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Abstract
Hyperbolic neural networks have emerged as a
powerful tool for modeling hierarchical data struc-
tures prevalent in real-world datasets. Notably,
residual connections, which facilitate the flow of
information across layers, have been instrumental
in the success of deep neural networks. How-
ever, current methods for constructing hyperbolic
residual layers suffer from limitations such as in-
creased model complexity, numerical instability,
and errors due to multiple mappings to and from
the tangent space. To address these limitations,
we introduce LRN, a novel hyperbolic residual
neural network based on the weighted Lorentzian
centroid in the Lorentz model of hyperbolic space.
Extensive experiments showcase the superior per-
formance of LRN compared to state-of-the-art Eu-
clidean and hyperbolic alternatives, highlighting
its potential for building more expressive neural
networks in hyperbolic space as a general appli-
cable method to multiple architectures, including
GNNs and graph Transformers.1

1. Introduction
In recent years, the exploration of neural network architec-
tures beyond the traditional Euclidean space has opened
up new frontiers in machine learning research (Peng et al.,
2021; Mettes et al., 2023; Yang et al., 2022c). Among these,
hyperbolic neural networks (Ganea et al., 2018; Shimizu
et al., 2020; van Spengler et al., 2023; Chami et al., 2019;
Liu et al., 2019; Bdeir et al., 2024; Chen et al., 2021) have
garnered significant attention due to their inherent capabil-
ities to model data with complex hierarchical structures.
Hyperbolic spaces, characterized by constant negative cur-
vature, naturally align with the geometric properties of tree-
like data, offering a more fitting representation than their
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Euclidean counterparts (Krioukov et al., 2010; Sarkar, 2011).
This alignment enables enhanced learning efficiency and
improves representation learning for a wide range of appli-
cations, from graph-based data analysis (Faqeeh et al., 2018;
Yang et al., 2022e; Sun et al., 2021; Yang et al., 2022d;a; Liu
et al., 2019; Chami et al., 2019; Dai et al., 2021) to image
understanding (Mettes et al., 2023; Desai et al., 2023).

Residual connection (He et al., 2016) is a core elements of
the modern deep learning framework as a powerful mecha-
nism that has revolutionized the development of deep neural
networks. By allowing layers to learn modifications to
the identity mapping rather than complete transformations,
residual connections facilitate the training of substantially
deeper networks and are widely used in many model archi-
tectures, including CNNs, GNNs, and Transformers (He
et al., 2016; Veličković et al., 2018; Vaswani et al., 2017).
However, the residual connections method within Euclidean
spaces is not directly transferable to the geometry of hyper-
bolic spaces, which is violated through direction additions.

Limitations of existing works Poincaré ResNet (van
Spengler et al., 2023) proposes projecting the hyperbolic
embeddings to the tangent space at a fixed point, parallel
transporting it to the tangent space at the position of interest,
and then utilizing the exponential map to map it back to
the hyperbolic space. Another similar work, Riemannian
ResNet (Katsman et al., 2023), although not defined in
hyperbolic space, employs similar concepts. Despite being
intuitive, these approaches have several limitations:

(i) Computationally Expensive. The operations require
multiple mappings to and from the tangent space.
These are complex mappings and significantly in-
creases computational complexity (see Table 3).

(ii) Non-Commutativity. w1x+w2f(x) = w2f(x)+w1x
holds in Euclidean, whereas the parallel transport
method is not commutative, greatly restricting the ex-
pressiveness of the model (see Appendix C.1).

(iii) Numerical Instability. For instance, the log mapping
in the Lorentz model (of curvature -1) is:

logu(v) =
cosh−1(α)√

α2 − 1
(v − αu).

where α = u0v0 −
∑n

i=1 uivi is the Lorentzian inner
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product of u,v. If u = v and u contains large values
in the coordinates, α becomes less than one, which
results in NaN because the domain of cosh−1(x) is
x ≥ 1.

(iv) Mapping Error. The above method requires mapping
a point in hyperbolic space to the tangent space. For
efficient computation, the origin is commonly used as
the reference point. This introduces mapping errors for
points not at the origin (Yu & De Sa, 2019).

Other previous methods have their own shortcomings. As
a method previously used as hyperbolic addition for aggre-
gation, HGCN (Chami et al., 2019) and LGCN Zhang et al.
(2021b) proposed first mapping to the tangent space of the
origin for addition, and then projecting the sum back into
hyperbolic space. Although this method is commutative, it
suffers from (i), (iii), and (iv). HCNN (Bdeir et al., 2024)
adds the space component of the hyperbolic embeddings
and then computes the time component. While not suffering
from the same set of problems, it does not have geometric
meaning to provide justification for why it works.

Proposed method In this work, we propose Lorentzian
Residual Networks (LRN), a residual neural network based
on the weighted Lorentzian centroid in the Lorentz model.
Unlike some existing methods, we do not rely on map-
ping between tangent space and hyperbolic space but in-
stead operate directly on the Lorentz embedding. Unlike
HCNN (Bdeir et al., 2024), our method has geometric inter-
pretations. LRN addresses the limitations previously men-
tioned in (i), (iii), and (iv), and ensures the commutativity
of addition, thereby resolving limitation (ii).

