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Abstract

Large language models (LLMs) have demon-001
strated exceptional abilities across various do-002
mains. However, utilizing LLMs for ubiqui-003
tous sensing applications remains challenging004
as existing text-prompt methods show signifi-005
cant performance degradation when handling006
long sensor data sequences. We propose a vi-007
sual prompting approach for sensor data us-008
ing multimodal LLMs (MLLMs). We design009
a visual prompt that directs MLLMs to utilize010
visualized sensor data alongside the target sen-011
sory task descriptions. Additionally, we intro-012
duce a visualization generator that automates013
the creation of optimal visualizations tailored014
to a given sensory task, eliminating the need015
for prior task-specific knowledge. We evalu-016
ated our approach on nine sensory tasks involv-017
ing four sensing modalities, achieving an av-018
erage of 10% higher accuracy than text-based019
prompts and reducing token costs by 15.8×.020
Our findings highlight the effectiveness and021
cost-efficiency of visual prompts with MLLMs022
for various sensory tasks.023

1 Introduction024

Large language models (LLMs) have shown re-025

markable performance in tasks across diverse do-026

mains, including science, mathematics, medicine,027

and psychology (Bubeck et al., 2023). The recent028

advent of multimodal LLMs (MLLMs), e.g., GPT-029

4o (OpenAI, 2024), has further expanded their ca-030

pabilities to images and audio inputs, broadening031

their use in fields such as industry and medical032

imaging (Yang et al., 2023). Meanwhile, sensor033

data, widely used in healthcare (Ferguson et al.,034

2022) and environmental monitoring (Hayat et al.,035

2019), hold potential for ubiquitous applications036

when effectively integrated with MLLMs. How-037

ever, the diversity of sensors (Wang et al., 2019)038

and the heterogeneity among them (Stisen et al.,039

2015) hinder the implementation of a foundational040

model that generalizes across various sensing tasks.041

“Based on the data, classify whether the user is walking or running.
Given sensor data: [[0.65, 0.62, -0.36], [0.65, 0.63, -0.37], 
[0.65, 0.63, -0.35], [0.65, 0.63, -0.36], [0.65, 0.63, -0.36],
[0.65, 0.61, -0.37], [0.64, 0.61, -0.36], [0.64, 0.61, -0.36], …”

Text-only Prompt

MLLM Response: “walking” ❌

“Based on the visualized sensor data,
classify whether the user is walking or running.”

Visual Prompt

MLLM Response: “running” ⭕

“What is the best visualization with 
data for classifying walking or running?”

Visualization Generator

MLLM Response : “waveform plot” 

Visualization
Tools

Sensor data

Our method

2,020 tokens

52,910 tokens

Figure 1: An example of solving a sensory task using an
MLLM with visual prompts. The visualization genera-
tor generates an appropriate visualization for the given
sensor data, and the visualized data is provided as an
image to the MLLM for solving the task.

The expensive data collection (Vijayan et al., 2021) 042

often results in insufficient training data, further 043

complicating the development of such capability. 044

Recent studies explored leveraging pre-trained 045

LLMs to solve general sensory tasks (Yu et al., 046

2023; Liu et al., 2023; Kim et al., 2024). One 047

approach extracts task-specific features from sen- 048

sor data and composes them as prompts (Yu et al., 049

2023). However, designing such prompts requires 050

specific domain knowledge. Alternatively, incor- 051

porating raw sensor data as text prompts (Kim 052

et al., 2024; Liu et al., 2023) has been a widely 053

used method to handle sensory data with LLMs 054

as a more generalizable solution. Yet, we empir- 055

ically found that providing raw sensor data with 056

text prompts shows poor performance in real-world 057

sensory tasks with long-sequence inputs and incurs 058
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high costs due to an extensive number of tokens.059

To address these challenges, we propose provid-060

ing visualized sensor data as images to MLLMs061

that support visual inputs. Leveraging MLLMs’062

growing ability to interpret visual aids (Yang et al.,063

2023), we explore their effectiveness in analyzing064

plots generated from sensor data. We designed a065

visual prompt comprising visualized sensor data066

and task-specific instructions to solve sensory tasks.067

In addition, we present a visualization generator068

that enables MLLMs to independently generate069

optimal visualizations using tools available in pub-070

lic libraries. This generator filters potential visu-071

alization methods based on the task description072

and assesses the resulting visualizations of each073

method to determine the best visualization. Fig-074

ure 1 compares the existing text-only prompts with075

our method for sensory tasks.076

Evaluations on nine sensory tasks involving four077

different modalities showed that visual prompts078

generated from the visualization generator signifi-079

cantly improved performance by an average of 10%080

while reducing token costs by 15.8× compared081

with the existing baseline. Our findings highlight082

the effectiveness and efficiency of visualized sensor083

data with MLLMs in various applications.084

We summarize our contributions as follows:085

• We propose to ground MLLMs with sensor086

data by providing visualized sensor data as087

images, achieving improved performance at088

reduced costs than the text-based baseline.089

• We present a visualization generator that auto-090

matically generates suitable visualizations for091

various sensory tasks using public libraries.092

• We conduct experiments on nine different sen-093

sory tasks across four modalities, demonstrat-094

ing the broad applicability of our approach.095

2 Related Work096

LLMs with sensor data. Sensory tasks involve097

sequences of numbers indicating values over time.098

Initial research for handling sequential data focused099

on time-series forecasting (Zhang et al., 2024b).100

Converting time-series data into text prompts for101

forecasting has been proposed in PromptCast (Xue102

and Salim, 2023) and LLMTime (Gruver et al.,103

2024). Other studies (Zhou et al., 2023; Jin et al.,104

2023a) used specialized encoders to create embed-105

dings compatible with pre-trained LLMs.106

Beyond forecasting, LLMs have been explored107

in healthcare for their ability to answer questions108

using physiological sensor data (Liu et al., 2023). 109

For example, LLMs have been used for ECG diag- 110

nosis (Yu et al., 2023) by integrating ECG-specific 111

features and retrieval-augmented knowledge from 112

ECG databases. Penetrative AI (Xu et al., 2024) 113

and Health-LLM (Kim et al., 2024) have used raw 114

sensor data in text prompts to solve health prob- 115

lems without task-specific processing. Our study 116

examines whether existing methods can general- 117

ize to broader sensing tasks with high-frequency, 118

long-duration data. Building upon these works, 119

we propose visualizing sensor data for MLLMs to 120

improve their performance and cost efficiency. 121

Multimodal large language models (MLLMs). 122

Advancements in MLLMs (Zhang et al., 2024a) 123

have equipped popular models such as Chat- 124

GPT (OpenAI, 2022) with vision capabilities (Ope- 125

nAI, 2024). Recent studies explored the in-context 126

learning (Brown et al., 2020) abilities of MLLMs, 127

showing that they can understand images with 128

the interleaved text and few-shot examples (Tsim- 129

poukelli et al., 2021; Alayrac et al., 2022). This ca- 130

pability has been applied in medical diagnostics, in- 131

cluding analyzing radiology and brain images with 132

accompanying text instructions (Wu et al., 2023). 133

Our work explores using MLLMs to analyze visu- 134

alized sensor data for broader applications. 135

Using tools with LLMs. Recent research has 136

shown that augmenting LLMs with external tools 137

can extend their capabilities. Toolformer (Schick 138

et al., 2024) enables LLMs to access public 139

APIs and search engines, while Visual Program- 140

ming (Gupta and Kembhavi, 2023) uses LLMs to 141

generate and execute codes. HuggingGPT (Shen 142

et al., 2024) and Chameleon (Lu et al., 2024) in- 143

tegrated multiple expert models to enhance func- 144

tionalities. Our work builds upon these works by 145

enabling MLLMs to utilize sensor data visualiza- 146

tion tools. Moreover, we propose a design that not 147

only uses tools but also allows MLLMs to assess 148

their effectiveness, ensuring optimal visualization 149

for specific tasks. 150

3 Limitations of Representing Sensor 151

Data as Text-based Prompts 152

Existing approaches for grounding language mod- 153

els with sensor data primarily rely on text-based 154

prompts (Liu et al., 2023; Jin et al., 2023b; Zhang 155

et al., 2024b; Yu et al., 2023). One approach uses 156

prompts with specialized features extracted from 157

sensor data for specific tasks, such as R-R inter- 158
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vals for ECG-based applications (Yu et al., 2023).159

