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Abstract

Articulated object manipulation in real images is a fundamental step in computer
and robotic vision tasks. Recently, several image editing methods based on diffu-
sion models have been proposed to manipulate articulated objects according to text
prompts. However, these methods often generate weird artifacts or even fail in real
images. To this end, we introduce the Part-Aware Diffusion Model to approach the
manipulation of articulated objects in real images. First, we develop Abstract 3D
Models to represent and manipulate articulated objects efficiently and arbitrarily.
Then we propose dynamic feature maps to transfer the appearance of objects from
input images to edited ones, meanwhile generating novel views or novel-appearing
parts reasonably. Extensive experiments are provided to illustrate the advanced
manipulation capabilities of our method concerning state-of-the-art editing works.
Additionally, we verify our method on 3D articulated object understanding for em-
bodied robot scenarios and the promising results prove that our method supports this
task strongly. The project page is at https://mvig-rhos.com/pa_diffusion.

1 Introduction

Image editing is a long-standing popular computer vision task. Specifically, manipulating articulated
objects has garnered significant attention owing to its application in various fields, such as image
augmentation for downstream tasks [43], building goal conditions to train reinforcement learning
models for robotic manipulation [41, 55], creating videos with extra supervision information [33],
detecting human-object interactions [21, 22, 25], reasoning object affordance [24, 23], etc. Thanks to
the large-scale training data and immense computing power, diffusion-based [40] generative models
have achieved surprising results in the field of image and video generation.

Inspired by these successes, several recent works have adopted diffusion models as the backbone and
implemented text-guided object manipulation [19, 15, 7, 51]. We can properly divide these studies
into a couple of groups. The first one is to directly edit 2D images by transferring the feature/attention
maps from original images to edited ones such as [12, 31, 7]. However, weird artifacts are prone
to appear when the objects are rotated and deformed, or novel views appear. Consequently, these
methods are restricted to structure-preserving image editing. Another group relies on reconstructing
3D object models. As the most related work to ours, [51] reconstructed 3D object models for
manipulation and projected them back to images later. Nevertheless, this approach depends on the
quality of reconstructed 3D models heavily. And the reconstruction model has to be fine-tuned when
dealing with new categories. Moreover, manipulation has to be done manually which is laborious and
impractical to support editing large quantities of images.

To address these problems, we propose the Part-Aware Diffusion Model (PA-Diffusion model) for
articulated object manipulation in real images, as illustrated in Fig. 1. Firstly, we introduce the

∗Corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://mvig-rhos.com/pa_diffusion


Figure 1: We propose the Part-Aware Diffusion Model: Abstract 3D model of the articulated object
is constructed referring to the input 2D real image. Arbitrary manipulation can be done in 3D space
based on the text instruction or human interaction, the generation model then creates the edited image
according to the manipulation.

concept of Abstract 3D Model and build a Primitive Prototype Library to represent articulated objects
in 3D space, so that our method can not only cover many common objects but also handle novel
categories without extra training data or fine-tuning processes. Besides, arbitrary manipulation can be
done efficiently. Second, we proposed dynamic feature maps to assist generation models in accurately
transferring object appearances to accurate locations in edited images. As a result, weird artifacts
are eliminated, and meanwhile, novel views or novel-appearing parts are generated more reasonably.
Finally, owing to the simple manipulation and editing process, the procedure is brief and the model
can strongly support other tasks by editing a large volume of images.

Our main contributions are summarized as follows:

(1) We introduce the concept of the Abstract 3D Model which accurately and robustly represents
various articulated object categories with primitive prototypes. Meanwhile, novel categories can also
be incorporated quickly. In addition, the articulated objects can be efficiently manipulated with text
instructions or human interactions in 3D space.

(2) We propose dynamic feature maps that let the diffusion model comprehend the object structure.
Consequently, the diffusion model can generate novel views or novel-appearing parts of objects
reasonably and preserve the appearance of the seen parts simultaneously.

(3) We present comprehensive experiments to highlight the advantages of our PA-Diffusion model
including comparing with state-of-the-art editing methods both qualitatively and quantitatively,
choosing a 3D articulated object understanding experiment to demonstrate how our method supports
the tasks in embodied robot scenarios.

2 Related Work

2.1 Diffusion Model for Image Generation

In recent years, diffusion models [39, 38, 10] have achieved great success in the fields of image/video
generation [6, 16], segmentation [4, 50], and many downstream computer vision tasks. To make
the generation results controllable, [34] first proposed to extract and incorporate text features into
the denoising process. Following this concept, [40, 11, 42, 14, 8] improved the performance of
text-guided diffusion models with more effective text embedding methods.

However, as an implicit instruction, text guidance is still not strong enough to finish fine-grained
image control such as determining the image layouts, objects’ shape and texture, and so on. To make
up this gap, [46] provided structural guidance by enhancing the similarity between the features of
other conditions and the text guidance. [13, 5] proposed to modify the cross-attention maps and
then guide the denoising process. To handle more complex scenarios and achieve more precise
control, [52] and [32] proposed adding an extra module to the diffusion model. Then extra condition
information can be imported to guide the denoising process.
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2.2 Diffusion Based Image Editing

Considering the remarkable capability of understanding images, several recent works have also
reported editing real and synthetic images with using diffusion models as the backbone. These
methods can generally be summarized into two groups: Inversion-Based and Feature-Sharing Based.

