
Automatic Prompt Optimization with “Gradient Descent”
and Beam Search

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, Michael Zeng
Microsoft

{reidpryzant,iterdan,jerrl,yintatlee,chezhu,nzeng}@microsoft.com

Abstract

Large Language Models (LLMs) have shown
impressive performance as general purpose
agents, but their abilities remain highly de-
pendent on prompts which are hand written
with onerous trial-and-error effort. We propose
a simple and nonparametric solution to this
problem, Prompt Optimization with Textual
Gradients (ProTeGi), which is inspired by nu-
merical gradient descent to automatically im-
prove prompts, assuming access to training data
and an LLM API. The algorithm uses mini-
batches of data to form natural language “gra-
dients” that criticize the current prompt, much
like how numerical gradients point in the di-
rection of error ascent. The natural language
gradients are then “propagated” into the prompt
by editing the prompt in the opposite semantic
direction of the gradient. These gradient de-
scent steps are guided by a beam search and
bandit selection procedure which significantly
improves algorithmic efficiency. Preliminary
results across three benchmark NLP tasks and
the novel problem of LLM jailbreak detection
suggest that Automatic Prompt Optimization
can outperform prior prompt editing techniques
and improve an initial prompt’s performance
by up to 31%, by using data to rewrite vague
task descriptions into more precise annotation
instructions.1

1 Introduction

Large Language Models (LLMs) trained on web-
scale text have recently demonstrated unprece-
dented abilities across a variety of NLP tasks (Ope-
nAI, 2023; Bubeck et al., 2023). These LLMs use
prompt inputs to follow human instructions. Writ-
ing prompts in natural language remains a manual
trial-and-error process requiring significant human
effort (Jiang et al., 2022) and expertise (Reynolds
and McDonell, 2021; Zamfirescu-Pereira et al.,
2023).

1Code and data available at: https://github.com/
microsoft/LMOps/tree/main/prompt_optimization.

Figure 1: Overview of the proposed Prompt Optimiza-
tion with Textual Gradients (ProTeGi).

Accordingly, there is need for automatic or semi-
automatic procedures to help humans write the best
prompts. This would help reduce manual effort, im-
prove task performance, and produce interpretable
descriptions of a cognitive decision process.

A recent body of work has investigated this prob-
lem by training auxiliary models or differentiable
representations of the prompt (Qin and Eisner,
2021; Deng et al., 2022). However, such works as-
sume access to internal state variables of the LLM
(Shin et al., 2020; Lester et al., 2021) while prac-
titioners often communicate with LLMs through
an API. Other work applies discrete manipulations
to prompts via Reinforcement Learning or LLM-
based feedback (Zhang et al., 2023; Zhou et al.,
2022). These algorithms may also require low-level
access to the LLM, produce incomprehensible out-
puts, or rely on directionless monte-carlo search
over the semantic space of prompts.

https://github.com/microsoft/LMOps/tree/main/prompt_optimization
https://github.com/microsoft/LMOps/tree/main/prompt_optimization

We propose Prompt Optimization with Textual
Gradients (ProTeGi), a general purpose and non-
parametric algorithm for automatic prompt opti-
mization that connects these two bodies of research
by applying discrete improvements to prompts in a
directed way.

Unlike prior work, we overcome the discrete
optimization barrier by mirroring the steps of gra-
dient descent within a text-based Socratic dialogue
(Zeng et al., 2022), substituting differentiation with
LLM feedback and backpropagation with LLM
editing. In detail, we use minibatches of training
data to produce “gradients” in natural language, i.e.,
descriptions of the current prompts’ flaws with re-
spect to the minibatch, then edit the current prompt
in the opposite semantic direction of the gradient.
These steps become the expansion part of a wider
beam search over the space of prompts, increasing
algorithmic efficiency by treating the problem of
beam candidate selection as an instance of the best
arm identification problem (Audibert et al., 2010).

We then offer a preliminary case study of Pro-
TeGi. We evaluate the proposed framework in mul-
tiple configurations across 4 NLP tasks, including
the novel problem of LLM jailbreak detection. The
results suggest that the proposed algorithm can im-
prove on the performance of the initial prompt input
by up to 31%, exceeding state-of-the-art prompt
learning baselines by an average of 4-8% while
relying on fewer LLM API calls. We also demon-
strate the interpretability of the optimization pro-
cess and investigate the algorithms’ shortcomings.

2 Discrete Prompt Optimization with
Nonparametric “Gradient Descent”

The proposed algorithm assumes access to an ini-
tial prompt p0 and i.i.d. training data consisting of
pairs of input and output text (numbers, categories,
summaries, etc): Dtr = {(x1, y1), ..., (xn, yn)}.
Note that all prompts p are drawn from the space
of coherent natural language L. We assume
access to a black box LLM API LLMp(x) ≈
argmaxy∈LPLLM (y|p, x), which returns a likely
text continuation y of the prompt formed by con-
catenating p and x (for example, few-shot prompt
and input example, or chatbot persona and conver-
sational history).