While this approach effectively handles known sen-160

sory tasks, feature-based prompts often require do-161

main knowledge, which is not generalizable for162

non-expert users. Instead, a more common ap-163

proach (Kim et al., 2024; Xu et al., 2024; Liu et al.,164

2023) incorporates raw sensor data sequences di-165

rectly into prompts without data processing. How-166

ever, most studies focus on short sequences (e.g.,167

fewer than 100 elements) (Kim et al., 2024) and168

simple tasks (e.g., binary classification) (Liu et al.,169

2023).170

Real-world sensor data often entail long numeric171

sequences with high sampling rates and long du-172

rations. For example, arrhythmia detection (Wag-173

ner et al., 2020) requires ECG data sampled at174

100Hz over 10 seconds, resulting in 1,000 elements.175

This section investigates the limitations of using176

text-based prompts to represent such complicated177

sensor data in language models. We focus on the178

capability to interpret sensor data and the token179

consumption costs associated with long numeric180

sequences.181

Language models struggle to interpret long182

numeric text sequences. Language models in-183

terpret simple numeric sequences by performing184

arithmetic operations (Achiam et al., 2023) and un-185

derstanding sequential data (Gruver et al., 2024;186

Mirchandani et al., 2023). However, we empiri-187

cally revealed that their performance declines sig-188

nificantly with longer sequences inside the prompt,189

such as those exceeding 100 numbers, common in190

sensor data.191

We conducted experiments with two specific192

tasks: mean prediction to evaluate arithmetic ca-193

pabilities (Pirttikangas et al., 2006) and wave clas-194

sification to assess pattern recognition (Liu et al.,195

2016) in sequences. The defined tasks represented196

the basic functionalities for sensor data interpreta-197

tion, serving as typical feature extraction methods.198

Using randomly generated sine and sawtooth waves199

with varying lengths, we asked a language model,200

GPT-4o (OpenAI, 2024), to calculate mean values201

and classify wave types using one-shot examples202

for each task. Each task was repeated 30 times to203

ensure robustness.204

Figure 2 shows the results. In arithmetic op-205

erations, error rates consistently increased with206

the length. In pattern recognition, performance207

declines significantly for sequences longer than208

100 elements, approaching the performance of a209

random classifier at 500 elements. While recent210

Arithmetic Operation Pattern Recognition

Figure 2: Performance of GPT-4o on arithmetic opera-
tion (mean prediction) and pattern recognition (sine and
sawtooth wave classification) tasks for varying lengths.

models such as GPT-4o, with its 128K context win- 211

dow, support long input lengths, our results indicate 212

that interpreting sensor data with long numeric se- 213

quences still remains challenging. 214

Sensor data in text is costly. The computa- 215

tional and financial burdens for API users of lan- 216

guage models scale with the number of tokens in 217

the prompt. Representing sensor data in textual for- 218

mat leads to extensive token usage, thereby increas- 219

ing costs. For instance, performing passive sens- 220

ing to track activities with smartphone accelerome- 221

ters (Stisen et al., 2015) uses sensor data sampled 222

at 100 Hz. Collecting this data over a minute re- 223

sults in a prompt of 18K numbers, translating to 224

90K tokens. This leads to a huge cost of $450 per 225

hour when using GPT-4o API to classify six activi- 226

ties with one example for each. Higher sampling 227

rates or longer durations further increase the costs, 228

making such applications infeasible. 229

Transition to visual prompts. Language mod- 230

els such as ChatGPT (GPT-4o (OpenAI, 2024)) and 231

Gemini (DeepMind, 2024) have expanded capabili- 232

ties to include multimodal inputs (e.g., vision and 233

audio). Recent Multimodal Large Language Mod- 234

els (MLLMs) demonstrate an increasing ability to 235

identify patterns and interpret visual data (Achiam 236

et al., 2023). This opens new opportunities for sen- 237

sory tasks, as sensor data are often visualized for 238

analysis. Visualizations make complex data more 239

interpretable and condense long data sequences 240

into a single image, significantly reducing token 241

costs. Building on this capability, we exploit visu- 242

alized sensor data instead of text-based prompts. 243

4 Method 244

We introduce our method for handling sensory 245

tasks by providing sensor data as image inputs to 246

MLLMs. Section 4.1 overviews our prompt design 247

strategy. Section 4.2 introduces our visualization 248
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{{Label of example 1}}

…

Target data image

N example images ### Instruction
You are an expert in sensor data analysis. Given the 
sensor data, determine the correct answer from the 
options listed in the question. Provide the answer with 
the format of <answer>ANSWER</answer>, where 
ANSWER corresponds to one of the options listed in 
the question. If the answer is not in the options, choose 
the most possible option.

{{data description}}

Please refer to the examples provided in the images 
and use them to answer the following question for the 
target data.

### Question
Question: When the sensor data is used for
{{task description}}, what is the most likely answer
among {{classes}}?
Answer: 

{{Visualization method}}
{{Label of example 2}}
{{Visualization method}}

{{Label of example N}}
{{Visualization method}}

Target Data
{{Visualization method}}

Visualization Generator
(e.g., raw waveform)

[[0.65, 0.62, -0.36], 
[0.65, 0.63, -0.37], 
[0.65, 0.62, -0.38], 
[0.65, 0.61, -0.38], 
[0.65, 0.63, -0.35], 
[0.65, 0.63, -0.36], 

… 

Sensor data

Figure 3: Overview of our visual prompt. Sensor data are transformed into annotated images with labels and
visualization methods. Additionally, instructions are provided to the MLLM, detailing the task and relevant data
descriptions. These instructions guide the MLLM on effectively utilizing the provided images to solve the task.

generator, which automatically generates suitable249

visualizations for heterogeneous sensor data.250

4.1 Visual Prompt Design251

To leverage MLLMs for sensory tasks, we propose252

a visual prompt, as illustrated in Figure 3. The key253

idea is to transform numeric sequences of sensor254

data into visual plots using various methods, such255

as raw waveforms and spectrograms. Detailed in-256

formation about these visualization methods is in257

Section 4.2. For few-shot examples, each plot in-258

cludes a label as a title above it (i.e., {{Label of259

example X}}). For unlabeled target data used in260

queries, the title is simply stated as “target data”.261

We provide textual instructions to clarify the data262

collection process and the task’s objectives. These263

instructions ensure that MLLMs can effectively264

interpret and utilize the visualized sensor data.265

4.2 Visualization Generator266

In our proposed visual prompt, the choice of vi-267

sualization method is crucial, as it significantly268

influences the MLLM’s ability to comprehend the269

sensor data. For example, raw waveform plots are270

ideal for tasks involving amplitude pattern recogni-271

tion over time, while spectrograms (Ito et al., 2018)272

are suitable for tasks relying on frequency features.273

We introduce a visualization generator that auto-274

matically chooses the most suitable visualization275

tool from available public libraries, enabling non-276

expert users to effectively utilize visual prompts.277

This generator operates in two main phases: (i) vi-278

sualization tool filtering and (ii) visualization selec-279

tion (see Figure 4).280

Visualization tool filtering. Public libraries offer 281

a vast array of sensor data visualizations. However, 282

trying each out to identify the optimal visualization 283

is computationally expensive. To minimize the 284

cost, we employ a filtering approach. By providing 285

available visualization tools, descriptions of the 286

task, and data collection, we ask MLLMs to select 287

a list of visualization methods useful for the target 288

task. 289

As shown in Figure 4 (green box), we pro- 290

vide a full list of available visualization methods 291

found in public libraries (e.g., Matplotlib (Hunter, 292

2007), Scipy (Virtanen et al., 2020), and Neu- 293

rokit2 (Makowski et al., 2021)) along with task and 294

data collection descriptions to MLLMs. We also 295

leverage the in-context learning ability of MLLMs 296

to enhance response quality by providing demon- 297

strations of optimal visualizations chosen for differ- 298

ent tasks. The MLLM is instructed to output a list 299

in JSON format, which is suitable for automated 300

parsing at a later stage. Appendix C shows the full 301

list of available visualization tools and demonstra- 302

tions. 303

Visualization selection Sensor data exhibit vari- 304

ations by instance due to user-specific behaviors, 305

environmental factors, or device settings (Stisen 306

et al., 2015), which cannot be fully captured in task 307

and data descriptions. This variability limits the 308

reliability of selecting visualizations based solely 309

on the descriptions. To address this, we visualize 310

the sensor data using all filtered visualization tools 311

and ask the MLLM to select the one that provides 312

the best visual information for the task. 313

The blue box in Figure 4 illustrates this proce- 314
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1. Visualization tool filtering 2. Visualization selection

[0.71, 1.23, 1.09, … 
Sensor data

### Instructions
You need to determine effective visualizations for the given 
task. Explain how to use the information to solve the task. You 
can provide several candidates. Generate the answer in the 
following format:
[{"func": visualization_method, "args": {"arg1": arg1_val, ...}, 
"knowledge": knowledge}, ...]

The available visualization methods are as follows:
{{visualization tool 1}}: {{visualization description 1}}
{{visualization tool 2}}: {{visualization description 2}}
…

### Demonstrations
{{demonstrations}}

### Question
Task description: {{task description}}
Data description: {{data description}}
Response: 

Output (example)

[{"func": "raw waveform", "args": {}, "knowledge": "…"},
{"func": "spectrogram", "args": {"nfft": 128, …}, …}, …]

### Instruction
You do not have prior knowledge about sensor data visualization.
Based solely on the visual cues in the provided images, identify 
the visualization that most visually distinguishes all different 
classes for the given task.
Generate the answer in the following format:
{"func": visualization_method}

### Question
Visualization methods: {{visualization shortlist}}
Task description: {{task description}}
Data description: {{data description}}
Response: 

Output (example)

{"func": "raw waveform”}
Visual Prompt for

Task Solving

…

…

… … …Visualization Tools

Figure 4: Overview of our visualization generator. First, visualization tool filtering generates a filtered list of
visualization tools from public libraries based on the task and data descriptions. Next, visualization selection
generates and selects the most effective visualization by asking MLLMs to observe visualized sensor data prepared
for the task using all the filtered visualization methods.