The first group is primarily based on adding extra control to the inverted noise maps of images, then
re-generating the image such as [19]. However, because the deterministic DDIM sampling process
cannot be reversed perfectly, these methods struggle to preserve the appearance of original objects
and backgrounds precisely. The second group attempts to maintain the appearance of objects by
transferring the feature/attention/activation maps between guidance and generation branches or by
adding extra loss items during the denoising process, as seen in [7, 31, 12]. Recent approaches
like DragGAN [35] and DragDiffusion [31] propose to utilize a point-to-point dragging scheme,
which can achieve refined content dragging. Nonetheless, these approaches often perform poorly on
articulated object manipulation in real images, resulting in weird and blurry artifacts in edited images.

2D-3D-2D is another promising way of image editing, the recent work [51] introduced reconstructing
3D models from 2D images and projecting them back after manipulation. However, this approach
highly relies on the quality of 3D reconstructed models, and reconstructing 3D models from a single
2D image is still a challenging task.

In contrast to the aforementioned approaches, our method demonstrates advantages when manipulat-
ing articulated objects in real images - high fidelity edited images, easy and arbitrary manipulation,
covering multiple categories, and incorporating novel categories quickly.

3 Method
3.1 Overview

In this session, we go through the proposed PA-Diffusion model in detail. The overall architecture is
demonstrated in Fig. 2. Initially, we reconstruct abstract 3D models for articulated objects with the
Primitive Prototype Library. Then arbitrary manipulation can be done according to text instructions
or human interactions. Next, leveraging DDIM Inversion [44, 30], initial inverted noise maps are
created and manipulated following the previous actions. During the generation stage, we introduce
dynamic feature maps, including manipulated inverted noise maps and compositional activation
maps. These ensure that the appearance of seen parts of objects can be preserved accurately and that
novel-appearing parts are generated reasonably. Besides, Texture and Style Consistency Score Loss
are introduced to alleviate the blurry and style mismatch problems.

3.2 Preliminary

Diffusion models aim to convert random Gaussian noise into high-resolution images through a
sequential denoising and sampling process [12]. Given the conditioning y, we start from the initial
Gaussian noise map zt, and then iteratively estimate the reduced noise ϵ̂t at each time step t:

ϵ̂t = ϵθ(zt; t, y),

zt−1 = update(zt, ϵ̂t, t, t− 1, ϵt−1),
(1)

The update function could be DDPM [17], DDIM [44], or other sampling methods. Nevertheless,
conventional sampling from conditional diffusion models often fails to produce high-quality images
that align well with the condition y. To enhance the effect of the desired condition, extra class loss
guidance is added to the reduced noise during the sampling process such as Classifier or Classifier-free
guidance [45, 18].

Classifier guidance is introduced to generate conditional samples from an unconditional model
by combining the unconditional score ϵt with a classifier p(y|zt), where p(y|zt) is the probability
distribution of condition y based on the noise at time step t:

ϵ̂t = ϵθ(zt; t, y) + β ▽zt p(y|zt), (2)

Classifier-free guidance eliminates the need for a separate classifier by incorporating the class
information directly into the generative model as follows:

ϵ̂t = (1 + α)ϵθ(zt; t, y)− αϵθ(zt; t), (3)
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Figure 2: The overall image editing process. (1) In the Pre-Process stage, articulated objects in 2D
images are part-level segmented and reconstructed to abstract 3D models. Meanwhile, inverted noise
maps of input images are created with DDIM Inversion. (2) In the Manipulation stage, arbitrary
manipulation can be implemented in the 3D space based on text guidance or human interaction. (3)
After manipulation, part-level masks and sketches are rendered and exported. The inverted noise
maps are transformed according to these masks. (4) Finally, with the transformed inverted noise
maps, sketch maps, and part-level masks, the generation model creates the edited images.

Following these concepts, custom energy functions can also be utilized to guide the denoising process,
instead of the probability function. In [12] [29] [54], various energy functions g are incorporated
alongside classifier-free guidance to obtain high-fidelity samples as follows:

ϵ̂t = (1 + α)ϵθ(zt; t, y)− αϵθ(zt; t) + β ▽zt g(zt; t, y), (4)

Our proposed PA-Diffusion model is built on the diffusion model with classifier-free guidance. Extra
energy functions are employed during the image editing process.

3.3 Arbitrary Manipulation in 3D Space

As a promising workaround to the methods of dealing with images directly, the 2D-3D-2D pipeline
has successfully handled many articulated objects with precise 3D models. Unfortunately, creating
3D models for various categories from a single image remains challenging, particularly for novel
categories or instances. In this work, we introduce the concept of Abstract 3D Model that reconstructs
accurate 3D models, supports efficient object manipulation, and incorporates novel objects easily.

Abstract 3D Model. Unlike previous methods, there is no need for precise 3D models of our
method, the conditional information we have to provide to the diffusion model is coarse sketch maps
and part-level masks. Therefore, we introduce the use of an abstract 3D model to represent the
articulated object. As an abstract 3D model, the object is represented by combining several basic
prototypes. As depicted at the bottom of Fig. 2, the laptop can be represented by two planes, storage
furnitures and microwaves can be represented by a plane and a box. Primitive Prototype Library,
which includes basic 3D prototypes such as cuboids, cubes, and boxes, supports common articulated
object categories involving both rotation and translation joint types.