Contributions The main contributions of this work can
be summarized as follows: (1) We introduce LRN, a novel
residual connection method for hyperbolic neural networks
that operates directly on the Lorentz embedding and has
geometric interpretations. (2) We theoretically demonstrate
that LRN can derive previous methods while ensuring com-
mutativity and numerical stability. (3) We experimentally
validate the superior performance of LRN across multiple
tasks, and across multiple architectures such as GNN and
graph Transformer. (4) We provide a comprehensive anal-
ysis of the limitations of existing methods and highlight
the potential of LRN in advancing the field of hyperbolic
representation learning.

2. Methodology
In this section, we introduce our proposed method for
Lorentzian residual connection, based on a generalization
of the Lorentzian centroid (Law et al., 2019). In a typical
Euclidean residual block, let x be the input and f(x) be the
output of a neural network layer or a series of layers. The

residual connection is x+ f(x), or in a more generalized
form, αx+ βf(x), where α, β are scalar weights.

Adapting the general form, given vectors x, f(x) ∈ Ln
K , the

Lorentz residual connection is computed as:

m =
wxx+ wyf(x)√

−K
∣∣∥wxx+ wyf(x)∥L

∣∣
= αwx,wy

x+ βwx,wy
f(x),

(1)

where |∥·∥|L =
√
|∥ · ∥2L|, αwx,wy

=

wx/
√
−K

∣∣∥wxx+ wyf(x)∥L
∣∣, βwx,wy

=

wy/
√
−K

∣∣∥wxx+ wyf(x)∥L
∣∣ and wx, wy > 0 are

weights that can be learned or fixed.

Lorentz residual network (LRN) The core component
of LRN is the Lorentzian residual block, consisting of a hy-
perbolic layer followed by a Lorentzian residual connection.
The hyperbolic layer can be any type of layer that operates
in Ln

K , such as hyperbolic fully-connected layers (Chen
et al., 2021), hyperbolic convolutional layers (Bdeir et al.,
2024), or hyperbolic attention mechanisms (Gulcehre et al.,
2019). In Algorithm 1, we present an example of LRN in a
classification network for better understanding.

Previous hyperbolic addition methods Here we take a
detour and introduce formally the previous methods for hy-
perbolic addition. Let Ln

K be the n-dimensional Lorentz hy-
perbolic space with constant negative curvature K(K < 0),
equipped with the Lorentzian inner product ⟨·⟩L and norm
∥ · ∥L :=

√
⟨·⟩L. For x,y ∈ Ln

K , expKx (·), logKx (·) denote
the exponential and logarithmic maps at x, and Px→y de-
note the parallel transport map from the tangent space of x
to that of y. o = [

√
−1/K, 0, . . . , 0]T is the origin.

The parallel transport method of Mobius Addition
from (Chami et al., 2019; Ganea et al., 2018) used by
Poincaré ResNet (van Spengler et al., 2023) is given by

x⊕P y = expKx ◦Po→x ◦ logKo (y). (2)

The tangent space method used for aggregation in (Chami
et al., 2019; Zhang et al., 2021b):

x⊕T y = expKo

(
wx log

K
o (x) + wy log

K
o (y)

)
. (3)

where wx, wy > 0 are weights. A third approach is the
space addition method from (Bdeir et al., 2024) given by

x⊕S y =
[√
||xs + ys||2 − 1/K,xs + ys

]T
, (4)

where xs,ys denote the space-like dimension of x,y.

Advantages over previous limitations LRN resolves
all of the previous methods’ limitations mentioned in Sec-
tion 1.
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Algorithm 1 Lorentz Residual Network (LRN)

Require: Input data x ∈ Ln
K , target labels y, learning rate

η, number of layers L, loss function ℓ, initial weights
w

(l)
x and w

(l)
y for l = 1, . . . , L

1: for each epoch do
2: for each batch of data xb do
3: h(0) ← xb {Initialization}
4: for l← 1 to L do
5: z(l) ← f (l)(h(l−1)) {Hyperbolic layers}
6: α(l) ← w(l)

x√
−K|∥wxx+wyf(x)∥L|

7: β(l) ← w(l)
y√

−K|∥wxx+wyf(x)∥L|
8: h(l) ← α(l)h(l−1) + β(l)z(l) {LRN }
9: end for

10: ŷ← softmax(h(L)) {Output prediction}
11: J ← ℓ(ŷ,y) {Compute loss}
12: Update weights w

(l)
x and w

(l)
y for l = 1, . . . , L

using optimizer with J and η
13: end for
14: end for

(i) LRN is significantly more efficient than previous meth-
ods that map between tangent and hyperbolic space.
See Table 3 for further details.

(ii) LRN is commutative, as wxx + wyy = wyy + wxx.
levitating the consequences of the non-commutativity
of the parallel transport method.