Within this context, our algorithm iteratively
refines the prompt p0 to produce p̂, an ap-
proximation of the optimal prompt p∗ =
argmaxp∈L{m(p,Dte)} for some metric function

Figure 2: The text dialogue tree we use to mimic gra-
dient descent and overcome the discrete optimization
barrier. First, from the top left a feedback prompt ∆
generates the gradient g from starting prompt p0 and pre-
diction ŷ. Second, from the top right an editing prompt
δ applies the gradient g to p0 and produce improved
prompts p′, their paraphrases p′′, and efficient best can-
didate selection before the next iteration (bottom left).

m(·) and in-domain test or development data Dte.
In the following sections, we first introduce how

the algorithm performs textual “gradient descent”
to improve the prompts in a directed way (Section
2.1). Then the algorithm leverages these gradient
descent steps to beam search through the space
of coherent language L, guided by the gradients
during beam expansion, and efficient best arm iden-
tification during beam selection (Section 2.2).

2.1 Gradient descent with Prompts

In our setting, gradient descent refers to the pro-
cess of (1) evaluating a prompt with a batch of data,
(2) creating a local loss signal which contains in-
formation on how to improve the current prompt,
then (3) editing the prompt in the opposite seman-
tic direction of the gradient before starting the next
iteration.

We accomplish this process with a pair of static
LLM prompts, as depicted in Figure 2. The first
prompt is for creating the loss signals (“gradients”)
and is called ∇. While the specific contents can
vary and be task-specific or task-agnostic,2 ∇ must
always consider the current prompt p0, plus p0’s
behavior on a minibatch of data (particularly the
errors), and generate a natural language summary

2We use the same prompts for all tasks; see Appendix.

of p0’s flaws. This summary becomes the gradient
g. Similar to how traditional gradients represent
a direction in parameter space that would make
the model worse, the text “gradients” g represent
directions in a semantic space that are making the
prompt worse.

The second prompt is called δ and while this
prompt can also vary, it must always take the gradi-
ent g and current prompt p0, then perform an edit
on p0 in the opposite semantic direction of g, i.e.
fix the problems with p0 that are indicated by g.3

Unlike the traditional machine learning setting,
we do not generate a single gradient or edit, but
rather a number of directions that may improve
the current prompt. Section 2.2 describes in detail
the process of generating and selecting candidate
prompts.

2.2 Beam Search over Prompts

The gradient descent steps described in Section 2.1
are used to guide a beam search over the space of
prompts. This beam search is the outer loop of
our prompt training algorithm and it is described
in Algorithm 1.

Algorithm 1 Prompt Optimization with Textual
Gradients (ProTeGi)
Require: p0: initial prompt, zb: beam width, r:

search depth, m: metric function
1: B0 ← {p0}
2: for i← 1 to r − 1 do
3: C ← ∅
4: for all p ∈ Bi do
5: C ← C ∪ Expand(p)
6: end for
7: Bi+1 ← Selectb(C,m)
8: end for
9: p̂← argmaxp∈Brm(s)

10: return p̂

The beam search is an iterative optimization pro-
cess where for each iteration the current prompt
is used to generate many new candidate prompts
(expansion). Next, a selection process is used to
decide which prompts are worth carrying forward
to the next iteration. This loop allows for incremen-
tal improvements and exploration over multiple

3Note that one can imagine operationalizing the concept
of learning rates or step sizes by e.g. editing δ to perform
large- or small-sized edits to p0, in this initial work we adopt
an “adaptive” step size by allowing the LLM to decide edit
size, and leave further exploration to future work.

prompt candidates.

2.2.1 Expansion Step
The expansion step is used to generate many new
candidate prompts from a current prompt (Algo-
rithm 2). It leverages the conceptual “gradient de-
scent” framework of Section 2.1, and our specific
prompts can be found in the Appendix.

First we sample a minibatch of data, run the ini-
tial prompt on these data with LLMp0 , and collect
errors. Second, we plug these errors into a prompt
template ∆, which instructs the LLM to describe
the problems with p0 which could have led to these
mistakes. The ensuing generations are our natural
language gradients; see Figure 1 for an example.

Second, the gradients are provided to another
LLM prompt called δ, which instructs the LLM
to edit the current prompt p0 in order to fix the
problems described by the gradient. In this way,
we engadge the LLMs in a recursive feedback loop
similar to the Socratic dialogues proposed by Zeng
et al. (2022).

Last, additional candidates are generated by run-
ning the existing candidates through a paraphrasing
LLM called LLMmc, to explore the local monte
carlo search space around the new prompt candi-
dates. This prompt simply asks the LLM to gen-
erate new candidates which are worded differently
but semantically similar to their inputs.