Camera Alignment. Next, we compute the camera pose in 3D space and align the 2D real
image view with the 3D space camera view. The pose computation problem is to calculate the
intrinsic and extrinsic matrices for the camera that minimize the reprojection error from 3D-2D point
correspondences [3]. Thus, in this work, we first employ Large-scale Segmentation Models to obtain
the initial part-level segmentation masks of articulated objects M Init and then detect the extreme
corner points A,B,C,D (pts1) with simple corner detection functions. These 2D extreme points are
aligned with their 3D counterparts A

′
, B

′
, C

′
, D

′
(pts2, pre-defined in Primitive Prototype Library)

as shown in Fig. 3. Finally, based on Perspective n-Points 2D-3D method [49], the camera matrices
can be extracted, and 2D-3D views are aligned.

Manipulation. By representing objects with primitive prototypes, multiple types of manipulations
can be implemented in 3D space efficiently with the assistance of 3D computer graphics software. As
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Figure 3: Algorithm pipeline of the PA-Diffusion model. Symbols and procedures in the figure are
the same as those in the content.

shown in Fig. 2, manipulating objects through text instructions is a concise approach. For example,
the instruction opening the laptop 120◦ is converted to a script, then the manipulation will be done
by running the script in 3D software. Our PA-Diffusion model also supports human interaction,
which could be even more efficient. Additional manipulation guidance is provided in the Appendix.
Contrary to the tedious manipulation experience of previous SOTA works, our proposed PA-Diffusion
model offers a more flexible approach to editing articulated objects.

Structure Disentangle. Some object parts could still be seen after manipulation, and some unseen
parts would appear. As shown in the top right part in Fig. 3, the laptop shell can be seen in the input
image. After opening the laptop, the shell can still be seen, however, the keyboard and screen are
newly revealed. Therefore, to distinguish them and implement part-aware diffusion, we disentangle
articulated objects into seen parts and novel-appearing parts. The appearance of seen parts should
be consistent between input and edited images, and the style of novel-appearing parts should be
consistent with the objects’ overall appearance. In this work, we regard all the initial part-level
masks M Init as seen. Then after manipulation, we obtain manipulated seen parts mask MGen

s
and manipulated novel-appearing parts mask MGen

n , both of them are exported from 3D software
automatically. We use MGen to present the union of MGen

s and MGen
n .

3.4 Dynamic Feature Maps

To maintain the object’s appearance including color and texture, previous editing methods introduced
a guidance branch to invert and re-generate the input image, and a generation branch to create the
edited image, the attention/feature/activation maps are transferred from the guidance to the generation
branch directly [7]. However, when changing the object location or shape during manipulation,
directly sharing these maps would transfer the feature from the input image to undesired locations
in the edited image. Furthermore, these methods cannot reasonably generate novel views or novel-
appearing parts.

To overcome these problems, we propose dynamic feature maps including manipulated inverted
noise maps and compositional activation maps. To keep appearance accurate, manipulated inverted
noise maps transfer the feature of seen parts in input images to the manipulated seen parts in edited
images. Simultaneously, to make novel-appearing parts reasonably, compositional activation maps let
the diffusion model create these parts from random noise. The following content describes how to
manipulate the noise maps, how to construct compositional activation maps, and how they work. For
clarity, the process is presented in Fig. 3, and an additional simpler explanation is provided in the
Appendix.

Manipulated inverted noise map. As shown at the top of Fig. 3, we firstly reverse the input image
to the initial inverted noise map zInitT with DDIM inversion. After 3D manipulation, we calculate the
transform function T based on the initial M Init and manipulated seen part-level masks MGen

s and
then compute the transformed inverted noise map zTran

T with T . Finally, the manipulated inverted
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noise map is created as the following equation:

zMan
T = zTran

T ×MGen
s + zTran

T ×MMake
s + zInitT ×Mbg, (5)

Where MMake
s is the mask generated by XOR(M Init,M Init ∩ MGen

s ). Mbg is the background
mask created by 1−M Init ∪MGen

s . Besides, we also create a random noise map zRan
T . The three

noise maps zInitT , zRan
T , and zMan

T will be sent to the denoising UNet as a batch in the next step.

Compositional activation map. As shown at the bottom of Fig.3, the diffusion model runs a
pipeline denoising process with the three noise maps as a batch and generates three output activation
maps: AGui

t generated from initial inverted noise map within guidance branch, ARan
t generated from

random noise map within random branch, and AGen
t generated from manipulated inverted noise map

within generation branch. At last, ARan
t and AGen

t are merged according to previously defined masks.

AGen
t = ARan

t ×MGen
n +AGen

t ×MGen
s , (6)

Owing to the above steps, we transfer the feature of seen parts in input images to the accurate location
in edited images. At the same time, all the other contents and the background in input images can be
preserved, as the highlighted yellow part in Fig. 3. Besides, as the highlighted blue part in Fig. 3,
an extra image is synthesized with random noise map zRan

T , the novel-appearing parts are cropped
and pasted to edited images from the extra image, which makes these parts more reasonable and
consistent with the original inputs.

3.5 Score Function

Texture Consistency Score Loss. However, simply manipulating the inverted noise map will lead
to a serious blurry problem. This is due to the denoising process includes several convolution steps.
As the initial inverted noise map zInitT is not rotation invariant, manipulating zInitT will disturb the
original distribution and make the denoising process fail. To alleviate this limitation, we construct
Texture Consistency Score Loss (TCSL) [31] as an extra supervision that lets the specific region in
the generation branch match with the one in the guidance branch,

Losst =
φfg

cos(AGui
t [M Init], AGen

t [MGen
s ])

+
φbg

cos(AGui
t [1−M Init], AGen

t [1−MGen])
, (7)

where φfg and φbg are hyper-parameters. We add this loss item as an extra loss in classifier guidance
in each denoising iteration step to calibrate the appearance of objects.