(iii) The following lemma shows that LRN is computa-
tionally stable, avoiding the computational instability
issues mentioned in the introduction.

Lemma 2.1.
√
−K |∥wxx+ wyy∥L| >

√
w2

x + w2
y

for any x,y ∈ Ln
K and wx, wy > 0.

Since the normalizing denominator divides out the ratio
wx/wy , the output of LRN is preserved when the ratio
is preserved. Thus we can fix wx = 1 and obtain
||wxx+wyy||L > 1/

√
−K, never risking dividing by

values close to zero, ensuring stability.

(iv) By not mapping between tangent and hyperbolic
spaces, LRN eliminates mapping errors for points far
from the origin (Yu & De Sa, 2019).

(v) LRN has geometric interpretation, having the abil-
ity to theoretically achieve the previous methods as
demonstrated by Proposition 2.3. By carefully select-
ing weights, LRN is able to achieve the geometric
meaning of previous methods by ensuring the outputs
lie on the same geodesic from the origin. This pro-
vides theoretical motivation for LRN as opposed to the

space addition method (Bdeir et al., 2024) mentioned
in Section 1.

For completeness and rigor, we include the following for
the non-commutativity of the parallel transport method. The
two directions of addition in some cases are reflected over
an axis, giving theoretical motivation for its inflexibility.

Theorem 2.2. Let x,y ∈ Ln
K be points such that xi = yi

for i ̸= n+ 1 and xn+1 = −yn+1. Let z = x⊕P y be the
output of the parallel transport method, and let z′ = y⊕P x
be the output in the other direction. Then zn+1 = −z′n+1.

Relation to previous methods Our approach can theoret-
ical derive previous methods mentioned in Section 2, based
on the following Proposition 2.3. Proofs and details for all
of our theoretical results can be found in Appendix D.

Proposition 2.3. Let z be the output of one of Equation (2),
Equation (3), Equation (4). Then there exists weights
wx, wy ∈ R+ such that the point m = αwx,wyx+βwx,wyy
lies on the geodesic from o to z.

3. Experiments
We apply LRN as the residual connection in hyperbolic
neural networks. We demonstrate that LRN achieves better
results than any previous methods of residual connection.
We focus on testing the residual connection methods by
using a consistent base model in each task. For more details
regarding our experiments, please see Appendices C and F.

GNN model architecture We formulate a skip-connected
graph convolutions network with LRN as the residual con-
nection, using the fully hyperbolic graph convolutional
layer (Chen et al., 2021). For the overall model architec-
ture, we follow the SkipGCN architecture outlined in (Sun
et al., 2021; Yang et al., 2022a), where the last layer ag-
gregates representations from all intermediate layers. Let
zu be the final output of the convolution, we have zu =

z
(L)
u ⊕ z

(L−1)
u ⊕ . . .⊕ z

(1)
u where L is the number of layers.

We used the Fermi-Dirac decoder (Krioukov et al., 2009;
Nickel & Kiela, 2018).

GNN experimental setup We evaluate LRN on node clas-
sification and link prediction tasks, utilizing several datasets:
(1) Homophilous graphs, including DISEASE (Chami et al.,
2019), AIRPORT (Chami et al., 2019), and two cita-
tion networks, namely PUBMED (Sen et al., 2008) and
CORA (Sen et al., 2008); (2) Heterophilic graphs, including
CHAMELEON and SQUIRREL, with the splits in (Platonov
et al., 2023). The hyperbolicity (δ) captures the degree of
hyperbolic structure, with smaller values indicating a more
hyperbolic structure (Chami et al., 2019).

Baselines For baselines, we test the effectiveness of our
method against other hyperbolic residual methods, by apply-
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Table 1: Test ROC AUC results (%) for Link Prediction (LP) and F1 scores (%) for Node Classification (NC). The best
performance is highlighted in bold. Lower δ means the dataset is more tree-like.

Homophilous Heteophilic
Dataset DISEASE AIRPORT PBUMED CORA CHAMELEON SQUIRREL
Hyperbolicity δ = 0 δ = 1 δ = 3.5 δ = 11 δ = 2 δ = 1.5
Task LP NC LP NC LP NC LP NC NC NC

HyboNet 96.8± 0.4 96.0± 1.0 97.3± 0.3 90.0± 1.4 95.8± 0.2 78.0± 1.0 93.6± 0.3 80.2± 1.3 40.1± 0.8 34.3± 0.5
Parallel Transport 86.4± 0.8 84.8± 3.7 93.6± 0.1 93.4± 0.6 96.5± 0.1 77.8± 0.5 94.8± 0.3 76.0± 0.8 36.6± 1.9 32.3± 0.8
Tangent Space 76.0± 2.4 91.9± 1.9 93.5± 0.1 92.0± 2.9 96.4± 0.2 76.8± 0.9 94.1± 0.3 79.2± 0.1 38.3± 0.8 34.0± 0.6
Space Addition 83.1± 1.2 88.9± 2.5 95.8± 0.3 90.0± 1.4 95.5± 0.2 75.9± 0.9 93.2± 0.2 78.6± 0.5 39.4± 2.0 34.5± 0.2
LRN (ours) 97.3± 0.4 96.1± 1.0 97.3± 0.3 93.9± 0.7 96.2± 0.1 80.1± 1.0 94.1± 0.3 80.6± 0.9 41.1± 0.9 37.1± 1.1

ing the baselines instead of LRN. We consider the base Hy-
boNet (Chen et al., 2021) without residual connection, and
previous baseline of the parallel transport method (Chami
et al., 2019), the tangent space method (Chami et al., 2019),
the space addition method (Bdeir et al., 2024).