dure. First, different visualizations are generated315

using the filtered tools. With the images, we in-316

struct the MLLM to select the best visualization317

by providing a textual prompt, including the visu-318

alization methods, task, and data details. We found319

that MLLM often makes incorrect decisions by pri-320

oritizing the task description over the visual aids.321

To prioritize visual efficacy, we explicitly instruct322

the MLLM to avoid relying on prior knowledge323

about sensor data and focus on the provided im-324

ages. Finally, our automated framework conveys325

the selected visualization to the visual prompt for326

task solving.327

5 Experiments328

We evaluate the applicability of our approach with329

MLLMs by conducting experiments on a range of330

sensory tasks.331

5.1 Setups332

We assume a practical scenario where non-expert333

users attempt to solve sensory tasks using MLLMs334

(1) without prior knowledge of relevant features335

and (2) without external resources to fine-tune the336

MLLM. Given the constraints, we leveraged the337

few-shot prompting (Brown et al., 2020) approach.338

For the main evaluation, we used 1-shot examples339

where users provide the MLLM with minimal ex- 340

amples to guide task-solving. 341

Sensory tasks We established nine different sen- 342

sory tasks across four sensor modalities: ac- 343

celerometer, electrocardiography (ECG) sensor, 344

electromyography (EMG) sensor, and respiration 345

sensor. We used three datasets for tasks using ac- 346

celerometers: HHAR (Stisen et al., 2015) for basic 347

human activity recognition (running and walking), 348

UTD-MHAD (Chen et al., 2015) for complex ac- 349

tivity recognition with fine-grained arm motions, 350

and a swimming style recognition dataset (Brun- 351

ner et al., 2019). We use the PTB-XL (Wagner 352

et al., 2020) dataset for the arrhythmia diagnosis 353

tasks that use ECG. The dataset includes detection 354

tasks for four different types of arrhythmia symp- 355

toms. For EMG data, we used a dataset (Ozdemir 356

et al., 2022) for hand gesture recognition. Finally, 357

we used a stress detection task using respiration 358

sensors provided by the WESAD (Schmidt et al., 359

2018) dataset. Details on each task, including the 360

classes, sampling rates, windowing durations, and 361

specific configurations, are in Appendix D. 362

Data processing. We normalized data using the 363

mean and standard deviation values calculated for 364

each user. Test splits were created by randomly 365

sampling 30 samples per class. For the UTD- 366

MHAD dataset, we sampled 10 samples per class 367
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due to the limited sample availability. Examples of368

few-shot prompting were randomly sampled, ensur-369

ing no overlap with the test set. Each task employed370

the window sizes and sampling rates specified in371

the original dataset descriptions (see Appendix D).372

Baselines. We set text-only prompts for convey-373

ing sensor data to MLLMs as the main baseline374

to be compared with our visual prompts. Text-375

only prompts represented sensor data as numbers376

within the prompt. We designed text-only prompts377

by following the latest prompting studies incorpo-378

rating sensor data into LLMs for healthcare (Liu379

et al., 2023). Additionally, to establish an upper380

bound for task-specific performance, we included381

a fully-supervised baseline using neural networks382

trained on 75% of the entire data after excluding383

the test and validation sets. We adopted architec-384

tures widely accepted for each type of sensor data:385

1D CNNs for activity recognition with accelerome-386

ters (Chen et al., 2021) and EMG data (Xiong et al.,387

2021), as well as for WESAD (Vos et al., 2023),388

and XResNet-101 for PTB-XL (Strodthoff et al.,389

2023).390

Implementation. We used GPT-4o from the Ope-391

nAI API (OpenAI, 2024) as MLLM. The text-only392

prompts contained the same information as the gen-393

erated visualization to ensure a fair comparison394

between text-only and visual prompts. For exam-395

ple, if the visualization generator outputs a plot396

with peak notations, the corresponding text-only397

prompt contains the same features, including the398

peak values with their indices. When the informa-399

tion could not fit within the token limit (128K), we400

used the raw waveform.401

Metrics. We evaluated the experimental results402

based on accuracy. We also assess the number of403

tokens used by each prompt method. Tokens are404

counted using the o200k_base encoding used for405

GPT-4. To estimate the token cost for images in the406

same space as text, we follow the token cost com-407

putation guidelines provided by OpenAI (OpenAI,408

2024).409

5.2 Results410

Performance. Table 1 shows the overall perfor-411

mance of utilizing visual prompts for solving sen-412

sory tasks. For the same 1-shot prompting, visual413

prompts consistently showed enhanced accuracies414

than text-only prompts, achieving an average in-415

crease of 10%. Notably, the UTD-MHAD task416

exhibited a significant accuracy gain of up to 33%.417

See Appendix E for prompt examples with result-418

ing visualizations. 419

In addition to achieving higher accuracy, visual 420

prompts are more cost-effective. The number of 421

tokens used for visual prompts in Table 1 shows a 422

substantial reduction, averaging 15.8× fewer than 423

text-only prompts. MLLMs calculate token costs 424

for images within the same token space as text 425

but with distinct counting criteria. In our experi- 426

ments, GPT-4o counts tokens for images based on 427

the number of 512×512 pixel blocks (N ) covering 428

the image input, calculated at 85 + 170×N . Our 429

visualized sensor data was represented within a sin- 430

gle 512× 512 pixel image, regardless of the sensor 431

data length, significantly reducing costs. Note that 432

the number of tokens from visual prompts is only 433

affected by the number of examples, as all images 434

are the same size. In contrast, text prompts are 435

heavily influenced by high sampling rates and long 436

durations. 437

To further understand the effectiveness of visual 438

prompts with small tokens, we analyzed the infor- 439

mation capacity at the same token cost. Consider- 440

ing a budget of 500 tokens, text-based prompts can 441

include approximately 2,000 ASCII characters. In 442

contrast, visual prompts can input two 512× 512 443

px images. In terms of bytes, 2,000 ASCII char- 444

acters amount to 2 KB, whereas two RGB images 445

occupy 1.57 MB, which is 785× larger. Although 446

this calculation does not directly translate to the 447

exact amount of useful information, it suggests that 448

well-designed visual prompts can convey a wider 449

range of information than text prompts within the 450

same cost constraint. 451

Effect of number of shots. To investigate the im- 452

pact of varying numbers of shots, we experimented 453

using different numbers of examples (1-shot, 3- 454

shot, and 5-shot) within the prompts. We used the 455

ECG dataset, allowing multiple examples with text- 456

only prompts due to its lower token consumption. 457

Figure 5 depicts the results. Prompting meth- 458

ods are color-coded (blue for visual and green 459

for text-only), and different markers indicate the 460

number of shots. We compared the accuracy and 461

counted the tokens for each setting. We found that 462

visual prompts constantly outperformed text-only 463

prompts with the same number of examples, indi- 464

cating the robustness of our method in different 465

few-shot settings. Additionally, when comparing 466

visual prompts and text-only prompts under the 467

same token budget (5-shot visual prompt versus 468

1-shot text-only prompt), visual prompts often per- 469

formed significantly better (MI and HYP detection). 470
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Table 1: Comparison of the text prompts and visual prompts for solving sensory tasks using GPT-4o. The highest
accuracy values are highlighted in bold. The visual prompts (multi-shot) utilize the maximum number of examples
by matching the token size of the 1-shot text prompts.

Accelerometer ECG EMG Resp

Method HHAR UTD-
MHAD Swim PTB-XL

(CD)
PTB-XL

(MI)
PTB-XL
(HYP)

PTB-XL
(STTC) Gesture WESAD Avg.

Accuracy
Task-specific model 0.95 0.95 0.99 0.88 0.86 0.90 0.90 0.64 0.69 0.86
Text-only prompt 0.66 0.10 0.51 0.73 0.62 0.47 0.53 0.27 0.48 0.49
Visual prompt (ours) 0.67 0.43 0.73 0.80 0.68 0.55 0.57 0.30 0.61 0.59
Number of tokens
Text-only prompt 52910 50439 16586 3204 2766 2757 3596 88655 60253 31244
Visual prompt (ours) 2020

(26.2×↓)
5963

(8.5×↓)
1768

(9.4×↓)
943

(3.4×↓)
943

(2.9×↓)
943

(2.9×↓)
946

(3.8×↓)
3073

(28.9×↓)
1211

(49.8×↓)
1979

(15.8×↓)

Number of Tokens Number of Tokens

Text-only prompt
Visual prompt

1-shot
3-shot
5-shot

Ac
cu

ra
cy

PTB-XL (HYP) PTB-XL (STTC)

PTB-XL (CD)

Ac
cu

ra
cy

PTB-XL (MI)

Number of Tokens Number of Tokens

Figure 5: Accuracy of arrhythmia detection tasks using
visual and text-only prompts with different shots.

This highlights the advantage of token-efficient vi-471

sual prompts that can utilize more resources for bet-472

ter performance under the same token constraint.473

Unlike our expectations, additional examples474

did not always result in better performance. This475

result aligns with existing reports indicating that476

more examples do not always guarantee better re-477

sults (Perez et al., 2021; Lu et al., 2021). We fur-478

ther hypothesize that a longer context might hinder479

the MLLM’s ability to retrieve important informa-480

tion (Liu et al., 2024). Our findings suggest that481

the impact of shots is data-dependent, and effec-482

tively utilizing more examples for consistent im-483

provement remains an open question for further484

research.485

Effect of visualization generator. We conducted486

Table 2: Performance of using different visualization
methods for visual prompts. A fixed visualization de-
faulted as raw waveform plots and visualizations se-
lected from the visualization generator are compared.
The highest values (or within 0.01) are noted in bold.