Style Consistency Score Loss. For novel-appearing parts, the diffusion model is prone to randomly
select a style to generate them with text guidance or sketch maps. As a result, the texture and style
are usually different from the objects in input images. Therefore, we introduce Style Consistency
Score Loss (SCSL) to calibrate the style of seen parts and the novel views and novel-appearing parts.

Different from Texture Consistency Score Loss, there is no need to match every pixel in input images
and edited images. Thus we calculate L1 loss between the activation maps of the guidance and the
generation branch [12]. The loss function is as follows:

Losss =
∣∣sum(AGui

t [M Init])− sum(AGen
t [MGen

n ])
∣∣
1
, (8)

This loss item is also added as an extra classifier guidance. The final reduced noise in each denoising
iteration is as follows, where γ1 are γ2 are the hyper-parameter weights of TCSL and SCSL,

ϵ̂t = (1 + α)ϵθ(zt; t, y)− αϵθ(zt; t) + γ1 ▽zt Losst + γ2 ▽zt Losss. (9)

4 Experiment

In this section, we provide two kinds of experiments to prove the advantages of our proposed PA-
Diffusion model. First, various image editing tasks are conducted to showcase the model’s image
editing capabilities. To highlight the superiority of our model compared with state-of-the-art methods,
we collect a testbench and evaluate all the methods both qualitatively and quantitatively. Second, we
create a synthetic training set to support the challenging 3D articulated object understanding task in
the robotic scenarios.
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Figure 4: Results of basic manipulations: move, scale/shear. rotate, and manipulate. Blank regions
caused by the manipulation are in-painted automatically. The novel views and novel-appearing parts
match with the style of the seen parts (left). Articulated objects are opened from 0◦ to 120◦. The
appearance of the increasing novel-appearing parts keeps being consistent throughout the whole
process (right).

4.1 Implementation

In this work, we select Grounded Segment Anything [20, 28] to obtain the initial part-level object
segmentation masks. T2I Adapter [32] is chosen as the conditional generation model, and the
condition we used is the sketch map. The fundamental diffusion model is Stable Diffusion V1-5.
All experiments run on a single NVIDIA A100 GPU. Notably, NO models need to be trained or
fine-tuned in the image editing process.

Primitive Prototype Library is built within Blender [9]. 3D cuboids, cubes, boxes, and other 3D
primitive shapes are created and combined to represent different objects. In this work, 6 primitive
shapes are created to represent 6 categories of articulated objects. The ease of creating prototypes
allows for the quick incorporation of novel categories or instances. Rotation, view change, and other
manipulations are all implemented in Blender.

4.2 Results

Fig. 4 demonstrates the editing results of some basic manipulations and a sequential manipulation
process. As shown in the left part, our PA-Diffusion model naturally moves, scales/shears, rotates, and
opens articulated objects with rotation or translation joint types. The edited objects blend seamlessly
with other contents and backgrounds in the original images. When we move or rotate the objects, the
blank regions in the background are in-painted semantically according to the surroundings. Moreover,
in-painting and editing are completed in a single denoising process by the PA-Diffusion model, no
extra in-paint model or process is required. Last but not least, novel-appearing parts of objects are
generated reasonably. For example, the fruits are in the refrigerator, the storage furniture and the
drawer are empty after opening.

The right part of Fig. 4 presents a complete operation process of opening articulated objects, from the
initial closed state to progressively open states as 30◦, 60◦, 90◦, 120◦. The appearance of objects’
seen parts is transferred from the original input to different states accurately. The point that needs
to be mentioned is that along with the operation progress, more novel-appearing parts of objects
appear, our proposed PA-Diffusion model keeps the style and texture of these novel-appearing parts
throughout the process. This capability allows our method to generate a complete manipulation video
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Figure 5: Manipulate non-rigid objects, non-uniform shapes, and objects with weird or multiple joint
types.

from a single input image, maintaining consistent object appearance and style even as novel views or
parts increase.

Generally, articulated objects’ parts are rigid and connected with one of the typical joint types -
rotation and translation. However, we are surprised to notice that our PA-Diffusion model can also
handle non-rigid objects with non-uniform shapes and weird joints and manipulations fabulously. As
illustrated in Fig. 5, we first select toys as examples of non-rigid with non-uniform shapes, the tail of
the shark is moved up together with other close parts as deformable objects. Then, we broke the cup
in a real image. Third, the kitchen pot and storage furniture are opened to illustrate the case of weird
and multiple joint types within one object. No matter whether the shape of object parts has changed
after manipulation or joint types are unconventional, the PA-Diffusion model can edit all the objects
successfully. Meanwhile, the background is preserved or inpainted very well.

4.3 Ablation Study

As mentioned in Section 3, TCSL is added to the denoising loss function to release the serious blurry
problem. As shown in the left of Fig. 6, we move the storage furniture to the right. It can be seen that
without TCSL, the objects are prone to be blurry. More seriously, the edited image could be blurry,
as in the storage furniture example. On the other hand, with TCSL, the texture of objects can be
transferred to the desired location, meanwhile, the blank region caused by the movement is in-painted
well. SCSL is another loss to keep the style consistent between seen parts and novel-appearing parts.
Its effectiveness is shown in the left bottom of Fig. 6 (with SCSL). We notice that when opening the
storage furniture, the style of the novel-appeared inner body part is more likely to be consistent with
the door and outer body part with SCSL, which makes the edited image natural. More quantitative
ablation studies about the two score losses are provided in the Appendix.