GNN experimental results We show the results in Ta-
ble 1. LRN is the best performer in 8 out of the 10 tasks, for
up to 4.2%. Compared to the the base HyboNet model, LRN
substantially outperforms in 9 out of the 10 tasks. Compare
to the baseline residual connection methods, LRN is the best
performer in 8 out of the 10 tasks, especially for the more
difficult tasks of node classification on heterophilic datasets,
demonstrating its effectiveness and generalizability to more
difficult problem. LRN is also the best performer in every
node prediction task, which benefits from deeper networks,
demonstrating its superiority as a residual connection. In
the more hyperbolic datasets, LRN always performs better
and most of the time by large margins, suggesting that it
is more suitable for hyperbolic networks as it doesn’t map
between hyperbolic and tangent (Euclidean) spaces.

Application of LRN to graph Transformers We test
LRN as part of a hyperbolic adaptation of SGFormer (Wu
et al., 2023), a recent Euclidean graph Transformer. We
consider the same hyperbolic residual connection baselines
as before. Following the notations (Wu et al., 2023), let
Z(0) be the input embedding, Z be the output of the global
attention layer, and GN(Z(0),A) be the output of the GNN
layer with adjacency matrix A. For LRN and the space
addition method, we project Z and GN(Z(0),A) to LK

n and
compute the final embedding as

(1− α) expKo (Z)⊕ α expKo (GN(Z(0),A)), (5)

where ⊕ denotes the respective residual connection method
and α is a fixed weight. For the parallel transport and tangent
space method, due to their dependence on the tangent space,
we project weighted embeddings instead:

expKo ((1− α)Z))⊕ expKo (αGN(Z(0),A)). (6)

We use the same Fermi-Dirac decoder (Krioukov et al.,
2009; Nickel & Kiela, 2018) from earlier for the final out-
put fully connected layer. For the datasets, we consider
heteroliphic graphs CHAMELEON, SQUIRREL, and ACTOR.
We use the same splits for ACTOR as (Lim et al., 2021).

Table 2: Accuracy% for node classification

Method CHAMELEON SQUIRREL ACTOR
Hyperbolicity δ = 2 δ = 1.5 δ = 1.5

SGFormer 44.9± 3.9 41.8± 2.2 37.9± 1.1
Parallel Transport 46.7± 1.2 38.5± 1.3 35.5± 0.9
Tangent Space 47.0± 0.8 42.1± 1.2 34.9± 0.7
Space Addition 47.2± 1.4 43.0± 1.1 35.3± 0.4
LRN(ours) 47.8± 1.3 43.9± 0.8 38.0± 0.4

Table 3: Average runtime for 100 additions on random
vectors

Method 2, 048/10, 000 4, 096/100, 000

Parallel Transport 0.0036s 1.448s
Tangent Space 0.0083s 3.601s
LRN (ours) 0.00025s 0.0006s

Transformer experimental results We show the results
in Table 2. LRN outperforms the base Euclidean SGFormer
and the baseline hyperbolic residual connection methods
in all three cases, demonstrating the effectiveness of LRN
in Transformer models. In 2 of the 3 datasets, the hyper-
bolic version of SGFormer almost always outperforms the
Euclidean version as the high hyperbolicity suggests, justi-
fying the application of hyperbolic modifications.

Runtime analysis We compare the efficiency of LRN
with previous methods that involve multiple mappings by
doing 100 additions on randomly generated vectors of di-
mension 2048 and size 10,000, and vectors of dimension
4096 and size 100,000 on a single RTX 3070 GPU, as shown
in Table 3. Our method provides significant speedup against
the baselines and has much better-scaling potential.