Visualization Method

Sensor Dataset Raw
waveform

Visualization
Generator

Accel.
HHAR 0.70 0.67
UTD-MHAD 0.41 0.43
Swim 0.74 0.73

ECG

PTB-XL (CD) 0.60 0.80
PTB-XL (MI) 0.58 0.68
PTB-XL (HYP) 0.53 0.55
PTB-XL (STTC) 0.53 0.57

EMG Gesture 0.30 0.30
Resp. WESAD 0.62 0.61

Average 0.56 0.59

an ablation study to assess the impact of the visual- 487

ization generator. We compared the visualization 488

generator to a fixed visualization method that de- 489

faults to raw waveform plots. Table 2 summarizes 490

the performance comparison and Figure 6 depicts 491

the visualization methods selected by the generator 492

for different tasks. 493

The selected visualization methods varied de- 494

pending on the sensors. For tasks involving 495

accelerometer data, the visualization generator 496

mainly selected raw waveforms, occasionally spec- 497

trograms. As a result, the performance of the tasks 498

was similar to that of the fixed raw waveform visu- 499

alizations. On the other hand, when raw waveforms 500

were used to visualize ECG data, results showed 501

performance close to random predictions. Mean- 502

while, when visualizations are generated through 503
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Figure 6: Proportion of selected visualization methods
from the visualization generator across different sensory
tasks.

Raw waveform Individual heart beats

Figure 7: Examples of ECG data visualizations. The vi-
sualization generator selected the individual heartbeats
plot.

the visualization generator, results showed signif-504

icantly improved performance, achieving up to a505

20% accuracy gain for PTB-XL (CD). This im-506

provement was due to the selection of the special-507

ized visualization method: the individual heartbeat508

plot with peak notations (Figure 7). These plots509

provided more insightful visual information for510

ECG analysis than raw waveforms. For EMG ges-511

ture recognition and WESAD tasks, the generator512

mainly selected muscle activation plots and raw513

waveforms, respectively, resulting in performance514

comparable to the fixed approach. Overall, our find-515

ings indicate that the visualization generator can516

lead to significant improvements when the default517

visualization shows suboptimal performance.518

6 Conclusion519

We addressed sensory tasks by providing visualized520

sensor data as images to MLLMs. We designed a521

visual prompt to instruct MLLMs in using visual-522

ized sensor data, provided with textual descriptions523

of the task and data collection methods. Addition-524

ally, we introduced a visualization generator that525

automatically selects the best visualization method526

for each task using visualization tools available in 527

public libraries. We conducted experiments across 528

nine different sensory tasks and four sensor modal- 529

ities, each with a distinct task. Our results suggest 530

that the visual prompts generated by our visualiza- 531

tion generator not only improve accuracy by an 532

average of 10% over text-based prompts but also 533

significantly reduce costs, requiring 15.8× fewer 534

tokens. This indicates that our approach with visual 535

prompts and a visualization generator is a practical 536

solution for general sensory tasks. 537

Limitations 538

Our study demonstrates the effectiveness of vi- 539

sual prompts on nine different sensory tasks, pri- 540

marily focusing on classification. While visual 541

prompts effectively highlight patterns over im- 542

ages, for tasks requiring numerical retrieval or pre- 543

cise computations—where exact values are criti- 544

cal—text prompts can be more effective due to 545

their inclusion of specific numeric data, which are 546

omitted in visual representations. Notably, our ap- 547

proach integrates both images and texts in prompts, 548

allowing the inclusion of numerical values in the 549

text. Determining the optimal distribution of in- 550

formation between images and text to compose 551

a prompt that effectively addresses sensory tasks 552

presents a future direction for this work. 553

Visualizing sensor data as plots often presents 554

challenges. For instance, brain wave analysis us- 555

ing high-density EEG involves up to 256 chan- 556

nels (Fiedler et al., 2022), complicating their rep- 557

resentation in a single visual plot. We denote dif- 558

ferent channels as distinct notations within a plot, 559

making densely populated plots visually indeci- 560

pherable. An alternative method of plotting distinct 561

channels across separate subplots was explored but 562

resulted in a significant drop in performance (see 563

Appendix 4). We hypothesize that this limitation 564

arises from the dispersion of information across 565

various areas, highlighting that effective visualiza- 566

tion of large-channel datasets remains challenging. 567

This underscores the need for improved visualiza- 568

tion techniques in such scenarios. 569

Our visual prompt design does not incorporate 570

Chain-of-Thought (CoT) prompting (Kojima et al., 571

2022). Experiments using zero-shot CoT on our 572

datasets revealed inconsistent benefits (see Ap- 573

pendix A), unlike the widely known effect of CoT 574

for enhancing performance. We suspect this may 575

be due to the complexities of reasoning over sen- 576
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sory data. Given the observation, further research577

is needed to develop methods that effectively inte-578

grate reasoning and interpretation into the decision-579

making processes for sensor data analysis.580

Lastly, the high costs of text-only prompts in581

sensory tasks constrained our testing to 30 samples582

per class. Expanding the scale as resources allow583

could provide a more robust analysis and poten-584

tially validate a broader spectrum of applications.585

References586

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama587
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,588
Diogo Almeida, Janko Altenschmidt, Sam Altman,589
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.590
arXiv preprint arXiv:2303.08774.591

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,592
Antoine Miech, Iain Barr, Yana Hasson, Karel593
Lenc, Arthur Mensch, Katherine Millican, Malcolm594
Reynolds, et al. 2022. Flamingo: a visual language595
model for few-shot learning. Advances in Neural596
Information Processing Systems, 35:23716–23736.597

Kerem Altun and Billur Barshan. 2010. Human activity598
recognition using inertial/magnetic sensor units. In599
Human Behavior Understanding: First International600
Workshop. Proceedings 1, pages 38–51. Springer.601

Tom Brown, Benjamin Mann, Nick Ryder, Melanie602
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind603
Neelakantan, Pranav Shyam, Girish Sastry, Amanda604
Askell, et al. 2020. Language models are few-shot605
learners. Advances in Neural Information Processing606
Systems, 33:1877–1901.607

Gino Brunner, Darya Melnyk, Birkir Sigfússon, and608
Roger Wattenhofer. 2019. Swimming style recogni-609
tion and lap counting using a smartwatch and deep610
learning. In ACM International Symposium on Wear-611
able Computers, pages 23–31.612

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-613
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,614
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-615
berg, et al. 2023. Sparks of artificial general intelli-616
gence: Early experiments with gpt-4. arXiv preprint617
arXiv:2303.12712.618

Chen Chen, Roozbeh Jafari, and Nasser Kehtarnavaz.619
2015. Utd-mhad: A multimodal dataset for human620
action recognition utilizing a depth camera and a621
wearable inertial sensor. In International conference622
on image processing (ICIP), pages 168–172. IEEE.623

Kaixuan Chen, Dalin Zhang, Lina Yao, Bin Guo, Zhi-624
wen Yu, and Yunhao Liu. 2021. Deep learning for625
sensor-based human activity recognition: Overview,626
challenges, and opportunities. ACM Computing Sur-627
veys (CSUR), 54(4):1–40.628

DeepMind. 2024. Gemini. https://deepmind. 629
google/technologies/gemini/. 630

Ty Ferguson, Timothy Olds, Rachel Curtis, Henry Blake, 631
Alyson J Crozier, Kylie Dankiw, Dorothea Dumuid, 632
Daiki Kasai, Edward O’Connor, Rosa Virgara, et al. 633
2022. Effectiveness of wearable activity trackers 634
to increase physical activity and improve health: a 635
systematic review of systematic reviews and meta- 636
analyses. The Lancet Digital Health, 4(8):e615– 637
e626. 638

Patrique Fiedler, Carlos Fonseca, Eko Supriyanto, Frank 639
Zanow, and Jens Haueisen. 2022. A high-density 640
256-channel cap for dry electroencephalography. Hu- 641
man brain mapping, 43(4):1295–1308. 642

Marcus Georgi, Christoph Amma, and Tanja Schultz. 643
2015. Recognizing hand and finger gestures with 644
imu based motion and emg based muscle activity 645
sensing. In International Conference on Bio-inspired 646
Systems and Signal Processing, volume 2, pages 99– 647
108. Scitepress. 648

Ary L Goldberger, Zachary D Goldberger, and Alexei 649
Shvilkin. 2017. Clinical Electrocardiography: A 650
Simplified Approach: Clinical Electrocardiography: 651
A Simplified Approach E-Book. Elsevier Health Sci- 652
ences. 653

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G 654
Wilson. 2024. Large language models are zero-shot 655
time series forecasters. Advances in Neural Informa- 656
tion Processing Systems, 36. 657

Tanmay Gupta and Aniruddha Kembhavi. 2023. Visual 658
programming: Compositional visual reasoning with- 659
out training. In Conference on Computer Vision and 660
Pattern Recognition, pages 14953–14962. 661

Hasan Hayat, Thomas Griffiths, Desmond Brennan, 662
Richard P Lewis, Michael Barclay, Chris Weirman, 663
Bruce Philip, and Justin R Searle. 2019. The state- 664
of-the-art of sensors and environmental monitoring 665
technologies in buildings. Sensors, 19(17):3648. 666

John D Hunter. 2007. Matplotlib: A 2d graphics en- 667
vironment. Computing in science & engineering, 668
9(03):90–95. 669