4.4 Comparison

To further evaluate our PA-Diffusion model, we compare it with four state-of-the-art image editing
approaches that are based on diffusion models: Imagic, DragDiffusion, MasaCtrl (with T2I Adapter),
and Image Sculpting. In this experiment, we require these models to manipulate different categories
of articulated objects, including both rotation and translation joint types. The results are shown in the
right part of Fig. 6. It is hard for Imagic to finish the tasks as articulated objects cannot be opened
at all or the wrong part is manipulated. This is because the text instruction is too weak and the
fundamental generation model cannot understand the structure of objects. Similarly, DragDiffusion
cannot finish the tasks even though human interaction is applied.

MasaCtrl performs better than Imagic and DragDiffusion. The manipulation can be finished, while
the edited images are either unrealistic or unreasonable. Take the laptop as an example (second
column in the right part of Fig. 6), the object has been moved down and opened, while the region
highlighted with the red bounding box in the edited image remains unchanged, which does not make
sense. This issue is prevalent across other categories as well. The reason is that MasaCtrl simply
shares the whole feature/attention maps between the input and edited image, features of seen parts
cannot be transferred to the desired new location when objects move or the shape changes. Finally,
Image Sculpting works well on storage furniture. However it is prone to fail to reconstruct precise
3D models of the laptop, trashcan, and drawer, consequently, the edited images are undesirable.

In contrast, our PA-Diffusion model consistently produces high-fidelity and reasonable edits. The
appearance of seen parts is kept accurate no matter whether objects move or the shapes of parts have
changed. The novel parts are reasonable and semantically consistent with the original.
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Figure 6: TCSL and SCSL are employed to release the blurry and style mismatch problem. The
model is required to move and open the object (left). Comparison of Imagic, DragDiffusion, MasaCtrl
(with T2I adapter), Image Sculpting, and our PA-Diffusion model. The target state is ’a photo of an
opened object’ (right).

4.5 Quantitative Evaluation

To quantitatively evaluate our method, we built an articulated object manipulation testbench. The
testbench comprises 6 object categories including storage furniture, laptop, trashcan, microwave,
drawer, and refrigerator, which covers both rotation and translation joint types. In total, 660 real
images are collected from the website. Considering articulated objects are typically rigid with uniform
shapes, this testbench can represent the characteristics of common articulated object categories.

The comparison methods we select are Imagic and MasaCtrl (with T2I Adapter). DragDiffusion is
excluded as it cannot complete the manipulation tasks. Due to the long processing time and frequent
failures in generating 3D models, Image Sculpting is also excluded here. To assess the realism of
the edited images, the evaluation metric used is the Frechet Inception Distance (FID) score. The
quantitative evaluation results are summarized in Tab. 1.

Since Imagic relies solely on text instructions, the edited images often do not align well with the
original inputs, resulting in poor scores. Due to previously discussed reasons, the edited images
of MasaCtrl are confusing and lack coherence. Sequentially, the FID score is not satisfying. In
comparison, the PA-Diffusion model outperforms other methods with an obvious improvement.

4.6 Articulated Object Understanding

In this session, we demonstrate how our proposed method supports the task of 3D articulated object
understanding. As one of the fundamental steps to understanding 3D articulated objects, estimating
the axes and surface normal is still challenging because of the lack of data. Annotating the axes and
surface normal in 2D images is expensive and unreliable. On the contrary, leveraging abstract 3D
models, our method can easily generate accurate 3D annotations of objects.

To release the data limitation, we create a synthetic dataset with the PA-Diffusion model. The dataset
includes 660 sequential samples, each sample includes the sequence of opening objects from 0◦ to
120◦ with step 30◦, 3,300 images in total. [37] introduced a 3-step training process to develop the
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Category Imagic ↓ MasaCtrl ↓ Ours ↓
Storage. 8.58 3.61 0.81
Laptop 28.3 1.57 2.96

Microwave 9.27 4.07 0.44
Trashcan 6.04 2.62 0.61

Refrigerator 9.20 2.45 0.43
Drawer 7.78 1.66 0.78

Avg. 11.5 2.96 1.00
Table 1: FID Score of edited images with Imagic,
MasaCtrl (with T2I adapter), and ours.

Category bbox ↑ bbox+axis ↑ normal < 30◦ ↑
Storage. 43.3/63.3 23.3/63.3 50.0/70.9
Laptop 94.4/97.2 66.6/97.2 97.2/97.3

Microwave 72.7/81.8 63.3/81.8 85.0/91.9
Trashcan 40.0/77.5 37.0/74.3 31.4/46.5

Refrigerator 87.5/87.5 31.3/87.5 60.0/62.8
Drawer 82.9/77.1 66.6/74.2 96.9/96.9

Avg. 70.1/80.7 48.0/79.7 70.1/77.7
Table 2: Prediction accuracy of the model developed with
half (left) and full (right) training set separately.