4. Conclusion
In this work, we introduced LRN, a new hyperbolic residual
neural network based on the weighted Lorentzian centroid.
LRN overcomes the limitations of previous methods, offer-
ing improved efficiency, flexibility, numerical stability, and
retention of geometric information. Nevertheless, it should
be noted that the performance of a residual-connected model
is conditioned upon the performance of the base model. One
direction of future is to apply LRN to newly developed ar-
chitectures.
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A. Related Works
Hyperbolic representation and deep learning Hyperbolic spaces, as a typical example of non-Euclidean geometries,
have garnered extensive attention in recent years for hyperbolic representation learning and hyperbolic deep learning (Peng
et al., 2021; Mettes et al., 2023; Yang et al., 2022b). A defining geometric characteristic of hyperbolic spaces is their negative
curvature, which results in an exponential growth of volume with distance from the origin. This property closely mirrors the
structure of tree-like data, where the number of child nodes increases exponentially (Krioukov et al., 2010). Consequently,
hyperbolic representation learning provides a strong geometric prior for hierarchical structures, tree-like data, and power-law
distributed information. Significant advancements have been achieved in various domains such as WordNet (Nickel & Kiela,
2017; 2018), graphs (Chami et al., 2019; Liu et al., 2019; Zhang et al., 2021a; Yang et al., 2023), social networks (Yang
et al., 2021), and recommendation systems (Yang et al., 2022d;a; Chen et al., 2022; Sun et al., 2021) utilizing hyperbolic
representations. Moreover, hyperbolic deep learning has demonstrated impressive performance in image-related tasks,
including image embedding (Khrulkov et al., 2020; Guo et al., 2022; Ermolov et al., 2022) and segmentation (Atigh et al.,
2022; Weng et al., 2021; Chen et al., 2023), offering new insights into deep learning paradigms, such as the interpretation of
norms as reflections of uncertainty. Within the neural network domain, HNN (Ganea et al., 2018) presented the pioneering
form of hyperbolic neural networks, defining fundamental hyperbolic transformations, classifiers, and hyperbolic multiclass
logistic regression (MLR). HNN++ (Shimizu et al., 2020) further reduced the parameter count of hyperbolic MLR and
made advancements in fully-connected layers, the splitting and concatenation of coordinates, convolutional layers, and
attention mechanisms within hyperbolic space. Recent studies, such as HyboNet (Chen et al., 2021), propose frameworks
that construct neural networks entirely within hyperbolic space, contrasting with existing models that partially operate in
Euclidean tangent spaces.

Residual neural networks and hyperbolic adaptations Residual connections represent a fundamental module in
modern neural networks (He et al., 2016), addressing the vanishing gradient problem directly and enabling the training of
significantly deeper networks. By supporting identity mapping through skip connections, they enhance gradient flow across
layers, thereby improving training efficiency and model performance across a diverse set of tasks.

Several works have explored the adaptation of residual connections to hyperbolic spaces. Poincaré ResNet (van Spengler
et al., 2023) leverages the concept of parallel transport to map points in hyperbolic space to the tangent space at a reference
point and then, via parallel transport, to the tangent space of a new point, subsequently mapping it back using the exponential
map. Similarly, Riemannian ResNet (Katsman et al., 2023) proposes an analogous method to perform this operation. (Nickel
& Kiela, 2018) proposes mapping the hyperbolic embeddings to the tangent space of the origin, summing them, and then
projecting the sum back into hyperbolic space. HCNN (Bdeir et al., 2024) proposes to add the space components and uses
post-summation processing on the time component.

B. Preliminaries
This section provides an overview of the fundamental concepts in hyperbolic geometry, focusing on the Lorentz model.
Hyperbolic space can be formulated using several models, including the Poincaré ball model (Nickel & Kiela, 2017), the
Lorentz (Hyperboloid) model (Nickel & Kiela, 2018), and the Klein model (Gulcehre et al., 2019). These models are
isometric, meaning that points in one model can be smoothly mapped to points in another while preserving distances, angles
and geodesics (Ramsay & Richtmyer, 2013).

Lorentz model An n-dimensional Lorentz model is a Riemannian manifold equipped with the Riemannian metric tensor
and defined by a constant negative curvature K < 0, denoted as Ln

K . Each point x ∈ Ln
K has the form [xt,xs] where xt ∈ R

is called the time-like component and xs ∈ Rn is called the space-like component. Ln
K is equipped with the Lorentzian

inner product. For points x,y ∈ Ln
K , their inner product ⟨x,y⟩L is given by

⟨x,y⟩L = −xtyt + xT
s ys = xT gKn y, (7)

with ||x||L :=
√
⟨x,x⟩L being the Lorentzian norm. Formally, Ln is the point set Ln = {x ∈ Rn+1 : ⟨x,x⟩L = 1/K, xt >

0}. The origin o ∈ Ln
K is the point [

√
−1/K, 0, . . . , 0]T .

Tangent space The tangent space at a point x ∈ Ln
K is the Euclidean space of all points orthogonal to x. Formally it is

defined as TxLn
K = {y ∈ Rn+1 : ⟨x,y⟩L = 0}.
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(a) Parallel Transport (b) Tangent Space (c) LRN

Figure 1: Visualization of hyperbolic addition methods. From left to right: (a) Parallel transport method, (b) Tangent space
method, and (c) LRN. In each subfigure, x⊕ y represents the sum of points x,y ∈ Ln

K . Dotted lines are exponential and
logarithmic maps, while solid lines are geodesics.