Chihiro Ito, Xin Cao, Masaki Shuzo, and Eisaku Maeda. 670
2018. Application of cnn for human activity recog- 671
nition with fft spectrogram of acceleration and gyro 672
sensors. In ACM international joint conference and 673
2018 international symposium on pervasive and ubiq- 674
uitous computing and wearable computers, pages 675
1503–1510. 676

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, 677
James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan 678
Liang, Yuan-Fang Li, Shirui Pan, et al. 2023a. Time- 679
llm: Time series forecasting by reprogramming large 680
language models. arXiv preprint arXiv:2310.01728. 681

9

https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/


Ming Jin, Qingsong Wen, Yuxuan Liang, Chaoli Zhang,682
Siqiao Xue, Xue Wang, James Zhang, Yi Wang,683
Haifeng Chen, Xiaoli Li, et al. 2023b. Large models684
for time series and spatio-temporal data: A survey685
and outlook. arXiv preprint arXiv:2310.10196.686

Yubin Kim, Xuhai Xu, Daniel McDuff, Cynthia687
Breazeal, and Hae Won Park. 2024. Health-llm:688
Large language models for health prediction via wear-689
able sensor digital. In Conference on Health, Infer-690
ence, and Learning, Proceedings of Machine Learn-691
ing Research, pages 1–15. PMLR.692

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-693
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-694
guage models are zero-shot reasoners. Advances in695
Neural Information Processing Systems, 35:22199–696
22213.697

Li Liu, Yuxin Peng, Shu Wang, Ming Liu, and Zigang698
Huang. 2016. Complex activity recognition using699
time series pattern dictionary learned from ubiquitous700
sensors. Information Sciences, 340:41–57.701

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-702
jape, Michele Bevilacqua, Fabio Petroni, and Percy703
Liang. 2024. Lost in the middle: How language mod-704
els use long contexts. Transactions of the Association705
for Computational Linguistics, 12:157–173.706

Xin Liu, Daniel McDuff, Geza Kovacs, Isaac Galatzer-707
Levy, Jacob Sunshine, Jiening Zhan, Ming-Zher Poh,708
Shun Liao, Paolo Di Achille, and Shwetak Patel.709
2023. Large language models are few-shot health710
learners. arXiv preprint arXiv:2305.15525.711

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-712
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and713
Jianfeng Gao. 2024. Chameleon: Plug-and-play com-714
positional reasoning with large language models. Ad-715
vances in Neural Information Processing Systems,716
36.717

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,718
and Pontus Stenetorp. 2021. Fantastically ordered719
prompts and where to find them: Overcoming720
few-shot prompt order sensitivity. arXiv preprint721
arXiv:2104.08786.722

Dominique Makowski, Tam Pham, Zen J Lau, Jan C723
Brammer, François Lespinasse, Hung Pham, Christo-724
pher Schölzel, and SH Annabel Chen. 2021. Neu-725
rokit2: A python toolbox for neurophysiological sig-726
nal processing. Behavior research methods, pages727
1–8.728

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter,729
Danny Driess, Montserrat Gonzalez Arenas, Kan-730
ishka Rao, Dorsa Sadigh, and Andy Zeng. 2023.731
Large language models as general pattern machines.732
In Conference on Robot Learning, pages 2498–2518.733
PMLR.734

OpenAI. 2022. Introducing chatgpt. https://www.735
openai.com/blog/chatgpt.736

OpenAI. 2024. Hello gpt-4o. https://openai.com/ 737
index/hello-gpt-4o/. 738

Mehmet Akif Ozdemir, Deniz Hande Kisa, Onan Guren, 739
and Aydin Akan. 2022. Dataset for multi-channel 740
surface electromyography (semg) signals of hand 741
gestures. Data in brief, 41:107921. 742

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021. 743
True few-shot learning with language models. Ad- 744
vances in Neural Information Processing Systems, 745
34:11054–11070. 746

Susanna Pirttikangas, Kaori Fujinami, and Tatsuo Naka- 747
jima. 2006. Feature selection and activity recognition 748
from wearable sensors. In Ubiquitous Computing 749
Systems: Third International Symposium. Proceed- 750
ings 3, pages 516–527. Springer. 751

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 752
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 753
moyer, Nicola Cancedda, and Thomas Scialom. 2024. 754
Toolformer: Language models can teach themselves 755
to use tools. Advances in Neural Information Pro- 756
cessing Systems, 36. 757

Philip Schmidt, Attila Reiss, Robert Duerichen, Claus 758
Marberger, and Kristof Van Laerhoven. 2018. In- 759
troducing wesad, a multimodal dataset for wearable 760
stress and affect detection. In ACM international con- 761
ference on multimodal interaction, pages 400–408. 762

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, 763
Weiming Lu, and Yueting Zhuang. 2024. Hugging- 764
gpt: Solving ai tasks with chatgpt and its friends 765
in hugging face. Advances in Neural Information 766
Processing Systems, 36. 767

Allan Stisen, Henrik Blunck, Sourav Bhattacharya, 768
Thor Siiger Prentow, Mikkel Baun Kjærgaard, Anind 769
Dey, Tobias Sonne, and Mads Møller Jensen. 2015. 770
Smart devices are different: Assessing and mitigat- 771
ingmobile sensing heterogeneities for activity recog- 772
nition. In ACM conference on embedded networked 773
sensor systems, pages 127–140. 774

Nils Strodthoff, Temesgen Mehari, Claudia Nagel, 775
Philip J Aston, Ashish Sundar, Claus Graff, Jør- 776
gen K Kanters, Wilhelm Haverkamp, Olaf Dössel, 777
Axel Loewe, et al. 2023. Ptb-xl+, a comprehensive 778
electrocardiographic feature dataset. Scientific data, 779
10(1):279. 780

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, 781
SM Eslami, Oriol Vinyals, and Felix Hill. 2021. Mul- 782
timodal few-shot learning with frozen language mod- 783
els. Advances in Neural Information Processing Sys- 784
tems, 34:200–212. 785

Yunus Emre Ustev, Ozlem Durmaz Incel, and Cem Er- 786
soy. 2013. User, device and orientation independent 787
human activity recognition on mobile phones: Chal- 788
lenges and a proposal. In ACM conference on Perva- 789
sive and ubiquitous computing adjunct publication, 790
pages 1427–1436. 791

10

https://www.openai.com/blog/chatgpt
https://www.openai.com/blog/chatgpt
https://www.openai.com/blog/chatgpt
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/


Vini Vijayan, James P Connolly, Joan Condell, Nigel792
McKelvey, and Philip Gardiner. 2021. Review of793
wearable devices and data collection considerations794
for connected health. Sensors, 21(16):5589.795

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt796
Haberland, Tyler Reddy, David Cournapeau, Ev-797
geni Burovski, Pearu Peterson, Warren Weckesser,798
Jonathan Bright, et al. 2020. Scipy 1.0: fundamental799
algorithms for scientific computing in python. Na-800
ture methods, 17(3):261–272.801

Gideon Vos, Kelly Trinh, Zoltan Sarnyai, and802
Mostafa Rahimi Azghadi. 2023. Generalizable ma-803
chine learning for stress monitoring from wearable804
devices: a systematic literature review. International805
Journal of Medical Informatics, 173:105026.806

Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot,807
Dieter Kreiseler, Fatima I Lunze, Wojciech Samek,808
and Tobias Schaeffter. 2020. Ptb-xl, a large publicly809
available electrocardiography dataset. Scientific data,810
7(1):1–15.811

Yan Wang, Shuang Cang, and Hongnian Yu. 2019. A812
survey on wearable sensor modality centred human813
activity recognition in health care. Expert Systems814
with Applications, 137:167–190.815

Chaoyi Wu, Jiayu Lei, Qiaoyu Zheng, Weike Zhao,816
Weixiong Lin, Xiaoman Zhang, Xiao Zhou, Ziheng817
Zhao, Ya Zhang, Yanfeng Wang, et al. 2023. Can gpt-818
4v (ision) serve medical applications? case studies819
on gpt-4v for multimodal medical diagnosis. arXiv820
preprint arXiv:2310.09909.821

Dezhen Xiong, Daohui Zhang, Xingang Zhao, and822
Yiwen Zhao. 2021. Deep learning for emg-based823
human-machine interaction: A review. Journal of824
Automatica Sinica, 8(3):512–533.825

Huatao Xu, Liying Han, Qirui Yang, Mo Li, and Mani826
Srivastava. 2024. Penetrative ai: Making llms com-827
prehend the physical world. In International Work-828
shop on Mobile Computing Systems and Applications,829
pages 1–7.830

Hao Xue and Flora D Salim. 2023. Promptcast: A831
new prompt-based learning paradigm for time series832
forecasting. Transactions on Knowledge and Data833
Engineering.834

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng835
Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan836
Wang. 2023. The dawn of lmms: Preliminary837
explorations with gpt-4v (ision). arXiv preprint838
arXiv:2309.17421, 9(1):1.839

Han Yu, Peikun Guo, and Akane Sano. 2023. Zero-840
shot ecg diagnosis with large language models and841
retrieval-augmented generation. In Machine Learn-842
ing for Health (ML4H), pages 650–663. PMLR.843

Duzhen Zhang, Yahan Yu, Chenxing Li, Jiahua Dong,844
Dan Su, Chenhui Chu, and Dong Yu. 2024a. Mm-845
llms: Recent advances in multimodal large language846
models. arXiv preprint arXiv:2401.13601.847

Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K 848
Gupta, and Jingbo Shang. 2024b. Large language 849
models for time series: A survey. arXiv preprint 850
arXiv:2402.01801. 851

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. 852
2023. One fits all: Power general time series analysis 853
by pretrained lm. Advances in Neural Information 854
Processing Systems, 36:43322–43355. 855

11



A Effect of Zero-shot Chain-of-Thoughts856

We experimented with zero-shot Chain-of-Thought857

(CoT) prompting (Kojima et al., 2022) by adding858

"let’s think step-by-step" to our prompts, testing859

this on two accelerometers and two ECG datasets.860

Table 3 shows the findings. While CoT prompting861

is generally known to enhance LLM response qual-862

ity, our results showed inconsistent performance by863

datasets. Notably, CoT consistently dropped perfor-864

mance for text-only prompts. We analyzed the re-865

sults by observing the CoT responses, illustrated as866

examples in Figures 8 and Figure 9, showing wrong867

predictions with CoT from the HHAR dataset. We868

found that CoT reasoning in text-only prompts pri-869

marily focused on simple statistical comparisons,870

such as whether values were higher or lower. This871

simplistic approach proved inadequate for analyz-872

ing the complexities of sensor data, leading to sub-873

optimal responses. Likewise, visual prompts indi-874

cated reasoning centered around terms like "vari-875

ations," "periodic," and "stable," but they lacked876

the necessary depth to effectively assess more intri-877

cate features like frequency trends or signal shapes.878

This superficial reasoning suggests a significant879

gap in the CoT approach, underscoring the need for880

more task-specific reasoning prompts for sensory881

data analysis.882

B Use of Subplots for Multi-channel Data883

Sensor data often include multiple channels. Our884

visual prompts differentiated channels using vary-885

ing colors within a single plot to maintain a shared886

axis system. To assess the impact of different plot-887

ting approaches, we conducted experiments using888

accelerometer datasets, which have three channels.889

Specifically, we compared visualizing three distinct890

plots for each channel against our current approach.891

Table 4 shows the results. The results indicated892

that separated plots for each channel reduced per-893

formance by 12%. We hypothesize that multiple894

subplots distribute visual features over different895

regions, resulting in problems in understanding896

the relationship between different channels. To897

this end, we recommend using an aggregated plot898

when all channels can be represented within a plot.899

However, for dense datasets, such as 256-channel900

EEG (Fiedler et al., 2022), a single plot may not901

suffice, highlighting a limitation in our current vi-902

sualization approach. Addressing this challenge903

will be a focus of future research.904

Table 3: Performance of text-only and visual prompts,
both with and without using CoT. The highest accuracy
values are noted in bold.

Accel. ECG

Prompt HHAR Swim
PTB-XL

(CD)
PTB-XL

(MI) Avg.

Text-only 0.66 0.51 0.73 0.62 0.63
Text-only (CoT) 0.51 0.25 0.63 0.53 0.48

Visual 0.67 0.73 0.80 0.68 0.72
Visual (CoT) 0.63 0.67 0.80 0.73 0.71

Table 4: Performance comparison of visualizing multi-
channel sensor data (accelerometer) using a single plot
versus multiple subplots. The single plot method com-
bines multiple waveforms in one shared-axis plot, each
channel distinguished by color coding.

Plotting approach HHAR UTD-
MHAD Swim Avg.

Single plot 0.67 0.43 0.74 0.61
Multiple subplots 0.53 0.31 0.69 0.51

C Visualization Tools 905

Our visualization generator employs tools avail- 906

able in public libraries to create visualizations. 907

We have equipped the visualization generator with 908

16 distinct visualization functions sourced from 909

widely used libraries such as Matplotlib (Hunter, 910

2007), Scipy (Virtanen et al., 2020), and Neu- 911

rokit2 (Makowski et al., 2021). The specific visual- 912

ization tools implemented in our generator and their 913

descriptions are outlined in Table 5. The descrip- 914

tions presented in the table were directly written 915

inside the prompt for the visualization tool filtering 916

(see Appendix E). 917

D Details of Sensory Tasks 918

We conducted experiments across nine sensory 919

tasks across four sensor modalities, each with 920

unique objectives. This section provides the details 921

of these tasks, including task descriptions, classi- 922

fications, sampling rates, window durations, and 923

data collection protocols. We directly followed 924

the given sampling rate with the original dataset 925

to represent data in text prompts. The descriptions 926

of each dataset are used to formulate the instruc- 927

tions for our visual prompts. The complete prompt 928

examples are in Appendix E. 929

Human activity recognition: We used the 930

HHAR (Stisen et al., 2015) dataset to classify six 931

basic human activities: sit, stand, walk, bike, up- 932

stairs, and downstairs. Data were collected from 933
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To determine the most likely activity from the given sensor data, we need to analyze the patterns and characteristics of 
the data along the x, y, and z axes. Let's break down the data step-by-step and compare it with the provided examples for 
each activity.

### Analysis of the Given Data
1. **X-axis**: The values range from approximately -2.94 to 0.79.
2. **Y-axis**: The values range from approximately 1.3 to 2.71.
3. **Z-axis**: The values range from approximately -1.42 to 0.16.

### Comparison with Examples
#### 1. **Bike**:
- The bike data shows significant variations in all three axes, with values often exceeding 1.0 or -1.0.
- The given data does not show such high variations, especially in the x-axis and z-axis.

#### 2. **Sit**:
- The sit data shows relatively stable values, especially in the y-axis, which is consistently around -0.8.
- The given data has a y-axis range from 1.3 to 2.71, which is not consistent with sitting.

#### 3. **Stand**:
- The stand data shows relatively stable values, especially in the y-axis, which is consistently around -0.3.
- The given data has a y-axis range from 1.3 to 2.71, which is not consistent with standing.

#### 4. **Walk**:
- The walk data shows periodic variations in all three axes, with values often exceeding 1.0 or -1.0.
- The given data does not show such periodic variations, especially in the x-axis and z-axis.

#### 5. **Stairsdown**:
- The stairsdown data shows significant variations in all three axes, with values often exceeding 1.0 or -1.0.
- The given data does not show such high variations, especially in the x-axis and z-axis.

#### 6. **Stairsup**:
- The stairsup data shows significant variations in all three axes, with values often exceeding 1.0 or -1.0.
- The given data does not show such high variations, especially in the x-axis and z-axis.

### Conclusion
The given data shows relatively stable values in the x-axis and z-axis, with the y-axis values consistently high (around 1.3 
to 2.71). This pattern is most consistent with the activity of **sit**, where the y-axis values are stable but not as high as in
the given data. However, considering the options and the characteristics of the data, the most likely activity is **sit**.

<answer>sit</answer>

Figure 8: An example CoT response from a text-only prompt designed for the HHAR task. The correct prediction is
"walk", while the MLLM outputs "sit."

Let's analyze the target data step-by-step by comparing it with the provided examples:

1. **Sit**: The data for sitting shows very little variation in all three axes, with values remaining close to zero. The target 
data shows significant variation, so it is not sitting.

2. **Stand**: The data for standing shows some variation, but it is relatively stable compared to other activities. The target 
data shows more variation than the standing data, so it is unlikely to be standing.

3. **Walk**: The data for walking shows periodic variations in all three axes. The target data does not show such periodic 
patterns, so it is unlikely to be walking.

4. **Stairsup**: The data for walking upstairs shows periodic variations similar to walking but with a different pattern. The 
target data does not match this pattern.

5. **Stairsdown**: The data for walking downstairs also shows periodic variations. The target data does not match this 
pattern.

6. **Bike**: The data for biking shows variations in all three axes, but it is less periodic and more irregular compared to 
walking or stairs activities. The target data shows similar irregular variations.

Based on the comparison, the target data most closely resembles the data for biking.

<answer>bike</answer>

Figure 9: An example CoT response from a visual prompt designed for the HHAR task. The correct prediction is
"stand", while the MLLM outputs "bike."
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the built-in accelerometers of smartphones and934