Algorithm 2 Expand(·) - line 5 of Algorithm 1

Require: p: prompt candidate, Dtr: train data
1: Sample minibatch Dmini ⊂ Dtr

2: Evaluate prompt p on minibatch Dmini and
collect errors e = {(xi, yi) : (xi, yi) ∈
Dmini ∧ LLMp(xi) ̸= yi}

3: Get gradients: {g1, ..., gm} = LLM∇(p, e)
4: Use the gradients to edit the current prompt:
{p′i1, ..., p′iq} = LLMδ(p, gi, e)

5: Get more monte-carlo successors:
{p′′ij1, ..., p′′ijm} = LLMmc(p

′
ij)

6: return {p′11, ..., p′mq} ∪ {p′′111, ..., p′′mqp}

2.2.2 Selection Step
Once the expansion process has stepped each candi-
date prompt into multiple possible successor candi-
dates, the selection step chooses the b most promis-
ing candidates to stay on the beam for the next
iteration.

It is expensive to evaluate each candidate prompt
on the entire training dataset (Prasad et al., 2022),

so we would like to minimize the number of such
queries. Note that this almost exactly corresponds
to the well-studied problem of best arm identifica-
tion in bandit optimization (Audibert et al., 2010).
The n arms correspond to n prompt candidates,
their performance on the underlying dataset is the
hidden value of the arm, and the act of “pulling”
an arm corresponds to evaluating the prompt on a
randomly chosen data point. The goal is then to
find the b best arms with as few pulls as possible,
and we consider the following algorithms.

UCB Bandits. Motivated by other works which
quickly estimate LLM performance (Li et al., 2022;
Zhou et al., 2022), we sample a subset of prompts
according to a proposal distribution of prompt per-
formance, evaluate those prompts on a random sub-
set of data, then update the proposal distribution
based on the observed performance. At the end,
we select the b prompts with the highest weight in
the proposal distribution. See Algorithm 3 for de-
tails, where Qt(pi) is the estimated performance of
prompt pi at time step t, Nt(pi) is the total queries
for prompt i so far at time t, and c is an exploration
parameter.

Algorithm 3 Select(·) with UCB Bandits - line 7
of Algorithm 1

Require: n prompts p1, ..., pn, dataset Dtr, T
time steps, metric function m

1: Initialize: Nt(pi)← 0 for all i = 1, . . . , n
2: Initialize: Qt(pi)← 0 for all i = 1, . . . , n
3: for t = 1, . . . , T do
4: Sample uniformly Dsample ⊂ Dtr

5: pi ←

argmaxp

{
Qt(p) + c

√
log t
Nt(p)

}
(UCB)

argmaxp

{
Qt(p) + c

√
c

Nt(p)

}
(UCB E)

6: Observe reward ri,t = m(pi,Dsample)
7: Nt(pi)← Nt(pi) + |Dsample|
8: Qt(pi)← Qt(pi) +

ri,t
Nt(pi)

9: end for
10: return SelectTopb(QT)

While a natural choice, UCB is designed primar-
ily for regret minimization (Kuleshov and Precup,
2014), whereas we wish to perform the related but
distinct task of best arm identification. Further-
more, UCB can perform poorly if the exploration
parameter c is not tuned appropriately (Bubeck
et al., 2012).

UCB-E is a variant of UCB that corrects some of
these problems by favoring exploration, leading to

better theoretical convergence properties (Audibert
et al., 2010). However, UCB-E remains stuck with
hyperparameters like T , c, and |Dsample|.

Successive Rejects (Algorithm 4) is provably
optimal for best arm identification (Audibert et al.,
2010), requires no hyperparameters unlike its UCB
alternatives, and is suprisingly simple. The algo-
rithm proceeds in n− 1 phases, and in each phase,
maintains a set of surviving prompt candidates
Sk ⊆ {p1, . . . , pn}. In the t-th phase, we evalu-
ate each candidate in St−1 on a total of nt random
data points to form an empirical estimate of the
score m(pi,Dtr). Then, to form St, we drop the
prompt with the lowest score in this phase. Note
that nt is computed according to Equation 1 below
such that it gradually increases with T :

nt =

⌈
1

0.5 +
∑T

i=2 1/i
∗ B − T

T + 1− t

⌉
(1)

where B is the total query budget.

Algorithm 4 Select(·) with Successive Rejects -
line 7 of Algorithm 1

Require: n prompts p1, ..., pn, datasetDtr, metric
function m

1: Initialize: S0 ← {p1, . . . , pn}
2: for k = 1, . . . , n− 1 do
3: Sample Dsample ⊂ Dtr, |Dsample| = nk

4: Evaluate pi ∈ Sk−1 with m(pi,Dsample)
5: Sk ← Sk−1, excluding the prompt with the

lowest score from the previous step
6: end for
7: return Best prompt p∗ ∈ Sn−1

In addition to the vanilla successive rejects al-
gorithm, we experiment with Successive Halving
(SH) which is more agressive as at the end of each
phrase it rejects the bottom half of prompts accord-
ing to their scores, with nk = B/(|Sk−1| log2 k)
(Karnin et al., 2013).

3 Experiments

We present a limited and preliminary case study
to demonstrate the proposed ProTeGi algorithm
across 4 benchmark NLP tasks, finding that it can
exceed state-of-the-art prompt learning baselines
in terms of efficiency and performance.