Exponential and logarithmic maps For each point x ∈ Ln
K , the exponential map expKx : TxLn

K → Ln
K and the

logarithmic map logKx : Ln
K → TxLn

K at x are given by

expKx (y) = cosh(α)x+
sinh(α)

α
y, α =

√
−K⟨x,y⟩L. (8)

logKx (x) =
cosh−1(β)√

β2 − 1
(y − βx),where β = K⟨x,y⟩L. (9)

Parallel transport Parallel transport is a generalization of translation to hyperbolic geometry mapping a point z ∈ TxLn
K

to a point in TyLn
K via

Px→y(z) = z+
⟨y, z⟩L

−1/K − ⟨x,y⟩L
(x+ y).

Hyperbolic addition methods Several methods have been proposed for performing addition in hyperbolic space. The
parallel transport method of Mobius Addition from (Chami et al., 2019; Ganea et al., 2018) is given by

x⊕P y = expKx ◦Po→x ◦ logKo (y). (10)

Another approach is the tangent space addition method used for aggregation in (Chami et al., 2019), given as:

x⊕T y = expKo

(
wx log

K
o (x) + wy log

K
o (y)

)
. (11)

where wx, wy > 0 are weights. A third approach is the space addition method from (Bdeir et al., 2024) given by

x⊕S y =

[√
||(x+ y)s||2 −

1

K
,x+ ys

]T

(12)

The methods are shown in Figure 1, including LRN. The space addition method is not shown since it does not have geometric
interpretation on the manifold.

C. Further Experiments
C.1. Further analysis and experiments

Effects on graph over-smoothing problem Previous work has found that stacking graph convolutional layers often results
in a significant drop in performance due to gradient vanishing or over-smoothing (Zhao & Akoglu, 2019). Traditionally
incorporating residual connection helps with these problems in Euclidean space. To test the effects of LRN on this problem
in hyperbolic space, we run the GCN architecture from Section 3 on DISEASE and AIRPORT datasets for 4, 8, 16, 32, and 64
layers with the tangent space method as a baseline. The results are shown in Figure 2, as the difference between the ROC

8



Lorentz Residual Neural Networks

Table 4: AUC ROC score(%) of both directions of the parallel transport method.

Datasets Disease(δ = 0) Airport(δ = 1)
Task LP LP

Forward 86.8±0.8 93.6±0.1
Backward 67.7±1.4 93.7±0.1

Figure 2: The ROC AUC score (%) difference between skip-connected HypoNet and base HypoNet

(a) Disease Many Layers (b) Airport Many Layers

AUC score of the skip-connected HyboNets and the base HyboNet. The difference between HyboNet and LRN always
increases as the number of layers increases, showing the effect of our method on mitigating the performance drops due to
over-smoothing. The tangent space method sees a drop in the difference for both datasets, at 32 layers for DISEASE and at
16 layers for AIRPORT. This shows the stability of LRN over deep neural networks. The parallel transport method results in
NaN values for 16 or more layers and is therefore not included.

Effects of commutativity of residual connection. To investigate the effect of commutativity of a residual connection,
we test the accuracy of both directions of the parallel transport method on DISEASE and AIRPORT datasets using the
architecture in Section 3. Forward operation represents x⊕P f(x) and backward operation representsf(x)⊕P x, where f
is the convolutional layer. The results are shown in Table 4. The forward method significantly outperforms the backward
method in link prediction tasks of the DISEASE dataset, while the backward method outperforms the forward method for the
AIRPORT dataset. This shows the limitation in the flexibility of the parallel transport method due to its non-commutativity,
as it is unpredictable which direction of addition would have the better performance.

D. Proof of theoretical results
PROOF OF LEMMA 2.1

Proof. Note that

−K||wxx+ wyy||2L
= −K

(
−(wxxt + wyyt)

2 + ||wxxs + wyys||2
)

= K||wxx||2L +K||wyy||2L − 2K⟨wxx, wyy⟩L
= w2

x + w2
y + 2K⟨wxx, wyy⟩L

= w2
x + w2

y − 2KΓ

> w2
x + w2

y − 2K(wxwy||xs||||ys|| − wxwy⟨xs.ys⟩)
≥ w2

x + w2
y (Cauchy Schwarz Inequality)
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where

Γ = wx

√
∥xs∥2 −

1

K
· wy

√
||ys||2 −

1

K

− wxwx⟨xs,ys⟩
(13)

By taking the square-roots we have the desired inequality of
√
−K |∥wxx+ wyy∥L| >

√
w2

x + w2
y .

PROOF OF THEOREM 2.2

Proof. Let x = [a1, a2, . . . ,−an+1] ∈ Ln
K and y = [a1, a2, . . . , an+1] ∈ Ln

K where each ai ∈ R and a1 > 0. We can
easily compute (by following the computation in Proposition 2.3) that we have

z = x⊕ y = cosh(α)x+
sinh(α)

α
(cuy

′ + cvx
′),

where

y′ = y + yt
√
−Ko,x′ = x+ o,

cu =
cosh−1(yt

√
−K)√

−y2tK − 1
,u = cu · y′

cv =
⟨x,u⟩L

−1/K − ⟨o,x⟩L
,v = cu · y′ + cv · x′

α =
√
−K||v||L.