smartwatches along with the x, y, and z axes. Due935

to strong domain effects (Ustev et al., 2013), we ex-936

clusively used smartwatch data for the experiment.937

The data, sampled at 100Hz, were segmented into 5-938

second windows following the established practice939

for human activity recognition (Altun and Barshan,940

2010).941

Complex activity recognition: We used the UTD-942

MHAD (Chen et al., 2015) dataset to classify a943

wide array of 21 activities: swipe left, swipe right,944

wave, clap, throw, arms cross, basketball shoot,945

draw X, draw a circle (clockwise), draw a circle946

(counter-clockwise), draw a triangle, bowling, box-947

ing, baseball swing, tennis swing, arm curl, tennis948

serve, push, knock, catch, and pickup and throw.949

Accelerometers attached to the users’ right wrist950

were used for data collection. We used data sam-951

pled at 50Hz with 3-second windows as described952

in the dataset documentation.953

Swimming style recognition: The swimming954

dataset (Brunner et al., 2019) involves accelera-955

tion data from swimmers performing five different956

styles: backstroke, breaststroke, butterfly, freestyle,957

and stationary. This dataset evaluates performance958

in sports-specific contexts. Data were collected959

from wrist-worn accelerometers and sampled at960

30Hz. We used the 3-second windows recom-961

mended with the dataset.962

Four arrhythmia detections: The PTB-XL (Wag-963

ner et al., 2020) dataset contains ECG recordings964

from patients with four different arrhythmia types:965

Conduction Disturbance (CD), Myocardial Infarc-966

tion (MI), Hypertrophy (HYP), and ST/T Change967

(STTC). We defined each type as a binary clas-968

sification task. The dataset comprises 10-second969

records from clinical 12-lead sensors sampled at970

100Hz. We used lead II, the most commonly used971

lead for arrhythmia detection (Goldberger et al.,972

2017).973

Hand gesture recognition: We included a974

dataset (Ozdemir et al., 2022) classifying ten differ-975

ent hand gestures using EMG signals: rest, exten-976

sion, flexion, ulnar deviation, radial deviation, grip,977

abduction of fingers, adduction of fingers, supina-978

tion, and pronation. Data were collected from four979

forearm surface EMG sensors with a 2000Hz sam-980

pling rate. We utilized all four channels with a981

0.2-second window, following an existing practice982

known to be effective (Georgi et al., 2015).983

Stress Detection: The WESAD (Schmidt et al.,984

2018) dataset is designed for stress detection (base-985

line, stress, amusement) from multiple wearable 986

sensors. We focused exclusively on respiration 987

data measured from the chest for a distinct evalua- 988

tion setting. The sensor was attached to the users’ 989

chests, with data collected at 700Hz. Following 990

the official guidelines, we employed the three-class 991

classification task (baseline, stress, amusement) us- 992

ing 10-second windows. 993

E Prompts 994

We present examples of prompts used in our exper- 995

iments. Figure 10 and Figure 11 illustrate two text- 996

only prompt examples derived from the HHAR and 997

PTB-XL (CD) datasets; in these examples, sensor 998

data is truncated after a certain point to conserve 999

space, though the format remains consistent with 1000

varying values. Figure 12 and Figure 13 displays 1001

the visual prompts created for the same datasets, 1002

HHAR and PTB-XL (CD). Figure 14 details the 1003

prompt for our visualization tool filtering specific to 1004

the PTB-XL (CD) task, with demonstrations omit- 1005

ted and presented separately in Figure 15. Lastly, 1006

Figure 16 showcases the visualization selection 1007

prompt for the PTB-XL (CD) dataset. 1008
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### Instruction
You are an expert in sensor data analysis. Given the sensor data, determine the correct answer from the options listed in 
the question. Provide the answer with the format of <answer>ANSWER</answer>, where ANSWER corresponds to one 
of the options listed in the question. If the answer is not in the options, choose the most possible option.

The sensor data is collected from an accelerometer measuring acceleration along the x, y, and z axes. The data is 
normalized with the statistics of the user's data. The data is collected over 5 seconds. The data is measured from a 
smartwatch which was attached to the wrist of a user. Please refer to the provided examples and use them to answer the 
following question for the target data.

### Examples
*Example of stand*:
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[-0.75, 0.47, -1.27], [-0.75, 0.51, -1.28], [-0.75, 0.49, -1.26], …

*Example of sit*:
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[0.78, -1.36, 1.11], [0.78, -1.37, 1.11], [0.78, -1.37, 1.11], ..

*Example of walk*:
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[-0.45, 0.44, -1.01], [-0.5, 0.6, -0.99], [-0.39, 0.54, -0.98], …

*Example of stairsup*:
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[2.87, 0.65, -3.29], [2.75, 0.77, -3.43], [2.59, 0.86, -3.39], …

*Example of stairsdown*:
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[-0.96, -0.32, 0.38], [-1.25, 0.02, 0.74], [-1.26, 0.09, 0.58], …

*Example of bike*:
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[-0.44, 0.67, 0.59], [-0.64, 1.03, 0.97], [-0.84, 1.68, 0.05], …

### Question
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[-0.38, 0.43, -0.88], [-0.16, 0.63, -0.91], [-0.19, 0.56, -0.91], …

*Question*: When the sensor data is used for a task for classifying 6 human activities, bike, sit, stand, walk, stairsdown, 
stairsup, using three-axis accelerometer data measured from a wrist-worn smartwatch, what is the most likely answer 
among ['bike', 'sit', 'stand', 'walk', 'stairsdown', 'stairsup']?
*Answer*: 

Figure 10: An example of a text-only prompt for solving the HHAR task. The sensor data represented in the text are
truncated beyond a certain point.
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### Instruction
You are an expert in sensor data analysis. Given the sensor data, determine the correct answer from the options listed 
in the question. Provide the answer with the format of <answer>ANSWER</answer>, where ANSWER corresponds to 
one of the options listed in the question. If the answer is not in the options, choose the most possible option.

The ECG data is collected from a lead II ECG sensor. The ECG data is recorded over 10 seconds. The data is 
normalized with the statistics of the user's data. Please refer to the provided examples and use them to answer the 
following question for the target data.

### Examples
*Example of normal*:
Average heartbeat in the ECG signal (list of ['lead II']): [-0.34, -0.34, -0.35, -0.35, -0.36, …
ECG_P_Peaks in the ECG signal (list of (index, value)): [(21, 0.08), (129, 0.19), (239, 0.22), …
ECG_Q_Peaks in the ECG signal (list of (index, value)): [(35, -0.61), (137, -0.46), (246, -0.48), …
ECG_S_Peaks in the ECG signal (list of (index, value)): [(42, -1.4), (149, -1.35), (260, -1.33), …
ECG_T_Peaks in the ECG signal (list of (index, value)): [(63, 2.18), (171, 2.11), (282, 2.31), …

*Example of conduction disturbance*:
Average heartbeat in the ECG signal (list of ['lead II']): [-0.15, -0.24, -0.29, -0.31, -0.28, …
ECG_P_Peaks in the ECG signal (list of (index, value)): [(4, 0.14), (57, 0.3), (103, 0.22), …
ECG_Q_Peaks in the ECG signal (list of (index, value)): [(14, -0.05), (65, -0.05), (109, -0.07), …
ECG_S_Peaks in the ECG signal (list of (index, value)): [(22, -2.28), (73, -2.1), (124, -2.35), …
ECG_T_Peaks in the ECG signal (list of (index, value)): [(82, 0.03), (142, 0.64), (245, 0.25), …

### Question
Average heartbeat in the ECG signal (list of ['lead II']): [-0.39, -0.39, -0.39, -0.39, -0.4, …
ECG_P_Peaks in the ECG signal (list of (index, value)): [(15, 0.14), (94, -0.26), (173, -0.23), …
ECG_Q_Peaks in the ECG signal (list of (index, value)): [(23, -0.27), (102, -0.81), (182, -0.55), …
ECG_S_Peaks in the ECG signal (list of (index, value)): [(34, 0.15), (116, -0.51), (192, -0.45), …
ECG_T_Peaks in the ECG signal (list of (index, value)): [(50, 1.39), (130, 1.1), (209, 1.31), …

*Question*: When the sensor data is used for a task for classifying ECG data into 2 categories: conduction disturbance, 
normal, what is the most likely answer among ['conduction disturbance', 'normal']?
*Answer*: 

Figure 11: An example of a text-only prompt for solving the PTB-XL (CD) task. The sensor data represented in the
text are truncated beyond a certain point.
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### Instruction
You are an expert in sensor data analysis. Given the sensor data, determine the correct answer from the options listed 
in the question. Provide the answer with the format of <answer>ANSWER</answer>, where ANSWER corresponds to 
one of the options listed in the question. If the answer is not in the options, choose the most possible option.

The sensor data is collected from an accelerometer measuring acceleration along the x, y, and z axes. The data is 
normalized with the statistics of the user's data.The data is collected over 5 seconds. The data is measured from a 
smartwatch which was attached to the wrist of a user. Please refer to the examples provided in the images and use 
them to answer the following question for the target data.

### Question
*Question*: When the sensor data is used for a task for classifying 6 human activities, bike, sit, stand, walk, stairsdown, 
stairsup, using three-axis accelerometer data measured from a wrist-worn smartwatch, what is the most likely answer 
among ['bike', 'sit', 'stand', 'walk', 'stairsdown', 'stairsup']?
*Answer*: 

Figure 12: An example of a visual prompt for solving the HHAR task.
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### Instruction
You are an expert in sensor data analysis. Given the sensor data, determine the correct answer from the options listed 
in the question. Provide the answer with the format of <answer>ANSWER</answer>, where ANSWER corresponds to 
one of the options listed in the question. If the answer is not in the options, choose the most possible option.

The ECG data is collected from a lead II ECG sensor. The ECG data is recorded over 10 seconds. The data is 
normalized with the statistics of the user's data. Please refer to the examples provided in the images and use them to 
answer the following question for the target data.

### Question
*Question*: When the sensor data is used for a task for classifying ECG data into 2 categories: conduction disturbance, 
normal, what is the most likely answer among ['conduction disturbance', 'normal']?
*Answer*: 

Figure 13: An example of a visual prompt for solving the PTB-XL (CD) task.

### Instructions
You need to determine effective visualization methods for the given task. Provide visualization methods that aid in 
analyzing the data for this task, along with the required arguments for that method. Additionally, explain how to use the 
information from the visualization to solve the task. You can provide several candidates as a list. Generate the answer in 
the following format:
[{"func": visualization_method, "args": {"arg1": arg1_val, "arg2": arg2_val, ...}], "knowledge": knowledge}, ...]