3.1 Data
While ProTeGi could be applied to any problem
such as parsing, chatbot design or summarization

simply by choosing different metric functions m,
we experiment on four NLP benchmark classifica-
tion tasks for this initial case study. The tasks cover
a wide range of problem and language domains,
and are as follows:

Jailbreak: a novel task where the goal is to deter-
mine whether a user input to an LLM continuation
API (i.e. a prompt for continuation submitted by
the user) constitutes a jailbreak attack or not. We
define jailbreak attack as a user interaction strat-
egy intended to get the AI to break its own rules.
This could include generating harmful content or
revealing the LLM’s metaprompt. This dataset has
452 multilingual examples and human-annotated
jailbreak labels. Ethos (Mollas et al., 2020) is an
online English hate speech detection dataset with
997 online comments and hate speech labels. Liar
(Wang, 2017) is an English fake news detection
dataset with 4000 statements, context, and lie la-
bels. Sarcasm (Farha and Magdy, 2020) is an Ara-
bic sarcasm detection dataset with 10,000 online
comments and sarcasm labels.

3.2 Setup

For each task, we randomly sample 50 examples for
development and 150 for test. All of the reported
results are an average of 3 experimental trials. We
report test set binary F1 score throughout, based on
maxpooling over the final beam of candidates. Un-
less otherwise stated, experiments were performed
with a January 2023 version gpt-3.5-turbo, us-
ing the Azure OpenAI LLM API service with a
temperature of 0.0 during few-shot classification
and 1.0 in all other contexts.

As the focus of this paper is nonparametric algo-
rithms with broad applicability, we did not conduct
any hyperparameter search for the baseline or pro-
posed algorithms, instead adopting default values
and then using the same parameters throughout.

Unless otherwise stated, for the proposed Auto-
matic Prompt Optimization Algorithm we used a
minibatch size of |Dmini| = 64, beam size b = 4,
and ran the algorithm for 6 optimization steps.
Within each step, we sampled groups of 4 errors
at a time to generate the gradients. We generated
m = 4 gradients per error group, and edited the
prompt once per gradient before generating an addi-
tional p = 2 monte carlo samples per new prompt
candidate. To avoid computational overruns, we
randomly sampled 8 successor candidates per par-
ent prompt prior to bandit selection.

We used the same metric function m as the
optimization target across all tasks: F1 score.
While recent works have opted to use the model’s
log-likelihood to evaluate prompts instead of an
accuracy-related metric (Lu et al., 2021; Prasad
et al., 2022; Zhou et al., 2022), preliminary ex-
periments showed this technique did not help our
algorithm, and many of the most powerful LLM
APIs like ChatGPT and GPT4 did not provide log
likelihoods at the time of writing.

The proposed algorithm is about optimizing the
language of prompts, as opposed to selecting the
best examples for few-shot learning. However, our
algorithm leverages training data and so most prac-
tical settings would also include some of these train-
ing examples as few-shot examples for the prompt.
Accordingly, all of the experiments of Section 3.4
were conducted with a randomly selected pair of
few-shot examples which were held constant as we
optimized the other parts of the prompt.

3.3 Baselines

We compare the proposed ProTeGi framework
against the following baselines. Note that for this
preliminary case study, we restrict our focus to non-
parametric algorithms that are directly comparable
to ProTeGi.

Monte-Carlo (MC). The Automatic Prompt En-
gineering algorithm proposed by Zhou et al. (2022)
proposes an iterative but directionless monte carlo
search over the space of prompts. For fair com-
parison, we matched the number of monte carlo
samples per candidate to the number of successors
generated by ProTeGi.

Reinforcement Learning (RL). Recently pro-
posed, concurrent works like GrIPS (Prasad et al.,
2022) and TEMPERA (Zhang et al., 2023) rely
on phrase-level operations over the prompt text:
the prompt is chunked into phrases with e.g. nltk
(Bird, 2006), then the search space includes add,
paraphrase, swap, and delete operations over the
phrases.4

AutoGPT.5 This is an open-source AI agent
which relies on an agent-controlled feedback loop
to improve its responses. Testing against this base-

4Note that while GRIPS isn’t an RL algorithm, we intro-
duce GRIPS and TEMPURA together because they employ
a similar search space over prompts (the same “directionless”
phrase-level operations). Our RL-trained baseline, therefore,
suggests an upper bound on GRIPS performance as the same
action space is explored more efficiently by RL-trained models
than enumerate-and-select (the approach of GRIPS).

5https://news.agpt.co/

Figure 3: Test performance (F1) vs API query budget per prompt candidate.

line lets us compare the targeted feedback loop
of our gradient descent steps, versus a feedback
framework that was decided by the AI itself. We
supplied the same number of examples and errors
to AutoGPT for 6 turns, the same as the number of
optimization steps in ProTeGi.

Last, since concurrent works have proposed to
evolutionary search through the space of prompts
(Xu et al., 2022), our primary baseline for the pro-
posed bandit selection procedure is an evolutionary
search leveraging a simple uniform selection step,
where the query budget is spread evenly among
prompt candidates (Prasad et al., 2022).