Similarly, we can compute that for the other direction of parallel transport, we have

z′ = y ⊕ x = cosh(α′)y +
sinh(α′)

α′ (c′up+ c′vq),

where

p = x+ xt

√
−Ko,q = y + o

c′u =
cosh−1(xt

√
−K)√

−x2
tK − 1

,u′ = c′u · p

c′v =
⟨y,u′⟩L

−1/K − ⟨o,y⟩L
,v′ = c′u · p+ c′v · q

α′ =
√
−K||v′||L.

By analyzing the symmetry in the construction of x,y,y′,p,u,u′,v, and v′, it can be shown that cu = c′u and cv = c′v
due to the identical nature of the transformations applied in either direction. This implies that α = α′, leading to the
conclusion that zn+1 = −z′n+1 as the operations in the parallel transport in both directions result in vectors whose (n+1)-th
components are negations of each other. In the following, we give the detailed derivation.

First, since xt = yt, we have cu = c′u. Let cu = c′u = β, then we have,

y′ = y + yt
√
−Ko = y + a1 ·

√
−K

[√
−1/K, 0, . . . , 0

]T
= [2a1, a2, . . . , an+1]

T

and

p = x+ xt

√
−Ko = x+ a1 ·

√
−K

[√
−1/K, 0, . . . , 0

]T
= [2a1, a2, . . . ,−an+1]

T .
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So u = βy′ = [2βa1, βa2, . . . , βan+1]
T and u′ = βp = [2βa1, βa2, . . . ,−βan+1]. So we can compute that

⟨x,u⟩L =

[
−2βa21 − βa2n+1 +

n∑
i=2

βa2i

]T

⟨y,u′⟩L =

[
−2βa21 − βa2n+1 +

n∑
i=2

βa2i

]T

.

So we have

cv =
⟨x,u⟩L

−1/K − ⟨o,x⟩L

=

[
−2βa21 − βa2n+1 +

n∑
i=2

βa2i

]T

−1/K −
√
−1/Ka1

and

c′v =
⟨y,u′⟩L

−1/K − ⟨o,y⟩L

=

[
−2βa21 − βa2n+1 +

n∑
i=2

βa2i

]T

−1/K −
√
−1/Ka1

.

So we have cv = c′v , call this constant γ. Now, we can compute further that

v = βy′ + γx′

= β[2a1, a2, . . . , an+1]
T

+ γ
[
(a1 +

√
−1/K), a2, . . . , an+1

]T
=

[
2βa1 + γ(a1 +

√
−1/K), . . . , (β + γ)an+1

]T
.

and

v′ = βp+ γq

= [2βa1, βa2, . . . ,−βan+1]
T

+
[
γ(a1 +

√
−1/K), γa2, . . . ,−γan+1

]T
=

[
2βa1 + γ(a1 +

√
−1/K), . . . ,−(β + γ)an+1

]T
.

So we have ||v||L = ||v′||L, and thus α = α′, let us call this constant simply α. Finally:

zn+1 = cosh(α)(−an+1) +
sinh(α)

α
(βan+1 − δan+1)

z′n+1 = cosh(α)(an+1) +
sinh(α)

α
(β(−an+1) + δan+1).

Hence, zn+1 = −z′n+1.
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Proof of Proposition 2.3

Proof. a. For parallel transport method: The isometry from Lorentz model to Klein model is given by the map

φK(x) = xt/xs

. Thus given the fact that geodesics in the Klein model are Euclidean straight lines, it suffices to show that zs = λms

for some λ ∈ R. Now we can compute:

u = logKo (y)

=
cosh−1

(
yt
√
−K

)√
−y2tK − 1

(y + yt
√
−Ko)

= cu · y′

v = Po→x(u)

= u+
⟨x,u⟩L

−1/K − ⟨o,x⟩L
(o+ x)

= cu · y′ + cv · x′

z = cosh(
√
−K||v||L)x+

sinh(
√
−K||v||L)√
−K||v||L

v

= cosh(α)x+
sinh(α)

α
(cuy

′ + cvx
′)

where cu =
cosh−1(yt

√
−K)√

−y2
tK−1

, cv = ⟨x,u⟩L
−1/K−⟨o,x⟩L ,y

′ = y + yt
√
−Ko,x′ = o + x, α =

√
−K||v||L. Clearly

y′
s = ys,x

′
s = xs. So wx = cosh(α) + cv and wy = sinh(α)

α cu gives the desired result.

b. For tangent space method: One can check that

expKo (logKo (x) + logKo (y))s

=
sinh(

√
−K||c1x′ + c2y

′||L)√
−K||c1x′ + c2y′||L

(c1x
′ + c2y

′)s

with c1 =
cosh−1(−xt

√
−K)√

x2
tK−1

, c2 =
cosh−1(−yt

√
−K)√

y2
tK−1

,x′ = x+ xt

√
−Ko,y′ = y + yt

√
−Ko. Again xs = x′

s,yx =

y′
s So one can pick wx = c1, wy = c2.

c. For space addition method: This follows immediately from the isometry to Klein model.