Dataset AUROC ↑ bbox ↑ bbox+axis(rot) ↑ bbox+axis(rot)
normal ↑ bbox ↑ bbox+axis(tran) ↑ bbox+axis(tran)

normal ↑
InternetVideo 74.0 62.1 28.2 16.4 32.0 26.2 14.3

Mixed 75.6 65.1 28.5 16.4 35.2 27.2 21.7
Table 3: Mix the edited images with the training set of the InternetVideo dataset, then evaluate the fine-tuned
model on the testing set of the InternetVideo dataset.

Figure 7: Detection results on the sequential samples, including rotation and translation joint types.

object understanding model including BBox detection, axis prediction, and plane normal estimation.
Following this schedule, we evaluate the feasibility of edited images by two kinds of experiments.

First, the generated sequential samples are divided into training/testing sets (612/48). Specifically,
we follow the 3-step to train the model with half and full samples separately, and then evaluate the
model with three matrices, BBox IoU, Axes EA-score, and surface normal error smaller than 30◦ [37].
Fig. 7 demonstrates the prediction results, the model can understand the structures of articulated
objects after training with edited images, including moving plane, joint types, axis and surface normal.
Quantitative evaluation results in Tab. 2 indicate that prediction accuracy improves significantly with
more training samples, illustrating that the edited images are comparable to real ones.

Second, to further evaluate the edited images, we merge them with the original training set of Internet
Video dataset [37] and fine-tune the pre-trained model. The fine-tuned model is evaluated on the
testing set (6,231 real images) of the InternetVideo Dataset. Baseline refers to the model trained
on the InternetVideo dataset only. Here, surface normal accuracy is multiplied with BBox and axis,
other evaluation metrics are the same as above. The evaluation results are summarized in Tab. 3.
Compared with the baseline, the overall performance has been improved by enlarging the training set
with edited images. The above two experiments illustrate how our PA-Diffusion model can benefit
robotic vision tasks.

5 Limitations

Even though our method can handle common articulated objects, there are still some limitations. First,
as edited images are generated from inverted noise maps, the quality of the original input images
significantly affects the editing outcomes. Blurry or low-resolution inputs will degrade the edited
images. Second, when the object undergoes substantial deformation, this editing method is likely to
fail. Besides, manipulating deformable objects and fluids remains challenging with this approach.
Further explanation is provided in the Appendix.

6 Conclusion

This work introduces the PA-Diffusion model, a novel articulated object manipulation method that
covers common object categories and supports arbitrary manipulation. Both the qualitative and
quantitative experiments have proven the feasibility and effectiveness of our method. Besides, the
3D articulated object understanding experiment illustrates that the PA-Diffusion model has positive
impacts on helping build robots that interact with the real world smartly.
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Appendix

In this appendix session, we first go through the pipeline of the PA-Diffusion model, and then provide
more experiment results and detailed explanations, the arrangement is as follows:

Sec. A: Additional algorithm pipeline of the PA-Diffusion model.

Sec. B: Additional articulated object manipulation results with the PA-Diffusion model.

Sec. C: Additional ablation study and analysis.

Sec. D: Additional explanation of 3D articulated object understanding experiment.

Sec. E: Limitations and future research.

Sec. F: Societal impacts and potential risks.

A Additional algorithm pipeline of the PA-Diffusion model

To facilitate the understanding of our proposed PA-Diffusion model, we present the entire algorithm
pipeline in Algorithm 1. eq.1, eq.2, and eq.5 refer to the equations in the main paper.

Algorithm 1 PA-Diffusion Model

Require: Manipulate the articulated objects in RGB images
Input: RGB image x, Primitive Prototype Library
Output: Edited RGB image xedit

Pre-Process:
1: Generate initial inverted noise map zInitT with DDIMInvertion
2: Generate initial part-level masks M Init with GroundedSAM
3: Create 3D Abstract model and calibrate 2D image - 3D camera view

Manipulation:
4: Manipulate articulated objects in 3D space with text instructions or human interaction
5: Export manipulated part-level masks MGen

s of seen part and MGen
n of novel-appearing part

Feature Process:
6: Calculated manipulated inverted noise map zMan

T as eq.1.
Generation:

7: Send initial zInitT , random zRan
T , and manipulated zMan

T inverted noise map to diffusion model
8: for t = T, ..., 1 do

Construct compositional activation map AGen
t as eq.2

Add extra loss items TCSL Losst and SCSL Losss as eq.5
end

9: Output: Edited image xedit = Decoder(z0)

Dynamic Feature Maps: To make it clear, we simplify the 64 × 64 × 4 inverted noise maps and
activation maps to pure color block maps, as shown in Fig. 8. As the following equations show,
we calculate the transform function Transform based on pts1 and pts3, where pts1 and pts3 are
corner points of the input image masks A,B,C,D (pts1) and corner points of manipulated masks
A”, B”, C”, D” (pts3) as introduced in the main paper. The corner points are automatically detected
with a simple corner detection function. For simple actions such as moving and scaling, affine
transform [48] is selected, while for rotation, manipulation, and other complex actions, perspective
transform [47] is required. And then we can get the transformed inverted noise map zTran

T by
transforming the initial inverted noise map zInitT as following equations. Finally, the manipulated
inverted noise map is calculated by adding zTran

T and zInitT .

T = Transform(pts1, pts3),

zTran
T = T (zInitT ),

(10)

On the other hand, the compositional activation maps are generated by adding ARan
t generated with

random noise map and AGen
t generated with manipulated inverted noise map, as shown in the right

part of Fig. 8.