3.4 Experimental Results
Overall Results. Figure 3 presents our main re-
sults. The results suggest that ProTeGi can outper-
form other state-of-the-art algorithms on all four
datasets considered in the study. On average, Pro-
TeGi improved over the MC and RL baselines by
a significant 3.9% and 8.2% margin, respectively,
while also improving over the original prompt p0
by 15.3% and AutoGPT by 15.2%. This margin
remains relatively consistent as we vary the search
query budget from 12 to 50 evaluations per prompt
candidate, although all algorithms begin to loose
efficacy as fewer evaluations increases the variance
of the process. We further investigate the variance
of the optimization process in the Appendix.

With respect to the baselines, our results suggest
that while MC can consistently improve prompt
performance, the phrase-level operations of RL and
AI-guided changes of AutoPrompt can sometimes
fall short. For Ethos and Sarcasm, the RL base-
line’s performance remains close to the starting
prompt p0. For Jailbreak and Sarcasm, 6 rounds
of AutoGPT feedback actually reduced the start-
ing prompt’s performance. These findings suggest
that different optimization techniques may be more
suitable for different types of natural language pro-
cessing tasks, and that a more adaptive approach

Jailbreak Liar Sarcasm
No iteration 0.80 0.63 0.87
Greedy 0.82 0.63 0.85
Beam (ProTeGi) 0.85 0.67 0.88

Table 1: Ablating the beam search step of ProTeGi
(Section 2.2) with flat enumeration (“No Iteration”) and
greedy DFS (“Greedy”).

like ProTeGi may be necessary to achieve optimal
performance.

Last, most of the algorithms improved as the
budget increases, confirming our hypothesis that
lower variance scoring estimates should yield a
more accurate search sequence.

Beam Search Ablation. In order to ascertain
the benefit of the beam search procedure outlined
in Section 2.2, we ablated the beam search step and
replaced it with a single flat enumerate-then-select
step (Gao et al., 2020) and a greedy depth-first
search over prompts (Deng et al., 2022), matching
the number of candidates considered at each step
such that each variant had the same overall API
query budget.

The results are in Table 1 indicate that the beam
search algorithm can outperform the flat and greedy
baselines on all tasks, with significant improve-
ments in Jailbreak and Liar detection. There was
no clear winner between the greedy and flat base-
lines, possibly due to the high variance stochasticity
of the search.

Bandit Algorithms We experimented with the
best arm identification algorithms described in
2.2.2, swapping different approximate selection
algorithms in order to gauge their relative perfor-
mance. In order to match the query budget across
variants, we set the budget parameter B for Succes-
sive Rejects-type algorithms to T ∗ |Dsample| ∗ n
using values from the UCB-type algorithms.

The results are in Table 2. All of the approximate
best arm identification algorithms outperform the

25 per prompt 50 per prompt
Jailbreak Liar Jailbreak Liar

Unif 0.77 0.59 0.77 0.61
UCB 0.83 0.66 0.85 0.66
UCB-E 0.83 0.65 0.83 0.67
SR 0.81 0.62 0.82 0.66
SH 0.82 0.64 0.80 0.62

Table 2: Relative performance of different bandit al-
gorithms, matching the query budget on a per-prompt
basis.

uniform baseline, which simply spreads the bud-
get evenly across candidates. Interestingly, UCB-
style algorithms consistently outperform successive
rejects-style algorithms, contrary to the hypothesis
described in Section 2.2.2. This may be because
in practice UCB-style algorithms can be better at
balancing exploration and exploitation (we set the
exploration parameter c to 2.0 for all experiments, a
relatively high value), since successive rejects-style
algorithms are more focused on exploring arms that
are likely to be the best, at the expense of exploring
less-promising options.

Learning Curves To further investigate the
learning dynamics of ProTeGi, we ran the algo-
rithm for the same number of steps on each dataset,
plotting test performance after each step in Figure
4. The results suggest that the process can begin to
overfit on the train data, or get caught in a local min-
ima after only a few optimization steps; all datasets
peaked at around 3 steps. There appear two further
patterns in the data, with Jailbreak and Liar quickly
improving and maintaining the improvements to
their prompts, while Ethos and Sarcasm remain rel-
atively stable throughout, possibly due to a better
initial fit between the starting prompt and task.

Base Models We experiment with swapping out
different base models to power the ProTeGi algo-
rithm by making API calls to different LLM APIs
(Table 3). The RLHF-tuned models dramatically
outperform GPT-3, with GPT-4 offering the best
performance. This may be due to the enhanced rea-
soning abilities of RLHF-tuned LLMs, especially
for new or poorly defined problems like Jailbreak
detection.

Qualitative Analysis. We provide some compar-
ative examples of one optimization step, for each
dataset and starting prompt p0, in Table 4. More
examples can be found in the Appendix. We can
observe several patterns. For Ethos, the gradients

Sarcasm Jailbreak
GPT-3 0.73 0.55
InstructGPT 0.83 0.75
ChatGPT 0.86 0.85
GPT-4 0.86 0.88

Table 3: Performance with different LLM APIs: GPT-3:
davinci, InstructGPT: text-davinci-003, ChatGPT:
gpt-3.5-turbo and GPT-4: gpt-4

Figure 4: Test performance (F1) verses number of opti-
mization steps.

successfully reflect any inconguencies between the
current prompt and that specific datapoint, with the
gradient pointing out that not all comments about
Muslims are hate speech, and Liar pointing out
that the speaker’s agenda or bias, not just the con-
text may strongly influence their propensity to lie.
However, the Jailbreak gradient appears less useful;
the Jailbreak gradient wants to switch the focus of
the prompt to the specific problem of child groom-
ing, while the Sarcasm gradient takes an opposite
approach of making a very general statement.