E. Dataset details
E.1. Graph datasets

Table 5 provides a detailed breakdown of the main proprieties of the graph datasets we used. The datasets are all publicly
available.

• CORA and PUBMED (Sen et al., 2008) are citation networks, where each node presents a document and each edge
represents a citation link. Each node has a label consisting of the academic subarea the document is in.

• AIRPORT(Chami et al., 2019) is a dataset where each node represents an airport and each edge represents an airline
route. The node features are geogrphic information.
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Table 5: Graph Datasets

Dataset Property #Nodes #Edges #Feats #Classes

Cora homophilous 2,708 5,429 1,433 7
PubMed homophilous 19,717 44,324 500 3
Airport homophilous 3,188 18,631 4 4
Disease homophilous 1,044 1,043 1000 2
Squirrel heterophilic 5,201 216,933 2.089 5
Chameleon heterophilic 2,277 36,101 2,325 5
Actor heterophilic 7,600 29,926 931 5

• DIEASE(Chami et al., 2019) is a synthetic dataset generated by simulating the SIR disease spreading model, where the
node features represent a node’s susceptibility to the disease and node labels are whether a node was infected or not.

• CHAMELEON and SQUIRREL (Rozemberczki et al., 2021) are page-page networks for specific topics in Wikipedia.
Each node represents a web page and each edge represents a mutual link between the pages. The node features consist
of a selection of informative nouns extracted from the corresponding Wikipedia pages.

• ACTOR(Tang et al., 2009) is a dataset where each node represents an actor and each edge represents whether two actors
co-occur on the same Wikipedia page. The node features consist of keywords extracted from the respective actor’s
Wikipedia pages.

For the homophilous datasets, we used the same splits as in HGCN (Chami et al., 2019). For the heterophilic datasets, we
use the same splits as in SFGormer (Wu et al., 2023), where the splits for CHAMELEON and SQUIRREL are from (Platonov
et al., 2023), and the splits for ACTOR are from (Lim et al., 2021).

F. Implementation and training details
F.1. Implementation details for graph datasets

F.1.1. GNN IMPLEMENTATION

We closely follow the implementation in the base HyboNet model (Chen et al., 2021), using the fully hyperbolic linear and
aggregation layers they proposed. For the residual connection architecture, we adopt the skip-connected GCN architecture
from (Sun et al., 2021), where the output of each intermediate layer was added to the output of the next layer via LRN (or a
baseline hyperbolic residual connection method). We employ the same Fermi-Dirac decoder as used in (Chen et al., 2021).
As for optimizers, we used the same setup as in (Chen et al., 2021) as well, where the parameters were separated into two
groups depending on whether it is a hyperbolic parameter.

F.1.2. GNN HYPERPARAMETERS

For the homophilous graphs datasets, we used the largely the same hyperparmeters as in (Chen et al., 2021), including
dropout rate, learning rate, weight decay rate, gradient clip value, and margins for the marginal loss. For link pre-
diction tasks, we run the model for 3 layers. For node classification tasks, we performed a search for the number of
layers on the set {3, 4, 5, 6, 7, 8}. For all tasks, we performed a search for the constant negative curvature K on the set
{−0.1,−0.5,−1.0,−1.5,−2.0, trainable}, where the initial value of the trainable curvature is −1.0.

For heteophilic graph datasets, we used a curvature of −1 and performed a grid search in the following search space:

• dimension within {16, 32, 64}

• learning rate within {0.001, 0.01}

• dropout rate within {0, 0.1, 0.2, 0.3}

• weight-decay rate within {0, 1e-4, 1e-3}
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• number of layers within {3, 4, 5, 6, 7, 8}

For homophilous graph datasets, we used a constant weight of 1 for LRN shown in Equation (1). For heterophilic datasets,
we used trainable weights instead.

F.1.3. HYPERBOLIC SGFORMER IMPLEMENTATION

We closely followed the setup of the base SGFormer model (Wu et al., 2023) and the hyperbolic adaptation we outlined
in Section 3. We use the Fermi-Dirac decoder that we used in the GNN implementation, adopted from (Chen et al.,
2021). For optimizer, we utilized two separate optimizer: the Euclidean Adam optimizer for non-manifold parameters
and the Riemannian Adam optimizer for manifold parameters. We used trainable weights for the LRN method shown in
Equation (1).

F.1.4. HYPERBOLIC SGFOERMER HYPERPARAMETERS

We performed a grid search in the following search space with a constant curvature of -1.0:

• dimensions within {32, 64} for CHAMELEON and SQUIRREL, fixed dimension of 96 for FILM

• learning rate within {0.001, 0.01}

• weight-decay rate within {0, 1e-4, 1e-3}

• dropout rate within {0.3, 0.4, 0.5, 0.6}

• number of layers within {2, 3, 4, 5,6, 7, 8}

Here the number of layers refers to the GCN layer utilized in (Wu et al., 2023).

F.2. Further details and code

All experiments were performed on float32 datatype and on a single NVIDIA RTX 3070 GPU with 8gb of memory. For
more details regarding our implementations, please see the accompanying GitHub code.
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