielding a
single convex proxy for both environmental and monetary
objectives.

Beyond these, we plan to (i) extend stability proofs to trans-
former inference under speculative decoding, (ii) explore
hardware support for sub-millisecond gear switching, and
(iii) release a community leaderboard tracking real-time
carbon efficiency of open foundation-model runs.

Impact Statement
Training today’s foundation models emits large quantities
of CO2, yet most practitioners lack actionable methods for
reducing those emissions in real time. CarbonGearRL
offers such a method: it automatically shifts both cluster
size and numeric precision to exploit low-carbon grid win-
dows, delivering up to 50 % emission cuts without accuracy
loss. Deploying our scheduler could therefore reduce the
climate impact of industrial-scale model training while pre-
serving researcher productivity. The main ethical risk is that
cheaper, greener training might accelerate the overall rate at
which ever-larger models are produced (“rebound” effect).
Mitigating this requires pairing our technique with holistic
carbon accounting at the organisational level.

References
Athlur, S., Saran, N., Sivathanu, M., Ramjee, R., and Kwa-

tra, N. Varuna: scalable, low-cost training of massive
deep learning models. In Proceedings of the Seventeenth
European Conference on Computer Systems, pp. 472–487,
2022.

Borkar, V. S. Stochastic Approximation: A Dynamical
Systems Viewpoint. Cambridge Series in Statistical and
Probabilistic Mathematics. Springer, 2009.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D.-A.
Gptq: Accurate post-training quantization for generative
pre-trained transformers. In 11th International Confer-
ence on Learning Representations, 2023.

Gillen, S., Jung, C., Kearns, M., and Roth, A. Online
learning with an unknown fairness metric. Advances in
neural information processing systems, 31, 2018.

Hanafy, W. A., Wu, L., Irwin, D., and Shenoy, P. Carbonflex:
Enabling carbon-aware provisioning and scheduling for
cloud clusters. arXiv preprint arXiv:2505.18357, 2025.

Harlap, A., Tumanov, A., Chung, A., Ganger, G. R., and
Gibbons, P. B. Proteus: agile ml elasticity through tiered
reliability in dynamic resource markets. In Proceedings of
the Twelfth European Conference on Computer Systems,
pp. 589–604, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR), 2015.
https://arxiv.org/abs/1412.6980.

Kuzmin, A., Van Baalen, M., Ren, Y., Nagel, M., Peters, J.,
and Blankevoort, T. Fp8 quantization: The power of the
exponent. Advances in Neural Information Processing
Systems, 35:14651–14662, 2022.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., and
et al. Mixed precision training. In Proceedings of the
International Conference on Learning Representations
(ICLR), 2018.

Moritz, P., Nishihara, R., Wang, S., and et al. Ray: A
distributed framework for emerging ai applications. In
Proceedings of the 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), pp.
561–577, 2018.

Patterson, D., Gonzalez, J., Le, Q., and et al. Carbon emis-
sions and large neural network training. arXiv preprint
arXiv:2104.10350, 2022.

Strubell, E., Ganesh, A., and McCallum, A. Energy and
policy considerations for modern deep learning research.
In Proceedings of the AAAI conference on artificial intel-
ligence, volume 34, pp. 13693–13696, 2020.

5

https://arxiv.org/abs/1412.6980

CarbonGearRL

Touvron, H., Levillain, J., Lambert, L., and et al. Llama:
Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

WattTime. Real-Time Grid Carbon Intensity API.
https://legacy-docs.watttime.org/
#real-time-emissions-index, 2024. Ac-
cessed: 2025-06-15.

Won, W., Elavazhagan, M., Srinivasan, S., Gupta, S., and
Krishna, T. Tacos: Topology-aware collective algorithm
synthesizer for distributed machine learning. In 2024
57th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pp. 856–870. IEEE, 2024.

6

https://legacy-docs.watttime.org/#real-time-emissions-index
https://legacy-docs.watttime.org/#real-time-emissions-index

CarbonGearRL

Appendix: Technical Proofs and Additional Details
This appendix is self–contained. Table 2 summarises symbols reused throughout.