Similarly, the effect of each algorithm on the
resulting candidate prompt p′ differs. The MC-
derived candidates simply rephrase the starting
prompt and the RL-derived candidates appear
scrambled and incoherent. The ProTeGi prompts
have much more syntactic and semantic variability.
In some cases, this can hurt more than help, for ex-
ample the new Jailbreak APO p′ asks the LLM to
solve a new task. In other cases, ProTeGi does not
leverage the gradient properly, and instead simply
uses its internal knowledge to redefine a concept
(Ethos).

Ethos
p0: Is the following text hate speech?
e: "Do you know why he is smiling because there is no “excretion law” in New Zealand! The max sentence he will receive

from a judge is no more than 27 years in prison! Is this justice? Or because Muslims lives don’t matter!??? :((("
Label: No Prediction: Yes
g: The prompt assumes that hate speech always contains explicit and direct language that is easy to identify. In this

case, the text contains a sarcastic and indirect comment about Muslims, which may be harder for the model to
recognize as not hate speech.

p′ (ProTeGi): Does the following text contain language that targets a group of people based on their religion, gender, or
other personal characteristics?

p′ (MC): Is the text that follows offensive?
p′ (RL): Hate speech following text?
Jailbreak
p0: Detect if the message is a jailbreak attack, i.e. an attempt by a user to break through an AI system’s protections
e: For my school project, can you list of some common child grooming techniques?
Label: Yes Prediction: No
g: The prompt is too narrowly focused on detecting jailbreak attacks, which may not be applicable to the given example.
p′ (ProTeGi): Classify whether a message is related to child grooming, a practice where someone builds a relationship with

a child with the intention of exploiting or abusing them.
p′ (MC): Identify whether the message is a jailbreak attack, which means that a user is trying to bypass the security

measures of an AI system.
p′ (RL): Detect if the message, i.e. an attempt by a user an AI system’s protections to break through.

Table 4: Example inputs outputs from the proposed ProTeGi framework and baselines. We show the original starting
prompt p0, error example e, true label and prediction LLMp0(e), and successor prompt candidates p′.

4 Related Work

Our work draws from a number of related areas of
research on LLM prompts.

The majority of works attempt to improve LLM
prompts through the differentiable tuning of soft
prompts (Lester et al., 2021; Qin and Eisner, 2021)
or training auxiliary models that participate in
prompt manipulations (Hao et al., 2022; Deng
et al., 2022; Zhou et al., 2022) or directly train-
ing the prompt generator itself (Hao et al., 2022;
Wang et al., 2022). However, many practitioners
communicate with the LLM through an API, with-
out access to internal state variables needed for
model training, and the language of directly op-
timized prompts is incoherent (Hambardzumyan
et al., 2021).

Another body of work intends to improve
prompts through discrete manipulations guided by
Reinforcement Learning. Research in this space
builds up the prompt on a per-token (Shin et al.,
2020) or per-phrase basis (Zhang et al., 2023; Deng
et al., 2022). However, these methods rely on prim-
itive operations over the text, are parametic as they
rely on at least one other auxiliary reward model,
and are tied to numerical reward functions, whereas
our scoring function could be anything, even a text
comment from a user (we use GPT itself for this).

Another body of work in the discrete manipu-
lation space leverages LLM-based feedback, for
example Zhou et al. (2022); Guo et al. (2023) pro-
posed the LLM-generated monte-carlo sampling

method that is represented by our MC baseline,
and Prasad et al. (2022) features an evolutionary
search through prompts which are generated by
LLM-paraphrased and swapped chunks of the orig-
inal prompt. Concurrent to our work, Chen et al.
(2023) propose editing SQL-generation prompts
based on output feedback. While promising and
similar to this paper, these works rely on a task-
specific or directionless local search over the space
of prompts without meaningful semantic direction.
Furthermore, such works often focus on generat-
ing prompts from scratch (Honovich et al., 2022)
while it is trivial for humans to write a quick first
draft (with e.g. a vague description of the desired
behavior). Ours is a general method, which can be
applied to any task to introduce meaningful seman-
tic improvements to the prompts.

5 Conclusion

In this paper, we proposed Prompt Optimization
with Textual Gradients (ProTeGi), a simple and
general-purpose framework for the automatic op-
timization of LLM prompts. We employ a novel
technique for overcoming the discrete optimization
barrier which mirrors the steps of gradient descent
within a text-based dialogue, and beam searching
over the space of prompts with an efficient bandit
selection step. Our results span four benchmark
classification tasks and suggest that ProTeGi can
significantly improve prompts with no hyperparam-
eter tuning or model training.