15



Figure 8: Manipulating noise maps and constructing compositional activation maps. The manipulation
is implemented with affine or perspective projection. The compositional activation map is constructed
by merging two activation maps from different initial noise maps.

Figure 9: Manipulate 3D objects in Blender with text instructions.

Articulated Object Manipulation in 3D space: Manipulating the articulated objects in 3D space is
straightforward in this work. As noted in the main paper, different manipulations can be done with
text instructions or human interaction within Blender.

For the text-based method, considering the objects can be manipulated with Python scripts in
Blender, we first construct a table mapping the text instructions to actions. Then these actions can
be implemented by running Python scripts. As shown in Fig. 9, we require the laptop to rotate 30
degree, this text instruction is converted to Python script where the object matrix is multiplied with a
rotation matrix and then set the new matrix to the object. Finally, running this script can finish the
rotation action. For the second type, users can directly manipulate any parts of articulated objects in
Blender, which is more flexible and convenient.

B Additional Manipulation Results

In Fig. 10 and Fig. 11, more articulated object manipulation results synthesized by our proposed PA-
Diffusion model are demonstrated. Novel categories including door, toilet, and book are experimented
with here. For various categories, joint types, and backgrounds, our proposed method can manipulate
the objects and preserve other contents in the input images simultaneously.

C Additional Ablation Study

To analyze and explain our proposed PA-Diffusion model in detail, we provide more ablation studies
in this session.

Additional Loss Items: In the main paper, we qualitatively demonstrate the effect of TCSL and
SCSL in the experiment part. Here, we evaluate them quantitatively. Following the main paper, the
evaluation metric is the FID score. The results are summarized in Tab. 4. It is obvious that without
TCSL, the performance degrades significantly since the feature cannot be transferred to the edited
images correctly leading to inconsistent appearance compared to the input images. On the other
hand, without SCSL, the style of novel-appearing parts is inconsistent with the original, therefore
the outcome is still unsatisfactory. When including the two losses, the edited images are close to the
input real images in the aspects of color, texture, and style.

Primitive Prototype Library: In the main paper, we create 6 simple primitive prototypes to
represent 6 different kinds of articulated objects in the testbench. Since our method does not require
precise 3D CAD models of objects, Primitive Prototype Library can cover a wide range of articulated
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Figure 10: Additional demonstration of the images edited with our proposed PA-Diffusion model,
including storage furniture, laptop, microwave, trashcan, door, drawer, refrigerator, and toilet.

Category None ↓ only SCSL ↓ only TCSL ↓ All Losses ↓
Storage. 3.51 2.6 2.46 0.81
Laptop 4.21 3.54 3.34 2.96

Microwave 0.81 1.28 1.28 0.44
Trashcan 2.07 2.08 2.58 0.61

Refrigerator 1.13 1.53 0.48 0.43
Drawer 2.19 2.11 0.64 0.78

Avg. 2.32 2.19 1.80 1.00
Table 4: FID score of edited images with different additional losses: no SCSL and TCSL, with
SCSL only, with TCSL only, and with all losses. The performance improves more than 57% with the
assistance of the two losses.

objects with a small number of primitive prototypes. As shown in Fig. 10 and Fig. 11, books can be
represented as laptops, doors can be represented with simple planes, and toilets can be represented
with a plane and a box. No extra prototypes are required when creating abstract 3D models for
novel categories. Besides, the edited images are still high-fidelity and high-quality. Furthermore, the
Primitive Prototype Library is easy to expand, more primitive prototypes can be created rapidly when
dealing with novel articulated objects.
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Figure 11: Additional demonstration of editing images with manipulation process based on our
proposed PA-Diffusion model. The last three columns are novel articulated object categories.

2D-3D Models analysis: Besides the advantage of convenience, we also compare the quality of
reconstructed 3D models with state-of-the-art 2D-3D methods and abstract 3D models.

Following the method introduced in Image Sculpting [51], we use ClipDrop to remove the background
of input images, and then reconstruct 3D models with Zero123 [27]. The tested images are the same
as those in the main paper. The reconstructed 3D object mesh models are shown in Fig. 12 including
the front view, side view, and the edited images after manipulation. We notice that the result of
storage furniture is acceptable, the shape closely matches the original, and the texture is stored in UV
maps correctly. However, for other categories, the reconstructed models are poor which is the main
reason for low-quality edited images.

In the main paper, we mentioned that manipulating the reconstructed 3D models created by 2D-3D
methods is tedious and inaccurate. As shown in Fig. 12, the reconstructed models are not part-level
(only one mesh object), tremendous human effort is required to cut the mesh into parts before
manipulation. For example, when trying to split the door from the body of storage furniture, we
need to cut the furniture into several parts first (top, bottom, four sides of the body), and then merge
others except the door. This process, even with advanced 3D graphics software, is complex and
time-consuming. As a result, summarizing reconstruction, manipulation, and generation time, Image
Sculpting [51] requires over 10 mins to manipulate one image, making it unsuitable for large-scale
image editing tasks.

In summary, using abstract 3D models to present articulated objects offers several advantages: (1)
State-of-the-art 2D-3D methods are still not robust enough to create precise 3D models such as laptops
and trashcans. In comparison, it is easy to achieve abstract 3D models with primitive prototypes, as
shown in Fig. 12. (2) Manipulating primitive prototypes in 3D space is easier and more accurate than
manipulating a single 3D object mesh. (3) Seen parts and novel-appearing parts can be defined and
extracted easily. (4) Novel categories and instances can be handled with our method efficiently. (5)
Our method is time-efficient and thus can support various downstream tasks.