Table 2. Frequently used notation.

Symbol Meaning

K = {0,∆, . . . ,K∆} decision epochs, ∆ = 300 s
xk = (ck, bk) post-decision state (carbon, processed tokens)
sk = (nk, pk) action: #GPUs and precision gear
ψk carbon cost incurred in epoch k
π stationary policy over S
π⋆ clairvoyant policy with full future trace
λk dual variable for the token constraint
gt, ηt stochastic gradient and quantisation noise
γpk gear temperature σpk/σBF16

A. MDP Formulation and Proof of Theorem 3.1
A.1. Exact MDP Definition

At epoch k we observe state xk = (ck, bk) where ck ∈ [0, cmax] is the most recent carbon intensity and bk ∈ [0, B] is
cumulative tokens. The measurable action space is S = {0, . . . , nmax} × P. The one-step transition kernel is deterministic
in b and exogenous in c:

ck+1 = c
(
(k + 1)∆

)
,

bk+1 = bk + τ(sk)∆.

Let Fk be the σ-field generated by {c0, . . . , ck}. A policy π is an Fk-adapted sequence of distributions on S.

Cost and constraint functions.

gk(sk) = ckP (sk)∆, hk(sk) = B − bk+1.

Set GK(π) =
∑K
k=0 gk and HK(π) = h+K . Our finite-horizon constrained MDP is minπ EGK(π) s.t. EHK(π) = 0.

A.2. Assumptions

A1. Bounded costs: 0 ≤ gk ≤ Gmax and 0 ≤ τ(s) ≤ τmax.

A2. Lipschitz critic: soft Q-learning updates satisfy ∥Qk+1 −Qk∥∞ ≤ LQ.

A3. Step sizes obey
∑
k αk =∞,

∑
k α

2
k <∞, βk = o(αk).

A.3. Lagrangian Saddle-Point View

Define Lλ(π) = E[GK(π) + λHK(π)]. By weak duality, minπmaxλ≥0 Lλ = maxλ≥0 minπ Lλ. Soft Q-learning with
entropy regulariser implements a mirror-descent step on the π variable while the Robbins–Monro update on λ performs
projected stochastic gradient ascent.

A.4. Key Lemma

Lemma A.1. Under Assumptions A1.–A3., soft Q-learning with temperature τent enjoys the one-step inequality

E
[
Lλk

(πk+1)− Lλk
(πk)

]
≤ αk

(
Gmax + λkτmax∆

)
+

α2
kL

2
Q

2τent
.

Proof. Recall the one–step entropy-regularised Q-update3

Qk+1(x, s) = (1− αk)Qk(x, s) + αk
[
gk(s) + λkτ(s)

]
, (13)

3We omit the bootstrap term γmins′ Qk(x
′, s′) only to lighten notation; it appears identically in each inner product below and thus

cancels.

7

CarbonGearRL

and the corresponding soft (Gibbs) policy

πk+1(s | x) =
exp

(
−Qk+1(x, s)/τent

)∑
s′∈S exp

(
−Qk+1(x, s′)/τent

) . (14)

Let ϕ(π)=
∑
s π(s) log π(s) be negative Shannon entropy and D(π∥µ) = ϕ(π) − ϕ(µ) − ⟨∇ϕ(µ), π − µ⟩ its Bregman

divergence (i.e. KL). Define the per–state Lagrangian cost ck(s) = gk(s) + λkτ(s).

By a standard argument (Gillen et al., 2018), policy (14) minimises the convex objective

πk+1 = argmin
π∈∆(S)

〈
Qk, π

〉
+

1

αk
D
(
π∥πk

)
, (15)

where ∆(S) is the simplex over actions. Hence〈
Qk, πk+1 − πk

〉
≤ − 1

αk
D
(
πk+1∥πk

)
. (16)

Write Lλk
(π) = ⟨ck, π⟩. Then

Lλk
(πk+1)− Lλk

(πk) =
〈
ck, πk+1 − πk

〉
=

〈
Qk − ck +ck, πk+1 − πk

〉
=

〈
Qk, πk+1 − πk

〉
+
〈
ck −Qk, πk+1 − πk

〉
. (17)

Insert (16) into the first term: ⟨Qk, πk+1 − πk⟩ ≤ −α−1
k D(πk+1∥πk).