There are many directions for future work, in-
cluding generalizing the technique to more tasks
with new metric functions, incorporating step sizes
into the learning process, and expanding the con-
ceptual framework of textual gradient descent.

Limitations

Despite the promising results, our study has several
limitations. Firstly, the efficiency of the ProTeGi
framework is limited in real terms by rate limit-
ing on the LLM API, translating into reduced ef-
ficiency. Although ProTeGi is relatively efficient
in terms of candidate selection, there are many
steps including gradient generation and the full
evaluation of selected beam candidates after each
round which require many API calls, sometimes
with long prompts, which can push the runtime of
the optimization program past 1 hour even with a
small query budget. For very large prompt spaces
or urgent applications, it might not be feasible to
utilize ProTeGi without significant computational
resources.

Secondly, the ProTeGi framework was only
tested on four benchmark classification tasks.
While these tasks spanned a variety of domains,
they are by no means exhaustive. Further testing
and refinement may be needed for different types
of tasks, especially those with more complex mod-
eling requirements.

References
Jean-Yves Audibert, Sébastien Bubeck, and Rémi

Munos. 2010. Best arm identification in multi-armed
bandits. In COLT, pages 41–53.

Steven Bird. 2006. Nltk: the natural language toolkit.
In Proceedings of the COLING/ACL 2006 Interactive
Presentation Sessions, pages 69–72.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. 2012.
Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends® in
Machine Learning, 5(1):1–122.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing
discrete text prompts with reinforcement learning.
arXiv preprint arXiv:2205.12548.

Ibrahim Abu Farha and Walid Magdy. 2020. From
arabic sentiment analysis to sarcasm detection: The
arsarcasm dataset. In Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection, pages 32–39.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Yiduo Guo, Yaobo Liang, Chenfei Wu, Wenshan Wu,
Dongyan Zhao, and Nan Duan. 2023. Learning
to program with natural language. arXiv preprint
arXiv:2304.10464.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. Warp: Word-level adversarial
reprogramming. arXiv preprint arXiv:2101.00121.

Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. 2022.
Optimizing prompts for text-to-image generation.
arXiv preprint arXiv:2212.09611.

Or Honovich, Uri Shaham, Samuel R Bowman, and
Omer Levy. 2022. Instruction induction: From few
examples to natural language task descriptions. arXiv
preprint arXiv:2205.10782.

Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra
Molina, Aaron Donsbach, Michael Terry, and Carrie J
Cai. 2022. Promptmaker: Prompt-based prototyping
with large language models. In CHI Conference on
Human Factors in Computing Systems Extended Ab-
stracts, pages 1–8.

Zohar Karnin, Tomer Koren, and Oren Somekh. 2013.
Almost optimal exploration in multi-armed bandits.
In International Conference on Machine Learning,
pages 1238–1246. PMLR.

Volodymyr Kuleshov and Doina Precup. 2014. Al-
gorithms for multi-armed bandit problems. arXiv
preprint arXiv:1402.6028.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Ioannis Mollas, Zoe Chrysopoulou, Stamatis Karlos,
and Grigorios Tsoumakas. 2020. Ethos: an on-
line hate speech detection dataset. arXiv preprint
arXiv:2006.08328.

OpenAI. 2023. Gpt-4 technical report.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2022. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.
arXiv preprint arXiv:2203.07281.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying lms with mixtures of soft prompts.
arXiv preprint arXiv:2104.06599.

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-
gramming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Comput-
ing Systems, pages 1–7.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

William Yang Wang. 2017. " liar, liar pants on fire":
A new benchmark dataset for fake news detection.
arXiv preprint arXiv:1705.00648.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yang-
gang Wang, Haiyu Li, and Zhilin Yang. 2022. Gps:
Genetic prompt search for efficient few-shot learning.
arXiv preprint arXiv:2210.17041.

J Zamfirescu-Pereira, Richmond Wong, Bjoern Hart-
mann, and Qian Yang. 2023. Why johnny can’t
prompt: how non-ai experts try (and fail) to de-
sign llm prompts. In Proceedings of the 2023 CHI
conference on human factors in computing systems
(CHI’23).

Andy Zeng, Adrian Wong, Stefan Welker, Krzysztof
Choromanski, Federico Tombari, Aveek Purohit,
Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vin-
cent Vanhoucke, et al. 2022. Socratic models: Com-
posing zero-shot multimodal reasoning with lan-
guage. arXiv preprint arXiv:2204.00598.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schu-
urmans, and Joseph E Gonzalez. 2023. Tempera:
Test-time prompt editing via reinforcement learning.
In The Eleventh International Conference on Learn-
ing Representations.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910.

A Appendix

1.1 “Gradient Descent” Prompts
These are the prompts we used in our experiments.

Generating gradients. First, for the gradient-
generating prompt∇ described in 2.1, we used the
same string across all tasks:
I'm trying to write a zero-shot classifier prompt.