The available visualization methods are as follows:

*raw waveform*: This generates a raw signal of sensor data, displaying the amplitude of the signal over time. This is 
usually used to visualize the raw data and identify patterns in the signal.
*spectrogram*: This generates a spectrogram of sensor data, …

### Demonstrations
Data description: The sensor data is collected from an accelerometer measuring acceleration along the x, y, and z axes. 
The data is normalized with the statistics of the user's data. The data is measured from an accelerometer attached to the 
ankles of a user.
Task description: A task for classifying running and walking activities using accelerometer data measured from an ankle-
worn device.
Response: {"func": "raw waveform", "args": {}, "knowledge": "Use this to visualize the amplitude of the accelerometer 
signal over time. For classifying running and walking, observe the patterns in the waveform: running typically shows 
higher amplitude and more frequent peaks due to the higher impact and faster motion, while walking shows lower 
amplitude and less frequent peaks."}
…

### Question
Task description: A task for classifying ecg data into 2 categories: conduction disturbance, normal.
Data description: The ecg data is collected from a lead ii ecg sensor. the ecg data is recorded over 10 seconds. the data 
is normalized with the statistics of the user's data.
Response: 

Figure 14: An example prompt from our visualization generator for visualization tool filtering in the PTB-XL (CD)
task. Demonstrations are omitted in this example but can be found in Figure 15.
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### Demonstrations
Data description: The sensor data is collected from an accelerometer measuring acceleration along the x, y, and z axes. 
The data is normalized with the statistics of the user's data. The data is measured from an accelerometer attached to the 
ankles of a user.
Task description: A task for classifying running and walking activities using accelerometer data measured from an ankle-
worn device.
Response: {"func": "raw waveform", "args": {}, "knowledge": "Use this to visualize the amplitude of the accelerometer 
signal over time. For classifying running and walking, observe the patterns in the waveform: running typically shows 
higher amplitude and more frequent peaks due to the higher impact and faster motion, while walking shows lower 
amplitude and less frequent peaks."}

Data description: The sensor data is collected from an accelerometer measuring acceleration along the x, y, and z axes. 
The data is normalized with the statistics of the vehicle's data. The data is measured from an accelerometer attached to 
a vehicle.
Task description: A task for classifying road types, such as asphalt, dirt, and cobblestone, using accelerometer data 
measured from a vehicle.
Response: {"func": "spectrogram", "args": {"nfft": 128, "nperseg": 128, "noverlap": 120, "mode": "magnitude"], 
"knowledge": "Use this to analyze the frequency components of the accelerometer signal over time. The colors in the 
spectrogram represent the magnitude of the frequencies: brighter colors indicate higher magnitudes. For road type 
classification, asphalt typically shows lower frequency components with smoother patterns, dirt shows higher frequency 
components with irregular patterns, and cobblestone shows high-frequency components with periodic patterns due to the 
regular bumps."}

Data description: The sensor data is collected from an ECG measuring the electrical activity of the heart. The data is 
normalized with the statistics of the user's data. The data is measured using electrodes attached to the chest of a user.
Task description: A task for detecting sleep apnea using ECG data measured from chest electrodes.
Response: {"func": "ECG individual heart beats", "args": {}, "knowledge": "Use this to aggregate and visualize individual 
heartbeats within an ECG recording. In normal beats, the P-wave precedes the QRS complex, and the T-wave follows it. 
In sleep apnea, irregularities in the intervals between the P, Q, R, S, and T peaks can be observed. For instance, the 
absence of regular QRS complexes or prolonged intervals can indicate episodes of apnea. The plot helps identify these 
patterns by showing the average shape of the heartbeats and marking the specific peaks."}

Data description: The sensor data is collected from an EMG sensor measuring muscle electrical activity. The data is 
normalized with the statistics of the user's data. The data is measured using electrodes attached to the forearm of a 
user.
Task description: A task for recognizing finger gestures, such as numbers, using EMG data measured from forearm 
electrodes.
Response: {"func": "EMG signal", "args": {}, "knowledge": "Use this to visualize the raw EMG signal over time. For 
recognizing finger gestures, observe the patterns and amplitude of muscle activity. Different numbers (gestures) will 
produce distinct patterns in the EMG signal. For example, bending more fingers usually results in higher amplitude 
signals due to increased muscle activation."}

Data description: The sensor data is collected from an ECG measuring the electrical activity of the heart. The data is 
normalized with the statistics of the user's data. The data is measured using electrodes attached to the chest of a user.
Task description: A task for detecting whether the user is running or not using ECG data measured from chest 
electrodes.
Response: {"func": "ECG heart rate", "args": {}, "knowledge": "Use this to monitor heart rate over time and analyze 
activity levels. A significant increase in heart rate can indicate that the user is running. The plot should show a higher 
average heart rate during running periods compared to resting or walking periods. Sudden spikes and consistent high 
heart rates are typical indicators of running."}

Figure 15: Demonstrations provided inside the visualization tool filtering prompt to enhance the response quality.
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### Instruction
You do not have any prior knowledge about sensor data and visualization techniques.
Based solely on the visual cues in the provided images,
identify the visualization that most visually distinguishes all different classes for the given task.
Generate the answer in the following format:
{"func": visualization_method}

### Question
Visualization methods: ['ECG individual heart beats', 'ECG signal and peaks', 'ECG heart rate']
Task description: A task for classifying ecg data into 2 categories: conduction disturbance, normal.
Data description: The ecg data is collected from a lead ii ecg sensor. the ecg data is recorded over 10 seconds. the data 
is normalized with the statistics of the user's data.
Response: 

Figure 16: An example prompt from our visualization generator for visualization selection in the PTB-XL (CD)
task.

20



Table 5: Descriptions of the visualization tools provided to our visualization generator.

Visualization tool Description

raw waveform This generates a raw signal of sensor data, displaying the amplitude of the signal over time. This is
usually used to visualize the raw data and identify patterns in the signal.

spectrogram This generates a spectrogram of sensor data, showing the density of frequencies over time. This is
usually used to visualize the frequency components for high-frequency data, which has features over
components but is hard to figure out in the raw plot. It takes the length of the FFT used (nfft), the
length of each segment (nperseg), and the number of points to overlap between segments (noverlap)
as parameters. Different modes (mode) can be defined to specify the type of return values: ["psd"
for power spectral density, "complex" for complex-valued STFT results, "magnitude" for absolute
magnitude, "angle" for complex angle, and "phase" for unwrapped phase angle]. (Arguments: nfft,
nperseg, noverlap, mode)

signal power spec-
trum density

This generates a power spectrum density plot, which shows the power of each frequency component
of the signal on the x-axis. This is usually used to analyze the signal’s power distribution of different
frequency components.

EDA signal This generates a plot showing both raw and cleaned Electrodermal Activity (EDA) signals over
time. This is usually used to analyze the EDA signals for patterns related to stress, arousal, or other
psychological states.

EDA skin con-
ductance response
(SCR)

This generates a plot of skin conductance response (SCR) for EDA data, highlighting the phasic
component, onsets, peaks, and half-recovery times. This is usually used to study the transient
responses in EDA data related to specific stimuli or events.

EDA skin conduc-
tance level (SCL)

This generates a plot of skin conductance level (SCL) for EDA data over time. This is usually used
to analyze the tonic component of EDA data, reflecting the overall level of arousal or stress over a
period.

ECG signal and
peaks

This generates a plot for Electrocardiogram (ECG) data, showing the raw signal, cleaned signal, and
R peaks marked as dots to indicate heartbeats. This is usually used to analyze the heartbeats and
detect anomalies in the ECG signal.

ECG heart rate This generates a heart rate plot for ECG data, displaying the heart rate over time and its mean value.
This is usually used to monitor and analyze heart rate variability and trends over time.

ECG individual
heartbeats

This generates a plot of individual heartbeats and the average heart rate for ECG data. It aggregates
heartbeats within an ECG recording and shows the average beat shape, marking P-waves, Q-waves,
S-waves, and T-waves. This is usually used to study the morphology of individual heartbeats and
identify irregularities.

PPG signal and
peaks

This generates a plot for Photoplethysmogram (PPG) data, showing the raw signal, cleaned signal,
and systolic peaks marked as dots. This is usually used to analyze the blood volume pulse and detect
anomalies in the PPG signal.

PPG heart rate This generates a heart rate plot for PPG data, displaying the heart rate over time and its mean value.
This is usually used for PPG data to monitor and analyze heart rate variability and trends over time.

PPG individual
heartbeats

This generates a plot of individual heartbeats and the average heart rate for PPG data, aggregating
individual heartbeats within a PPG recording and showing the average beat shape. This is usually
used to study the morphology of individual heartbeats based on PPG data.

EMG signal This generates a plot showing both raw and cleaned Electromyogram (EMG) signals over time. This
is usually used to analyze muscle activity and identify patterns in muscle contractions.

EMG muscle activa-
tion

This generates a muscle activation plot for EMG data, displaying the amplitudes of muscle activity
and highlighting activated parts with lines. This is usually used to study muscle activation levels and
identify specific periods of muscle activity.

EOG signal This generates a plot showing both raw and cleaned Electrooculogram (EOG) signals over time, with
blinks marked as dots. This is usually used to analyze eye movement patterns and detect blinks.

EOG blink rate This generates a blink rate plot for EOG data, displaying the blink rate over time and its mean value.
This is usually used to monitor and analyze the blink rate and detect irregularities.

EOG individual
blinks

This generates a plot of individual blinks for EOG data, aggregating individual blinks within an EOG
recording and showing the median blink shape. This is usually used to study the morphology of
individual blinks and identify patterns in blink dynamics.
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