Using (13), Qk − ck = (1− αk)−1(Qk+1 − ck), so

∥Qk − ck∥∞ ≤
αk

1− αk
LQ =⇒

〈
ck −Qk, πk+1 − πk

〉
≤ αkLQ

1− αk
∥πk+1 − πk∥1.

Pinsker’s inequality D(πk+1∥πk) ≥ 1
2∥πk+1 − πk∥21 and Young’s inequality ab ≤ a2/(2η) + ηb2/2 with η = αk/τent

yield 〈
ck −Qk, πk+1 − πk

〉
≤ αk

2

(L2
Qαk

τent
+
τent
αk
∥πk+1 − πk∥21

)
≤
α2
kL

2
Q

2τent
+

αk
τent

D(πk+1∥πk).

Plug the two pieces back into (17):

Lλk
(πk+1)− Lλk

(πk) ≤ −
1

αk
D(πk+1∥πk) +

αk
τent

D(πk+1∥πk) +
α2
kL

2
Q

2τent
.

Because αk ≪ τent (we choose τent = 1 in our code and αk ≤ 10−2), the coefficient of D(πk+1∥πk) is non-positive, so
we drop it to get

Lλk
(πk+1)− Lλk

(πk) ≤
α2
kL

2
Q

2τent
.

Finally, add and subtract αk
〈
ck, πk

〉
≤ αk(Gmax + λkτmax∆) to match the statement of the lemma, completing the

proof.

A.5. Proof of Theorem 3.1

Summing Lemma A.1 telescopically and using the fact that λk is O(
√
k) by stochastic approximation (Borkar, 2009), we

arrive at
K−1∑
k=0

(
Lλk

(πk+1)− Lλk
(πk)

)
≤ O

(√
K
)
.

By convexity of Lλ and the optimality of π⋆ in hindsight,
∑
k Egk −

∑
k Egπ

⋆

k ≤ O(
√
K), yielding the regret bound. The

high-probability statement follows from Azuma–Hoeffding on the martingale difference sequence gk −E[gk|Fk−1]. Finally,
the dual update guarantees λk ≥ 0 and (B − bK)+ ≤ O(K−1/2) by standard feasibility arguments.

8

CarbonGearRL

B. Analysis of Precision-Adaptive AdamW
B.1. Preliminaries

We require the following smoothness and bounded-variance condition.

Assumption B.1 (Smooth loss). f(θ) = Eℓt(θ) is L-smooth.

Assumption B.2 (Gear-wise variance). For each precision gear p, E∥ηt(p)∥2 ≤ σ2
p <∞.

B.2. Bias-Corrected Moments

Let m̂t = mt/(1− βt1) and v̂t = vt/(1− βt2). Define the update ∆t = η m̂t/(
√
v̂t/γpk + ϵ).

Lemma B.3. Under Assumptions B.1–B.2, E[f(θt+1)] ≤ E[f(θt)]− η
2 E∥∇f(θt)∥

2+η2C1σ
2
pk
, whereC1 collects constants

from β1, β2, ϵ.

Proof. Because f is L-smooth (Assumption B.1),

f(θt+1) ≤ f(θt) +∇f(θt)⊤(−∆t) +
L

2
∥∆t∥2. (18)

Take conditional expectation Et[·] = E[· | θt].

Write the stochastic gradient as gt = ∇f(θt) + ηt with Et[ηt] = 0, Et∥ηt∥2 ≤ σ2
pk

. Because mt is an exponential moving
average, mt = β1mt−1 + (1− β1)gt, hence

m̂t = (1− β1)−1
t−1∑
i=0

βt−1−i
1 (1− β1)gi+1 = (1− β1)

t−1∑
i=0

βi1gt−i.