D 3D Articulated Objects Understanding

Overview. In the main paper, we introduce the 3D articulated object understanding experiment and
demonstrate how our proposed PA-Diffusion model supports other research fields. Here, we discuss
the experiment setup and implementation in more detail.
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Figure 12: Reconstructed 3D object models with Image Sculpting, and our abstract 3D models
created with Primitive Prototype Library.

Annotation Generation. In previous works [37, 36, 26], human labeling is required for annotating
the bounding boxes, rotation/translation axes, and surface normal, which is labor-intensive and
inaccurate, especially for 3D scenario. On the contrary, by representing objects with abstract 3D
models, our method can achieve these annotations automatically.

As shown in Fig. 13, part1 and part2 are the masks of articulated objects’ parts that are exported
from Grounded SAM or Blender software automatically. The corner points can be calculated
with [1, 2]. Then, the bounding box of each object part can be calculated with these corner points.
The rotation and translation axis annotations are represented as [x0, y0, x1, y1], where x0, y0, x1, y1
are the coordinates of corner points in part-level masks, different object category uses different corner
points. For the 3D surface normal annotations, as shown in Fig. 14, we first export the object’s part
world transform matrix Mobj and camera world transform matrix Mcamera. Then the two matrices
are normalized and calibrated to create the aligned transform matrix Maligned. Consequently, we
simply select the normal of the outer plane to represent the orientation of the object part, and the
surface normal Vsurf is equal to the multiplication of the aligned matrix and local plane vector Vplane:

Maligned = Align(Norm(Mcamera), Norm(Mobj)),

Vsurf = Maligned × Vplane.
(11)

Evaluation Matrix. For quantitative evaluation, we follow [37] to calculate the average precision of
the bounding box, axis, and surface normal. The bounding box is the traditional horizontal type, the
threshold of IoU is set as 0.5. The predicted axes are measured with EA score as [53]. To demonstrate
the results clearly, we calculate the surface normal error and measure the accuracy that the error is
smaller than the threshold 30◦.

E Limitations and Future Research

The limitations of our proposed PA-Diffusion models have been discussed in the main paper. Due to
the inaccuracy of DDIM inversion, the inverted noise map might be poor if the input image quality is
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low. Unfortunately, the poor noise map will lead to mismatch error accumulation and propagation
during the iterative denoising process. As in the left of Fig. 15, when the original input image is of
low resolution (it is normalized to 512× 512 before manipulation), the PA-Diffusion model cannot
re-generate the original image with the inverted noise map. Simple actions like moving and scaling
also cannot be completed.

Manipulating the initial inverted noise maps is critical to preserve the appearance of seen parts.
However, as discussed in the main paper, this step disturbs the original data distribution. The problem
will be too serious to be fixed when the object shape deformation is large. As shown in the right of
Fig. 15, when reshaping the laptop to a slim non-uniform diamond shape, the object’s appearance
cannot be preserved.

Considering this situation, one promising solution is to add stronger and more precise supervision
loss in each denoising step. This is beyond the scope of this work, we plan to implement this later.

In the future, more categories of articulated objects will be covered and the edited image dataset will
be expanded to millions-scale for supporting various computer vision and robotic manipulation tasks.
Next, we will extend this method to handle deformable objects and fluids.

F Societal impacts and potential risks

The articulated object manipulation method presented in this work has profound positive societal
implications. This method can serve as a fundamental tool to benefit other computer vision or robot
vision tasks. Consequently, the artificial intelligent algorithm can understand and interact with the
real world better. Humans will have stronger AI assistants including smart offices, intelligent home
or medical robots, and so on.

All the models and data used in this work are collected from the Website. No personal information is
used. The code and data created in this work have a low risk of misuse.

20



Figure 13: Demonstration of extracting bounding box annotations and rotation/translation axis
annotations from part-level masks.

Figure 14: The camera poses and orientations of 6 planes in Blender, (1)-(6) refers to abstract 3D
models of cabinet, laptop, microwave, trashcan, drawer, and refrigerator separately. Red arrows are
the surface normal directions.

Figure 15: Limitation of the PA-Diffusion model: dealing with low-quality images or large deforma-
tion.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contribution: PA-Diffusion model, a novel articulated object manipulation
method in real images has been claimed in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is discussed in both the main paper and the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when the image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper introduces a novel method, there is no theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in the appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The completed algorithm pipeline is provided in the Appendix. Each step
is also introduced in both the main paper and the Appendix. The context explanation and
figures are aligned to explain the proposed method. Besides, to make the algorithm easy to
understand, we provide a simpler explanation in the Appendix as well. All the experimental
results can be reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

23



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: Coda and data will be publicly available later.
Guidelines:

• The answer NA means that the paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training and test details are described in the session of the experiment
in the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in the appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports the experiment results on certain datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar and then state that they have a 96% CI if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of computing workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The required computing resources are claimed in the session of the experiment
in the main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute worker CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more computing

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g. if there is a special consider-

ation due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: It is discussed in the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: It is described in the Appendix. The code and data of this work have a quite
low risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make the best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited, and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the models and data used in this work are published, and all the citations
have been included in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There is no crowdsourcing experiments and research in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing or research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work has no crowdsourcing experiments and research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing or research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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