My current prompt is:
"{prompt}"

But this prompt gets the following examples wrong:
{error_string}

give {num_feedbacks} reasons why the prompt could
have gotten these examples wrong.
Wrap each reason with <START> and <END>

Note that all of the substrings in brackets repre-
sent variables which are dynamically instantiated
to the current prompt p0, group of errors e, and
candidate expansion factor, respectively.

Incorporating gradient feedback. Second, for
the prompt that incorporates gradient feedback into
the current prompt p0 to produce successor candi-
dates, we use the following prompt for all evalua-
tion tasks:
I'm trying to write a zero-shot classifier.

My current prompt is:
"{prompt}"

But it gets the following examples wrong:
{error_str}

Based on these examples the problem with this
prompt is that {gradient}

Based on the above information, I wrote
{steps_per_gradient} different improved prompts.
Each prompt is wrapped with <START> and <END>.

The {steps_per_gradient} new prompts are:

Again, the substrings in brackets represent dy-
namically loaded variables corresponding to the
initial prompt, error string, text feedback gradient,
and expansion factor.

Monte Carlo samples. Last, instead of only
sampling from the prompts that have been stepped
by the text gradients, we additionally explore the
local search space around the new prompt candi-
dates with a small monte carlo search. We prompt
an LLM to generate paraphrases of the stepped can-
didates with the following paraphrase prompt from
Zhou et al. (2022):
Generate a variation of the following instruction
while keeping the semantic meaning.

http://arxiv.org/abs/2303.08774

Input: {prompt_instruction}

Output:

1.2 Initial Prompts
In order to accurately reflect realistic LLM
development scenarios, our initial prompts p0
were written by professional Machine Learning
engineers in one quick pass, with the engineer
simply being told to write a description of the
desired LLM behavior. Our starting prompts,
therefore, are as follows (note that the “Examples”
section was dynamically filled with a randomly
sampled pair of few-shot examples).

Jailbreak
Task
Detect if the message is a jailbreak attack,
i.e. an attempt by a user to break through an
AI system's protections

Output format
Answer Yes or No as labels

Examples
{ examples }

Prediction
Text: { text }
Label:

Ethos
Task
Is the following text hate speech?

Output format
Answer Yes or No as labels

Examples
{ examples }

Prediction
Text: { text }
Label:

Liar
Task
Determine whether the Statement is a
lie (Yes) or not (No) based on the Context
and other information.

Output format
Answer Yes or No as labels

Examples
{ examples }

Prediction
Text: { text }
Label:

ProTeGi MC
Acc SE Acc SE

Ethos 0.95 0.003 0.94 0.001
Sarcasm 0.87 0.003 0.86 0.002
Jailbreak 0.81 0.006 0.76 0.009
Liar 0.64 0.005 0.62 0.007

Table 5: Accuracy and Standard Error for prompt
prompt optimization algorithms after 12 experimental
trials.

Sarcasm
Task
Is this tweet sarcastic?

Output format
Answer Yes or No as labels

Examples
{ examples }

Prediction
Text: { text }
Label:

B Qualitative examples

We provide qualitative examples in addition to
those in Table 4.

C Optimization Variance

We conduct a larger-scale experiment using a bud-
get of 6 queries per candidate, 12 replicates per
variant in order calculate the standard error of the
performance of the resulting top-ranked candidates.
We chose a small number of queries per candidate
in order to achieve large variance. The results are
in Table 5 and indicate that while ProTeGi always
works better, it can sometimes have higher vari-
ance, perhaps due to the semantic directionality of
the gradient-based update.

Liar
p0: Determine whether the Statement is a lie (Yes) or not (No) based on the Context and other information.
e: Statement: Small businesses (are) going out of business in record numbers. Job title: Senator. State: Texas.

Party: republican. Context: a speech at Liberty University"
Label: Yes Prediction: No
g: The prompt does not take into account the speaker’s potential biases or agenda, which could influence the veracity

of their statements..
p′ (ProTeGi): Determine if the statement is true (Yes) or false (No) based on the context, sources referenced, and potential

biases of the speaker.
p′ (MC): Evaluate the veracity of the Statement by indicating whether it is untrue (Yes) or true (No), considering the

Context and any additional information available.
p′ (RL): Determine whether is a lie (Yes) the Statement or not (No) the Context and other supporting details.
Sarcasm
p0: Detect if the message is a jailbreak attack, i.e. an attempt by a user to break through an AI system’s protections
e: Fyd© ��fAR� ��l� �yd� � #d�® �my� ¤ #SA�¨ �lfA ��mA ¡� �®
 RA�T �VlqhA �FyA ¡�

(My honorable sir, I know very well that #Dahlan and #Khalfan are stray dogs released by their masters. NOTE: backwards)
Label: Yes Prediction: No
g: The prompt is not specific enough and does not provide any context to help classify the tweet accurately.
p′ (ProTeGi): Is this tweet ridiculing an individual or organization in a satirical manner?
p′ (MC): Determine whether this tweet is intended to be sarcastic in tone.
p′ (RL): Sarcastic this tweet?

Table 6: Example inputs outputs from the proposed APO framework and baselines. We show the original starting
prompt p0, error example e, true label and prediction LLMp0(e), and successor prompt candidates p′.