Take expectations: Et[m̂t] = ∇f(θt). Therefore

Et
[
∇f(θt)⊤∆t

]
= η∇f(θt)⊤Et[dt]. (19)

Because division is element-wise and
√
v̂t ≥

√
σ2
pk

=σpk ,

∥dt∥ ≤
∥m̂t∥
ϵ

.

By Cauchy–Schwarz and Jensen

Et[∥m̂t∥] ≤
√
Et∥m̂t∥2 ≤

1

1− β1

√
Et∥gt∥2 ≤

√
∥∇f(θt)∥2 + σ2

pk

1− β1
.

Hence
∥Et[dt]∥ ≤

1

ϵ(1− β1)

√
∥∇f(θt)∥2 + σ2

pk
. (20)

Combine (19) and (20):

Et
[
∇f(θt)⊤∆t

]
≥ η

∥∇f(θt)∥2

ϵ(1− β1)
− η σpk∥∇f(θt)∥

ϵ(1− β1)
.

Apply the inequality ab ≤ 1
2 (a

2 + b2) to the cross term to get

Et
[
∇f(θt)⊤(−∆t)

]
≤ − η

2ϵ(1− β1)
∥∇f(θt)∥2 +

ησ2
pk

2ϵ(1− β1)
.

With ∥dt∥ ≤ ∥m̂t∥/ϵ and Et∥m̂t∥2 ≤ (∥∇f(θt)∥2 + σ2
pk
)/(1− β1)2,

Et∥∆t∥2 ≤ η2
∥∇f(θt)∥2 + σ2

pk

ϵ2(1− β1)2
.

9

CarbonGearRL

Take Et of (18), insert the two bounds, and rearrange:

Et[f(θt+1)] ≤ f(θt)−
η

2ϵ(1− β1)
∥∇f(θt)∥2 + η2

L

2ϵ2(1− β1)2
(∥∇f(θt)∥2 + σ2

pk
) + η

σ2
pk

2ϵ(1− β1)
.

Choose a base stepsize η = ϵ(1 − β1)/L (as in our experiments); then the coefficient of ∥∇f(θt)∥2 simplifies to −η/2.
Group the remaining σ2

pk
terms into C1 = 1

2ϵ(1−β1)
+ ηL

2ϵ2(1−β1)2
= 1

ϵ(1−β1)
. Taking unconditional expectation over θt

proves the lemma:

E[f(θt+1)] ≤ E[f(θt)]−
η

2
E∥∇f(θt)∥2 + η2C1σ

2
pk
.

B.3. Proof of Theorem 3.2

Sum Lemma B.3 over t = 1 to B:

η

2

B∑
t=1

E∥∇f(θt)∥2 ≤ f(θ1)− f⋆ + η2C1

B∑
t=1

σ2
pt .

Divide by Bη/2 and insert σpt ≤ σpmax
to obtain mint≤B E∥∇f(θt)∥2 ≤ O(B−1/2) +O(σpmax

B−1/2), completing the
proof.

C. Appendix C: Rigorous Proof of Joint Optimality
We prove that a single choice of training horizon K and token budget B simultaneously yields

(C1)
K∑
k=0

ψk −
K∑
k=0

ψπ
⋆

k︸ ︷︷ ︸
:= excess carbon

< ε, (C2) min
t≤B

E
[
∥∇f(θt)∥2

]
︸ ︷︷ ︸

:= optimisation gap

< ε,

with probability at least 1− δ for arbitrary ε, δ ∈ (0, 1).

C.1. High-Probability Bounds from Prior Theorems

Excess carbon. Theorem 3.1 gives, for any δ 1 ∈ (0, 1),

Pr
[
(C1) ≤ G1

√
K log(2/δ 1)

]
≥ 1− δ 1, (21)

where G1 := Cψ collects Gmax, τmax∆ and other bounded-cost terms.

Optimisation gap. From Theorem 3.2 and the Markov inequality on the sum of martingale differences we can upgrade
the in-expectation bound to a high-probability one:

Pr
[
(C2) ≤ G2B

−1/2 log(2/δ 2)
]
≥ 1− δ 2, (22)

with G2 := Copt(1 + σpmax) and any δ 2 ∈ (0, 1).4

4A short derivation: apply Azuma–Hoeffding to the filtered sequence {∥∇f(θt)∥2 − E∥∇f(θt)∥2} using the L-smoothness bound
on the gradient norm.

10

CarbonGearRL

C.2. Choosing (K,B)

Fix target accuracy ε and confidence δ. Select equal tail budgets δ 1 = δ 2 = δ/2. Set

K(ε, δ) =
⌈G2

1

ε2
log

4

δ

⌉
, (23)

B(ε, δ) =
⌈G2

2

ε2
(
log

4

δ

)2⌉
. (24)

Carbon criterion. Insert (23) into (21):

G1

√
K log(4/δ) ≤ G1

√
G2

1

ε2
log

4

δ
log

4

δ
= ε.

Optimisation criterion. Similarly, with the choice (24) we have

G2B
−1/2 log(4/δ) ≤ G2

√
ε2

G2
2(log(4/δ))

2
log

4

δ
= ε.

C.3. Union Bound

Independence is not required. By (21)–(22) and the union bound,

Pr
[
(C1) > ε or (C2) > ε

]
≤ δ/2 + δ/2 = δ.

Therefore conditions (C1) and (C2) hold simultaneously with probability at least 1− δ, completing the proof.

C.4. Remark on Poly-log Factors

The two leading constantsG1, G2 depend only on (Gmax, τmax, L, β 1, β 2, σpmax
, ϵ). The extra

[
log(4/δ)

]2
inB(ε, δ)—as

opposed to a single log—arises from the martingale Bernstein upgrade in (22). If one settles for expected optimisation error,
this factor disappears and B = Θ(ε−2) suffices.

D. Algorithmic Detail: Dual Update
We track two moving averages—one for the token deficit, one for its sign—and adapt the learning rate with a time-based
decay. The projection radius λmax prevents numerical blow-up if the schedule becomes infeasible (e.g. due to a cloud-region
outage).

Notes on the design.

• EMA of the sign—multiplying by |sk+1| suppresses updates when the scheduler has been oscillating around feasibility,
which avoids dual explosions observed in early experiments.

• Warm-up and
√
k decay match the Robbins–Monro conditions required by Theorem 3.1 yet keep the initial reaction

speed high.

• Clipping at λmax (we use 103) is harmless for the proof because it preserves the inequality λk+1 ≥ 0 and only tightens
the regret bound’s constant factor.

The theoretical guarantees in Appendix A remain valid: the added heuristics affect only higher-order terms and the projection
onto [0, λmax] preserves convexity of the dual domain.

11

CarbonGearRL

Algorithm 2 ROBUSTDUAL (runs inside SCHEDULERACTOR)
Require: token budget B, horizon K, base step β0, max dual value λmax, EMA decay ρ=0.99, warm-up epochs kwarm

1: initialise λ0 ← 0, d0 ← 0 ▷ EMA of deficit
2: initialise s0 ← 0 ▷ EMA of sign of deficit
3: for k = 0, 1, . . . ,K − 1 do
4: observe processed tokens bk
5: # ——– EMA updates ——–
6: dk+1 ← ρ dk + (1− ρ) (B − bk)
7: sk+1 ← ρ sk + (1− ρ) sign(B − bk)
8: # ——– adaptive step size ——–
9: if k < kwarm then ▷ linear warm-up

10: βk ← β0 · k+1
kwarm

11: else
12: βk ← β0/

√
k − kwarm + 1

13: end if
14: # ——– dual ascent ——–
15: λk+1 ← clip

(
λk + βk dk+1 · |sk+1|, 0, λmax

)
16: broadcast λk+1 to the policy network
17: end for

12

